mirror of
https://github.com/ostris/ai-toolkit.git
synced 2026-01-26 16:39:47 +00:00
Merge branch 'sdxl' into WIP
# Conflicts: # jobs/process/BaseSDTrainProcess.py # jobs/process/TrainSliderProcess.py
This commit is contained in:
@@ -103,7 +103,27 @@ class BaseSDTrainProcess(BaseTrainProcess):
|
||||
# self.sd.text_encoder.to(self.device_torch)
|
||||
# self.sd.tokenizer.to(self.device_torch)
|
||||
# TODO add clip skip
|
||||
pipeline = self.sd.pipeline
|
||||
if self.sd.is_xl:
|
||||
pipeline = StableDiffusionXLPipeline(
|
||||
vae=self.sd.vae,
|
||||
unet=self.sd.unet,
|
||||
text_encoder=self.sd.text_encoder[0],
|
||||
text_encoder_2=self.sd.text_encoder[1],
|
||||
tokenizer=self.sd.tokenizer[0],
|
||||
tokenizer_2=self.sd.tokenizer[1],
|
||||
scheduler=self.sd.noise_scheduler,
|
||||
)
|
||||
else:
|
||||
pipeline = StableDiffusionPipeline(
|
||||
vae=self.sd.vae,
|
||||
unet=self.sd.unet,
|
||||
text_encoder=self.sd.text_encoder,
|
||||
tokenizer=self.sd.tokenizer,
|
||||
scheduler=self.sd.noise_scheduler,
|
||||
safety_checker=None,
|
||||
feature_extractor=None,
|
||||
requires_safety_checker=False,
|
||||
)
|
||||
# disable progress bar
|
||||
pipeline.set_progress_bar_config(disable=True)
|
||||
|
||||
@@ -162,16 +182,24 @@ class BaseSDTrainProcess(BaseTrainProcess):
|
||||
torch.manual_seed(current_seed)
|
||||
torch.cuda.manual_seed(current_seed)
|
||||
|
||||
img = pipeline(
|
||||
prompt=prompt,
|
||||
prompt_2=prompt,
|
||||
negative_prompt=neg,
|
||||
negative_prompt_2=neg,
|
||||
height=height,
|
||||
width=width,
|
||||
num_inference_steps=sample_config.sample_steps,
|
||||
guidance_scale=sample_config.guidance_scale,
|
||||
).images[0]
|
||||
if self.sd.is_xl:
|
||||
img = pipeline(
|
||||
prompt,
|
||||
height=height,
|
||||
width=width,
|
||||
num_inference_steps=sample_config.sample_steps,
|
||||
guidance_scale=sample_config.guidance_scale,
|
||||
negative_prompt=neg,
|
||||
).images[0]
|
||||
else:
|
||||
img = pipeline(
|
||||
prompt,
|
||||
height=height,
|
||||
width=width,
|
||||
num_inference_steps=sample_config.sample_steps,
|
||||
guidance_scale=sample_config.guidance_scale,
|
||||
negative_prompt=neg,
|
||||
).images[0]
|
||||
|
||||
step_num = ''
|
||||
if step is not None:
|
||||
@@ -184,6 +212,8 @@ class BaseSDTrainProcess(BaseTrainProcess):
|
||||
output_path = os.path.join(sample_folder, filename)
|
||||
img.save(output_path)
|
||||
|
||||
# clear pipeline and cache to reduce vram usage
|
||||
del pipeline
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
# restore training state
|
||||
@@ -259,12 +289,15 @@ class BaseSDTrainProcess(BaseTrainProcess):
|
||||
# prepare meta
|
||||
save_meta = get_meta_for_safetensors(self.meta, self.job.name)
|
||||
if self.network is not None:
|
||||
prev_multiplier = self.network.multiplier
|
||||
self.network.multiplier = 1.0
|
||||
# TODO handle dreambooth, fine tuning, etc
|
||||
self.network.save_weights(
|
||||
file_path,
|
||||
dtype=get_torch_dtype(self.save_config.dtype),
|
||||
metadata=save_meta
|
||||
)
|
||||
self.network.multiplier = prev_multiplier
|
||||
else:
|
||||
self.sd.save(
|
||||
file_path,
|
||||
@@ -340,19 +373,6 @@ class BaseSDTrainProcess(BaseTrainProcess):
|
||||
else:
|
||||
return None
|
||||
|
||||
def predict_noise_xl(
|
||||
self,
|
||||
latents: torch.FloatTensor,
|
||||
positive_prompt: str,
|
||||
negative_prompt: str,
|
||||
timestep: int,
|
||||
guidance_scale=7.5,
|
||||
guidance_rescale=0.7,
|
||||
add_time_ids=None,
|
||||
**kwargs,
|
||||
):
|
||||
pass
|
||||
|
||||
def predict_noise(
|
||||
self,
|
||||
latents: torch.FloatTensor,
|
||||
|
||||
@@ -47,6 +47,8 @@ class EncodedPromptPair:
