mirror of
https://github.com/ostris/ai-toolkit.git
synced 2026-01-26 08:29:45 +00:00
Fixed some mismatched weights by adjusting tolerance. The mismatch ironically made the models better lol
This commit is contained in:
@@ -481,8 +481,33 @@ class BaseSDTrainProcess(BaseTrainProcess):
|
||||
params = self.embedding.get_trainable_params()
|
||||
|
||||
else:
|
||||
# set them to train or not
|
||||
if self.train_config.train_unet:
|
||||
self.sd.unet.requires_grad_(True)
|
||||
self.sd.unet.train()
|
||||
else:
|
||||
self.sd.unet.requires_grad_(False)
|
||||
self.sd.unet.eval()
|
||||
|
||||
if self.train_config.train_text_encoder:
|
||||
if isinstance(self.sd.text_encoder, list):
|
||||
for te in self.sd.text_encoder:
|
||||
te.requires_grad_(True)
|
||||
te.train()
|
||||
else:
|
||||
self.sd.text_encoder.requires_grad_(True)
|
||||
self.sd.text_encoder.train()
|
||||
else:
|
||||
if isinstance(self.sd.text_encoder, list):
|
||||
for te in self.sd.text_encoder:
|
||||
te.requires_grad_(False)
|
||||
te.eval()
|
||||
else:
|
||||
self.sd.text_encoder.requires_grad_(False)
|
||||
self.sd.text_encoder.eval()
|
||||
|
||||
# will only return savable weights and ones with grad
|
||||
params = self.sd.prepare_optimizer_params(
|
||||
vae=False,
|
||||
unet=self.train_config.train_unet,
|
||||
text_encoder=self.train_config.train_text_encoder,
|
||||
text_encoder_lr=self.train_config.lr,
|
||||
|
||||
@@ -93,7 +93,7 @@ total_keys = len(ldm_dict_keys)
|
||||
matched_ldm_keys = []
|
||||
matched_diffusers_keys = []
|
||||
|
||||
error_margin = 1e-4
|
||||
error_margin = 1e-6
|
||||
|
||||
tmp_merge_key = "TMP___MERGE"
|
||||
|
||||
|
||||
@@ -3,6 +3,8 @@ import os
|
||||
# add project root to sys path
|
||||
import sys
|
||||
|
||||
from tqdm import tqdm
|
||||
|
||||
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||
|
||||
import torch
|
||||
@@ -20,6 +22,8 @@ from toolkit.stable_diffusion_model import StableDiffusion
|
||||
# you probably wont need this. Unless they change them.... again... again
|
||||
# on second thought, you probably will
|
||||
|
||||
project_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
||||
|
||||
device = torch.device('cpu')
|
||||
dtype = torch.float32
|
||||
|
||||
@@ -109,7 +113,26 @@ keys_in_both.sort()
|
||||
|
||||
if len(keys_not_in_state_dict_2) == 0 and len(keys_not_in_state_dict_1) == 0:
|
||||
print("All keys match!")
|
||||
exit(0)
|
||||
print("Checking values...")
|
||||
mismatch_keys = []
|
||||
loss = torch.nn.MSELoss()
|
||||
tolerance = 1e-6
|
||||
for key in tqdm(keys_in_both):
|
||||
if loss(state_dict_file_1[key], state_dict_file_2[key]) > tolerance:
|
||||
print(f"Values for key {key} don't match!")
|
||||
print(f"Loss: {loss(state_dict_file_1[key], state_dict_file_2[key])}")
|
||||
mismatch_keys.append(key)
|
||||
|
||||
if len(mismatch_keys) == 0:
|
||||
print("All values match!")
|
||||
else:
|
||||
print("Some valued font match!")
|
||||
print(mismatch_keys)
|
||||
mismatched_path = os.path.join(project_root, 'config', 'mismatch.json')
|
||||
with open(mismatched_path, 'w') as f:
|
||||
f.write(json.dumps(mismatch_keys, indent=4))
|
||||
exit(0)
|
||||
|
||||
else:
|
||||
print("Keys don't match!, generating info...")
|
||||
|
||||
@@ -132,17 +155,17 @@ for key in keys_not_in_state_dict_2:
|
||||
|
||||
# print(json_data)
|
||||
|
||||
project_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
||||
|
||||
json_save_path = os.path.join(project_root, 'config', 'keys.json')
|
||||
json_matched_save_path = os.path.join(project_root, 'config', 'matched.json')
|
||||
json_duped_save_path = os.path.join(project_root, 'config', 'duped.json')
|
||||
state_dict_1_filename = os.path.basename(args.file_1[0])
|
||||
state_dict_2_filename = os.path.basename(args.file_2[0])
|
||||
# state_dict_2_filename = os.path.basename(args.file_2[0])
|
||||
# save key names for each in own file
|
||||
with open(os.path.join(project_root, 'config', f'{state_dict_1_filename}.json'), 'w') as f:
|
||||
f.write(json.dumps(state_dict_1_keys, indent=4))
|
||||
|
||||
with open(os.path.join(project_root, 'config', f'{state_dict_2_filename}.json'), 'w') as f:
|
||||
with open(os.path.join(project_root, 'config', f'{state_dict_1_filename}_loop.json'), 'w') as f:
|
||||
f.write(json.dumps(state_dict_2_keys, indent=4))
|
||||
|
||||
with open(json_save_path, 'w') as f:
|
||||
|
||||
@@ -99,6 +99,8 @@ class ModelConfig:
|
||||
self.use_text_encoder_1: bool = kwargs.get('use_text_encoder_1', True)
|
||||
self.use_text_encoder_2: bool = kwargs.get('use_text_encoder_2', True)
|
||||
|
||||
self.experimental_xl: bool = kwargs.get('experimental_xl', False)
|
||||
|
||||
if self.name_or_path is None:
|
||||
raise ValueError('name_or_path must be specified')
|
||||
|
||||
|
||||
@@ -58,7 +58,7 @@
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.11.mlp.fc1.weight": "te_text_model.encoder.layers.11.mlp.fc1.weight",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.11.mlp.fc2.bias": "te_text_model.encoder.layers.11.mlp.fc2.bias",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.11.mlp.fc2.weight": "te_text_model.encoder.layers.11.mlp.fc2.weight",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.11.self_attn.k_proj.bias": "te_text_model.encoder.layers.2.self_attn.k_proj.bias",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.11.self_attn.k_proj.bias": "te_text_model.encoder.layers.11.self_attn.k_proj.bias",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.11.self_attn.k_proj.weight": "te_text_model.encoder.layers.11.self_attn.k_proj.weight",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.11.self_attn.out_proj.bias": "te_text_model.encoder.layers.11.self_attn.out_proj.bias",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.11.self_attn.out_proj.weight": "te_text_model.encoder.layers.11.self_attn.out_proj.weight",
|
||||
@@ -74,7 +74,7 @@
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.2.mlp.fc1.weight": "te_text_model.encoder.layers.2.mlp.fc1.weight",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.2.mlp.fc2.bias": "te_text_model.encoder.layers.2.mlp.fc2.bias",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.2.mlp.fc2.weight": "te_text_model.encoder.layers.2.mlp.fc2.weight",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.2.self_attn.k_proj.bias": "te_text_model.encoder.layers.3.self_attn.k_proj.bias",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.2.self_attn.k_proj.bias": "te_text_model.encoder.layers.2.self_attn.k_proj.bias",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.2.self_attn.k_proj.weight": "te_text_model.encoder.layers.2.self_attn.k_proj.weight",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.2.self_attn.out_proj.bias": "te_text_model.encoder.layers.2.self_attn.out_proj.bias",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.2.self_attn.out_proj.weight": "te_text_model.encoder.layers.2.self_attn.out_proj.weight",
|
||||
@@ -90,7 +90,7 @@
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.3.mlp.fc1.weight": "te_text_model.encoder.layers.3.mlp.fc1.weight",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.3.mlp.fc2.bias": "te_text_model.encoder.layers.3.mlp.fc2.bias",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.3.mlp.fc2.weight": "te_text_model.encoder.layers.3.mlp.fc2.weight",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.3.self_attn.k_proj.bias": "te_text_model.encoder.layers.11.self_attn.k_proj.bias",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.3.self_attn.k_proj.bias": "te_text_model.encoder.layers.3.self_attn.k_proj.bias",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.3.self_attn.k_proj.weight": "te_text_model.encoder.layers.3.self_attn.k_proj.weight",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.3.self_attn.out_proj.bias": "te_text_model.encoder.layers.3.self_attn.out_proj.bias",
|
||||
"cond_stage_model.transformer.text_model.encoder.layers.3.self_attn.out_proj.weight": "te_text_model.encoder.layers.3.self_attn.out_proj.weight",
|
||||
@@ -446,11 +446,11 @@
|
||||
"first_stage_model.quant_conv.weight": "vae_quant_conv.weight",
|
||||
"model.diffusion_model.input_blocks.0.0.bias": "unet_conv_in.bias",
|
||||
"model.diffusion_model.input_blocks.0.0.weight": "unet_conv_in.weight",
|
||||
"model.diffusion_model.input_blocks.1.0.emb_layers.1.bias": "unet_down_blocks.0.resnets.0.conv1.bias",
|
||||
"model.diffusion_model.input_blocks.1.0.emb_layers.1.bias": "unet_down_blocks.0.resnets.0.time_emb_proj.bias",
|
||||
"model.diffusion_model.input_blocks.1.0.emb_layers.1.weight": "unet_down_blocks.0.resnets.0.time_emb_proj.weight",
|
||||
"model.diffusion_model.input_blocks.1.0.in_layers.0.bias": "unet_down_blocks.0.resnets.0.norm1.bias",
|
||||
"model.diffusion_model.input_blocks.1.0.in_layers.0.weight": "unet_down_blocks.0.resnets.0.norm1.weight",
|
||||
"model.diffusion_model.input_blocks.1.0.in_layers.2.bias": "unet_down_blocks.0.resnets.0.time_emb_proj.bias",
|
||||
"model.diffusion_model.input_blocks.1.0.in_layers.2.bias": "unet_down_blocks.0.resnets.0.conv1.bias",
|
||||
"model.diffusion_model.input_blocks.1.0.in_layers.2.weight": "unet_down_blocks.0.resnets.0.conv1.weight",
|
||||
"model.diffusion_model.input_blocks.1.0.out_layers.0.bias": "unet_down_blocks.0.resnets.0.norm2.bias",
|
||||
"model.diffusion_model.input_blocks.1.0.out_layers.0.weight": "unet_down_blocks.0.resnets.0.norm2.weight",
|
||||
@@ -482,31 +482,31 @@
|
||||
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.norm2.weight": "unet_down_blocks.0.attentions.0.transformer_blocks.0.norm2.weight",
|
||||
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.norm3.bias": "unet_down_blocks.0.attentions.0.transformer_blocks.0.norm3.bias",
|
||||
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.norm3.weight": "unet_down_blocks.0.attentions.0.transformer_blocks.0.norm3.weight",
|
||||
"model.diffusion_model.input_blocks.10.0.emb_layers.1.bias": "unet_down_blocks.3.resnets.0.conv1.bias",
|
||||
"model.diffusion_model.input_blocks.10.0.emb_layers.1.weight": "unet_time_embedding.linear_2.weight",
|
||||
"model.diffusion_model.input_blocks.10.0.emb_layers.1.bias": "unet_down_blocks.3.resnets.0.time_emb_proj.bias",
|
||||
"model.diffusion_model.input_blocks.10.0.emb_layers.1.weight": "unet_down_blocks.3.resnets.0.time_emb_proj.weight",
|
||||
"model.diffusion_model.input_blocks.10.0.in_layers.0.bias": "unet_down_blocks.3.resnets.0.norm1.bias",
|
||||
"model.diffusion_model.input_blocks.10.0.in_layers.0.weight": "unet_down_blocks.3.resnets.0.norm1.weight",
|
||||
"model.diffusion_model.input_blocks.10.0.in_layers.2.bias": "unet_down_blocks.3.resnets.0.time_emb_proj.bias",
|
||||
"model.diffusion_model.input_blocks.10.0.in_layers.2.bias": "unet_down_blocks.3.resnets.0.conv1.bias",
|
||||
"model.diffusion_model.input_blocks.10.0.in_layers.2.weight": "unet_down_blocks.3.resnets.0.conv1.weight",
|
||||
"model.diffusion_model.input_blocks.10.0.out_layers.0.bias": "unet_down_blocks.3.resnets.0.norm2.bias",
|
||||
"model.diffusion_model.input_blocks.10.0.out_layers.0.weight": "unet_down_blocks.3.resnets.0.norm2.weight",
|
||||
"model.diffusion_model.input_blocks.10.0.out_layers.3.bias": "unet_down_blocks.3.resnets.0.conv2.bias",
|
||||
"model.diffusion_model.input_blocks.10.0.out_layers.3.weight": "unet_down_blocks.3.resnets.0.conv2.weight",
|
||||
"model.diffusion_model.input_blocks.11.0.emb_layers.1.bias": "unet_down_blocks.3.resnets.1.conv1.bias",
|
||||
"model.diffusion_model.input_blocks.11.0.emb_layers.1.weight": "unet_down_blocks.3.resnets.0.time_emb_proj.weight",
|
||||
"model.diffusion_model.input_blocks.11.0.emb_layers.1.bias": "unet_down_blocks.3.resnets.1.time_emb_proj.bias",
|
||||
"model.diffusion_model.input_blocks.11.0.emb_layers.1.weight": "unet_down_blocks.3.resnets.1.time_emb_proj.weight",
|
||||
"model.diffusion_model.input_blocks.11.0.in_layers.0.bias": "unet_down_blocks.3.resnets.1.norm1.bias",
|
||||
"model.diffusion_model.input_blocks.11.0.in_layers.0.weight": "unet_down_blocks.3.resnets.1.norm1.weight",
|
||||
"model.diffusion_model.input_blocks.11.0.in_layers.2.bias": "unet_down_blocks.3.resnets.1.time_emb_proj.bias",
|
||||
"model.diffusion_model.input_blocks.11.0.in_layers.2.bias": "unet_down_blocks.3.resnets.1.conv1.bias",
|
||||
"model.diffusion_model.input_blocks.11.0.in_layers.2.weight": "unet_down_blocks.3.resnets.1.conv1.weight",
|
||||
"model.diffusion_model.input_blocks.11.0.out_layers.0.bias": "unet_down_blocks.3.resnets.1.norm2.bias",
|
||||
"model.diffusion_model.input_blocks.11.0.out_layers.0.weight": "unet_down_blocks.3.resnets.1.norm2.weight",
|
||||
"model.diffusion_model.input_blocks.11.0.out_layers.3.bias": "unet_down_blocks.3.resnets.1.conv2.bias",
|
||||
"model.diffusion_model.input_blocks.11.0.out_layers.3.weight": "unet_down_blocks.3.resnets.1.conv2.weight",
|
||||
"model.diffusion_model.input_blocks.2.0.emb_layers.1.bias": "unet_down_blocks.0.resnets.1.conv1.bias",
|
||||
"model.diffusion_model.input_blocks.2.0.emb_layers.1.bias": "unet_down_blocks.0.resnets.1.time_emb_proj.bias",
|
||||
"model.diffusion_model.input_blocks.2.0.emb_layers.1.weight": "unet_down_blocks.0.resnets.1.time_emb_proj.weight",
|
||||
"model.diffusion_model.input_blocks.2.0.in_layers.0.bias": "unet_down_blocks.0.resnets.1.norm1.bias",
|
||||
"model.diffusion_model.input_blocks.2.0.in_layers.0.weight": "unet_down_blocks.0.resnets.1.norm1.weight",
|
||||
"model.diffusion_model.input_blocks.2.0.in_layers.2.bias": "unet_down_blocks.0.resnets.1.time_emb_proj.bias",
|
||||
"model.diffusion_model.input_blocks.2.0.in_layers.2.bias": "unet_down_blocks.0.resnets.1.conv1.bias",
|
||||
"model.diffusion_model.input_blocks.2.0.in_layers.2.weight": "unet_down_blocks.0.resnets.1.conv1.weight",
|
||||
"model.diffusion_model.input_blocks.2.0.out_layers.0.bias": "unet_down_blocks.0.resnets.1.norm2.bias",
|
||||
"model.diffusion_model.input_blocks.2.0.out_layers.0.weight": "unet_down_blocks.0.resnets.1.norm2.weight",
|
||||
@@ -540,11 +540,11 @@
|
||||
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.norm3.weight": "unet_down_blocks.0.attentions.1.transformer_blocks.0.norm3.weight",
|
||||
"model.diffusion_model.input_blocks.3.0.op.bias": "unet_down_blocks.0.downsamplers.0.conv.bias",
|
||||
"model.diffusion_model.input_blocks.3.0.op.weight": "unet_down_blocks.0.downsamplers.0.conv.weight",
|
||||
"model.diffusion_model.input_blocks.4.0.emb_layers.1.bias": "unet_down_blocks.1.resnets.0.conv1.bias",
|
||||
"model.diffusion_model.input_blocks.4.0.emb_layers.1.bias": "unet_down_blocks.1.resnets.0.time_emb_proj.bias",
|
||||
"model.diffusion_model.input_blocks.4.0.emb_layers.1.weight": "unet_down_blocks.1.resnets.0.time_emb_proj.weight",
|
||||
"model.diffusion_model.input_blocks.4.0.in_layers.0.bias": "unet_down_blocks.1.resnets.0.norm1.bias",
|
||||
"model.diffusion_model.input_blocks.4.0.in_layers.0.weight": "unet_down_blocks.1.resnets.0.norm1.weight",
|
||||
"model.diffusion_model.input_blocks.4.0.in_layers.2.bias": "unet_down_blocks.1.resnets.0.time_emb_proj.bias",
|
||||
"model.diffusion_model.input_blocks.4.0.in_layers.2.bias": "unet_down_blocks.1.resnets.0.conv1.bias",
|
||||
"model.diffusion_model.input_blocks.4.0.in_layers.2.weight": "unet_down_blocks.1.resnets.0.conv1.weight",
|
||||
"model.diffusion_model.input_blocks.4.0.out_layers.0.bias": "unet_down_blocks.1.resnets.0.norm2.bias",
|
||||
"model.diffusion_model.input_blocks.4.0.out_layers.0.weight": "unet_down_blocks.1.resnets.0.norm2.weight",
|
||||
@@ -578,11 +578,11 @@
|
||||
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm2.weight": "unet_down_blocks.1.attentions.0.transformer_blocks.0.norm2.weight",
|
||||
