Merge branch 'sdxl' into WIP

# Conflicts:
#	jobs/process/BaseSDTrainProcess.py
#	jobs/process/TrainSliderProcess.py
This commit is contained in:
Jaret Burkett
2023-07-29 14:29:18 -06:00
2 changed files with 263 additions and 193 deletions

View File

@@ -103,7 +103,27 @@ class BaseSDTrainProcess(BaseTrainProcess):
# self.sd.text_encoder.to(self.device_torch)
# self.sd.tokenizer.to(self.device_torch)
# TODO add clip skip
pipeline = self.sd.pipeline
if self.sd.is_xl:
pipeline = StableDiffusionXLPipeline(
vae=self.sd.vae,
unet=self.sd.unet,
text_encoder=self.sd.text_encoder[0],
text_encoder_2=self.sd.text_encoder[1],
tokenizer=self.sd.tokenizer[0],
tokenizer_2=self.sd.tokenizer[1],
scheduler=self.sd.noise_scheduler,
)
else:
pipeline = StableDiffusionPipeline(
vae=self.sd.vae,
unet=self.sd.unet,
text_encoder=self.sd.text_encoder,
tokenizer=self.sd.tokenizer,
scheduler=self.sd.noise_scheduler,
safety_checker=None,
feature_extractor=None,
requires_safety_checker=False,
)
# disable progress bar
pipeline.set_progress_bar_config(disable=True)
@@ -162,16 +182,24 @@ class BaseSDTrainProcess(BaseTrainProcess):
torch.manual_seed(current_seed)
torch.cuda.manual_seed(current_seed)
img = pipeline(
prompt=prompt,
prompt_2=prompt,
negative_prompt=neg,
negative_prompt_2=neg,
height=height,
width=width,
num_inference_steps=sample_config.sample_steps,
guidance_scale=sample_config.guidance_scale,
).images[0]
if self.sd.is_xl:
img = pipeline(
prompt,
height=height,
width=width,
num_inference_steps=sample_config.sample_steps,
guidance_scale=sample_config.guidance_scale,
negative_prompt=neg,
).images[0]
else:
img = pipeline(
prompt,
height=height,
width=width,
num_inference_steps=sample_config.sample_steps,
guidance_scale=sample_config.guidance_scale,
negative_prompt=neg,
).images[0]
step_num = ''
if step is not None:
@@ -184,6 +212,8 @@ class BaseSDTrainProcess(BaseTrainProcess):
output_path = os.path.join(sample_folder, filename)
img.save(output_path)
# clear pipeline and cache to reduce vram usage
del pipeline
torch.cuda.empty_cache()
# restore training state
@@ -259,12 +289,15 @@ class BaseSDTrainProcess(BaseTrainProcess):
# prepare meta
save_meta = get_meta_for_safetensors(self.meta, self.job.name)
if self.network is not None:
prev_multiplier = self.network.multiplier
self.network.multiplier = 1.0
# TODO handle dreambooth, fine tuning, etc
self.network.save_weights(
file_path,
dtype=get_torch_dtype(self.save_config.dtype),
metadata=save_meta
)
self.network.multiplier = prev_multiplier
else:
self.sd.save(
file_path,
@@ -340,19 +373,6 @@ class BaseSDTrainProcess(BaseTrainProcess):
else:
return None
def predict_noise_xl(
self,
latents: torch.FloatTensor,
positive_prompt: str,
negative_prompt: str,
timestep: int,
guidance_scale=7.5,
guidance_rescale=0.7,
add_time_ids=None,
**kwargs,
):
pass
def predict_noise(
self,
latents: torch.FloatTensor,

View File

@@ -47,6 +47,8 @@ class EncodedPromptPair:
neutral,
both_targets,
empty_prompt,
action=ACTION_TYPES_SLIDER.ERASE_NEGATIVE,
multiplier=1.0,
weight=1.0
):
self.target_class = target_class
@@ -57,6 +59,8 @@ class EncodedPromptPair:
self.neutral = neutral
self.empty_prompt = empty_prompt
self.both_targets = both_targets
self.multiplier = multiplier
self.action: int = action
self.weight = weight
# simulate torch to for tensors
@@ -180,6 +184,18 @@ class TrainSliderProcess(BaseSDTrainProcess):
if cache[p] is None:
cache[p] = self.sd.encode_prompt(p).to(device="cpu", dtype=torch.float32)
erase_negative = len(target.positive.strip()) == 0
enhance_positive = len(target.negative.strip()) == 0
both = not erase_negative and not enhance_positive
if erase_negative and enhance_positive:
raise ValueError("target must have at least one of positive or negative or both")
