Various bug fixes and optimizations for quantized training. Added untested custom adam8bit optimizer. Did some work on LoRM (dont use)

This commit is contained in:
Jaret Burkett
2024-11-20 09:16:55 -07:00
parent 6509ba4484
commit 894374b2e9
7 changed files with 241 additions and 18 deletions

4
.gitignore vendored
View File

@@ -175,4 +175,6 @@ cython_debug/
!/extensions/example
/temp
/wandb
.vscode/settings.json
.vscode/settings.json
.DS_Store
._.DS_Store

View File

@@ -5,6 +5,7 @@ from typing import Iterable, Optional
import weakref
import copy
import contextlib
from toolkit.optimizers.optimizer_utils import copy_stochastic
import torch
@@ -43,7 +44,7 @@ class ExponentialMovingAverage:
self,
parameters: Iterable[torch.nn.Parameter] = None,
decay: float = 0.995,
use_num_updates: bool = True,
use_num_updates: bool = False,
# feeds back the decat to the parameter
use_feedback: bool = False,
param_multiplier: float = 1.0
@@ -123,16 +124,32 @@ class ExponentialMovingAverage:
one_minus_decay = 1.0 - decay
with torch.no_grad():
for s_param, param in zip(self.shadow_params, parameters):
tmp = (s_param - param)
s_param_float = s_param.float()
if s_param.dtype != torch.float32:
s_param_float = s_param_float.to(torch.float32)
param_float = param
if param.dtype != torch.float32:
param_float = param_float.to(torch.float32)
tmp = (s_param_float - param_float)
# tmp will be a new tensor so we can do in-place
tmp.mul_(one_minus_decay)
s_param.sub_(tmp)
s_param_float.sub_(tmp)
update_param = False
if self.use_feedback:
param.add_(tmp)
param_float.add_(tmp)
update_param = True
if self.param_multiplier != 1.0:
param.mul_(self.param_multiplier)
param_float.mul_(self.param_multiplier)
update_param = True
if s_param.dtype != torch.float32:
copy_stochastic(s_param, s_param_float)
if update_param and param.dtype != torch.float32:
copy_stochastic(param, param_float)
def copy_to(
self,

View File

@@ -354,7 +354,8 @@ def convert_diffusers_unet_to_lorm(
elif child_module.__class__.__name__ in LINEAR_MODULES:
if count_parameters(child_module) > parameter_threshold:
dtype = child_module.weight.dtype
# dtype = child_module.weight.dtype
dtype = torch.float32
# extract and convert
down_weight, up_weight, lora_dim, diff = extract_linear(
weight=child_module.weight.clone().detach().float(),

View File

@@ -15,6 +15,7 @@ from toolkit.lorm import extract_conv, extract_linear, count_parameters
from toolkit.metadata import add_model_hash_to_meta
from toolkit.paths import KEYMAPS_ROOT
from toolkit.saving import get_lora_keymap_from_model_keymap
from optimum.quanto import QBytesTensor
if TYPE_CHECKING:
from toolkit.lycoris_special import LycorisSpecialNetwork, LoConSpecialModule
@@ -27,7 +28,8 @@ Module = Union['LoConSpecialModule', 'LoRAModule', 'DoRAModule']
LINEAR_MODULES = [
'Linear',
'LoRACompatibleLinear'
'LoRACompatibleLinear',
'QLinear'
# 'GroupNorm',
]
CONV_MODULES = [
@@ -108,11 +110,16 @@ class ExtractableModuleMixin:
if extract_mode == "existing":
extract_mode = 'fixed'
extract_mode_param = self.lora_dim
if isinstance(weight_to_extract, QBytesTensor):
weight_to_extract = weight_to_extract.dequantize()
weight_to_extract = weight_to_extract.clone().detach().float()
if self.org_module[0].__class__.__name__ in CONV_MODULES:
# do conv extraction
down_weight, up_weight, new_dim, diff = extract_conv(
weight=weight_to_extract.clone().detach().float(),
weight=weight_to_extract,
mode=extract_mode,
mode_param=extract_mode_param,
device=device
@@ -121,7 +128,7 @@ class ExtractableModuleMixin:
elif self.org_module[0].__class__.__name__ in LINEAR_MODULES:
# do linear extraction
down_weight, up_weight, new_dim, diff = extract_linear(
weight=weight_to_extract.clone().detach().float(),
weight=weight_to_extract,
mode=extract_mode,
mode_param=extract_mode_param,
device=device,
@@ -210,6 +217,11 @@ class ToolkitModuleMixin:
network: Network = self.network_ref()
if not network.is_active:
return self.org_forward(x, *args, **kwargs)
orig_dtype = x.dtype
if x.dtype != self.lora_down.weight.dtype:
x = x.to(self.lora_down.weight.dtype)
if network.lorm_train_mode == 'local':
# we are going to predict input with both and do a loss on them
@@ -230,7 +242,9 @@ class ToolkitModuleMixin:
return target_pred
else:
return self.lora_up(self.lora_down(x))
x = self.lora_up(self.lora_down(x))
if x.dtype != orig_dtype:
x = x.to(orig_dtype)
def forward(self: Module, x, *args, **kwargs):
skip = False