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm3.bias": "unet_down_blocks.1.attentions.0.transformer_blocks.0.norm3.bias",
|
||||
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm3.weight": "unet_down_blocks.1.attentions.0.transformer_blocks.0.norm3.weight",
|
||||
"model.diffusion_model.input_blocks.5.0.emb_layers.1.bias": "unet_down_blocks.1.resnets.1.conv1.bias",
|
||||
"model.diffusion_model.input_blocks.5.0.emb_layers.1.bias": "unet_down_blocks.1.resnets.1.time_emb_proj.bias",
|
||||
"model.diffusion_model.input_blocks.5.0.emb_layers.1.weight": "unet_down_blocks.1.resnets.1.time_emb_proj.weight",
|
||||
"model.diffusion_model.input_blocks.5.0.in_layers.0.bias": "unet_down_blocks.1.resnets.1.norm1.bias",
|
||||
"model.diffusion_model.input_blocks.5.0.in_layers.0.weight": "unet_down_blocks.1.resnets.1.norm1.weight",
|
||||
"model.diffusion_model.input_blocks.5.0.in_layers.2.bias": "unet_down_blocks.1.resnets.1.time_emb_proj.bias",
|
||||
"model.diffusion_model.input_blocks.5.0.in_layers.2.bias": "unet_down_blocks.1.resnets.1.conv1.bias",
|
||||
"model.diffusion_model.input_blocks.5.0.in_layers.2.weight": "unet_down_blocks.1.resnets.1.conv1.weight",
|
||||
"model.diffusion_model.input_blocks.5.0.out_layers.0.bias": "unet_down_blocks.1.resnets.1.norm2.bias",
|
||||
"model.diffusion_model.input_blocks.5.0.out_layers.0.weight": "unet_down_blocks.1.resnets.1.norm2.weight",
|
||||
@@ -616,11 +616,11 @@
|
||||
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.norm3.weight": "unet_down_blocks.1.attentions.1.transformer_blocks.0.norm3.weight",
|
||||
"model.diffusion_model.input_blocks.6.0.op.bias": "unet_down_blocks.1.downsamplers.0.conv.bias",
|
||||
"model.diffusion_model.input_blocks.6.0.op.weight": "unet_down_blocks.1.downsamplers.0.conv.weight",
|
||||
"model.diffusion_model.input_blocks.7.0.emb_layers.1.bias": "unet_down_blocks.2.resnets.0.conv1.bias",
|
||||
"model.diffusion_model.input_blocks.7.0.emb_layers.1.bias": "unet_down_blocks.2.resnets.0.time_emb_proj.bias",
|
||||
"model.diffusion_model.input_blocks.7.0.emb_layers.1.weight": "unet_down_blocks.2.resnets.0.time_emb_proj.weight",
|
||||
"model.diffusion_model.input_blocks.7.0.in_layers.0.bias": "unet_down_blocks.2.resnets.0.norm1.bias",
|
||||
"model.diffusion_model.input_blocks.7.0.in_layers.0.weight": "unet_down_blocks.2.resnets.0.norm1.weight",
|
||||
"model.diffusion_model.input_blocks.7.0.in_layers.2.bias": "unet_down_blocks.2.resnets.0.time_emb_proj.bias",
|
||||
"model.diffusion_model.input_blocks.7.0.in_layers.2.bias": "unet_down_blocks.2.resnets.0.conv1.bias",
|
||||
"model.diffusion_model.input_blocks.7.0.in_layers.2.weight": "unet_down_blocks.2.resnets.0.conv1.weight",
|
||||
"model.diffusion_model.input_blocks.7.0.out_layers.0.bias": "unet_down_blocks.2.resnets.0.norm2.bias",
|
||||
"model.diffusion_model.input_blocks.7.0.out_layers.0.weight": "unet_down_blocks.2.resnets.0.norm2.weight",
|
||||
@@ -654,11 +654,11 @@
|
||||
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm2.weight": "unet_down_blocks.2.attentions.0.transformer_blocks.0.norm2.weight",
|
||||
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm3.bias": "unet_down_blocks.2.attentions.0.transformer_blocks.0.norm3.bias",
|
||||
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm3.weight": "unet_down_blocks.2.attentions.0.transformer_blocks.0.norm3.weight",
|
||||
"model.diffusion_model.input_blocks.8.0.emb_layers.1.bias": "unet_down_blocks.2.resnets.1.conv1.bias",
|
||||
"model.diffusion_model.input_blocks.8.0.emb_layers.1.bias": "unet_down_blocks.2.resnets.1.time_emb_proj.bias",
|
||||
"model.diffusion_model.input_blocks.8.0.emb_layers.1.weight": "unet_down_blocks.2.resnets.1.time_emb_proj.weight",
|
||||
"model.diffusion_model.input_blocks.8.0.in_layers.0.bias": "unet_down_blocks.2.resnets.1.norm1.bias",
|
||||
"model.diffusion_model.input_blocks.8.0.in_layers.0.weight": "unet_down_blocks.2.resnets.1.norm1.weight",
|
||||
"model.diffusion_model.input_blocks.8.0.in_layers.2.bias": "unet_down_blocks.2.resnets.1.time_emb_proj.bias",
|
||||
"model.diffusion_model.input_blocks.8.0.in_layers.2.bias": "unet_down_blocks.2.resnets.1.conv1.bias",
|
||||
"model.diffusion_model.input_blocks.8.0.in_layers.2.weight": "unet_down_blocks.2.resnets.1.conv1.weight",
|
||||
"model.diffusion_model.input_blocks.8.0.out_layers.0.bias": "unet_down_blocks.2.resnets.1.norm2.bias",
|
||||
"model.diffusion_model.input_blocks.8.0.out_layers.0.weight": "unet_down_blocks.2.resnets.1.norm2.weight",
|
||||
@@ -692,11 +692,11 @@
|
||||
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.norm3.weight": "unet_down_blocks.2.attentions.1.transformer_blocks.0.norm3.weight",
|
||||
"model.diffusion_model.input_blocks.9.0.op.bias": "unet_down_blocks.2.downsamplers.0.conv.bias",
|
||||
"model.diffusion_model.input_blocks.9.0.op.weight": "unet_down_blocks.2.downsamplers.0.conv.weight",
|
||||
"model.diffusion_model.middle_block.0.emb_layers.1.bias": "unet_mid_block.resnets.0.conv1.bias",
|
||||
"model.diffusion_model.middle_block.0.emb_layers.1.weight": "unet_down_blocks.3.resnets.1.time_emb_proj.weight",
|
||||
"model.diffusion_model.middle_block.0.emb_layers.1.bias": "unet_mid_block.resnets.0.time_emb_proj.bias",
|
||||
"model.diffusion_model.middle_block.0.emb_layers.1.weight": "unet_mid_block.resnets.0.time_emb_proj.weight",
|
||||
"model.diffusion_model.middle_block.0.in_layers.0.bias": "unet_mid_block.resnets.0.norm1.bias",
|
||||
"model.diffusion_model.middle_block.0.in_layers.0.weight": "unet_mid_block.resnets.0.norm1.weight",
|
||||
"model.diffusion_model.middle_block.0.in_layers.2.bias": "unet_mid_block.resnets.0.time_emb_proj.bias",
|
||||
"model.diffusion_model.middle_block.0.in_layers.2.bias": "unet_mid_block.resnets.0.conv1.bias",
|
||||
"model.diffusion_model.middle_block.0.in_layers.2.weight": "unet_mid_block.resnets.0.conv1.weight",
|
||||
"model.diffusion_model.middle_block.0.out_layers.0.bias": "unet_mid_block.resnets.0.norm2.bias",
|
||||
"model.diffusion_model.middle_block.0.out_layers.0.weight": "unet_mid_block.resnets.0.norm2.weight",
|
||||
@@ -728,11 +728,11 @@
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.0.norm2.weight": "unet_mid_block.attentions.0.transformer_blocks.0.norm2.weight",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.0.norm3.bias": "unet_mid_block.attentions.0.transformer_blocks.0.norm3.bias",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.0.norm3.weight": "unet_mid_block.attentions.0.transformer_blocks.0.norm3.weight",
|
||||
"model.diffusion_model.middle_block.2.emb_layers.1.bias": "unet_mid_block.resnets.1.conv1.bias",
|
||||
"model.diffusion_model.middle_block.2.emb_layers.1.weight": "unet_up_blocks.0.resnets.0.time_emb_proj.weight",
|
||||
"model.diffusion_model.middle_block.2.emb_layers.1.bias": "unet_mid_block.resnets.1.time_emb_proj.bias",
|
||||
"model.diffusion_model.middle_block.2.emb_layers.1.weight": "unet_mid_block.resnets.1.time_emb_proj.weight",
|
||||
"model.diffusion_model.middle_block.2.in_layers.0.bias": "unet_mid_block.resnets.1.norm1.bias",
|
||||
"model.diffusion_model.middle_block.2.in_layers.0.weight": "unet_mid_block.resnets.1.norm1.weight",
|
||||
"model.diffusion_model.middle_block.2.in_layers.2.bias": "unet_mid_block.resnets.1.time_emb_proj.bias",
|
||||
"model.diffusion_model.middle_block.2.in_layers.2.bias": "unet_mid_block.resnets.1.conv1.bias",
|
||||
"model.diffusion_model.middle_block.2.in_layers.2.weight": "unet_mid_block.resnets.1.conv1.weight",
|
||||
"model.diffusion_model.middle_block.2.out_layers.0.bias": "unet_mid_block.resnets.1.norm2.bias",
|
||||
"model.diffusion_model.middle_block.2.out_layers.0.weight": "unet_mid_block.resnets.1.norm2.weight",
|
||||
@@ -742,11 +742,11 @@
|
||||
"model.diffusion_model.out.0.weight": "unet_conv_norm_out.weight",
|
||||
"model.diffusion_model.out.2.bias": "unet_conv_out.bias",
|
||||
"model.diffusion_model.out.2.weight": "unet_conv_out.weight",
|
||||
"model.diffusion_model.output_blocks.0.0.emb_layers.1.bias": "unet_up_blocks.0.resnets.0.conv1.bias",
|
||||
"model.diffusion_model.output_blocks.0.0.emb_layers.1.weight": "unet_up_blocks.0.resnets.1.time_emb_proj.weight",
|
||||
"model.diffusion_model.output_blocks.0.0.emb_layers.1.bias": "unet_up_blocks.0.resnets.0.time_emb_proj.bias",
|
||||
"model.diffusion_model.output_blocks.0.0.emb_layers.1.weight": "unet_up_blocks.0.resnets.0.time_emb_proj.weight",
|
||||
"model.diffusion_model.output_blocks.0.0.in_layers.0.bias": "unet_up_blocks.0.resnets.0.norm1.bias",
|
||||
"model.diffusion_model.output_blocks.0.0.in_layers.0.weight": "unet_up_blocks.0.resnets.0.norm1.weight",
|
||||
"model.diffusion_model.output_blocks.0.0.in_layers.2.bias": "unet_up_blocks.0.resnets.0.time_emb_proj.bias",
|
||||
"model.diffusion_model.output_blocks.0.0.in_layers.2.bias": "unet_up_blocks.0.resnets.0.conv1.bias",
|
||||
"model.diffusion_model.output_blocks.0.0.in_layers.2.weight": "unet_up_blocks.0.resnets.0.conv1.weight",
|
||||
"model.diffusion_model.output_blocks.0.0.out_layers.0.bias": "unet_up_blocks.0.resnets.0.norm2.bias",
|
||||
"model.diffusion_model.output_blocks.0.0.out_layers.0.weight": "unet_up_blocks.0.resnets.0.norm2.weight",
|
||||
@@ -754,11 +754,11 @@
|
||||
"model.diffusion_model.output_blocks.0.0.out_layers.3.weight": "unet_up_blocks.0.resnets.0.conv2.weight",
|
||||
"model.diffusion_model.output_blocks.0.0.skip_connection.bias": "unet_up_blocks.0.resnets.0.conv_shortcut.bias",
|
||||
"model.diffusion_model.output_blocks.0.0.skip_connection.weight": "unet_up_blocks.0.resnets.0.conv_shortcut.weight",
|
||||
"model.diffusion_model.output_blocks.1.0.emb_layers.1.bias": "unet_up_blocks.0.resnets.1.conv1.bias",
|
||||
"model.diffusion_model.output_blocks.1.0.emb_layers.1.weight": "unet_up_blocks.0.resnets.2.time_emb_proj.weight",
|
||||
"model.diffusion_model.output_blocks.1.0.emb_layers.1.bias": "unet_up_blocks.0.resnets.1.time_emb_proj.bias",
|
||||
"model.diffusion_model.output_blocks.1.0.emb_layers.1.weight": "unet_up_blocks.0.resnets.1.time_emb_proj.weight",
|
||||
"model.diffusion_model.output_blocks.1.0.in_layers.0.bias": "unet_up_blocks.0.resnets.1.norm1.bias",
|
||||
"model.diffusion_model.output_blocks.1.0.in_layers.0.weight": "unet_up_blocks.0.resnets.1.norm1.weight",
|
||||
"model.diffusion_model.output_blocks.1.0.in_layers.2.bias": "unet_up_blocks.0.resnets.1.time_emb_proj.bias",
|
||||
"model.diffusion_model.output_blocks.1.0.in_layers.2.bias": "unet_up_blocks.0.resnets.1.conv1.bias",
|
||||
"model.diffusion_model.output_blocks.1.0.in_layers.2.weight": "unet_up_blocks.0.resnets.1.conv1.weight",
|
||||
"model.diffusion_model.output_blocks.1.0.out_layers.0.bias": "unet_up_blocks.0.resnets.1.norm2.bias",
|
||||
"model.diffusion_model.output_blocks.1.0.out_layers.0.weight": "unet_up_blocks.0.resnets.1.norm2.weight",
|
||||
@@ -766,11 +766,11 @@
|
||||
"model.diffusion_model.output_blocks.1.0.out_layers.3.weight": "unet_up_blocks.0.resnets.1.conv2.weight",
|
||||
"model.diffusion_model.output_blocks.1.0.skip_connection.bias": "unet_up_blocks.0.resnets.1.conv_shortcut.bias",
|
||||
"model.diffusion_model.output_blocks.1.0.skip_connection.weight": "unet_up_blocks.0.resnets.1.conv_shortcut.weight",
|
||||
"model.diffusion_model.output_blocks.10.0.emb_layers.1.bias": "unet_up_blocks.3.resnets.1.conv1.bias",
|
||||
"model.diffusion_model.output_blocks.10.0.emb_layers.1.weight": "unet_up_blocks.3.resnets.0.time_emb_proj.weight",
|
||||
"model.diffusion_model.output_blocks.10.0.emb_layers.1.bias": "unet_up_blocks.3.resnets.1.time_emb_proj.bias",
|
||||
"model.diffusion_model.output_blocks.10.0.emb_layers.1.weight": "unet_up_blocks.3.resnets.1.time_emb_proj.weight",
|
||||
"model.diffusion_model.output_blocks.10.0.in_layers.0.bias": "unet_up_blocks.3.resnets.1.norm1.bias",
|
||||
"model.diffusion_model.output_blocks.10.0.in_layers.0.weight": "unet_up_blocks.3.resnets.1.norm1.weight",
|
||||
"model.diffusion_model.output_blocks.10.0.in_layers.2.bias": "unet_up_blocks.3.resnets.1.time_emb_proj.bias",
|
||||
"model.diffusion_model.output_blocks.10.0.in_layers.2.bias": "unet_up_blocks.3.resnets.1.conv1.bias",
|
||||
"model.diffusion_model.output_blocks.10.0.in_layers.2.weight": "unet_up_blocks.3.resnets.1.conv1.weight",
|
||||
"model.diffusion_model.output_blocks.10.0.out_layers.0.bias": "unet_up_blocks.3.resnets.1.norm2.bias",
|
||||
"model.diffusion_model.output_blocks.10.0.out_layers.0.weight": "unet_up_blocks.3.resnets.1.norm2.weight",
|
||||
@@ -804,11 +804,11 @@
|
||||
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.norm2.weight": "unet_up_blocks.3.attentions.1.transformer_blocks.0.norm2.weight",
|
||||
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.norm3.bias": "unet_up_blocks.3.attentions.1.transformer_blocks.0.norm3.bias",
|
||||
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.norm3.weight": "unet_up_blocks.3.attentions.1.transformer_blocks.0.norm3.weight",
|
||||
"model.diffusion_model.output_blocks.11.0.emb_layers.1.bias": "unet_up_blocks.3.resnets.2.conv1.bias",
|
||||
"model.diffusion_model.output_blocks.11.0.emb_layers.1.weight": "unet_up_blocks.3.resnets.1.time_emb_proj.weight",
|
||||
"model.diffusion_model.output_blocks.11.0.emb_layers.1.bias": "unet_up_blocks.3.resnets.2.time_emb_proj.bias",
|
||||
"model.diffusion_model.output_blocks.11.0.emb_layers.1.weight": "unet_up_blocks.3.resnets.2.time_emb_proj.weight",
|
||||
"model.diffusion_model.output_blocks.11.0.in_layers.0.bias": "unet_up_blocks.3.resnets.2.norm1.bias",
|
||||
"model.diffusion_model.output_blocks.11.0.in_layers.0.weight": "unet_up_blocks.3.resnets.2.norm1.weight",
|
||||
"model.diffusion_model.output_blocks.11.0.in_layers.2.bias": "unet_up_blocks.3.resnets.2.time_emb_proj.bias",
|
||||
"model.diffusion_model.output_blocks.11.0.in_layers.2.bias": "unet_up_blocks.3.resnets.2.conv1.bias",
|
||||
"model.diffusion_model.output_blocks.11.0.in_layers.2.weight": "unet_up_blocks.3.resnets.2.conv1.weight",
|
||||
"model.diffusion_model.output_blocks.11.0.out_layers.0.bias": "unet_up_blocks.3.resnets.2.norm2.bias",
|
||||
"model.diffusion_model.output_blocks.11.0.out_layers.0.weight": "unet_up_blocks.3.resnets.2.norm2.weight",
|
||||
@@ -842,11 +842,11 @@
|
||||
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm2.weight": "unet_up_blocks.3.attentions.2.transformer_blocks.0.norm2.weight",
|
||||
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm3.bias": "unet_up_blocks.3.attentions.2.transformer_blocks.0.norm3.bias",
|
||||
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm3.weight": "unet_up_blocks.3.attentions.2.transformer_blocks.0.norm3.weight",
|
||||
"model.diffusion_model.output_blocks.2.0.emb_layers.1.bias": "unet_up_blocks.0.resnets.2.conv1.bias",
|
||||
"model.diffusion_model.output_blocks.2.0.emb_layers.1.weight": "unet_mid_block.resnets.0.time_emb_proj.weight",
|
||||
"model.diffusion_model.output_blocks.2.0.emb_layers.1.bias": "unet_up_blocks.0.resnets.2.time_emb_proj.bias",
|
||||
"model.diffusion_model.output_blocks.2.0.emb_layers.1.weight": "unet_up_blocks.0.resnets.2.time_emb_proj.weight",
|
||||
"model.diffusion_model.output_blocks.2.0.in_layers.0.bias": "unet_up_blocks.0.resnets.2.norm1.bias",
|
||||
"model.diffusion_model.output_blocks.2.0.in_layers.0.weight": "unet_up_blocks.0.resnets.2.norm1.weight",
|
||||
"model.diffusion_model.output_blocks.2.0.in_layers.2.bias": "unet_up_blocks.0.resnets.2.time_emb_proj.bias",
|
||||
"model.diffusion_model.output_blocks.2.0.in_layers.2.bias": "unet_up_blocks.0.resnets.2.conv1.bias",
|
||||
"model.diffusion_model.output_blocks.2.0.in_layers.2.weight": "unet_up_blocks.0.resnets.2.conv1.weight",
|
||||
"model.diffusion_model.output_blocks.2.0.out_layers.0.bias": "unet_up_blocks.0.resnets.2.norm2.bias",