|
||||
neutral,
|
||||
both_targets,
|
||||
empty_prompt,
|
||||
action=ACTION_TYPES_SLIDER.ERASE_NEGATIVE,
|
||||
multiplier=1.0,
|
||||
weight=1.0
|
||||
):
|
||||
self.target_class = target_class
|
||||
@@ -57,6 +59,8 @@ class EncodedPromptPair:
|
||||
self.neutral = neutral
|
||||
self.empty_prompt = empty_prompt
|
||||
self.both_targets = both_targets
|
||||
self.multiplier = multiplier
|
||||
self.action: int = action
|
||||
self.weight = weight
|
||||
|
||||
# simulate torch to for tensors
|
||||
@@ -180,6 +184,18 @@ class TrainSliderProcess(BaseSDTrainProcess):
|
||||
if cache[p] is None:
|
||||
cache[p] = self.sd.encode_prompt(p).to(device="cpu", dtype=torch.float32)
|
||||
|
||||
erase_negative = len(target.positive.strip()) == 0
|
||||
enhance_positive = len(target.negative.strip()) == 0
|
||||
|
||||
both = not erase_negative and not enhance_positive
|
||||
|
||||
if erase_negative and enhance_positive:
|
||||
raise ValueError("target must have at least one of positive or negative or both")
|
||||
# for slider we need to have an enhancer, an eraser, and then
|
||||
# an inverse with negative weights to balance the network
|
||||
# if we don't do this, we will get different contrast and focus.
|
||||
# we only perform actions of enhancing and erasing on the negative
|
||||
# todo work on way to do all of this in one shot
|
||||
if self.slider_config.prompt_tensors:
|
||||
print(f"Saving prompt tensors to {self.slider_config.prompt_tensors}")
|
||||
state_dict = {}
|
||||
@@ -192,28 +208,115 @@ class TrainSliderProcess(BaseSDTrainProcess):
|
||||
'fp16'))
|
||||
save_file(state_dict, self.slider_config.prompt_tensors)
|
||||
|
||||
self.print("Encoding complete. Building prompt pairs..")
|
||||
for neutral in self.prompt_txt_list:
|
||||
prompt_pairs = []
|
||||
for neutral in tqdm(self.prompt_txt_list, desc="Encoding prompts", leave=False):
|
||||
for target in self.slider_config.targets:
|
||||
both_prompts_list = [
|
||||
f"{target.positive} {target.negative}",
|
||||
f"{target.negative} {target.positive}",
|
||||
]
|
||||
# randomly pick one of the both prompts to prevent bias
|
||||
both_prompts = both_prompts_list[torch.randint(0, 2, (1,)).item()]
|
||||
|
||||
prompt_pair = EncodedPromptPair(
|
||||
positive_target=cache[f"{target.positive}"],
|
||||
positive_target_with_neutral=cache[f"{target.positive} {neutral}"],
|
||||
negative_target=cache[f"{target.negative}"],
|
||||
negative_target_with_neutral=cache[f"{target.negative} {neutral}"],
|
||||
neutral=cache[neutral],
|
||||
both_targets=cache[both_prompts],
|
||||
empty_prompt=cache[""],
|
||||
target_class=cache[f"{target.target_class}"],
|
||||
weight=target.weight,
|
||||
).to(device="cpu", dtype=torch.float32)
|
||||
self.prompt_pairs.append(prompt_pair)
|
||||
if both or erase_negative:
|
||||
prompt_pairs += [
|
||||
# erase standard
|
||||
EncodedPromptPair(
|
||||
target_class=cache[target.target_class],
|
||||
positive_target=cache[f"{target.positive}"],
|
||||
positive_target_with_neutral=cache[f"{target.positive} {neutral}"],
|
||||
negative_target=cache[f"{target.negative}"],
|
||||
negative_target_with_neutral=cache[f"{target.negative} {neutral}"],
|
||||
neutral=cache[neutral],
|
||||
action=ACTION_TYPES_SLIDER.ERASE_NEGATIVE,
|
||||
multiplier=target.multiplier,
|
||||
empty_prompt=cache[""],
|
||||
weight=target.weight
|
||||
),
|
||||
]
|
||||
if both or enhance_positive:
|
||||
prompt_pairs += [
|
||||
# enhance standard, swap pos neg
|
||||
EncodedPromptPair(
|
||||
target_class=cache[target.target_class],
|
||||
positive_target=cache[f"{target.negative}"],
|
||||
positive_target_with_neutral=cache[f"{target.negative} {neutral}"],