# for slider we need to have an enhancer, an eraser, and then
# an inverse with negative weights to balance the network
# if we don't do this, we will get different contrast and focus.
# we only perform actions of enhancing and erasing on the negative
# todo work on way to do all of this in one shot
if self.slider_config.prompt_tensors:
print(f"Saving prompt tensors to {self.slider_config.prompt_tensors}")
state_dict = {}
@@ -192,28 +208,115 @@ class TrainSliderProcess(BaseSDTrainProcess):
'fp16'))
save_file(state_dict, self.slider_config.prompt_tensors)
self.print("Encoding complete. Building prompt pairs..")
for neutral in self.prompt_txt_list:
prompt_pairs = []
for neutral in tqdm(self.prompt_txt_list, desc="Encoding prompts", leave=False):
for target in self.slider_config.targets:
both_prompts_list = [
f"{target.positive} {target.negative}",
f"{target.negative} {target.positive}",
]
# randomly pick one of the both prompts to prevent bias
both_prompts = both_prompts_list[torch.randint(0, 2, (1,)).item()]
prompt_pair = EncodedPromptPair(
positive_target=cache[f"{target.positive}"],
positive_target_with_neutral=cache[f"{target.positive} {neutral}"],
negative_target=cache[f"{target.negative}"],
negative_target_with_neutral=cache[f"{target.negative} {neutral}"],
neutral=cache[neutral],
both_targets=cache[both_prompts],
empty_prompt=cache[""],
target_class=cache[f"{target.target_class}"],
weight=target.weight,
).to(device="cpu", dtype=torch.float32)
self.prompt_pairs.append(prompt_pair)
if both or erase_negative:
prompt_pairs += [
# erase standard
EncodedPromptPair(
target_class=cache[target.target_class],
positive_target=cache[f"{target.positive}"],
positive_target_with_neutral=cache[f"{target.positive} {neutral}"],
negative_target=cache[f"{target.negative}"],
negative_target_with_neutral=cache[f"{target.negative} {neutral}"],
neutral=cache[neutral],
action=ACTION_TYPES_SLIDER.ERASE_NEGATIVE,
multiplier=target.multiplier,
empty_prompt=cache[""],
weight=target.weight
),
]
if both or enhance_positive:
prompt_pairs += [
# enhance standard, swap pos neg
EncodedPromptPair(
target_class=cache[target.target_class],
positive_target=cache[f"{target.negative}"],
positive_target_with_neutral=cache[f"{target.negative} {neutral}"],
negative_target=cache[f"{target.positive}"],
negative_target_with_neutral=cache[f"{target.positive} {neutral}"],
neutral=cache[neutral],
action=ACTION_TYPES_SLIDER.ENHANCE_NEGATIVE,
multiplier=target.multiplier,
empty_prompt=cache[""],
weight=target.weight
),
]
if both or enhance_positive:
prompt_pairs += [
# erase inverted
EncodedPromptPair(
target_class=cache[target.target_class],
positive_target=cache[f"{target.negative}"],
positive_target_with_neutral=cache[f"{target.negative} {neutral}"],
negative_target=cache[f"{target.positive}"],
negative_target_with_neutral=cache[f"{target.positive} {neutral}"],
neutral=cache[neutral],
action=ACTION_TYPES_SLIDER.ERASE_NEGATIVE,
empty_prompt=cache[""],
multiplier=target.multiplier * -1.0,
weight=target.weight
),
]
if both or erase_negative:
prompt_pairs += [
# enhance inverted
EncodedPromptPair(
target_class=cache[target.target_class],
positive_target=cache[f"{target.positive}"],
positive_target_with_neutral=cache[f"{target.positive} {neutral}"],
negative_target=cache[f"{target.negative}"],
negative_target_with_neutral=cache[f"{target.negative} {neutral}"],
neutral=cache[neutral],
action=ACTION_TYPES_SLIDER.ENHANCE_NEGATIVE,
empty_prompt=cache[""],
multiplier=target.multiplier * -1.0,
weight=target.weight
),
]
# setup anchors
anchor_pairs = []
for anchor in self.slider_config.anchors:
# build the cache
for prompt in [
anchor.prompt,
anchor.neg_prompt # empty neutral
]:
if cache[prompt] == None:
cache[prompt] = self.sd.encode_prompt(prompt)
anchor_pairs += [
EncodedAnchor(
prompt=cache[anchor.prompt],
neg_prompt=cache[anchor.neg_prompt],
multiplier=anchor.multiplier
)
]