|
||||
"model.diffusion_model.output_blocks.2.0.out_layers.0.weight": "unet_up_blocks.0.resnets.2.norm2.weight",
|
||||
@@ -856,11 +856,11 @@
|
||||
"model.diffusion_model.output_blocks.2.0.skip_connection.weight": "unet_up_blocks.0.resnets.2.conv_shortcut.weight",
|
||||
"model.diffusion_model.output_blocks.2.1.conv.bias": "unet_up_blocks.0.upsamplers.0.conv.bias",
|
||||
"model.diffusion_model.output_blocks.2.1.conv.weight": "unet_up_blocks.0.upsamplers.0.conv.weight",
|
||||
"model.diffusion_model.output_blocks.3.0.emb_layers.1.bias": "unet_up_blocks.1.resnets.0.conv1.bias",
|
||||
"model.diffusion_model.output_blocks.3.0.emb_layers.1.bias": "unet_up_blocks.1.resnets.0.time_emb_proj.bias",
|
||||
"model.diffusion_model.output_blocks.3.0.emb_layers.1.weight": "unet_up_blocks.1.resnets.0.time_emb_proj.weight",
|
||||
"model.diffusion_model.output_blocks.3.0.in_layers.0.bias": "unet_up_blocks.1.resnets.0.norm1.bias",
|
||||
"model.diffusion_model.output_blocks.3.0.in_layers.0.weight": "unet_up_blocks.1.resnets.0.norm1.weight",
|
||||
"model.diffusion_model.output_blocks.3.0.in_layers.2.bias": "unet_up_blocks.1.resnets.0.time_emb_proj.bias",
|
||||
"model.diffusion_model.output_blocks.3.0.in_layers.2.bias": "unet_up_blocks.1.resnets.0.conv1.bias",
|
||||
"model.diffusion_model.output_blocks.3.0.in_layers.2.weight": "unet_up_blocks.1.resnets.0.conv1.weight",
|
||||
"model.diffusion_model.output_blocks.3.0.out_layers.0.bias": "unet_up_blocks.1.resnets.0.norm2.bias",
|
||||
"model.diffusion_model.output_blocks.3.0.out_layers.0.weight": "unet_up_blocks.1.resnets.0.norm2.weight",
|
||||
@@ -894,11 +894,11 @@
|
||||
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm2.weight": "unet_up_blocks.1.attentions.0.transformer_blocks.0.norm2.weight",
|
||||
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm3.bias": "unet_up_blocks.1.attentions.0.transformer_blocks.0.norm3.bias",
|
||||
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm3.weight": "unet_up_blocks.1.attentions.0.transformer_blocks.0.norm3.weight",
|
||||
"model.diffusion_model.output_blocks.4.0.emb_layers.1.bias": "unet_up_blocks.1.resnets.1.conv1.bias",
|
||||
"model.diffusion_model.output_blocks.4.0.emb_layers.1.bias": "unet_up_blocks.1.resnets.1.time_emb_proj.bias",
|
||||
"model.diffusion_model.output_blocks.4.0.emb_layers.1.weight": "unet_up_blocks.1.resnets.1.time_emb_proj.weight",
|
||||
"model.diffusion_model.output_blocks.4.0.in_layers.0.bias": "unet_up_blocks.1.resnets.1.norm1.bias",
|
||||
"model.diffusion_model.output_blocks.4.0.in_layers.0.weight": "unet_up_blocks.1.resnets.1.norm1.weight",
|
||||
"model.diffusion_model.output_blocks.4.0.in_layers.2.bias": "unet_up_blocks.1.resnets.1.time_emb_proj.bias",
|
||||
"model.diffusion_model.output_blocks.4.0.in_layers.2.bias": "unet_up_blocks.1.resnets.1.conv1.bias",
|
||||
"model.diffusion_model.output_blocks.4.0.in_layers.2.weight": "unet_up_blocks.1.resnets.1.conv1.weight",
|
||||
"model.diffusion_model.output_blocks.4.0.out_layers.0.bias": "unet_up_blocks.1.resnets.1.norm2.bias",
|
||||
"model.diffusion_model.output_blocks.4.0.out_layers.0.weight": "unet_up_blocks.1.resnets.1.norm2.weight",
|
||||
@@ -932,11 +932,11 @@
|
||||
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm2.weight": "unet_up_blocks.1.attentions.1.transformer_blocks.0.norm2.weight",
|
||||
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm3.bias": "unet_up_blocks.1.attentions.1.transformer_blocks.0.norm3.bias",
|
||||
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm3.weight": "unet_up_blocks.1.attentions.1.transformer_blocks.0.norm3.weight",
|
||||
"model.diffusion_model.output_blocks.5.0.emb_layers.1.bias": "unet_up_blocks.1.resnets.2.conv1.bias",
|
||||
"model.diffusion_model.output_blocks.5.0.emb_layers.1.bias": "unet_up_blocks.1.resnets.2.time_emb_proj.bias",
|
||||
"model.diffusion_model.output_blocks.5.0.emb_layers.1.weight": "unet_up_blocks.1.resnets.2.time_emb_proj.weight",
|
||||
"model.diffusion_model.output_blocks.5.0.in_layers.0.bias": "unet_up_blocks.1.resnets.2.norm1.bias",
|
||||
"model.diffusion_model.output_blocks.5.0.in_layers.0.weight": "unet_up_blocks.1.resnets.2.norm1.weight",
|
||||
"model.diffusion_model.output_blocks.5.0.in_layers.2.bias": "unet_up_blocks.1.resnets.2.time_emb_proj.bias",
|
||||
"model.diffusion_model.output_blocks.5.0.in_layers.2.bias": "unet_up_blocks.1.resnets.2.conv1.bias",
|
||||
"model.diffusion_model.output_blocks.5.0.in_layers.2.weight": "unet_up_blocks.1.resnets.2.conv1.weight",
|
||||
"model.diffusion_model.output_blocks.5.0.out_layers.0.bias": "unet_up_blocks.1.resnets.2.norm2.bias",
|
||||
"model.diffusion_model.output_blocks.5.0.out_layers.0.weight": "unet_up_blocks.1.resnets.2.norm2.weight",
|
||||
@@ -972,11 +972,11 @@
|
||||
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.norm3.weight": "unet_up_blocks.1.attentions.2.transformer_blocks.0.norm3.weight",
|
||||
"model.diffusion_model.output_blocks.5.2.conv.bias": "unet_up_blocks.1.upsamplers.0.conv.bias",
|
||||
"model.diffusion_model.output_blocks.5.2.conv.weight": "unet_up_blocks.1.upsamplers.0.conv.weight",
|
||||
"model.diffusion_model.output_blocks.6.0.emb_layers.1.bias": "unet_up_blocks.2.resnets.0.conv1.bias",
|
||||
"model.diffusion_model.output_blocks.6.0.emb_layers.1.bias": "unet_up_blocks.2.resnets.0.time_emb_proj.bias",
|
||||
"model.diffusion_model.output_blocks.6.0.emb_layers.1.weight": "unet_up_blocks.2.resnets.0.time_emb_proj.weight",
|
||||
"model.diffusion_model.output_blocks.6.0.in_layers.0.bias": "unet_up_blocks.2.resnets.0.norm1.bias",
|
||||
"model.diffusion_model.output_blocks.6.0.in_layers.0.weight": "unet_up_blocks.2.resnets.0.norm1.weight",
|
||||
"model.diffusion_model.output_blocks.6.0.in_layers.2.bias": "unet_up_blocks.2.resnets.0.time_emb_proj.bias",
|
||||
"model.diffusion_model.output_blocks.6.0.in_layers.2.bias": "unet_up_blocks.2.resnets.0.conv1.bias",
|
||||
"model.diffusion_model.output_blocks.6.0.in_layers.2.weight": "unet_up_blocks.2.resnets.0.conv1.weight",
|
||||
"model.diffusion_model.output_blocks.6.0.out_layers.0.bias": "unet_up_blocks.2.resnets.0.norm2.bias",
|
||||
"model.diffusion_model.output_blocks.6.0.out_layers.0.weight": "unet_up_blocks.2.resnets.0.norm2.weight",
|
||||
@@ -1010,11 +1010,11 @@
|
||||
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.norm2.weight": "unet_up_blocks.2.attentions.0.transformer_blocks.0.norm2.weight",
|
||||
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.norm3.bias": "unet_up_blocks.2.attentions.0.transformer_blocks.0.norm3.bias",
|
||||
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.norm3.weight": "unet_up_blocks.2.attentions.0.transformer_blocks.0.norm3.weight",
|
||||
"model.diffusion_model.output_blocks.7.0.emb_layers.1.bias": "unet_up_blocks.2.resnets.1.conv1.bias",
|
||||
"model.diffusion_model.output_blocks.7.0.emb_layers.1.bias": "unet_up_blocks.2.resnets.1.time_emb_proj.bias",
|
||||
"model.diffusion_model.output_blocks.7.0.emb_layers.1.weight": "unet_up_blocks.2.resnets.1.time_emb_proj.weight",
|
||||
"model.diffusion_model.output_blocks.7.0.in_layers.0.bias": "unet_up_blocks.2.resnets.1.norm1.bias",
|
||||
"model.diffusion_model.output_blocks.7.0.in_layers.0.weight": "unet_up_blocks.2.resnets.1.norm1.weight",
|
||||
"model.diffusion_model.output_blocks.7.0.in_layers.2.bias": "unet_up_blocks.2.resnets.1.time_emb_proj.bias",
|
||||
"model.diffusion_model.output_blocks.7.0.in_layers.2.bias": "unet_up_blocks.2.resnets.1.conv1.bias",
|
||||
"model.diffusion_model.output_blocks.7.0.in_layers.2.weight": "unet_up_blocks.2.resnets.1.conv1.weight",
|
||||
"model.diffusion_model.output_blocks.7.0.out_layers.0.bias": "unet_up_blocks.2.resnets.1.norm2.bias",
|
||||
"model.diffusion_model.output_blocks.7.0.out_layers.0.weight": "unet_up_blocks.2.resnets.1.norm2.weight",
|
||||
@@ -1048,11 +1048,11 @@
|
||||
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.norm2.weight": "unet_up_blocks.2.attentions.1.transformer_blocks.0.norm2.weight",
|
||||
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.norm3.bias": "unet_up_blocks.2.attentions.1.transformer_blocks.0.norm3.bias",
|
||||
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.norm3.weight": "unet_up_blocks.2.attentions.1.transformer_blocks.0.norm3.weight",
|
||||
"model.diffusion_model.output_blocks.8.0.emb_layers.1.bias": "unet_up_blocks.2.resnets.2.conv1.bias",
|
||||
"model.diffusion_model.output_blocks.8.0.emb_layers.1.bias": "unet_up_blocks.2.resnets.2.time_emb_proj.bias",
|
||||
"model.diffusion_model.output_blocks.8.0.emb_layers.1.weight": "unet_up_blocks.2.resnets.2.time_emb_proj.weight",
|
||||
"model.diffusion_model.output_blocks.8.0.in_layers.0.bias": "unet_up_blocks.2.resnets.2.norm1.bias",
|
||||
"model.diffusion_model.output_blocks.8.0.in_layers.0.weight": "unet_up_blocks.2.resnets.2.norm1.weight",
|
||||
"model.diffusion_model.output_blocks.8.0.in_layers.2.bias": "unet_up_blocks.2.resnets.2.time_emb_proj.bias",
|
||||
"model.diffusion_model.output_blocks.8.0.in_layers.2.bias": "unet_up_blocks.2.resnets.2.conv1.bias",
|
||||
"model.diffusion_model.output_blocks.8.0.in_layers.2.weight": "unet_up_blocks.2.resnets.2.conv1.weight",
|
||||
"model.diffusion_model.output_blocks.8.0.out_layers.0.bias": "unet_up_blocks.2.resnets.2.norm2.bias",
|
||||
"model.diffusion_model.output_blocks.8.0.out_layers.0.weight": "unet_up_blocks.2.resnets.2.norm2.weight",
|
||||
@@ -1088,11 +1088,11 @@
|
||||
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.norm3.weight": "unet_up_blocks.2.attentions.2.transformer_blocks.0.norm3.weight",
|
||||
"model.diffusion_model.output_blocks.8.2.conv.bias": "unet_up_blocks.2.upsamplers.0.conv.bias",
|
||||
"model.diffusion_model.output_blocks.8.2.conv.weight": "unet_up_blocks.2.upsamplers.0.conv.weight",
|
||||
"model.diffusion_model.output_blocks.9.0.emb_layers.1.bias": "unet_up_blocks.3.resnets.0.conv1.bias",
|
||||
"model.diffusion_model.output_blocks.9.0.emb_layers.1.weight": "unet_up_blocks.3.resnets.2.time_emb_proj.weight",
|
||||
"model.diffusion_model.output_blocks.9.0.emb_layers.1.bias": "unet_up_blocks.3.resnets.0.time_emb_proj.bias",
|
||||
"model.diffusion_model.output_blocks.9.0.emb_layers.1.weight": "unet_up_blocks.3.resnets.0.time_emb_proj.weight",
|
||||
"model.diffusion_model.output_blocks.9.0.in_layers.0.bias": "unet_up_blocks.3.resnets.0.norm1.bias",
|
||||
"model.diffusion_model.output_blocks.9.0.in_layers.0.weight": "unet_up_blocks.3.resnets.0.norm1.weight",
|
||||
"model.diffusion_model.output_blocks.9.0.in_layers.2.bias": "unet_up_blocks.3.resnets.0.time_emb_proj.bias",
|
||||
"model.diffusion_model.output_blocks.9.0.in_layers.2.bias": "unet_up_blocks.3.resnets.0.conv1.bias",
|
||||
"model.diffusion_model.output_blocks.9.0.in_layers.2.weight": "unet_up_blocks.3.resnets.0.conv1.weight",
|
||||
"model.diffusion_model.output_blocks.9.0.out_layers.0.bias": "unet_up_blocks.3.resnets.0.norm2.bias",
|
||||
"model.diffusion_model.output_blocks.9.0.out_layers.0.weight": "unet_up_blocks.3.resnets.0.norm2.weight",
|
||||
@@ -1129,7 +1129,7 @@
|
||||
"model.diffusion_model.time_embed.0.bias": "unet_time_embedding.linear_1.bias",
|
||||
"model.diffusion_model.time_embed.0.weight": "unet_time_embedding.linear_1.weight",
|
||||
"model.diffusion_model.time_embed.2.bias": "unet_time_embedding.linear_2.bias",
|
||||
"model.diffusion_model.time_embed.2.weight": "unet_mid_block.resnets.1.time_emb_proj.weight"
|
||||
"model.diffusion_model.time_embed.2.weight": "unet_time_embedding.linear_2.weight"
|
||||
},
|
||||
"ldm_diffusers_shape_map": {
|
||||
"first_stage_model.decoder.mid.attn_1.k.weight": [
|
||||
|
||||
@@ -484,11 +484,11 @@
|
||||
"first_stage_model.quant_conv.weight": "vae_quant_conv.weight",
|
||||
"model.diffusion_model.input_blocks.0.0.bias": "unet_conv_in.bias",
|
||||
"model.diffusion_model.input_blocks.0.0.weight": "unet_conv_in.weight",
|
||||
"model.diffusion_model.input_blocks.1.0.emb_layers.1.bias": "unet_down_blocks.0.resnets.0.conv1.bias",
|
||||
"model.diffusion_model.input_blocks.1.0.emb_layers.1.bias": "unet_down_blocks.0.resnets.0.time_emb_proj.bias",
|
||||
"model.diffusion_model.input_blocks.1.0.emb_layers.1.weight": "unet_down_blocks.0.resnets.0.time_emb_proj.weight",
|
||||
"model.diffusion_model.input_blocks.1.0.in_layers.0.bias": "unet_down_blocks.0.resnets.0.norm1.bias",
|
||||
"model.diffusion_model.input_blocks.1.0.in_layers.0.weight": "unet_down_blocks.0.resnets.0.norm1.weight",
|
||||
"model.diffusion_model.input_blocks.1.0.in_layers.2.bias": "unet_down_blocks.0.resnets.0.time_emb_proj.bias",
|
||||
"model.diffusion_model.input_blocks.1.0.in_layers.2.bias": "unet_down_blocks.0.resnets.0.conv1.bias",
|
||||
"model.diffusion_model.input_blocks.1.0.in_layers.2.weight": "unet_down_blocks.0.resnets.0.conv1.weight",
|
||||
"model.diffusion_model.input_blocks.1.0.out_layers.0.bias": "unet_down_blocks.0.resnets.0.norm2.bias",
|
||||
"model.diffusion_model.input_blocks.1.0.out_layers.0.weight": "unet_down_blocks.0.resnets.0.norm2.weight",
|
||||
@@ -520,31 +520,31 @@
|
||||
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.norm2.weight": "unet_down_blocks.0.attentions.0.transformer_blocks.0.norm2.weight",
|
||||
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.norm3.bias": "unet_down_blocks.0.attentions.0.transformer_blocks.0.norm3.bias",
|
||||
"model.diffusion_model.input_blocks.1.1.transformer_blocks.0.norm3.weight": "unet_down_blocks.0.attentions.0.transformer_blocks.0.norm3.weight",
|
||||
"model.diffusion_model.input_blocks.10.0.emb_layers.1.bias": "unet_down_blocks.3.resnets.0.conv1.bias",
|
||||
"model.diffusion_model.input_blocks.10.0.emb_layers.1.weight": "unet_time_embedding.linear_2.weight",
|
||||
"model.diffusion_model.input_blocks.10.0.emb_layers.1.bias": "unet_down_blocks.3.resnets.0.time_emb_proj.bias",
|
||||
"model.diffusion_model.input_blocks.10.0.emb_layers.1.weight": "unet_down_blocks.3.resnets.0.time_emb_proj.weight",
|
||||
"model.diffusion_model.input_blocks.10.0.in_layers.0.bias": "unet_down_blocks.3.resnets.0.norm1.bias",
|
||||
"model.diffusion_model.input_blocks.10.0.in_layers.0.weight": "unet_down_blocks.3.resnets.0.norm1.weight",
|
||||
"model.diffusion_model.input_blocks.10.0.in_layers.2.bias": "unet_down_blocks.3.resnets.0.time_emb_proj.bias",
|
||||
"model.diffusion_model.input_blocks.10.0.in_layers.2.bias": "unet_down_blocks.3.resnets.0.conv1.bias",
|
||||
"model.diffusion_model.input_blocks.10.0.in_layers.2.weight": "unet_down_blocks.3.resnets.0.conv1.weight",
|
||||
"model.diffusion_model.input_blocks.10.0.out_layers.0.bias": "unet_down_blocks.3.resnets.0.norm2.bias",
|
||||
"model.diffusion_model.input_blocks.10.0.out_layers.0.weight": "unet_down_blocks.3.resnets.0.norm2.weight",
|
||||
"model.diffusion_model.input_blocks.10.0.out_layers.3.bias": "unet_down_blocks.3.resnets.0.conv2.bias",
|
||||
"model.diffusion_model.input_blocks.10.0.out_layers.3.weight": "unet_down_blocks.3.resnets.0.conv2.weight",
|
||||
"model.diffusion_model.input_blocks.11.0.emb_layers.1.bias": "unet_down_blocks.3.resnets.1.conv1.bias",
|
||||
"model.diffusion_model.input_blocks.11.0.emb_layers.1.weight": "unet_down_blocks.3.resnets.0.time_emb_proj.weight",
|
||||
"model.diffusion_model.input_blocks.11.0.emb_layers.1.bias": "unet_down_blocks.3.resnets.1.time_emb_proj.bias",
|
||||
"model.diffusion_model.input_blocks.11.0.emb_layers.1.weight": "unet_down_blocks.3.resnets.1.time_emb_proj.weight",
|
||||
"model.diffusion_model.input_blocks.11.0.in_layers.0.bias": "unet_down_blocks.3.resnets.1.norm1.bias",
|
||||
"model.diffusion_model.input_blocks.11.0.in_layers.0.weight": "unet_down_blocks.3.resnets.1.norm1.weight",
|
||||