View File

@@ -53,6 +53,14 @@ def get_optimizer(
# let net be the neural network you want to train
# you can choose weight decay value based on your problem, 0 by default
optimizer = Prodigy(params, lr=use_lr, eps=1e-6, **optimizer_params)
elif lower_type == "adam8":
from toolkit.optimizers.adam8bit import Adam8bit
optimizer = Adam8bit(params, lr=learning_rate, eps=1e-6, **optimizer_params)
elif lower_type == "adamw8":
from toolkit.optimizers.adam8bit import Adam8bit
optimizer = Adam8bit(params, lr=learning_rate, eps=1e-6, decouple=True, **optimizer_params)
elif lower_type.endswith("8bit"):
import bitsandbytes

View File

@@ -0,0 +1,162 @@
import math
import torch
from torch.optim import Optimizer
from toolkit.optimizers.optimizer_utils import copy_stochastic, Auto8bitTensor, stochastic_grad_accummulation
class Adam8bit(Optimizer):
"""
Implements Adam optimizer with 8-bit state storage and stochastic rounding.
Arguments:
params (iterable): Iterable of parameters to optimize or dicts defining parameter groups
lr (float): Learning rate (default: 1e-3)
betas (tuple): Coefficients for computing running averages of gradient and its square (default: (0.9, 0.999))
eps (float): Term added to denominator to improve numerical stability (default: 1e-8)
weight_decay (float): Weight decay coefficient (default: 0)
decouple (bool): Use AdamW style decoupled weight decay (default: True)
"""
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
weight_decay=0, decouple=True):
if not 0.0 <= lr:
raise ValueError(f"Invalid learning rate: {lr}")
if not 0.0 <= eps:
raise ValueError(f"Invalid epsilon value: {eps}")
if not 0.0 <= betas[0] < 1.0:
raise ValueError(f"Invalid beta parameter at index 0: {betas[0]}")
if not 0.0 <= betas[1] < 1.0:
raise ValueError(f"Invalid beta parameter at index 1: {betas[1]}")
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay,
decouple=decouple)
super(Adam8bit, self).__init__(params, defaults)
self.is_stochastic_rounding_accumulation = False
# Setup stochastic grad accumulation hooks
for group in self.param_groups:
for param in group['params']:
if param.requires_grad and param.dtype != torch.float32:
self.is_stochastic_rounding_accumulation = True
param.register_post_accumulate_grad_hook(
stochastic_grad_accummulation
)
@property
def supports_memory_efficient_fp16(self):
return False
@property
def supports_flat_params(self):
return True
def step_hook(self):
if not self.is_stochastic_rounding_accumulation:
return
# Copy over stochastically rounded grads
for group in self.param_groups:
for param in group['params']:
if param.requires_grad and hasattr(param, "_accum_grad"):
param.grad = param._accum_grad
del param._accum_grad
@torch.no_grad()
def step(self, closure=None):
"""Performs a single optimization step.
Arguments:
closure (callable, optional): A closure that reevaluates the model and returns the loss.
"""
# Call pre step
self.step_hook()
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
beta1, beta2 = group['betas']
eps = group['eps']
lr = group['lr']
decay = group['weight_decay']
decouple = group['decouple']
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data.to(torch.float32)
p_fp32 = p.clone().to(torch.float32)
# Apply weight decay (coupled variant)
if decay != 0 and not decouple:
grad.add_(p_fp32.data, alpha=decay)
state = self.state[p]
# State initialization
if len(state) == 0:
state['step'] = 0
# Exponential moving average of gradient values
state['exp_avg'] = Auto8bitTensor(
torch.zeros_like(p_fp32.data).detach())
# Exponential moving average of squared gradient values
state['exp_avg_sq'] = Auto8bitTensor(
torch.zeros_like(p_fp32.data).detach())
exp_avg = state['exp_avg'].to(torch.float32)
exp_avg_sq = state['exp_avg_sq'].to(torch.float32)
state['step'] += 1
bias_correction1 = 1 - beta1 ** state['step']
bias_correction2 = 1 - beta2 ** state['step']
# Adam EMA updates
exp_avg.mul_(beta1).add_(grad, alpha=1-beta1)
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1-beta2)
# Apply weight decay (decoupled variant)
if decay != 0 and decouple:
p_fp32.data.mul_(1 - lr * decay)
# Bias correction
step_size = lr / bias_correction1
denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(eps)
# Take step
p_fp32.data.addcdiv_(exp_avg, denom, value=-step_size)
# Update state with stochastic rounding
state['exp_avg'] = Auto8bitTensor(exp_avg)
state['exp_avg_sq'] = Auto8bitTensor(exp_avg_sq)
# Apply stochastic rounding to parameters
copy_stochastic(p.data, p_fp32.data)
return loss
def state_dict(self):
"""Returns the state of the optimizer as a dict."""
state_dict = super().state_dict()
# Convert Auto8bitTensor objects to regular state dicts
for param_id, param_state in state_dict['state'].items():
for key, value in param_state.items():
if isinstance(value, Auto8bitTensor):
param_state[key] = {
'_type': 'Auto8bitTensor',
'state': value.state_dict()
}
return state_dict
def load_state_dict(self, state_dict):
"""Loads the optimizer state."""
# First, load the basic state
super().load_state_dict(state_dict)
# Then convert any Auto8bitTensor states back to objects
for param_id, param_state in self.state.items():
for key, value in param_state.items():
if isinstance(value, dict) and value.get('_type') == 'Auto8bitTensor':
param_state[key] = Auto8bitTensor(value['state'])

View File

@@ -196,13 +196,15 @@ def copy_stochastic(
class Auto8bitTensor:
def __init__(self, data: Tensor, *args, **kwargs):
if isinstance(data, dict): # Add constructor from state dict
self._load_from_state_dict(data)
else:
abs_max = data.abs().max().item()
scale = abs_max / 127.0 if abs_max > 0 else 1.0
abs_max = data.abs().max().item()
scale = abs_max / 127.0 if abs_max > 0 else 1.0
self.quantized = (data / scale).round().clamp(-127, 127).to(torch.int8)
self.scale = scale
self.orig_dtype = data.dtype
self.quantized = (data / scale).round().clamp(-127, 127).to(torch.int8)
self.scale = scale
self.orig_dtype = data.dtype
def dequantize(self) -> Tensor:
return self.quantized.to(dtype=torch.float32) * self.scale
@@ -224,6 +226,23 @@ class Auto8bitTensor:
# If no dtype specified, just pass through to parent
return self.dequantize().to(*args, **kwargs)
def state_dict(self):
"""Returns a dictionary containing the current state of the tensor."""
return {
'quantized': self.quantized,
'scale': self.scale,
'orig_dtype': self.orig_dtype
}
def _load_from_state_dict(self, state_dict):
"""Loads the tensor state from a state dictionary."""
self.quantized = state_dict['quantized']
self.scale = state_dict['scale']
self.orig_dtype = state_dict['orig_dtype']
def __str__(self):
return f"Auto8bitTensor(scale={self.scale}, orig_dtype={self.orig_dtype})"
def stochastic_grad_accummulation(param):
if hasattr(param, "_accum_grad"):