# self.print("Encoding complete. Building prompt pairs..")
# for neutral in self.prompt_txt_list:
# for target in self.slider_config.targets:
# both_prompts_list = [
# f"{target.positive} {target.negative}",
# f"{target.negative} {target.positive}",
# ]
# # randomly pick one of the both prompts to prevent bias
# both_prompts = both_prompts_list[torch.randint(0, 2, (1,)).item()]
#
# prompt_pair = EncodedPromptPair(
# positive_target=cache[f"{target.positive}"],
# positive_target_with_neutral=cache[f"{target.positive} {neutral}"],
# negative_target=cache[f"{target.negative}"],
# negative_target_with_neutral=cache[f"{target.negative} {neutral}"],
# neutral=cache[neutral],
# both_targets=cache[both_prompts],
# empty_prompt=cache[""],
# target_class=cache[f"{target.target_class}"],
# weight=target.weight,
# ).to(device="cpu", dtype=torch.float32)
# self.prompt_pairs.append(prompt_pair)
# move to cpu to save vram
# We don't need text encoder anymore, but keep it on cpu for sampling
@@ -224,7 +327,8 @@ class TrainSliderProcess(BaseSDTrainProcess):
else:
self.sd.text_encoder.to("cpu")
self.prompt_cache = cache
self.prompt_pairs = prompt_pairs
self.anchor_pairs = anchor_pairs
flush()
# end hook_before_train_loop
@@ -243,6 +347,13 @@ class TrainSliderProcess(BaseSDTrainProcess):
torch.randint(0, len(self.slider_config.resolutions), (1,)).item()
]
target_class = prompt_pair.target_class
neutral = prompt_pair.neutral
negative = prompt_pair.negative_target
positive = prompt_pair.positive_target
weight = prompt_pair.weight
multiplier = prompt_pair.multiplier
unet = self.sd.unet
noise_scheduler = self.sd.noise_scheduler
optimizer = self.optimizer
@@ -250,18 +361,20 @@ class TrainSliderProcess(BaseSDTrainProcess):
loss_function = torch.nn.MSELoss()
def get_noise_pred(p, n, gs, cts, dn):
return self.sd.pipeline.predict_noise(
return self.predict_noise(
latents=dn,
prompt_embeds=p.text_embeds,
negative_prompt_embeds=n.text_embeds,
pooled_prompt_embeds=p.pooled_embeds,
negative_pooled_prompt_embeds=n.pooled_embeds,
text_embeddings=train_tools.concat_prompt_embeddings(
p, # negative prompt
n, # positive prompt
self.train_config.batch_size,
),
timestep=cts,
guidance_scale=gs,
num_images_per_prompt=self.train_config.batch_size,
num_inference_steps=1000,
)
# set network multiplier
self.network.multiplier = multiplier
with torch.no_grad():
self.sd.noise_scheduler.set_timesteps(
self.train_config.max_denoising_steps, device=self.device_torch
@@ -284,40 +397,20 @@ class TrainSliderProcess(BaseSDTrainProcess):
latents = noise * self.sd.noise_scheduler.init_noise_sigma
latents = latents.to(self.device_torch, dtype=dtype)
denoised_fraction = timesteps_to / (self.train_config.max_denoising_steps + 1)
self.sd.pipeline.to(self.device_torch)
torch.set_default_device(self.device_torch)
self.sd.pipeline.set_progress_bar_config(disable=True)
with self.network:
assert self.network.is_active
self.network.multiplier = 1.0
POS_denoised_latents = self.sd.pipeline(
num_inference_steps=self.train_config.max_denoising_steps,
denoising_end=denoised_fraction,
latents=latents,
prompt_embeds=prompt_pair.negative_target_with_neutral.text_embeds,
negative_prompt_embeds=prompt_pair.positive_target_with_neutral.text_embeds,
pooled_prompt_embeds=prompt_pair.negative_target_with_neutral.pooled_embeds,
negative_pooled_prompt_embeds=prompt_pair.positive_target_with_neutral.pooled_embeds,
output_type="latent",