"model.diffusion_model.input_blocks.11.0.in_layers.2.bias": "unet_down_blocks.3.resnets.1.time_emb_proj.bias",
|
||||
"model.diffusion_model.input_blocks.11.0.in_layers.2.bias": "unet_down_blocks.3.resnets.1.conv1.bias",
|
||||
"model.diffusion_model.input_blocks.11.0.in_layers.2.weight": "unet_down_blocks.3.resnets.1.conv1.weight",
|
||||
"model.diffusion_model.input_blocks.11.0.out_layers.0.bias": "unet_down_blocks.3.resnets.1.norm2.bias",
|
||||
"model.diffusion_model.input_blocks.11.0.out_layers.0.weight": "unet_down_blocks.3.resnets.1.norm2.weight",
|
||||
"model.diffusion_model.input_blocks.11.0.out_layers.3.bias": "unet_down_blocks.3.resnets.1.conv2.bias",
|
||||
"model.diffusion_model.input_blocks.11.0.out_layers.3.weight": "unet_down_blocks.3.resnets.1.conv2.weight",
|
||||
"model.diffusion_model.input_blocks.2.0.emb_layers.1.bias": "unet_down_blocks.0.resnets.1.conv1.bias",
|
||||
"model.diffusion_model.input_blocks.2.0.emb_layers.1.bias": "unet_down_blocks.0.resnets.1.time_emb_proj.bias",
|
||||
"model.diffusion_model.input_blocks.2.0.emb_layers.1.weight": "unet_down_blocks.0.resnets.1.time_emb_proj.weight",
|
||||
"model.diffusion_model.input_blocks.2.0.in_layers.0.bias": "unet_down_blocks.0.resnets.1.norm1.bias",
|
||||
"model.diffusion_model.input_blocks.2.0.in_layers.0.weight": "unet_down_blocks.0.resnets.1.norm1.weight",
|
||||
"model.diffusion_model.input_blocks.2.0.in_layers.2.bias": "unet_down_blocks.0.resnets.1.time_emb_proj.bias",
|
||||
"model.diffusion_model.input_blocks.2.0.in_layers.2.bias": "unet_down_blocks.0.resnets.1.conv1.bias",
|
||||
"model.diffusion_model.input_blocks.2.0.in_layers.2.weight": "unet_down_blocks.0.resnets.1.conv1.weight",
|
||||
"model.diffusion_model.input_blocks.2.0.out_layers.0.bias": "unet_down_blocks.0.resnets.1.norm2.bias",
|
||||
"model.diffusion_model.input_blocks.2.0.out_layers.0.weight": "unet_down_blocks.0.resnets.1.norm2.weight",
|
||||
@@ -578,11 +578,11 @@
|
||||
"model.diffusion_model.input_blocks.2.1.transformer_blocks.0.norm3.weight": "unet_down_blocks.0.attentions.1.transformer_blocks.0.norm3.weight",
|
||||
"model.diffusion_model.input_blocks.3.0.op.bias": "unet_down_blocks.0.downsamplers.0.conv.bias",
|
||||
"model.diffusion_model.input_blocks.3.0.op.weight": "unet_down_blocks.0.downsamplers.0.conv.weight",
|
||||
"model.diffusion_model.input_blocks.4.0.emb_layers.1.bias": "unet_down_blocks.1.resnets.0.conv1.bias",
|
||||
"model.diffusion_model.input_blocks.4.0.emb_layers.1.bias": "unet_down_blocks.1.resnets.0.time_emb_proj.bias",
|
||||
"model.diffusion_model.input_blocks.4.0.emb_layers.1.weight": "unet_down_blocks.1.resnets.0.time_emb_proj.weight",
|
||||
"model.diffusion_model.input_blocks.4.0.in_layers.0.bias": "unet_down_blocks.1.resnets.0.norm1.bias",
|
||||
"model.diffusion_model.input_blocks.4.0.in_layers.0.weight": "unet_down_blocks.1.resnets.0.norm1.weight",
|
||||
"model.diffusion_model.input_blocks.4.0.in_layers.2.bias": "unet_down_blocks.1.resnets.0.time_emb_proj.bias",
|
||||
"model.diffusion_model.input_blocks.4.0.in_layers.2.bias": "unet_down_blocks.1.resnets.0.conv1.bias",
|
||||
"model.diffusion_model.input_blocks.4.0.in_layers.2.weight": "unet_down_blocks.1.resnets.0.conv1.weight",
|
||||
"model.diffusion_model.input_blocks.4.0.out_layers.0.bias": "unet_down_blocks.1.resnets.0.norm2.bias",
|
||||
"model.diffusion_model.input_blocks.4.0.out_layers.0.weight": "unet_down_blocks.1.resnets.0.norm2.weight",
|
||||
@@ -616,11 +616,11 @@
|
||||
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm2.weight": "unet_down_blocks.1.attentions.0.transformer_blocks.0.norm2.weight",
|
||||
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm3.bias": "unet_down_blocks.1.attentions.0.transformer_blocks.0.norm3.bias",
|
||||
"model.diffusion_model.input_blocks.4.1.transformer_blocks.0.norm3.weight": "unet_down_blocks.1.attentions.0.transformer_blocks.0.norm3.weight",
|
||||
"model.diffusion_model.input_blocks.5.0.emb_layers.1.bias": "unet_down_blocks.1.resnets.1.conv1.bias",
|
||||
"model.diffusion_model.input_blocks.5.0.emb_layers.1.bias": "unet_down_blocks.1.resnets.1.time_emb_proj.bias",
|
||||
"model.diffusion_model.input_blocks.5.0.emb_layers.1.weight": "unet_down_blocks.1.resnets.1.time_emb_proj.weight",
|
||||
"model.diffusion_model.input_blocks.5.0.in_layers.0.bias": "unet_down_blocks.1.resnets.1.norm1.bias",
|
||||
"model.diffusion_model.input_blocks.5.0.in_layers.0.weight": "unet_down_blocks.1.resnets.1.norm1.weight",
|
||||
"model.diffusion_model.input_blocks.5.0.in_layers.2.bias": "unet_down_blocks.1.resnets.1.time_emb_proj.bias",
|
||||
"model.diffusion_model.input_blocks.5.0.in_layers.2.bias": "unet_down_blocks.1.resnets.1.conv1.bias",
|
||||
"model.diffusion_model.input_blocks.5.0.in_layers.2.weight": "unet_down_blocks.1.resnets.1.conv1.weight",
|
||||
"model.diffusion_model.input_blocks.5.0.out_layers.0.bias": "unet_down_blocks.1.resnets.1.norm2.bias",
|
||||
"model.diffusion_model.input_blocks.5.0.out_layers.0.weight": "unet_down_blocks.1.resnets.1.norm2.weight",
|
||||
@@ -654,11 +654,11 @@
|
||||
"model.diffusion_model.input_blocks.5.1.transformer_blocks.0.norm3.weight": "unet_down_blocks.1.attentions.1.transformer_blocks.0.norm3.weight",
|
||||
"model.diffusion_model.input_blocks.6.0.op.bias": "unet_down_blocks.1.downsamplers.0.conv.bias",
|
||||
"model.diffusion_model.input_blocks.6.0.op.weight": "unet_down_blocks.1.downsamplers.0.conv.weight",
|
||||
"model.diffusion_model.input_blocks.7.0.emb_layers.1.bias": "unet_down_blocks.2.resnets.0.conv1.bias",
|
||||
"model.diffusion_model.input_blocks.7.0.emb_layers.1.bias": "unet_down_blocks.2.resnets.0.time_emb_proj.bias",
|
||||
"model.diffusion_model.input_blocks.7.0.emb_layers.1.weight": "unet_down_blocks.2.resnets.0.time_emb_proj.weight",
|
||||
"model.diffusion_model.input_blocks.7.0.in_layers.0.bias": "unet_down_blocks.2.resnets.0.norm1.bias",
|
||||
"model.diffusion_model.input_blocks.7.0.in_layers.0.weight": "unet_down_blocks.2.resnets.0.norm1.weight",
|
||||
"model.diffusion_model.input_blocks.7.0.in_layers.2.bias": "unet_down_blocks.2.resnets.0.time_emb_proj.bias",
|
||||
"model.diffusion_model.input_blocks.7.0.in_layers.2.bias": "unet_down_blocks.2.resnets.0.conv1.bias",
|
||||
"model.diffusion_model.input_blocks.7.0.in_layers.2.weight": "unet_down_blocks.2.resnets.0.conv1.weight",
|
||||
"model.diffusion_model.input_blocks.7.0.out_layers.0.bias": "unet_down_blocks.2.resnets.0.norm2.bias",
|
||||
"model.diffusion_model.input_blocks.7.0.out_layers.0.weight": "unet_down_blocks.2.resnets.0.norm2.weight",
|
||||
@@ -692,11 +692,11 @@
|
||||
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm2.weight": "unet_down_blocks.2.attentions.0.transformer_blocks.0.norm2.weight",
|
||||
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm3.bias": "unet_down_blocks.2.attentions.0.transformer_blocks.0.norm3.bias",
|
||||
"model.diffusion_model.input_blocks.7.1.transformer_blocks.0.norm3.weight": "unet_down_blocks.2.attentions.0.transformer_blocks.0.norm3.weight",
|
||||
"model.diffusion_model.input_blocks.8.0.emb_layers.1.bias": "unet_down_blocks.2.resnets.1.conv1.bias",
|
||||
"model.diffusion_model.input_blocks.8.0.emb_layers.1.bias": "unet_down_blocks.2.resnets.1.time_emb_proj.bias",
|
||||
"model.diffusion_model.input_blocks.8.0.emb_layers.1.weight": "unet_down_blocks.2.resnets.1.time_emb_proj.weight",
|
||||
"model.diffusion_model.input_blocks.8.0.in_layers.0.bias": "unet_down_blocks.2.resnets.1.norm1.bias",
|
||||
"model.diffusion_model.input_blocks.8.0.in_layers.0.weight": "unet_down_blocks.2.resnets.1.norm1.weight",
|
||||
"model.diffusion_model.input_blocks.8.0.in_layers.2.bias": "unet_down_blocks.2.resnets.1.time_emb_proj.bias",
|
||||
"model.diffusion_model.input_blocks.8.0.in_layers.2.bias": "unet_down_blocks.2.resnets.1.conv1.bias",
|
||||
"model.diffusion_model.input_blocks.8.0.in_layers.2.weight": "unet_down_blocks.2.resnets.1.conv1.weight",
|
||||
"model.diffusion_model.input_blocks.8.0.out_layers.0.bias": "unet_down_blocks.2.resnets.1.norm2.bias",
|
||||
"model.diffusion_model.input_blocks.8.0.out_layers.0.weight": "unet_down_blocks.2.resnets.1.norm2.weight",
|
||||
@@ -730,11 +730,11 @@
|
||||
"model.diffusion_model.input_blocks.8.1.transformer_blocks.0.norm3.weight": "unet_down_blocks.2.attentions.1.transformer_blocks.0.norm3.weight",
|
||||
"model.diffusion_model.input_blocks.9.0.op.bias": "unet_down_blocks.2.downsamplers.0.conv.bias",
|
||||
"model.diffusion_model.input_blocks.9.0.op.weight": "unet_down_blocks.2.downsamplers.0.conv.weight",
|
||||
"model.diffusion_model.middle_block.0.emb_layers.1.bias": "unet_mid_block.resnets.0.conv1.bias",
|
||||
"model.diffusion_model.middle_block.0.emb_layers.1.weight": "unet_down_blocks.3.resnets.1.time_emb_proj.weight",
|
||||
"model.diffusion_model.middle_block.0.emb_layers.1.bias": "unet_mid_block.resnets.0.time_emb_proj.bias",
|
||||
"model.diffusion_model.middle_block.0.emb_layers.1.weight": "unet_mid_block.resnets.0.time_emb_proj.weight",
|
||||
"model.diffusion_model.middle_block.0.in_layers.0.bias": "unet_mid_block.resnets.0.norm1.bias",
|
||||
"model.diffusion_model.middle_block.0.in_layers.0.weight": "unet_mid_block.resnets.0.norm1.weight",
|
||||
"model.diffusion_model.middle_block.0.in_layers.2.bias": "unet_mid_block.resnets.0.time_emb_proj.bias",
|
||||
"model.diffusion_model.middle_block.0.in_layers.2.bias": "unet_mid_block.resnets.0.conv1.bias",
|
||||
"model.diffusion_model.middle_block.0.in_layers.2.weight": "unet_mid_block.resnets.0.conv1.weight",
|
||||
"model.diffusion_model.middle_block.0.out_layers.0.bias": "unet_mid_block.resnets.0.norm2.bias",
|
||||
"model.diffusion_model.middle_block.0.out_layers.0.weight": "unet_mid_block.resnets.0.norm2.weight",
|
||||
@@ -766,11 +766,11 @@
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.0.norm2.weight": "unet_mid_block.attentions.0.transformer_blocks.0.norm2.weight",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.0.norm3.bias": "unet_mid_block.attentions.0.transformer_blocks.0.norm3.bias",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.0.norm3.weight": "unet_mid_block.attentions.0.transformer_blocks.0.norm3.weight",
|
||||
"model.diffusion_model.middle_block.2.emb_layers.1.bias": "unet_mid_block.resnets.1.conv1.bias",
|
||||
"model.diffusion_model.middle_block.2.emb_layers.1.weight": "unet_up_blocks.0.resnets.0.time_emb_proj.weight",
|
||||
"model.diffusion_model.middle_block.2.emb_layers.1.bias": "unet_mid_block.resnets.1.time_emb_proj.bias",
|
||||
"model.diffusion_model.middle_block.2.emb_layers.1.weight": "unet_mid_block.resnets.1.time_emb_proj.weight",
|
||||
"model.diffusion_model.middle_block.2.in_layers.0.bias": "unet_mid_block.resnets.1.norm1.bias",
|
||||
"model.diffusion_model.middle_block.2.in_layers.0.weight": "unet_mid_block.resnets.1.norm1.weight",
|
||||
"model.diffusion_model.middle_block.2.in_layers.2.bias": "unet_mid_block.resnets.1.time_emb_proj.bias",
|
||||
"model.diffusion_model.middle_block.2.in_layers.2.bias": "unet_mid_block.resnets.1.conv1.bias",
|
||||
"model.diffusion_model.middle_block.2.in_layers.2.weight": "unet_mid_block.resnets.1.conv1.weight",
|
||||
"model.diffusion_model.middle_block.2.out_layers.0.bias": "unet_mid_block.resnets.1.norm2.bias",
|
||||
"model.diffusion_model.middle_block.2.out_layers.0.weight": "unet_mid_block.resnets.1.norm2.weight",
|
||||
@@ -780,11 +780,11 @@
|
||||
"model.diffusion_model.out.0.weight": "unet_conv_norm_out.weight",
|
||||
"model.diffusion_model.out.2.bias": "unet_conv_out.bias",
|
||||
"model.diffusion_model.out.2.weight": "unet_conv_out.weight",
|
||||
"model.diffusion_model.output_blocks.0.0.emb_layers.1.bias": "unet_up_blocks.0.resnets.0.conv1.bias",
|
||||
"model.diffusion_model.output_blocks.0.0.emb_layers.1.weight": "unet_up_blocks.0.resnets.1.time_emb_proj.weight",
|
||||
"model.diffusion_model.output_blocks.0.0.emb_layers.1.bias": "unet_up_blocks.0.resnets.0.time_emb_proj.bias",
|
||||
"model.diffusion_model.output_blocks.0.0.emb_layers.1.weight": "unet_up_blocks.0.resnets.0.time_emb_proj.weight",
|
||||
"model.diffusion_model.output_blocks.0.0.in_layers.0.bias": "unet_up_blocks.0.resnets.0.norm1.bias",
|
||||
"model.diffusion_model.output_blocks.0.0.in_layers.0.weight": "unet_up_blocks.0.resnets.0.norm1.weight",
|
||||
"model.diffusion_model.output_blocks.0.0.in_layers.2.bias": "unet_up_blocks.0.resnets.0.time_emb_proj.bias",
|
||||
"model.diffusion_model.output_blocks.0.0.in_layers.2.bias": "unet_up_blocks.0.resnets.0.conv1.bias",
|
||||
"model.diffusion_model.output_blocks.0.0.in_layers.2.weight": "unet_up_blocks.0.resnets.0.conv1.weight",
|
||||
"model.diffusion_model.output_blocks.0.0.out_layers.0.bias": "unet_up_blocks.0.resnets.0.norm2.bias",
|
||||
"model.diffusion_model.output_blocks.0.0.out_layers.0.weight": "unet_up_blocks.0.resnets.0.norm2.weight",
|
||||
@@ -792,11 +792,11 @@
|
||||
"model.diffusion_model.output_blocks.0.0.out_layers.3.weight": "unet_up_blocks.0.resnets.0.conv2.weight",
|
||||
"model.diffusion_model.output_blocks.0.0.skip_connection.bias": "unet_up_blocks.0.resnets.0.conv_shortcut.bias",
|
||||
"model.diffusion_model.output_blocks.0.0.skip_connection.weight": "unet_up_blocks.0.resnets.0.conv_shortcut.weight",
|
||||
"model.diffusion_model.output_blocks.1.0.emb_layers.1.bias": "unet_up_blocks.0.resnets.1.conv1.bias",
|
||||
"model.diffusion_model.output_blocks.1.0.emb_layers.1.weight": "unet_up_blocks.0.resnets.2.time_emb_proj.weight",
|
||||
"model.diffusion_model.output_blocks.1.0.emb_layers.1.bias": "unet_up_blocks.0.resnets.1.time_emb_proj.bias",
|
||||
"model.diffusion_model.output_blocks.1.0.emb_layers.1.weight": "unet_up_blocks.0.resnets.1.time_emb_proj.weight",
|
||||
"model.diffusion_model.output_blocks.1.0.in_layers.0.bias": "unet_up_blocks.0.resnets.1.norm1.bias",
|
||||
"model.diffusion_model.output_blocks.1.0.in_layers.0.weight": "unet_up_blocks.0.resnets.1.norm1.weight",
|
||||
"model.diffusion_model.output_blocks.1.0.in_layers.2.bias": "unet_up_blocks.0.resnets.1.time_emb_proj.bias",
|
||||
"model.diffusion_model.output_blocks.1.0.in_layers.2.bias": "unet_up_blocks.0.resnets.1.conv1.bias",
|
||||
"model.diffusion_model.output_blocks.1.0.in_layers.2.weight": "unet_up_blocks.0.resnets.1.conv1.weight",
|
||||
"model.diffusion_model.output_blocks.1.0.out_layers.0.bias": "unet_up_blocks.0.resnets.1.norm2.bias",
|
||||
"model.diffusion_model.output_blocks.1.0.out_layers.0.weight": "unet_up_blocks.0.resnets.1.norm2.weight",
|
||||
@@ -804,11 +804,11 @@
|
||||
"model.diffusion_model.output_blocks.1.0.out_layers.3.weight": "unet_up_blocks.0.resnets.1.conv2.weight",
|
||||
"model.diffusion_model.output_blocks.1.0.skip_connection.bias": "unet_up_blocks.0.resnets.1.conv_shortcut.bias",
|
||||
"model.diffusion_model.output_blocks.1.0.skip_connection.weight": "unet_up_blocks.0.resnets.1.conv_shortcut.weight",
|
||||
"model.diffusion_model.output_blocks.10.0.emb_layers.1.bias": "unet_up_blocks.3.resnets.1.conv1.bias",
|
||||
"model.diffusion_model.output_blocks.10.0.emb_layers.1.bias": "unet_up_blocks.3.resnets.1.time_emb_proj.bias",
|
||||
"model.diffusion_model.output_blocks.10.0.emb_layers.1.weight": "unet_up_blocks.3.resnets.1.time_emb_proj.weight",
|
||||
"model.diffusion_model.output_blocks.10.0.in_layers.0.bias": "unet_up_blocks.3.resnets.1.norm1.bias",
|
||||
"model.diffusion_model.output_blocks.10.0.in_layers.0.weight": "unet_up_blocks.3.resnets.1.norm1.weight",
|
||||
"model.diffusion_model.output_blocks.10.0.in_layers.2.bias": "unet_up_blocks.3.resnets.1.time_emb_proj.bias",
|
||||
"model.diffusion_model.output_blocks.10.0.in_layers.2.bias": "unet_up_blocks.3.resnets.1.conv1.bias",
|
||||