|
||||
negative_target=cache[f"{target.positive}"],
|
||||
negative_target_with_neutral=cache[f"{target.positive} {neutral}"],
|
||||
neutral=cache[neutral],
|
||||
action=ACTION_TYPES_SLIDER.ENHANCE_NEGATIVE,
|
||||
multiplier=target.multiplier,
|
||||
empty_prompt=cache[""],
|
||||
weight=target.weight
|
||||
),
|
||||
]
|
||||
if both or enhance_positive:
|
||||
prompt_pairs += [
|
||||
# erase inverted
|
||||
EncodedPromptPair(
|
||||
target_class=cache[target.target_class],
|
||||
positive_target=cache[f"{target.negative}"],
|
||||
positive_target_with_neutral=cache[f"{target.negative} {neutral}"],
|
||||
negative_target=cache[f"{target.positive}"],
|
||||
negative_target_with_neutral=cache[f"{target.positive} {neutral}"],
|
||||
neutral=cache[neutral],
|
||||
action=ACTION_TYPES_SLIDER.ERASE_NEGATIVE,
|
||||
empty_prompt=cache[""],
|
||||
multiplier=target.multiplier * -1.0,
|
||||
weight=target.weight
|
||||
),
|
||||
]
|
||||
if both or erase_negative:
|
||||
prompt_pairs += [
|
||||
# enhance inverted
|
||||
EncodedPromptPair(
|
||||
target_class=cache[target.target_class],
|
||||
positive_target=cache[f"{target.positive}"],
|
||||
positive_target_with_neutral=cache[f"{target.positive} {neutral}"],
|
||||
negative_target=cache[f"{target.negative}"],
|
||||
negative_target_with_neutral=cache[f"{target.negative} {neutral}"],
|
||||
neutral=cache[neutral],
|
||||
action=ACTION_TYPES_SLIDER.ENHANCE_NEGATIVE,
|
||||
empty_prompt=cache[""],
|
||||
multiplier=target.multiplier * -1.0,
|
||||
weight=target.weight
|
||||
),
|
||||
]
|
||||
|
||||
# setup anchors
|
||||
anchor_pairs = []
|
||||
for anchor in self.slider_config.anchors:
|
||||
# build the cache
|
||||
for prompt in [
|
||||
anchor.prompt,
|
||||
anchor.neg_prompt # empty neutral
|
||||
]:
|
||||
if cache[prompt] == None:
|
||||
cache[prompt] = self.sd.encode_prompt(prompt)
|
||||
|
||||
anchor_pairs += [
|
||||
EncodedAnchor(
|
||||
prompt=cache[anchor.prompt],
|
||||
neg_prompt=cache[anchor.neg_prompt],
|
||||
multiplier=anchor.multiplier
|
||||
)
|
||||
]
|
||||
# self.print("Encoding complete. Building prompt pairs..")
|
||||
# for neutral in self.prompt_txt_list:
|
||||
# for target in self.slider_config.targets:
|
||||
# both_prompts_list = [
|
||||
# f"{target.positive} {target.negative}",
|
||||
# f"{target.negative} {target.positive}",
|
||||
# ]
|
||||
# # randomly pick one of the both prompts to prevent bias
|
||||
# both_prompts = both_prompts_list[torch.randint(0, 2, (1,)).item()]
|
||||
#
|
||||
# prompt_pair = EncodedPromptPair(
|
||||
# positive_target=cache[f"{target.positive}"],
|
||||
# positive_target_with_neutral=cache[f"{target.positive} {neutral}"],
|
||||
# negative_target=cache[f"{target.negative}"],
|
||||
# negative_target_with_neutral=cache[f"{target.negative} {neutral}"],
|
||||
# neutral=cache[neutral],
|
||||
# both_targets=cache[both_prompts],
|
||||
# empty_prompt=cache[""],
|
||||
# target_class=cache[f"{target.target_class}"],
|
||||
# weight=target.weight,
|
||||
# ).to(device="cpu", dtype=torch.float32)
|
||||
# self.prompt_pairs.append(prompt_pair)
|
||||
|
||||
# move to cpu to save vram
|
||||
# We don't need text encoder anymore, but keep it on cpu for sampling
|
||||
@@ -224,7 +327,8 @@ class TrainSliderProcess(BaseSDTrainProcess):
|
||||
else:
|
||||
self.sd.text_encoder.to("cpu")
|
||||
self.prompt_cache = cache
|
||||
|
||||
self.prompt_pairs = prompt_pairs
|
||||
self.anchor_pairs = anchor_pairs
|
||||
flush()
|
||||
# end hook_before_train_loop
|
||||
|
||||
@@ -243,6 +347,13 @@ class TrainSliderProcess(BaseSDTrainProcess):
|
||||
torch.randint(0, len(self.slider_config.resolutions), (1,)).item()