num_images_per_prompt=self.train_config.batch_size,
self.network.multiplier = multiplier
denoised_latents = self.diffuse_some_steps(
latents, # pass simple noise latents
train_tools.concat_prompt_embeddings(
positive, # unconditional
target_class, # target
self.train_config.batch_size,
),
start_timesteps=0,
total_timesteps=timesteps_to,
guidance_scale=3,
).images.to(self.device_torch, dtype=dtype)
self.network.multiplier = -1.0
NEG_denoised_latents = self.sd.pipeline(
num_inference_steps=self.train_config.max_denoising_steps,
denoising_end=denoised_fraction,
latents=latents,
prompt_embeds=prompt_pair.positive_target_with_neutral.text_embeds,
negative_prompt_embeds=prompt_pair.negative_target_with_neutral.text_embeds,
pooled_prompt_embeds=prompt_pair.positive_target_with_neutral.pooled_embeds,
negative_pooled_prompt_embeds=prompt_pair.negative_target_with_neutral.pooled_embeds,
output_type="latent",
num_images_per_prompt=self.train_config.batch_size,
guidance_scale=3,
).images.to(self.device_torch, dtype=dtype)
)
noise_scheduler.set_timesteps(1000)
@@ -325,103 +418,78 @@ class TrainSliderProcess(BaseSDTrainProcess):
int(timesteps_to * 1000 / self.train_config.max_denoising_steps)
]
assert not self.network.is_active
positive_latents = get_noise_pred(
positive, negative, 1, current_timestep, denoised_latents
).to("cpu", dtype=torch.float32)
neutral_latents = get_noise_pred(
positive, neutral, 1, current_timestep, denoised_latents
).to("cpu", dtype=torch.float32)
# POSITIVE LATENTS
POS_positive_latents = get_noise_pred(
prompt_pair.negative_target_with_neutral,
prompt_pair.positive_target_with_neutral,
1, current_timestep, POS_denoised_latents,
)
NEG_positive_latents = get_noise_pred(
prompt_pair.positive_target_with_neutral,
prompt_pair.negative_target_with_neutral,
1, current_timestep, NEG_denoised_latents,
)
unconditional_latents = get_noise_pred(
positive, positive, 1, current_timestep, denoised_latents
).to("cpu", dtype=torch.float32)
anchor_loss = None
if len(self.anchor_pairs) > 0:
# get a random anchor pair
anchor: EncodedAnchor = self.anchor_pairs[
torch.randint(0, len(self.anchor_pairs), (1,)).item()
]
with torch.no_grad():
anchor_target_noise = get_noise_pred(
anchor.prompt, anchor.neg_prompt, 1, current_timestep, denoised_latents
).to("cpu", dtype=torch.float32)
with self.network:
# anchor whatever weight prompt pair is using
pos_nem_mult = 1.0 if prompt_pair.multiplier > 0 else -1.0
self.network.multiplier = anchor.multiplier * pos_nem_mult
# NEUTRAL LATENTS
POS_neutral_latents = get_noise_pred(
prompt_pair.neutral,
prompt_pair.positive_target_with_neutral,
1, current_timestep, POS_denoised_latents,
)
NEG_neutral_latents = get_noise_pred(
prompt_pair.neutral,
prompt_pair.negative_target_with_neutral,
1, current_timestep, NEG_denoised_latents,
)
anchor_pred_noise = get_noise_pred(
anchor.prompt, anchor.neg_prompt, 1, current_timestep, denoised_latents
).to("cpu", dtype=torch.float32)
# UNCONDITIONAL LATENTS
POS_unconditional_latents = get_noise_pred(
prompt_pair.positive_target_with_neutral,
prompt_pair.positive_target_with_neutral,
1, current_timestep, POS_denoised_latents,
)
NEG_unconditional_latents = get_noise_pred(
prompt_pair.negative_target_with_neutral,
prompt_pair.negative_target_with_neutral,
1, current_timestep, NEG_denoised_latents,
)
# start grads
self.optimizer.zero_grad()
self.network.multiplier = prompt_pair.multiplier