"model.diffusion_model.output_blocks.10.0.in_layers.2.weight": "unet_up_blocks.3.resnets.1.conv1.weight",
|
||||
"model.diffusion_model.output_blocks.10.0.out_layers.0.bias": "unet_up_blocks.3.resnets.1.norm2.bias",
|
||||
"model.diffusion_model.output_blocks.10.0.out_layers.0.weight": "unet_up_blocks.3.resnets.1.norm2.weight",
|
||||
@@ -842,11 +842,11 @@
|
||||
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.norm2.weight": "unet_up_blocks.3.attentions.1.transformer_blocks.0.norm2.weight",
|
||||
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.norm3.bias": "unet_up_blocks.3.attentions.1.transformer_blocks.0.norm3.bias",
|
||||
"model.diffusion_model.output_blocks.10.1.transformer_blocks.0.norm3.weight": "unet_up_blocks.3.attentions.1.transformer_blocks.0.norm3.weight",
|
||||
"model.diffusion_model.output_blocks.11.0.emb_layers.1.bias": "unet_up_blocks.3.resnets.2.conv1.bias",
|
||||
"model.diffusion_model.output_blocks.11.0.emb_layers.1.bias": "unet_up_blocks.3.resnets.2.time_emb_proj.bias",
|
||||
"model.diffusion_model.output_blocks.11.0.emb_layers.1.weight": "unet_up_blocks.3.resnets.2.time_emb_proj.weight",
|
||||
"model.diffusion_model.output_blocks.11.0.in_layers.0.bias": "unet_up_blocks.3.resnets.2.norm1.bias",
|
||||
"model.diffusion_model.output_blocks.11.0.in_layers.0.weight": "unet_up_blocks.3.resnets.2.norm1.weight",
|
||||
"model.diffusion_model.output_blocks.11.0.in_layers.2.bias": "unet_up_blocks.3.resnets.2.time_emb_proj.bias",
|
||||
"model.diffusion_model.output_blocks.11.0.in_layers.2.bias": "unet_up_blocks.3.resnets.2.conv1.bias",
|
||||
"model.diffusion_model.output_blocks.11.0.in_layers.2.weight": "unet_up_blocks.3.resnets.2.conv1.weight",
|
||||
"model.diffusion_model.output_blocks.11.0.out_layers.0.bias": "unet_up_blocks.3.resnets.2.norm2.bias",
|
||||
"model.diffusion_model.output_blocks.11.0.out_layers.0.weight": "unet_up_blocks.3.resnets.2.norm2.weight",
|
||||
@@ -880,11 +880,11 @@
|
||||
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm2.weight": "unet_up_blocks.3.attentions.2.transformer_blocks.0.norm2.weight",
|
||||
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm3.bias": "unet_up_blocks.3.attentions.2.transformer_blocks.0.norm3.bias",
|
||||
"model.diffusion_model.output_blocks.11.1.transformer_blocks.0.norm3.weight": "unet_up_blocks.3.attentions.2.transformer_blocks.0.norm3.weight",
|
||||
"model.diffusion_model.output_blocks.2.0.emb_layers.1.bias": "unet_up_blocks.0.resnets.2.conv1.bias",
|
||||
"model.diffusion_model.output_blocks.2.0.emb_layers.1.weight": "unet_mid_block.resnets.0.time_emb_proj.weight",
|
||||
"model.diffusion_model.output_blocks.2.0.emb_layers.1.bias": "unet_up_blocks.0.resnets.2.time_emb_proj.bias",
|
||||
"model.diffusion_model.output_blocks.2.0.emb_layers.1.weight": "unet_up_blocks.0.resnets.2.time_emb_proj.weight",
|
||||
"model.diffusion_model.output_blocks.2.0.in_layers.0.bias": "unet_up_blocks.0.resnets.2.norm1.bias",
|
||||
"model.diffusion_model.output_blocks.2.0.in_layers.0.weight": "unet_up_blocks.0.resnets.2.norm1.weight",
|
||||
"model.diffusion_model.output_blocks.2.0.in_layers.2.bias": "unet_up_blocks.0.resnets.2.time_emb_proj.bias",
|
||||
"model.diffusion_model.output_blocks.2.0.in_layers.2.bias": "unet_up_blocks.0.resnets.2.conv1.bias",
|
||||
"model.diffusion_model.output_blocks.2.0.in_layers.2.weight": "unet_up_blocks.0.resnets.2.conv1.weight",
|
||||
"model.diffusion_model.output_blocks.2.0.out_layers.0.bias": "unet_up_blocks.0.resnets.2.norm2.bias",
|
||||
"model.diffusion_model.output_blocks.2.0.out_layers.0.weight": "unet_up_blocks.0.resnets.2.norm2.weight",
|
||||
@@ -894,11 +894,11 @@
|
||||
"model.diffusion_model.output_blocks.2.0.skip_connection.weight": "unet_up_blocks.0.resnets.2.conv_shortcut.weight",
|
||||
"model.diffusion_model.output_blocks.2.1.conv.bias": "unet_up_blocks.0.upsamplers.0.conv.bias",
|
||||
"model.diffusion_model.output_blocks.2.1.conv.weight": "unet_up_blocks.0.upsamplers.0.conv.weight",
|
||||
"model.diffusion_model.output_blocks.3.0.emb_layers.1.bias": "unet_up_blocks.1.resnets.0.conv1.bias",
|
||||
"model.diffusion_model.output_blocks.3.0.emb_layers.1.bias": "unet_up_blocks.1.resnets.0.time_emb_proj.bias",
|
||||
"model.diffusion_model.output_blocks.3.0.emb_layers.1.weight": "unet_up_blocks.1.resnets.0.time_emb_proj.weight",
|
||||
"model.diffusion_model.output_blocks.3.0.in_layers.0.bias": "unet_up_blocks.1.resnets.0.norm1.bias",
|
||||
"model.diffusion_model.output_blocks.3.0.in_layers.0.weight": "unet_up_blocks.1.resnets.0.norm1.weight",
|
||||
"model.diffusion_model.output_blocks.3.0.in_layers.2.bias": "unet_up_blocks.1.resnets.0.time_emb_proj.bias",
|
||||
"model.diffusion_model.output_blocks.3.0.in_layers.2.bias": "unet_up_blocks.1.resnets.0.conv1.bias",
|
||||
"model.diffusion_model.output_blocks.3.0.in_layers.2.weight": "unet_up_blocks.1.resnets.0.conv1.weight",
|
||||
"model.diffusion_model.output_blocks.3.0.out_layers.0.bias": "unet_up_blocks.1.resnets.0.norm2.bias",
|
||||
"model.diffusion_model.output_blocks.3.0.out_layers.0.weight": "unet_up_blocks.1.resnets.0.norm2.weight",
|
||||
@@ -932,11 +932,11 @@
|
||||
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm2.weight": "unet_up_blocks.1.attentions.0.transformer_blocks.0.norm2.weight",
|
||||
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm3.bias": "unet_up_blocks.1.attentions.0.transformer_blocks.0.norm3.bias",
|
||||
"model.diffusion_model.output_blocks.3.1.transformer_blocks.0.norm3.weight": "unet_up_blocks.1.attentions.0.transformer_blocks.0.norm3.weight",
|
||||
"model.diffusion_model.output_blocks.4.0.emb_layers.1.bias": "unet_up_blocks.1.resnets.1.conv1.bias",
|
||||
"model.diffusion_model.output_blocks.4.0.emb_layers.1.bias": "unet_up_blocks.1.resnets.1.time_emb_proj.bias",
|
||||
"model.diffusion_model.output_blocks.4.0.emb_layers.1.weight": "unet_up_blocks.1.resnets.1.time_emb_proj.weight",
|
||||
"model.diffusion_model.output_blocks.4.0.in_layers.0.bias": "unet_up_blocks.1.resnets.1.norm1.bias",
|
||||
"model.diffusion_model.output_blocks.4.0.in_layers.0.weight": "unet_up_blocks.1.resnets.1.norm1.weight",
|
||||
"model.diffusion_model.output_blocks.4.0.in_layers.2.bias": "unet_up_blocks.1.resnets.1.time_emb_proj.bias",
|
||||
"model.diffusion_model.output_blocks.4.0.in_layers.2.bias": "unet_up_blocks.1.resnets.1.conv1.bias",
|
||||
"model.diffusion_model.output_blocks.4.0.in_layers.2.weight": "unet_up_blocks.1.resnets.1.conv1.weight",
|
||||
"model.diffusion_model.output_blocks.4.0.out_layers.0.bias": "unet_up_blocks.1.resnets.1.norm2.bias",
|
||||
"model.diffusion_model.output_blocks.4.0.out_layers.0.weight": "unet_up_blocks.1.resnets.1.norm2.weight",
|
||||
@@ -970,11 +970,11 @@
|
||||
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm2.weight": "unet_up_blocks.1.attentions.1.transformer_blocks.0.norm2.weight",
|
||||
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm3.bias": "unet_up_blocks.1.attentions.1.transformer_blocks.0.norm3.bias",
|
||||
"model.diffusion_model.output_blocks.4.1.transformer_blocks.0.norm3.weight": "unet_up_blocks.1.attentions.1.transformer_blocks.0.norm3.weight",
|
||||
"model.diffusion_model.output_blocks.5.0.emb_layers.1.bias": "unet_up_blocks.1.resnets.2.conv1.bias",
|
||||
"model.diffusion_model.output_blocks.5.0.emb_layers.1.bias": "unet_up_blocks.1.resnets.2.time_emb_proj.bias",
|
||||
"model.diffusion_model.output_blocks.5.0.emb_layers.1.weight": "unet_up_blocks.1.resnets.2.time_emb_proj.weight",
|
||||
"model.diffusion_model.output_blocks.5.0.in_layers.0.bias": "unet_up_blocks.1.resnets.2.norm1.bias",
|
||||
"model.diffusion_model.output_blocks.5.0.in_layers.0.weight": "unet_up_blocks.1.resnets.2.norm1.weight",
|
||||
"model.diffusion_model.output_blocks.5.0.in_layers.2.bias": "unet_up_blocks.1.resnets.2.time_emb_proj.bias",
|
||||
"model.diffusion_model.output_blocks.5.0.in_layers.2.bias": "unet_up_blocks.1.resnets.2.conv1.bias",
|
||||
"model.diffusion_model.output_blocks.5.0.in_layers.2.weight": "unet_up_blocks.1.resnets.2.conv1.weight",
|
||||
"model.diffusion_model.output_blocks.5.0.out_layers.0.bias": "unet_up_blocks.1.resnets.2.norm2.bias",
|
||||
"model.diffusion_model.output_blocks.5.0.out_layers.0.weight": "unet_up_blocks.1.resnets.2.norm2.weight",
|
||||
@@ -1010,11 +1010,11 @@
|
||||
"model.diffusion_model.output_blocks.5.1.transformer_blocks.0.norm3.weight": "unet_up_blocks.1.attentions.2.transformer_blocks.0.norm3.weight",
|
||||
"model.diffusion_model.output_blocks.5.2.conv.bias": "unet_up_blocks.1.upsamplers.0.conv.bias",
|
||||
"model.diffusion_model.output_blocks.5.2.conv.weight": "unet_up_blocks.1.upsamplers.0.conv.weight",
|
||||
"model.diffusion_model.output_blocks.6.0.emb_layers.1.bias": "unet_up_blocks.2.resnets.0.conv1.bias",
|
||||
"model.diffusion_model.output_blocks.6.0.emb_layers.1.bias": "unet_up_blocks.2.resnets.0.time_emb_proj.bias",
|
||||
"model.diffusion_model.output_blocks.6.0.emb_layers.1.weight": "unet_up_blocks.2.resnets.0.time_emb_proj.weight",
|
||||
"model.diffusion_model.output_blocks.6.0.in_layers.0.bias": "unet_up_blocks.2.resnets.0.norm1.bias",
|
||||
"model.diffusion_model.output_blocks.6.0.in_layers.0.weight": "unet_up_blocks.2.resnets.0.norm1.weight",
|
||||
"model.diffusion_model.output_blocks.6.0.in_layers.2.bias": "unet_up_blocks.2.resnets.0.time_emb_proj.bias",
|
||||
"model.diffusion_model.output_blocks.6.0.in_layers.2.bias": "unet_up_blocks.2.resnets.0.conv1.bias",
|
||||
"model.diffusion_model.output_blocks.6.0.in_layers.2.weight": "unet_up_blocks.2.resnets.0.conv1.weight",
|
||||
"model.diffusion_model.output_blocks.6.0.out_layers.0.bias": "unet_up_blocks.2.resnets.0.norm2.bias",
|
||||
"model.diffusion_model.output_blocks.6.0.out_layers.0.weight": "unet_up_blocks.2.resnets.0.norm2.weight",
|
||||
@@ -1048,11 +1048,11 @@
|
||||
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.norm2.weight": "unet_up_blocks.2.attentions.0.transformer_blocks.0.norm2.weight",
|
||||
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.norm3.bias": "unet_up_blocks.2.attentions.0.transformer_blocks.0.norm3.bias",
|
||||
"model.diffusion_model.output_blocks.6.1.transformer_blocks.0.norm3.weight": "unet_up_blocks.2.attentions.0.transformer_blocks.0.norm3.weight",
|
||||
"model.diffusion_model.output_blocks.7.0.emb_layers.1.bias": "unet_up_blocks.2.resnets.1.conv1.bias",
|
||||
"model.diffusion_model.output_blocks.7.0.emb_layers.1.bias": "unet_up_blocks.2.resnets.1.time_emb_proj.bias",
|
||||
"model.diffusion_model.output_blocks.7.0.emb_layers.1.weight": "unet_up_blocks.2.resnets.1.time_emb_proj.weight",
|
||||
"model.diffusion_model.output_blocks.7.0.in_layers.0.bias": "unet_up_blocks.2.resnets.1.norm1.bias",
|
||||
"model.diffusion_model.output_blocks.7.0.in_layers.0.weight": "unet_up_blocks.2.resnets.1.norm1.weight",
|
||||
"model.diffusion_model.output_blocks.7.0.in_layers.2.bias": "unet_up_blocks.2.resnets.1.time_emb_proj.bias",
|
||||
"model.diffusion_model.output_blocks.7.0.in_layers.2.bias": "unet_up_blocks.2.resnets.1.conv1.bias",
|
||||
"model.diffusion_model.output_blocks.7.0.in_layers.2.weight": "unet_up_blocks.2.resnets.1.conv1.weight",
|
||||
"model.diffusion_model.output_blocks.7.0.out_layers.0.bias": "unet_up_blocks.2.resnets.1.norm2.bias",
|
||||
"model.diffusion_model.output_blocks.7.0.out_layers.0.weight": "unet_up_blocks.2.resnets.1.norm2.weight",
|
||||
@@ -1086,11 +1086,11 @@
|
||||
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.norm2.weight": "unet_up_blocks.2.attentions.1.transformer_blocks.0.norm2.weight",
|
||||
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.norm3.bias": "unet_up_blocks.2.attentions.1.transformer_blocks.0.norm3.bias",
|
||||
"model.diffusion_model.output_blocks.7.1.transformer_blocks.0.norm3.weight": "unet_up_blocks.2.attentions.1.transformer_blocks.0.norm3.weight",
|
||||
"model.diffusion_model.output_blocks.8.0.emb_layers.1.bias": "unet_up_blocks.2.resnets.2.conv1.bias",
|
||||
"model.diffusion_model.output_blocks.8.0.emb_layers.1.bias": "unet_up_blocks.2.resnets.2.time_emb_proj.bias",
|
||||
"model.diffusion_model.output_blocks.8.0.emb_layers.1.weight": "unet_up_blocks.2.resnets.2.time_emb_proj.weight",
|
||||
"model.diffusion_model.output_blocks.8.0.in_layers.0.bias": "unet_up_blocks.2.resnets.2.norm1.bias",
|
||||
"model.diffusion_model.output_blocks.8.0.in_layers.0.weight": "unet_up_blocks.2.resnets.2.norm1.weight",
|
||||
"model.diffusion_model.output_blocks.8.0.in_layers.2.bias": "unet_up_blocks.2.resnets.2.time_emb_proj.bias",
|
||||
"model.diffusion_model.output_blocks.8.0.in_layers.2.bias": "unet_up_blocks.2.resnets.2.conv1.bias",
|
||||
"model.diffusion_model.output_blocks.8.0.in_layers.2.weight": "unet_up_blocks.2.resnets.2.conv1.weight",
|
||||
"model.diffusion_model.output_blocks.8.0.out_layers.0.bias": "unet_up_blocks.2.resnets.2.norm2.bias",
|
||||
"model.diffusion_model.output_blocks.8.0.out_layers.0.weight": "unet_up_blocks.2.resnets.2.norm2.weight",
|
||||
@@ -1126,11 +1126,11 @@
|
||||
"model.diffusion_model.output_blocks.8.1.transformer_blocks.0.norm3.weight": "unet_up_blocks.2.attentions.2.transformer_blocks.0.norm3.weight",
|
||||
"model.diffusion_model.output_blocks.8.2.conv.bias": "unet_up_blocks.2.upsamplers.0.conv.bias",
|
||||
"model.diffusion_model.output_blocks.8.2.conv.weight": "unet_up_blocks.2.upsamplers.0.conv.weight",
|
||||
"model.diffusion_model.output_blocks.9.0.emb_layers.1.bias": "unet_up_blocks.3.resnets.0.conv1.bias",
|
||||
"model.diffusion_model.output_blocks.9.0.emb_layers.1.bias": "unet_up_blocks.3.resnets.0.time_emb_proj.bias",
|
||||
"model.diffusion_model.output_blocks.9.0.emb_layers.1.weight": "unet_up_blocks.3.resnets.0.time_emb_proj.weight",
|
||||
"model.diffusion_model.output_blocks.9.0.in_layers.0.bias": "unet_up_blocks.3.resnets.0.norm1.bias",
|
||||
"model.diffusion_model.output_blocks.9.0.in_layers.0.weight": "unet_up_blocks.3.resnets.0.norm1.weight",
|
||||
"model.diffusion_model.output_blocks.9.0.in_layers.2.bias": "unet_up_blocks.3.resnets.0.time_emb_proj.bias",
|
||||
"model.diffusion_model.output_blocks.9.0.in_layers.2.bias": "unet_up_blocks.3.resnets.0.conv1.bias",
|
||||
"model.diffusion_model.output_blocks.9.0.in_layers.2.weight": "unet_up_blocks.3.resnets.0.conv1.weight",
|
||||
"model.diffusion_model.output_blocks.9.0.out_layers.0.bias": "unet_up_blocks.3.resnets.0.norm2.bias",
|
||||
"model.diffusion_model.output_blocks.9.0.out_layers.0.weight": "unet_up_blocks.3.resnets.0.norm2.weight",
|
||||
@@ -1167,7 +1167,7 @@
|
||||
"model.diffusion_model.time_embed.0.bias": "unet_time_embedding.linear_1.bias",
|
||||
"model.diffusion_model.time_embed.0.weight": "unet_time_embedding.linear_1.weight",
|
||||
"model.diffusion_model.time_embed.2.bias": "unet_time_embedding.linear_2.bias",
|
||||
"model.diffusion_model.time_embed.2.weight": "unet_mid_block.resnets.1.time_emb_proj.weight"
|
||||
"model.diffusion_model.time_embed.2.weight": "unet_time_embedding.linear_2.weight"
|
||||
},
|
||||
"ldm_diffusers_shape_map": {
|
||||
"first_stage_model.decoder.mid.attn_1.k.weight": [
|
||||
|
||||
@@ -58,7 +58,7 @@
|
||||
"conditioner.embedders.0.transformer.text_model.encoder.layers.11.mlp.fc1.weight": "te0_text_model.encoder.layers.11.mlp.fc1.weight",
|
||||
"conditioner.embedders.0.transformer.text_model.encoder.layers.11.mlp.fc2.bias": "te0_text_model.encoder.layers.11.mlp.fc2.bias",
|
||||
"conditioner.embedders.0.transformer.text_model.encoder.layers.11.mlp.fc2.weight": "te0_text_model.encoder.layers.11.mlp.fc2.weight",
|
||||
"conditioner.embedders.0.transformer.text_model.encoder.layers.11.self_attn.k_proj.bias": "te0_text_model.encoder.layers.2.self_attn.k_proj.bias",
|
||||
"conditioner.embedders.0.transformer.text_model.encoder.layers.11.self_attn.k_proj.bias": "te0_text_model.encoder.layers.11.self_attn.k_proj.bias",
|
||||
"conditioner.embedders.0.transformer.text_model.encoder.layers.11.self_attn.k_proj.weight": "te0_text_model.encoder.layers.11.self_attn.k_proj.weight",
|
||||
"conditioner.embedders.0.transformer.text_model.encoder.layers.11.self_attn.out_proj.bias": "te0_text_model.encoder.layers.11.self_attn.out_proj.bias",
|
||||
"conditioner.embedders.0.transformer.text_model.encoder.layers.11.self_attn.out_proj.weight": "te0_text_model.encoder.layers.11.self_attn.out_proj.weight",
|
||||
@@ -74,7 +74,7 @@
|
||||
"conditioner.embedders.0.transformer.text_model.encoder.layers.2.mlp.fc1.weight": "te0_text_model.encoder.layers.2.mlp.fc1.weight",
|
||||
"conditioner.embedders.0.transformer.text_model.encoder.layers.2.mlp.fc2.bias": "te0_text_model.encoder.layers.2.mlp.fc2.bias",
|
||||
"conditioner.embedders.0.transformer.text_model.encoder.layers.2.mlp.fc2.weight": "te0_text_model.encoder.layers.2.mlp.fc2.weight",
|
||||
"conditioner.embedders.0.transformer.text_model.encoder.layers.2.self_attn.k_proj.bias": "te0_text_model.encoder.layers.3.self_attn.k_proj.bias",
|
||||
"conditioner.embedders.0.transformer.text_model.encoder.layers.2.self_attn.k_proj.bias": "te0_text_model.encoder.layers.2.self_attn.k_proj.bias",
|
||||
"conditioner.embedders.0.transformer.text_model.encoder.layers.2.self_attn.k_proj.weight": "te0_text_model.encoder.layers.2.self_attn.k_proj.weight",
|
||||
"conditioner.embedders.0.transformer.text_model.encoder.layers.2.self_attn.out_proj.bias": "te0_text_model.encoder.layers.2.self_attn.out_proj.bias",
|
||||
"conditioner.embedders.0.transformer.text_model.encoder.layers.2.self_attn.out_proj.weight": "te0_text_model.encoder.layers.2.self_attn.out_proj.weight",
|
||||
@@ -90,7 +90,7 @@
|
||||
"conditioner.embedders.0.transformer.text_model.encoder.layers.3.mlp.fc1.weight": "te0_text_model.encoder.layers.3.mlp.fc1.weight",
|
||||
"conditioner.embedders.0.transformer.text_model.encoder.layers.3.mlp.fc2.bias": "te0_text_model.encoder.layers.3.mlp.fc2.bias",
|
||||
"conditioner.embedders.0.transformer.text_model.encoder.layers.3.mlp.fc2.weight": "te0_text_model.encoder.layers.3.mlp.fc2.weight",
|
||||
"conditioner.embedders.0.transformer.text_model.encoder.layers.3.self_attn.k_proj.bias": "te0_text_model.encoder.layers.11.self_attn.k_proj.bias",
|
||||
"conditioner.embedders.0.transformer.text_model.encoder.layers.3.self_attn.k_proj.bias": "te0_text_model.encoder.layers.3.self_attn.k_proj.bias",
|
||||
"conditioner.embedders.0.transformer.text_model.encoder.layers.3.self_attn.k_proj.weight": "te0_text_model.encoder.layers.3.self_attn.k_proj.weight",
|
||||
"conditioner.embedders.0.transformer.text_model.encoder.layers.3.self_attn.out_proj.bias": "te0_text_model.encoder.layers.3.self_attn.out_proj.bias",
|
||||
"conditioner.embedders.0.transformer.text_model.encoder.layers.3.self_attn.out_proj.weight": "te0_text_model.encoder.layers.3.self_attn.out_proj.weight",
|
||||
@@ -221,7 +221,7 @@
|
||||
"conditioner.embedders.1.model.transformer.resblocks.1.mlp.c_proj.bias": "te1_text_model.encoder.layers.1.mlp.fc2.bias",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.1.mlp.c_proj.weight": "te1_text_model.encoder.layers.1.mlp.fc2.weight",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.10.attn.out_proj.bias": "te1_text_model.encoder.layers.10.self_attn.out_proj.bias",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.10.attn.out_proj.weight": "te1_text_model.encoder.layers.2.self_attn.out_proj.weight",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.10.attn.out_proj.weight": "te1_text_model.encoder.layers.10.self_attn.out_proj.weight",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.10.ln_1.bias": "te1_text_model.encoder.layers.10.layer_norm1.bias",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.10.ln_1.weight": "te1_text_model.encoder.layers.10.layer_norm1.weight",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.10.ln_2.bias": "te1_text_model.encoder.layers.10.layer_norm2.bias",
|
||||
@@ -231,7 +231,7 @@
|
||||
"conditioner.embedders.1.model.transformer.resblocks.10.mlp.c_proj.bias": "te1_text_model.encoder.layers.10.mlp.fc2.bias",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.10.mlp.c_proj.weight": "te1_text_model.encoder.layers.10.mlp.fc2.weight",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.11.attn.out_proj.bias": "te1_text_model.encoder.layers.11.self_attn.out_proj.bias",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.11.attn.out_proj.weight": "te1_text_model.encoder.layers.3.self_attn.out_proj.weight",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.11.attn.out_proj.weight": "te1_text_model.encoder.layers.11.self_attn.out_proj.weight",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.11.ln_1.bias": "te1_text_model.encoder.layers.11.layer_norm1.bias",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.11.ln_1.weight": "te1_text_model.encoder.layers.11.layer_norm1.weight",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.11.ln_2.bias": "te1_text_model.encoder.layers.11.layer_norm2.bias",
|
||||
@@ -241,7 +241,7 @@
|
||||
"conditioner.embedders.1.model.transformer.resblocks.11.mlp.c_proj.bias": "te1_text_model.encoder.layers.11.mlp.fc2.bias",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.11.mlp.c_proj.weight": "te1_text_model.encoder.layers.11.mlp.fc2.weight",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.12.attn.out_proj.bias": "te1_text_model.encoder.layers.12.self_attn.out_proj.bias",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.12.attn.out_proj.weight": "te1_text_model.encoder.layers.4.self_attn.out_proj.weight",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.12.attn.out_proj.weight": "te1_text_model.encoder.layers.12.self_attn.out_proj.weight",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.12.ln_1.bias": "te1_text_model.encoder.layers.12.layer_norm1.bias",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.12.ln_1.weight": "te1_text_model.encoder.layers.12.layer_norm1.weight",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.12.ln_2.bias": "te1_text_model.encoder.layers.12.layer_norm2.bias",
|
||||
@@ -251,7 +251,7 @@
|
||||
"conditioner.embedders.1.model.transformer.resblocks.12.mlp.c_proj.bias": "te1_text_model.encoder.layers.12.mlp.fc2.bias",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.12.mlp.c_proj.weight": "te1_text_model.encoder.layers.12.mlp.fc2.weight",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.13.attn.out_proj.bias": "te1_text_model.encoder.layers.13.self_attn.out_proj.bias",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.13.attn.out_proj.weight": "te1_text_model.encoder.layers.5.self_attn.out_proj.weight",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.13.attn.out_proj.weight": "te1_text_model.encoder.layers.13.self_attn.out_proj.weight",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.13.ln_1.bias": "te1_text_model.encoder.layers.13.layer_norm1.bias",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.13.ln_1.weight": "te1_text_model.encoder.layers.13.layer_norm1.weight",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.13.ln_2.bias": "te1_text_model.encoder.layers.13.layer_norm2.bias",
|
||||
@@ -271,7 +271,7 @@
|
||||
"conditioner.embedders.1.model.transformer.resblocks.14.mlp.c_proj.bias": "te1_text_model.encoder.layers.14.mlp.fc2.bias",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.14.mlp.c_proj.weight": "te1_text_model.encoder.layers.14.mlp.fc2.weight",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.15.attn.out_proj.bias": "te1_text_model.encoder.layers.15.self_attn.out_proj.bias",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.15.attn.out_proj.weight": "te1_text_model.encoder.layers.6.self_attn.out_proj.weight",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.15.attn.out_proj.weight": "te1_text_model.encoder.layers.15.self_attn.out_proj.weight",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.15.ln_1.bias": "te1_text_model.encoder.layers.15.layer_norm1.bias",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.15.ln_1.weight": "te1_text_model.encoder.layers.15.layer_norm1.weight",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.15.ln_2.bias": "te1_text_model.encoder.layers.15.layer_norm2.bias",
|
||||
@@ -321,7 +321,7 @@
|
||||
"conditioner.embedders.1.model.transformer.resblocks.19.mlp.c_proj.bias": "te1_text_model.encoder.layers.19.mlp.fc2.bias",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.19.mlp.c_proj.weight": "te1_text_model.encoder.layers.19.mlp.fc2.weight",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.2.attn.out_proj.bias": "te1_text_model.encoder.layers.2.self_attn.out_proj.bias",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.2.attn.out_proj.weight": "te1_text_model.encoder.layers.7.self_attn.out_proj.weight",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.2.attn.out_proj.weight": "te1_text_model.encoder.layers.2.self_attn.out_proj.weight",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.2.ln_1.bias": "te1_text_model.encoder.layers.2.layer_norm1.bias",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.2.ln_1.weight": "te1_text_model.encoder.layers.2.layer_norm1.weight",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.2.ln_2.bias": "te1_text_model.encoder.layers.2.layer_norm2.bias",
|
||||
@@ -431,7 +431,7 @@
|
||||
"conditioner.embedders.1.model.transformer.resblocks.29.mlp.c_proj.bias": "te1_text_model.encoder.layers.29.mlp.fc2.bias",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.29.mlp.c_proj.weight": "te1_text_model.encoder.layers.29.mlp.fc2.weight",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.3.attn.out_proj.bias": "te1_text_model.encoder.layers.3.self_attn.out_proj.bias",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.3.attn.out_proj.weight": "te1_text_model.encoder.layers.8.self_attn.out_proj.weight",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.3.attn.out_proj.weight": "te1_text_model.encoder.layers.3.self_attn.out_proj.weight",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.3.ln_1.bias": "te1_text_model.encoder.layers.3.layer_norm1.bias",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.3.ln_1.weight": "te1_text_model.encoder.layers.3.layer_norm1.weight",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.3.ln_2.bias": "te1_text_model.encoder.layers.3.layer_norm2.bias",
|
||||
@@ -461,7 +461,7 @@
|
||||
"conditioner.embedders.1.model.transformer.resblocks.31.mlp.c_proj.bias": "te1_text_model.encoder.layers.31.mlp.fc2.bias",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.31.mlp.c_proj.weight": "te1_text_model.encoder.layers.31.mlp.fc2.weight",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.4.attn.out_proj.bias": "te1_text_model.encoder.layers.4.self_attn.out_proj.bias",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.4.attn.out_proj.weight": "te1_text_model.encoder.layers.9.self_attn.out_proj.weight",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.4.attn.out_proj.weight": "te1_text_model.encoder.layers.4.self_attn.out_proj.weight",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.4.ln_1.bias": "te1_text_model.encoder.layers.4.layer_norm1.bias",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.4.ln_1.weight": "te1_text_model.encoder.layers.4.layer_norm1.weight",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.4.ln_2.bias": "te1_text_model.encoder.layers.4.layer_norm2.bias",
|
||||
@@ -471,7 +471,7 @@
|
||||
"conditioner.embedders.1.model.transformer.resblocks.4.mlp.c_proj.bias": "te1_text_model.encoder.layers.4.mlp.fc2.bias",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.4.mlp.c_proj.weight": "te1_text_model.encoder.layers.4.mlp.fc2.weight",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.5.attn.out_proj.bias": "te1_text_model.encoder.layers.5.self_attn.out_proj.bias",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.5.attn.out_proj.weight": "te1_text_model.encoder.layers.10.self_attn.out_proj.weight",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.5.attn.out_proj.weight": "te1_text_model.encoder.layers.5.self_attn.out_proj.weight",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.5.ln_1.bias": "te1_text_model.encoder.layers.5.layer_norm1.bias",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.5.ln_1.weight": "te1_text_model.encoder.layers.5.layer_norm1.weight",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.5.ln_2.bias": "te1_text_model.encoder.layers.5.layer_norm2.bias",
|
||||
@@ -481,7 +481,7 @@
|
||||
"conditioner.embedders.1.model.transformer.resblocks.5.mlp.c_proj.bias": "te1_text_model.encoder.layers.5.mlp.fc2.bias",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.5.mlp.c_proj.weight": "te1_text_model.encoder.layers.5.mlp.fc2.weight",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.6.attn.out_proj.bias": "te1_text_model.encoder.layers.6.self_attn.out_proj.bias",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.6.attn.out_proj.weight": "te1_text_model.encoder.layers.11.self_attn.out_proj.weight",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.6.attn.out_proj.weight": "te1_text_model.encoder.layers.6.self_attn.out_proj.weight",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.6.ln_1.bias": "te1_text_model.encoder.layers.6.layer_norm1.bias",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.6.ln_1.weight": "te1_text_model.encoder.layers.6.layer_norm1.weight",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.6.ln_2.bias": "te1_text_model.encoder.layers.6.layer_norm2.bias",
|
||||
@@ -491,7 +491,7 @@
|
||||
"conditioner.embedders.1.model.transformer.resblocks.6.mlp.c_proj.bias": "te1_text_model.encoder.layers.6.mlp.fc2.bias",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.6.mlp.c_proj.weight": "te1_text_model.encoder.layers.6.mlp.fc2.weight",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.7.attn.out_proj.bias": "te1_text_model.encoder.layers.7.self_attn.out_proj.bias",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.7.attn.out_proj.weight": "te1_text_model.encoder.layers.12.self_attn.out_proj.weight",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.7.attn.out_proj.weight": "te1_text_model.encoder.layers.7.self_attn.out_proj.weight",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.7.ln_1.bias": "te1_text_model.encoder.layers.7.layer_norm1.bias",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.7.ln_1.weight": "te1_text_model.encoder.layers.7.layer_norm1.weight",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.7.ln_2.bias": "te1_text_model.encoder.layers.7.layer_norm2.bias",
|
||||
@@ -501,7 +501,7 @@
|
||||
"conditioner.embedders.1.model.transformer.resblocks.7.mlp.c_proj.bias": "te1_text_model.encoder.layers.7.mlp.fc2.bias",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.7.mlp.c_proj.weight": "te1_text_model.encoder.layers.7.mlp.fc2.weight",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.8.attn.out_proj.bias": "te1_text_model.encoder.layers.8.self_attn.out_proj.bias",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.8.attn.out_proj.weight": "te1_text_model.encoder.layers.13.self_attn.out_proj.weight",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.8.attn.out_proj.weight": "te1_text_model.encoder.layers.8.self_attn.out_proj.weight",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.8.ln_1.bias": "te1_text_model.encoder.layers.8.layer_norm1.bias",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.8.ln_1.weight": "te1_text_model.encoder.layers.8.layer_norm1.weight",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.8.ln_2.bias": "te1_text_model.encoder.layers.8.layer_norm2.bias",