with self.network:
assert self.network.is_active
self.network.multiplier = 1.0
POS_target_latents = get_noise_pred(
prompt_pair.negative_target_with_neutral,
prompt_pair.positive_target_with_neutral,
1, current_timestep, POS_denoised_latents,
self.network.multiplier = prompt_pair.multiplier
target_latents = get_noise_pred(
positive, target_class, 1, current_timestep, denoised_latents
).to("cpu", dtype=torch.float32)
# if self.logging_config.verbose:
# self.print("target_latents:", target_latents[0, 0, :5, :5])
positive_latents.requires_grad = False
neutral_latents.requires_grad = False
unconditional_latents.requires_grad = False
if len(self.anchor_pairs) > 0:
anchor_target_noise.requires_grad = False
anchor_loss = loss_function(
anchor_target_noise,
anchor_pred_noise,
)
self.network.multiplier = -1.0
NEG_target_latents = get_noise_pred(
prompt_pair.positive_target_with_neutral,
prompt_pair.negative_target_with_neutral,
1, current_timestep, NEG_denoised_latents,
)
POS_positive_latents.requires_grad = False
NEG_positive_latents.requires_grad = False
POS_neutral_latents.requires_grad = False
NEG_neutral_latents.requires_grad = False
POS_unconditional_latents.requires_grad = False
NEG_unconditional_latents.requires_grad = False
erase = prompt_pair.action == ACTION_TYPES_SLIDER.ERASE_NEGATIVE
guidance_scale = 1.0
POS_offset = guidance_scale * (POS_positive_latents - POS_unconditional_latents)
NEG_offset = guidance_scale * (NEG_positive_latents - NEG_unconditional_latents)
offset = guidance_scale * (positive_latents - unconditional_latents)
erase = True
offset_neutral = neutral_latents
if erase:
offset_neutral -= offset
else:
# enhance
offset_neutral += offset
POS_offset_neutral = POS_neutral_latents
NEG_offset_neutral = NEG_neutral_latents
# if erase:
# POS_offset_neutral -= POS_offset
# NEG_offset_neutral -= NEG_offset
# else:
# # enhance
# POS_offset_neutral += POS_offset
# NEG_offset_neutral += NEG_offset
loss = loss_function(
target_latents,
offset_neutral,
) * weight
POS_erase_loss = loss_function(
POS_target_latents,
POS_neutral_latents - POS_offset,
) * prompt_pair.weight
loss_slide = loss.item()
NEG_erase_loss = loss_function(
NEG_target_latents,
NEG_neutral_latents - NEG_offset,
) * prompt_pair.weight
loss = (POS_erase_loss + NEG_erase_loss) * 0.5
if anchor_loss is not None:
loss += anchor_loss
loss_float = loss.item()
@@ -432,28 +500,11 @@ class TrainSliderProcess(BaseSDTrainProcess):
lr_scheduler.step()
del (
# denoised_latents,
POS_denoised_latents,
NEG_denoised_latents,
# positive_neg_noise_prediction,
POS_positive_latents,
NEG_positive_latents,
# neutral_noise_prediction,
POS_neutral_latents,
NEG_neutral_latents,
# unconditional_noise_prediction,
POS_unconditional_latents,
NEG_unconditional_latents,
# target_noise_prediction,
POS_target_latents,
NEG_target_latents,
# offset,
POS_offset,
NEG_offset,
# offset_neutral,
POS_offset_neutral,
NEG_offset_neutral,
positive_latents,
neutral_latents,
unconditional_latents,
target_latents,
latents,
)
# move back to cpu
prompt_pair.to("cpu")
@@ -463,12 +514,11 @@ class TrainSliderProcess(BaseSDTrainProcess):
self.network.multiplier = 1.0
loss_dict = OrderedDict(
{
'loss': loss.item(),
'l+er': POS_erase_loss.item(),
'l-er': NEG_erase_loss.item(),
},
{'loss': loss_float},
)
if anchor_loss is not None:
loss_dict['sl_l'] = loss_slide
loss_dict['an_l'] = anchor_loss.item()
return loss_dict
# end hook_train_loop