|
||||
@@ -511,7 +511,7 @@
|
||||
"conditioner.embedders.1.model.transformer.resblocks.8.mlp.c_proj.bias": "te1_text_model.encoder.layers.8.mlp.fc2.bias",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.8.mlp.c_proj.weight": "te1_text_model.encoder.layers.8.mlp.fc2.weight",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.9.attn.out_proj.bias": "te1_text_model.encoder.layers.9.self_attn.out_proj.bias",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.9.attn.out_proj.weight": "unet_down_blocks.2.attentions.0.transformer_blocks.4.attn2.to_out.0.weight",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.9.attn.out_proj.weight": "te1_text_model.encoder.layers.9.self_attn.out_proj.weight",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.9.ln_1.bias": "te1_text_model.encoder.layers.9.layer_norm1.bias",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.9.ln_1.weight": "te1_text_model.encoder.layers.9.layer_norm1.weight",
|
||||
"conditioner.embedders.1.model.transformer.resblocks.9.ln_2.bias": "te1_text_model.encoder.layers.9.layer_norm2.bias",
|
||||
@@ -1013,7 +1013,7 @@
|
||||
"model.diffusion_model.input_blocks.7.1.transformer_blocks.4.attn1.to_v.weight": "unet_down_blocks.2.attentions.0.transformer_blocks.4.attn1.to_v.weight",
|
||||
"model.diffusion_model.input_blocks.7.1.transformer_blocks.4.attn2.to_k.weight": "unet_down_blocks.2.attentions.0.transformer_blocks.4.attn2.to_k.weight",
|
||||
"model.diffusion_model.input_blocks.7.1.transformer_blocks.4.attn2.to_out.0.bias": "unet_down_blocks.2.attentions.0.transformer_blocks.4.attn2.to_out.0.bias",
|
||||
"model.diffusion_model.input_blocks.7.1.transformer_blocks.4.attn2.to_out.0.weight": "unet_down_blocks.2.attentions.0.transformer_blocks.5.attn2.to_out.0.weight",
|
||||
"model.diffusion_model.input_blocks.7.1.transformer_blocks.4.attn2.to_out.0.weight": "unet_down_blocks.2.attentions.0.transformer_blocks.4.attn2.to_out.0.weight",
|
||||
"model.diffusion_model.input_blocks.7.1.transformer_blocks.4.attn2.to_q.weight": "unet_down_blocks.2.attentions.0.transformer_blocks.4.attn2.to_q.weight",
|
||||
"model.diffusion_model.input_blocks.7.1.transformer_blocks.4.attn2.to_v.weight": "unet_down_blocks.2.attentions.0.transformer_blocks.4.attn2.to_v.weight",
|
||||
"model.diffusion_model.input_blocks.7.1.transformer_blocks.4.ff.net.0.proj.bias": "unet_down_blocks.2.attentions.0.transformer_blocks.4.ff.net.0.proj.bias",
|
||||
@@ -1033,7 +1033,7 @@
|
||||
"model.diffusion_model.input_blocks.7.1.transformer_blocks.5.attn1.to_v.weight": "unet_down_blocks.2.attentions.0.transformer_blocks.5.attn1.to_v.weight",
|
||||
"model.diffusion_model.input_blocks.7.1.transformer_blocks.5.attn2.to_k.weight": "unet_down_blocks.2.attentions.0.transformer_blocks.5.attn2.to_k.weight",
|
||||
"model.diffusion_model.input_blocks.7.1.transformer_blocks.5.attn2.to_out.0.bias": "unet_down_blocks.2.attentions.0.transformer_blocks.5.attn2.to_out.0.bias",
|
||||
"model.diffusion_model.input_blocks.7.1.transformer_blocks.5.attn2.to_out.0.weight": "unet_down_blocks.2.attentions.0.transformer_blocks.6.attn2.to_out.0.weight",
|
||||
"model.diffusion_model.input_blocks.7.1.transformer_blocks.5.attn2.to_out.0.weight": "unet_down_blocks.2.attentions.0.transformer_blocks.5.attn2.to_out.0.weight",
|
||||
"model.diffusion_model.input_blocks.7.1.transformer_blocks.5.attn2.to_q.weight": "unet_down_blocks.2.attentions.0.transformer_blocks.5.attn2.to_q.weight",
|
||||
"model.diffusion_model.input_blocks.7.1.transformer_blocks.5.attn2.to_v.weight": "unet_down_blocks.2.attentions.0.transformer_blocks.5.attn2.to_v.weight",
|
||||
"model.diffusion_model.input_blocks.7.1.transformer_blocks.5.ff.net.0.proj.bias": "unet_down_blocks.2.attentions.0.transformer_blocks.5.ff.net.0.proj.bias",
|
||||
@@ -1053,7 +1053,7 @@
|
||||
"model.diffusion_model.input_blocks.7.1.transformer_blocks.6.attn1.to_v.weight": "unet_down_blocks.2.attentions.0.transformer_blocks.6.attn1.to_v.weight",
|
||||
"model.diffusion_model.input_blocks.7.1.transformer_blocks.6.attn2.to_k.weight": "unet_down_blocks.2.attentions.0.transformer_blocks.6.attn2.to_k.weight",
|
||||
"model.diffusion_model.input_blocks.7.1.transformer_blocks.6.attn2.to_out.0.bias": "unet_down_blocks.2.attentions.0.transformer_blocks.6.attn2.to_out.0.bias",
|
||||
"model.diffusion_model.input_blocks.7.1.transformer_blocks.6.attn2.to_out.0.weight": "te1_text_model.encoder.layers.15.self_attn.out_proj.weight",
|
||||
"model.diffusion_model.input_blocks.7.1.transformer_blocks.6.attn2.to_out.0.weight": "unet_down_blocks.2.attentions.0.transformer_blocks.6.attn2.to_out.0.weight",
|
||||
"model.diffusion_model.input_blocks.7.1.transformer_blocks.6.attn2.to_q.weight": "unet_down_blocks.2.attentions.0.transformer_blocks.6.attn2.to_q.weight",
|
||||
"model.diffusion_model.input_blocks.7.1.transformer_blocks.6.attn2.to_v.weight": "unet_down_blocks.2.attentions.0.transformer_blocks.6.attn2.to_v.weight",
|
||||
"model.diffusion_model.input_blocks.7.1.transformer_blocks.6.ff.net.0.proj.bias": "unet_down_blocks.2.attentions.0.transformer_blocks.6.ff.net.0.proj.bias",
|
||||
@@ -1369,7 +1369,7 @@
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.0.attn1.to_v.weight": "unet_mid_block.attentions.0.transformer_blocks.0.attn1.to_v.weight",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_k.weight": "unet_mid_block.attentions.0.transformer_blocks.0.attn2.to_k.weight",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_out.0.bias": "unet_mid_block.attentions.0.transformer_blocks.0.attn2.to_out.0.bias",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_out.0.weight": "unet_up_blocks.0.attentions.2.transformer_blocks.0.attn2.to_out.0.weight",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_out.0.weight": "unet_mid_block.attentions.0.transformer_blocks.0.attn2.to_out.0.weight",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_q.weight": "unet_mid_block.attentions.0.transformer_blocks.0.attn2.to_q.weight",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.0.attn2.to_v.weight": "unet_mid_block.attentions.0.transformer_blocks.0.attn2.to_v.weight",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.0.ff.net.0.proj.bias": "unet_mid_block.attentions.0.transformer_blocks.0.ff.net.0.proj.bias",
|
||||
@@ -1409,7 +1409,7 @@
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.2.attn1.to_v.weight": "unet_mid_block.attentions.0.transformer_blocks.2.attn1.to_v.weight",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.2.attn2.to_k.weight": "unet_mid_block.attentions.0.transformer_blocks.2.attn2.to_k.weight",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.2.attn2.to_out.0.bias": "unet_mid_block.attentions.0.transformer_blocks.2.attn2.to_out.0.bias",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.2.attn2.to_out.0.weight": "unet_up_blocks.0.attentions.2.transformer_blocks.8.attn2.to_out.0.weight",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.2.attn2.to_out.0.weight": "unet_mid_block.attentions.0.transformer_blocks.2.attn2.to_out.0.weight",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.2.attn2.to_q.weight": "unet_mid_block.attentions.0.transformer_blocks.2.attn2.to_q.weight",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.2.attn2.to_v.weight": "unet_mid_block.attentions.0.transformer_blocks.2.attn2.to_v.weight",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.2.ff.net.0.proj.bias": "unet_mid_block.attentions.0.transformer_blocks.2.ff.net.0.proj.bias",
|
||||
@@ -1429,7 +1429,7 @@
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.3.attn1.to_v.weight": "unet_mid_block.attentions.0.transformer_blocks.3.attn1.to_v.weight",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.3.attn2.to_k.weight": "unet_mid_block.attentions.0.transformer_blocks.3.attn2.to_k.weight",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.3.attn2.to_out.0.bias": "unet_mid_block.attentions.0.transformer_blocks.3.attn2.to_out.0.bias",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.3.attn2.to_out.0.weight": "unet_up_blocks.0.attentions.2.transformer_blocks.5.attn2.to_out.0.weight",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.3.attn2.to_out.0.weight": "unet_mid_block.attentions.0.transformer_blocks.3.attn2.to_out.0.weight",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.3.attn2.to_q.weight": "unet_mid_block.attentions.0.transformer_blocks.3.attn2.to_q.weight",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.3.attn2.to_v.weight": "unet_mid_block.attentions.0.transformer_blocks.3.attn2.to_v.weight",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.3.ff.net.0.proj.bias": "unet_mid_block.attentions.0.transformer_blocks.3.ff.net.0.proj.bias",
|
||||
@@ -1449,7 +1449,7 @@
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.4.attn1.to_v.weight": "unet_mid_block.attentions.0.transformer_blocks.4.attn1.to_v.weight",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.4.attn2.to_k.weight": "unet_mid_block.attentions.0.transformer_blocks.4.attn2.to_k.weight",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.4.attn2.to_out.0.bias": "unet_mid_block.attentions.0.transformer_blocks.4.attn2.to_out.0.bias",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.4.attn2.to_out.0.weight": "unet_up_blocks.0.attentions.2.transformer_blocks.6.attn2.to_out.0.weight",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.4.attn2.to_out.0.weight": "unet_mid_block.attentions.0.transformer_blocks.4.attn2.to_out.0.weight",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.4.attn2.to_q.weight": "unet_mid_block.attentions.0.transformer_blocks.4.attn2.to_q.weight",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.4.attn2.to_v.weight": "unet_mid_block.attentions.0.transformer_blocks.4.attn2.to_v.weight",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.4.ff.net.0.proj.bias": "unet_mid_block.attentions.0.transformer_blocks.4.ff.net.0.proj.bias",
|
||||
@@ -1469,7 +1469,7 @@
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.5.attn1.to_v.weight": "unet_mid_block.attentions.0.transformer_blocks.5.attn1.to_v.weight",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.5.attn2.to_k.weight": "unet_mid_block.attentions.0.transformer_blocks.5.attn2.to_k.weight",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.5.attn2.to_out.0.bias": "unet_mid_block.attentions.0.transformer_blocks.5.attn2.to_out.0.bias",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.5.attn2.to_out.0.weight": "unet_up_blocks.0.attentions.2.transformer_blocks.4.attn2.to_out.0.weight",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.5.attn2.to_out.0.weight": "unet_mid_block.attentions.0.transformer_blocks.5.attn2.to_out.0.weight",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.5.attn2.to_q.weight": "unet_mid_block.attentions.0.transformer_blocks.5.attn2.to_q.weight",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.5.attn2.to_v.weight": "unet_mid_block.attentions.0.transformer_blocks.5.attn2.to_v.weight",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.5.ff.net.0.proj.bias": "unet_mid_block.attentions.0.transformer_blocks.5.ff.net.0.proj.bias",
|
||||
@@ -1489,7 +1489,7 @@
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.6.attn1.to_v.weight": "unet_mid_block.attentions.0.transformer_blocks.6.attn1.to_v.weight",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.6.attn2.to_k.weight": "unet_mid_block.attentions.0.transformer_blocks.6.attn2.to_k.weight",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.6.attn2.to_out.0.bias": "unet_mid_block.attentions.0.transformer_blocks.6.attn2.to_out.0.bias",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.6.attn2.to_out.0.weight": "unet_up_blocks.0.attentions.2.transformer_blocks.7.attn2.to_out.0.weight",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.6.attn2.to_out.0.weight": "unet_mid_block.attentions.0.transformer_blocks.6.attn2.to_out.0.weight",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.6.attn2.to_q.weight": "unet_mid_block.attentions.0.transformer_blocks.6.attn2.to_q.weight",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.6.attn2.to_v.weight": "unet_mid_block.attentions.0.transformer_blocks.6.attn2.to_v.weight",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.6.ff.net.0.proj.bias": "unet_mid_block.attentions.0.transformer_blocks.6.ff.net.0.proj.bias",
|
||||
@@ -1509,7 +1509,7 @@
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.7.attn1.to_v.weight": "unet_mid_block.attentions.0.transformer_blocks.7.attn1.to_v.weight",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.7.attn2.to_k.weight": "unet_mid_block.attentions.0.transformer_blocks.7.attn2.to_k.weight",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.7.attn2.to_out.0.bias": "unet_mid_block.attentions.0.transformer_blocks.7.attn2.to_out.0.bias",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.7.attn2.to_out.0.weight": "unet_up_blocks.0.attentions.2.transformer_blocks.9.attn2.to_out.0.weight",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.7.attn2.to_out.0.weight": "unet_mid_block.attentions.0.transformer_blocks.7.attn2.to_out.0.weight",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.7.attn2.to_q.weight": "unet_mid_block.attentions.0.transformer_blocks.7.attn2.to_q.weight",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.7.attn2.to_v.weight": "unet_mid_block.attentions.0.transformer_blocks.7.attn2.to_v.weight",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.7.ff.net.0.proj.bias": "unet_mid_block.attentions.0.transformer_blocks.7.ff.net.0.proj.bias",
|
||||
@@ -1529,7 +1529,7 @@
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.8.attn1.to_v.weight": "unet_mid_block.attentions.0.transformer_blocks.8.attn1.to_v.weight",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.8.attn2.to_k.weight": "unet_mid_block.attentions.0.transformer_blocks.8.attn2.to_k.weight",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.8.attn2.to_out.0.bias": "unet_mid_block.attentions.0.transformer_blocks.8.attn2.to_out.0.bias",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.8.attn2.to_out.0.weight": "unet_mid_block.attentions.0.transformer_blocks.0.attn2.to_out.0.weight",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.8.attn2.to_out.0.weight": "unet_mid_block.attentions.0.transformer_blocks.8.attn2.to_out.0.weight",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.8.attn2.to_q.weight": "unet_mid_block.attentions.0.transformer_blocks.8.attn2.to_q.weight",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.8.attn2.to_v.weight": "unet_mid_block.attentions.0.transformer_blocks.8.attn2.to_v.weight",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.8.ff.net.0.proj.bias": "unet_mid_block.attentions.0.transformer_blocks.8.ff.net.0.proj.bias",
|
||||
@@ -1549,7 +1549,7 @@
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.9.attn1.to_v.weight": "unet_mid_block.attentions.0.transformer_blocks.9.attn1.to_v.weight",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.9.attn2.to_k.weight": "unet_mid_block.attentions.0.transformer_blocks.9.attn2.to_k.weight",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.9.attn2.to_out.0.bias": "unet_mid_block.attentions.0.transformer_blocks.9.attn2.to_out.0.bias",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.9.attn2.to_out.0.weight": "unet_mid_block.attentions.0.transformer_blocks.2.attn2.to_out.0.weight",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.9.attn2.to_out.0.weight": "unet_mid_block.attentions.0.transformer_blocks.9.attn2.to_out.0.weight",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.9.attn2.to_q.weight": "unet_mid_block.attentions.0.transformer_blocks.9.attn2.to_q.weight",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.9.attn2.to_v.weight": "unet_mid_block.attentions.0.transformer_blocks.9.attn2.to_v.weight",
|
||||
"model.diffusion_model.middle_block.1.transformer_blocks.9.ff.net.0.proj.bias": "unet_mid_block.attentions.0.transformer_blocks.9.ff.net.0.proj.bias",
|
||||
@@ -2037,7 +2037,7 @@
|
||||
"model.diffusion_model.output_blocks.2.1.transformer_blocks.0.attn1.to_v.weight": "unet_up_blocks.0.attentions.2.transformer_blocks.0.attn1.to_v.weight",
|
||||
"model.diffusion_model.output_blocks.2.1.transformer_blocks.0.attn2.to_k.weight": "unet_up_blocks.0.attentions.2.transformer_blocks.0.attn2.to_k.weight",
|
||||
"model.diffusion_model.output_blocks.2.1.transformer_blocks.0.attn2.to_out.0.bias": "unet_up_blocks.0.attentions.2.transformer_blocks.0.attn2.to_out.0.bias",
|
||||
"model.diffusion_model.output_blocks.2.1.transformer_blocks.0.attn2.to_out.0.weight": "unet_mid_block.attentions.0.transformer_blocks.3.attn2.to_out.0.weight",
|
||||
"model.diffusion_model.output_blocks.2.1.transformer_blocks.0.attn2.to_out.0.weight": "unet_up_blocks.0.attentions.2.transformer_blocks.0.attn2.to_out.0.weight",
|
||||
"model.diffusion_model.output_blocks.2.1.transformer_blocks.0.attn2.to_q.weight": "unet_up_blocks.0.attentions.2.transformer_blocks.0.attn2.to_q.weight",
|
||||
"model.diffusion_model.output_blocks.2.1.transformer_blocks.0.attn2.to_v.weight": "unet_up_blocks.0.attentions.2.transformer_blocks.0.attn2.to_v.weight",
|
||||
"model.diffusion_model.output_blocks.2.1.transformer_blocks.0.ff.net.0.proj.bias": "unet_up_blocks.0.attentions.2.transformer_blocks.0.ff.net.0.proj.bias",
|
||||
@@ -2117,7 +2117,7 @@
|
||||
"model.diffusion_model.output_blocks.2.1.transformer_blocks.4.attn1.to_v.weight": "unet_up_blocks.0.attentions.2.transformer_blocks.4.attn1.to_v.weight",
|
||||
"model.diffusion_model.output_blocks.2.1.transformer_blocks.4.attn2.to_k.weight": "unet_up_blocks.0.attentions.2.transformer_blocks.4.attn2.to_k.weight",
|
||||
"model.diffusion_model.output_blocks.2.1.transformer_blocks.4.attn2.to_out.0.bias": "unet_up_blocks.0.attentions.2.transformer_blocks.4.attn2.to_out.0.bias",
|
||||
"model.diffusion_model.output_blocks.2.1.transformer_blocks.4.attn2.to_out.0.weight": "unet_mid_block.attentions.0.transformer_blocks.5.attn2.to_out.0.weight",
|
||||
"model.diffusion_model.output_blocks.2.1.transformer_blocks.4.attn2.to_out.0.weight": "unet_up_blocks.0.attentions.2.transformer_blocks.4.attn2.to_out.0.weight",
|
||||
"model.diffusion_model.output_blocks.2.1.transformer_blocks.4.attn2.to_q.weight": "unet_up_blocks.0.attentions.2.transformer_blocks.4.attn2.to_q.weight",
|
||||
"model.diffusion_model.output_blocks.2.1.transformer_blocks.4.attn2.to_v.weight": "unet_up_blocks.0.attentions.2.transformer_blocks.4.attn2.to_v.weight",
|
||||
"model.diffusion_model.output_blocks.2.1.transformer_blocks.4.ff.net.0.proj.bias": "unet_up_blocks.0.attentions.2.transformer_blocks.4.ff.net.0.proj.bias",
|
||||
@@ -2137,7 +2137,7 @@
|
||||
"model.diffusion_model.output_blocks.2.1.transformer_blocks.5.attn1.to_v.weight": "unet_up_blocks.0.attentions.2.transformer_blocks.5.attn1.to_v.weight",
|
||||
"model.diffusion_model.output_blocks.2.1.transformer_blocks.5.attn2.to_k.weight": "unet_up_blocks.0.attentions.2.transformer_blocks.5.attn2.to_k.weight",
|
||||
"model.diffusion_model.output_blocks.2.1.transformer_blocks.5.attn2.to_out.0.bias": "unet_up_blocks.0.attentions.2.transformer_blocks.5.attn2.to_out.0.bias",
|
||||
"model.diffusion_model.output_blocks.2.1.transformer_blocks.5.attn2.to_out.0.weight": "unet_mid_block.attentions.0.transformer_blocks.4.attn2.to_out.0.weight",
|
||||
"model.diffusion_model.output_blocks.2.1.transformer_blocks.5.attn2.to_out.0.weight": "unet_up_blocks.0.attentions.2.transformer_blocks.5.attn2.to_out.0.weight",
|
||||
"model.diffusion_model.output_blocks.2.1.transformer_blocks.5.attn2.to_q.weight": "unet_up_blocks.0.attentions.2.transformer_blocks.5.attn2.to_q.weight",
|
||||
"model.diffusion_model.output_blocks.2.1.transformer_blocks.5.attn2.to_v.weight": "unet_up_blocks.0.attentions.2.transformer_blocks.5.attn2.to_v.weight",
|
||||
"model.diffusion_model.output_blocks.2.1.transformer_blocks.5.ff.net.0.proj.bias": "unet_up_blocks.0.attentions.2.transformer_blocks.5.ff.net.0.proj.bias",
|
||||
@@ -2157,7 +2157,7 @@
|
||||
"model.diffusion_model.output_blocks.2.1.transformer_blocks.6.attn1.to_v.weight": "unet_up_blocks.0.attentions.2.transformer_blocks.6.attn1.to_v.weight",
|
||||
"model.diffusion_model.output_blocks.2.1.transformer_blocks.6.attn2.to_k.weight": "unet_up_blocks.0.attentions.2.transformer_blocks.6.attn2.to_k.weight",
|
||||
"model.diffusion_model.output_blocks.2.1.transformer_blocks.6.attn2.to_out.0.bias": "unet_up_blocks.0.attentions.2.transformer_blocks.6.attn2.to_out.0.bias",
|
||||
"model.diffusion_model.output_blocks.2.1.transformer_blocks.6.attn2.to_out.0.weight": "unet_mid_block.attentions.0.transformer_blocks.6.attn2.to_out.0.weight",
|
||||
"model.diffusion_model.output_blocks.2.1.transformer_blocks.6.attn2.to_out.0.weight": "unet_up_blocks.0.attentions.2.transformer_blocks.6.attn2.to_out.0.weight",
|
||||
"model.diffusion_model.output_blocks.2.1.transformer_blocks.6.attn2.to_q.weight": "unet_up_blocks.0.attentions.2.transformer_blocks.6.attn2.to_q.weight",
|
||||
"model.diffusion_model.output_blocks.2.1.transformer_blocks.6.attn2.to_v.weight": "unet_up_blocks.0.attentions.2.transformer_blocks.6.attn2.to_v.weight",
|
||||
"model.diffusion_model.output_blocks.2.1.transformer_blocks.6.ff.net.0.proj.bias": "unet_up_blocks.0.attentions.2.transformer_blocks.6.ff.net.0.proj.bias",
|
||||
@@ -2177,7 +2177,7 @@
|
||||
"model.diffusion_model.output_blocks.2.1.transformer_blocks.7.attn1.to_v.weight": "unet_up_blocks.0.attentions.2.transformer_blocks.7.attn1.to_v.weight",
|
||||
"model.diffusion_model.output_blocks.2.1.transformer_blocks.7.attn2.to_k.weight": "unet_up_blocks.0.attentions.2.transformer_blocks.7.attn2.to_k.weight",
|
||||
"model.diffusion_model.output_blocks.2.1.transformer_blocks.7.attn2.to_out.0.bias": "unet_up_blocks.0.attentions.2.transformer_blocks.7.attn2.to_out.0.bias",
|
||||
"model.diffusion_model.output_blocks.2.1.transformer_blocks.7.attn2.to_out.0.weight": "unet_mid_block.attentions.0.transformer_blocks.7.attn2.to_out.0.weight",
|
||||
"model.diffusion_model.output_blocks.2.1.transformer_blocks.7.attn2.to_out.0.weight": "unet_up_blocks.0.attentions.2.transformer_blocks.7.attn2.to_out.0.weight",
|
||||
"model.diffusion_model.output_blocks.2.1.transformer_blocks.7.attn2.to_q.weight": "unet_up_blocks.0.attentions.2.transformer_blocks.7.attn2.to_q.weight",
|
||||
"model.diffusion_model.output_blocks.2.1.transformer_blocks.7.attn2.to_v.weight": "unet_up_blocks.0.attentions.2.transformer_blocks.7.attn2.to_v.weight",
|
||||
"model.diffusion_model.output_blocks.2.1.transformer_blocks.7.ff.net.0.proj.bias": "unet_up_blocks.0.attentions.2.transformer_blocks.7.ff.net.0.proj.bias",
|
||||
@@ -2197,7 +2197,7 @@
|
||||
"model.diffusion_model.output_blocks.2.1.transformer_blocks.8.attn1.to_v.weight": "unet_up_blocks.0.attentions.2.transformer_blocks.8.attn1.to_v.weight",
|
||||
"model.diffusion_model.output_blocks.2.1.transformer_blocks.8.attn2.to_k.weight": "unet_up_blocks.0.attentions.2.transformer_blocks.8.attn2.to_k.weight",
|
||||
"model.diffusion_model.output_blocks.2.1.transformer_blocks.8.attn2.to_out.0.bias": "unet_up_blocks.0.attentions.2.transformer_blocks.8.attn2.to_out.0.bias",
|
||||
"model.diffusion_model.output_blocks.2.1.transformer_blocks.8.attn2.to_out.0.weight": "unet_mid_block.attentions.0.transformer_blocks.8.attn2.to_out.0.weight",
|
||||
"model.diffusion_model.output_blocks.2.1.transformer_blocks.8.attn2.to_out.0.weight": "unet_up_blocks.0.attentions.2.transformer_blocks.8.attn2.to_out.0.weight",
|
||||
"model.diffusion_model.output_blocks.2.1.transformer_blocks.8.attn2.to_q.weight": "unet_up_blocks.0.attentions.2.transformer_blocks.8.attn2.to_q.weight",
|
||||
"model.diffusion_model.output_blocks.2.1.transformer_blocks.8.attn2.to_v.weight": "unet_up_blocks.0.attentions.2.transformer_blocks.8.attn2.to_v.weight",
|
||||
"model.diffusion_model.output_blocks.2.1.transformer_blocks.8.ff.net.0.proj.bias": "unet_up_blocks.0.attentions.2.transformer_blocks.8.ff.net.0.proj.bias",
|
||||
@@ -2217,7 +2217,7 @@
|
||||
"model.diffusion_model.output_blocks.2.1.transformer_blocks.9.attn1.to_v.weight": "unet_up_blocks.0.attentions.2.transformer_blocks.9.attn1.to_v.weight",
|
||||
"model.diffusion_model.output_blocks.2.1.transformer_blocks.9.attn2.to_k.weight": "unet_up_blocks.0.attentions.2.transformer_blocks.9.attn2.to_k.weight",
|
||||
"model.diffusion_model.output_blocks.2.1.transformer_blocks.9.attn2.to_out.0.bias": "unet_up_blocks.0.attentions.2.transformer_blocks.9.attn2.to_out.0.bias",
|
||||
"model.diffusion_model.output_blocks.2.1.transformer_blocks.9.attn2.to_out.0.weight": "unet_mid_block.attentions.0.transformer_blocks.9.attn2.to_out.0.weight",
|
||||
"model.diffusion_model.output_blocks.2.1.transformer_blocks.9.attn2.to_out.0.weight": "unet_up_blocks.0.attentions.2.transformer_blocks.9.attn2.to_out.0.weight",
|
||||
"model.diffusion_model.output_blocks.2.1.transformer_blocks.9.attn2.to_q.weight": "unet_up_blocks.0.attentions.2.transformer_blocks.9.attn2.to_q.weight",
|
||||
"model.diffusion_model.output_blocks.2.1.transformer_blocks.9.attn2.to_v.weight": "unet_up_blocks.0.attentions.2.transformer_blocks.9.attn2.to_v.weight",
|
||||
"model.diffusion_model.output_blocks.2.1.transformer_blocks.9.ff.net.0.proj.bias": "unet_up_blocks.0.attentions.2.transformer_blocks.9.ff.net.0.proj.bias",
|
||||
|
||||
@@ -1,13 +1,14 @@
|
||||
import gc
|
||||
import json
|
||||
import typing
|
||||
from typing import Union, List, Tuple
|
||||
from typing import Union, List, Tuple, Iterator
|
||||
import sys
|
||||
import os
|
||||
from collections import OrderedDict
|
||||
|
||||
from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl import rescale_noise_cfg
|
||||
from safetensors.torch import save_file
|
||||
from safetensors.torch import save_file, load_file
|
||||
from torch.nn import Parameter
|
||||
from tqdm import tqdm
|
||||
from torchvision.transforms import Resize
|
||||
|
||||
@@ -31,12 +32,12 @@ import diffusers
|
||||
# tell it to shut up
|
||||
diffusers.logging.set_verbosity(diffusers.logging.ERROR)
|
||||
|
||||
VAE_PREFIX_UNET = "vae"
|
||||
SD_PREFIX_VAE = "vae"
|
||||
SD_PREFIX_UNET = "unet"
|
||||
SD_PREFIX_TEXT_ENCODER = "te"
|
||||
|
||||
SD_PREFIX_TEXT_ENCODER1 = "te1"
|
||||
SD_PREFIX_TEXT_ENCODER2 = "te2"
|
||||
SD_PREFIX_TEXT_ENCODER1 = "te0"
|
||||
SD_PREFIX_TEXT_ENCODER2 = "te1"
|
||||
|
||||
# prefixed diffusers keys
|
||||
DO_NOT_TRAIN_WEIGHTS = [
|
||||
@@ -184,6 +185,21 @@ class StableDiffusion:
|
||||
text_encoder.requires_grad_(False)
|
||||
text_encoder.eval()
|
||||
text_encoder = text_encoders
|
||||
|
||||
if self.model_config.experimental_xl:
|
||||
print("Experimental XL mode enabled")
|
||||
print("Loading and injecting alt weights")
|
||||
# load the mismatched weight and force it in
|
||||
raw_state_dict = load_file(model_path)
|
||||
replacement_weight = raw_state_dict['conditioner.embedders.1.model.text_projection'].clone()
|
||||
del raw_state_dict
|
||||
# get state dict for for 2nd text encoder
|
||||
te1_state_dict = text_encoders[1].state_dict()
|
||||
# replace weight with mismatched weight
|
||||
te1_state_dict['text_projection.weight'] = replacement_weight.to(self.device_torch, dtype=dtype)
|
||||
flush()
|
||||
print("Injecting alt weights")
|
||||
|
||||
else:
|
||||
if self.custom_pipeline is not None:
|
||||
pipln = self.custom_pipeline
|
||||
@@ -707,7 +723,7 @@ class StableDiffusion:
|
||||
state_dict = OrderedDict()
|
||||
if vae:
|
||||
for k, v in self.vae.state_dict().items():
|
||||
new_key = k if k.startswith(f"{VAE_PREFIX_UNET}") else f"{VAE_PREFIX_UNET}_{k}"
|
||||
new_key = k if k.startswith(f"{SD_PREFIX_VAE}") else f"{SD_PREFIX_VAE}_{k}"
|
||||
state_dict[new_key] = v
|
||||
if text_encoder:
|
||||
if isinstance(self.text_encoder, list):
|
||||
@@ -726,6 +742,35 @@ class StableDiffusion:
|
||||
state_dict[new_key] = v
|
||||
return state_dict
|
||||
|
||||
def named_parameters(self, vae=True, text_encoder=True, unet=True, state_dict_keys=False) -> OrderedDict[str, Parameter]:
|
||||
named_params: OrderedDict[str, Parameter] = OrderedDict()
|
||||
if vae:
|
||||
for name, param in self.vae.named_parameters(recurse=True, prefix=f"{SD_PREFIX_VAE}"):
|
||||
named_params[name] = param
|
||||
if text_encoder:
|
||||
if isinstance(self.text_encoder, list):
|
||||
for i, encoder in enumerate(self.text_encoder):
|
||||
for name, param in encoder.named_parameters(recurse=True, prefix=f"{SD_PREFIX_TEXT_ENCODER}{i}"):
|
||||
named_params[name] = param
|
||||
else:
|
||||
for name, param in self.text_encoder.named_parameters(recurse=True, prefix=f"{SD_PREFIX_TEXT_ENCODER}"):
|
||||
named_params[name] = param
|
||||
if unet:
|
||||
for name, param in self.unet.named_parameters(recurse=True, prefix=f"{SD_PREFIX_UNET}"):
|
||||
named_params[name] = param
|
||||
|
||||
# convert to state dict keys, jsut replace . with _ on keys
|
||||
if state_dict_keys:
|
||||
new_named_params = OrderedDict()
|
||||
for k, v in named_params.items():
|
||||
# replace only the first . with an _
|
||||
new_key = k.replace('.', '_', 1)
|
||||
new_named_params[new_key] = v
|
||||
named_params = new_named_params
|
||||
|
||||
return named_params
|
||||
|
||||
|
||||
def save(self, output_file: str, meta: OrderedDict, save_dtype=get_torch_dtype('fp16'), logit_scale=None):
|
||||
version_string = '1'
|
||||
if self.is_v2:
|
||||
@@ -764,24 +809,31 @@ class StableDiffusion:
|
||||
|
||||
trainable_parameters = []
|
||||
|
||||
# we use state dict to find params
|
||||
|
||||
if unet:
|
||||
state_dict = self.state_dict(vae=False, unet=unet, text_encoder=False)
|
||||
named_params = self.named_parameters(vae=False, unet=unet, text_encoder=False, state_dict_keys=True)
|
||||
unet_lr = unet_lr if unet_lr is not None else default_lr
|
||||
params = []
|
||||
for key, diffusers_key in ldm_diffusers_keymap.items():
|
||||
if diffusers_key in state_dict and diffusers_key not in DO_NOT_TRAIN_WEIGHTS:
|
||||
params.append(state_dict[diffusers_key])
|
||||
if diffusers_key in named_params and diffusers_key not in DO_NOT_TRAIN_WEIGHTS:
|
||||
if named_params[diffusers_key].requires_grad:
|
||||
params.append(named_params[diffusers_key])
|
||||
param_data = {"params": params, "lr": unet_lr}
|
||||
trainable_parameters.append(param_data)
|
||||
print(f"Found {len(params)} trainable parameter in unet")
|
||||
|
||||
if text_encoder:
|
||||
state_dict = self.state_dict(vae=False, unet=unet, text_encoder=text_encoder)
|
||||
named_params = self.named_parameters(vae=False, unet=False, text_encoder=text_encoder, state_dict_keys=True)
|
||||
text_encoder_lr = text_encoder_lr if text_encoder_lr is not None else default_lr
|
||||
params = []
|
||||
for key, diffusers_key in ldm_diffusers_keymap.items():
|
||||
if diffusers_key in state_dict and diffusers_key not in DO_NOT_TRAIN_WEIGHTS:
|
||||
params.append(state_dict[diffusers_key])
|
||||
if diffusers_key in named_params and diffusers_key not in DO_NOT_TRAIN_WEIGHTS:
|
||||
if named_params[diffusers_key].requires_grad:
|
||||
params.append(named_params[diffusers_key])
|
||||
param_data = {"params": params, "lr": text_encoder_lr}
|
||||
trainable_parameters.append(param_data)
|
||||
|
||||
print(f"Found {len(params)} trainable parameter in text encoder")
|
||||
|
||||
return trainable_parameters
|
||||
|
||||
Reference in New Issue
Block a user