|
||||
]
|
||||
|
||||
target_class = prompt_pair.target_class
|
||||
neutral = prompt_pair.neutral
|
||||
negative = prompt_pair.negative_target
|
||||
positive = prompt_pair.positive_target
|
||||
weight = prompt_pair.weight
|
||||
multiplier = prompt_pair.multiplier
|
||||
|
||||
unet = self.sd.unet
|
||||
noise_scheduler = self.sd.noise_scheduler
|
||||
optimizer = self.optimizer
|
||||
@@ -250,18 +361,20 @@ class TrainSliderProcess(BaseSDTrainProcess):
|
||||
loss_function = torch.nn.MSELoss()
|
||||
|
||||
def get_noise_pred(p, n, gs, cts, dn):
|
||||
return self.sd.pipeline.predict_noise(
|
||||
return self.predict_noise(
|
||||
latents=dn,
|
||||
prompt_embeds=p.text_embeds,
|
||||
negative_prompt_embeds=n.text_embeds,
|
||||
pooled_prompt_embeds=p.pooled_embeds,
|
||||
negative_pooled_prompt_embeds=n.pooled_embeds,
|
||||
text_embeddings=train_tools.concat_prompt_embeddings(
|
||||
p, # negative prompt
|
||||
n, # positive prompt
|
||||
self.train_config.batch_size,
|
||||
),
|
||||
timestep=cts,
|
||||
guidance_scale=gs,
|
||||
num_images_per_prompt=self.train_config.batch_size,
|
||||
num_inference_steps=1000,
|
||||
)
|
||||
|
||||
# set network multiplier
|
||||
self.network.multiplier = multiplier
|
||||
|
||||
with torch.no_grad():
|
||||
self.sd.noise_scheduler.set_timesteps(
|
||||
self.train_config.max_denoising_steps, device=self.device_torch
|
||||
@@ -284,40 +397,20 @@ class TrainSliderProcess(BaseSDTrainProcess):
|
||||
latents = noise * self.sd.noise_scheduler.init_noise_sigma
|
||||
latents = latents.to(self.device_torch, dtype=dtype)
|
||||
|
||||
denoised_fraction = timesteps_to / (self.train_config.max_denoising_steps + 1)
|
||||
self.sd.pipeline.to(self.device_torch)
|
||||
torch.set_default_device(self.device_torch)
|
||||
self.sd.pipeline.set_progress_bar_config(disable=True)
|
||||
|
||||
with self.network:
|
||||
assert self.network.is_active
|
||||
self.network.multiplier = 1.0
|
||||
POS_denoised_latents = self.sd.pipeline(
|
||||
num_inference_steps=self.train_config.max_denoising_steps,
|
||||
denoising_end=denoised_fraction,
|
||||
latents=latents,
|
||||
prompt_embeds=prompt_pair.negative_target_with_neutral.text_embeds,
|
||||
negative_prompt_embeds=prompt_pair.positive_target_with_neutral.text_embeds,
|
||||
pooled_prompt_embeds=prompt_pair.negative_target_with_neutral.pooled_embeds,
|
||||
negative_pooled_prompt_embeds=prompt_pair.positive_target_with_neutral.pooled_embeds,
|
||||
output_type="latent",
|
||||
num_images_per_prompt=self.train_config.batch_size,
|
||||
self.network.multiplier = multiplier
|
||||
denoised_latents = self.diffuse_some_steps(
|
||||
latents, # pass simple noise latents
|
||||
train_tools.concat_prompt_embeddings(
|
||||
positive, # unconditional
|
||||
target_class, # target
|
||||
self.train_config.batch_size,
|
||||
),
|
||||
start_timesteps=0,
|
||||
total_timesteps=timesteps_to,
|
||||
guidance_scale=3,
|
||||
).images.to(self.device_torch, dtype=dtype)
|
||||
|
||||
self.network.multiplier = -1.0
|
||||
NEG_denoised_latents = self.sd.pipeline(
|
||||
num_inference_steps=self.train_config.max_denoising_steps,
|
||||
denoising_end=denoised_fraction,
|
||||
latents=latents,
|
||||
prompt_embeds=prompt_pair.positive_target_with_neutral.text_embeds,
|
||||
negative_prompt_embeds=prompt_pair.negative_target_with_neutral.text_embeds,
|
||||
pooled_prompt_embeds=prompt_pair.positive_target_with_neutral.pooled_embeds,
|
||||
negative_pooled_prompt_embeds=prompt_pair.negative_target_with_neutral.pooled_embeds,
|
||||
output_type="latent",
|
||||
num_images_per_prompt=self.train_config.batch_size,
|
||||
guidance_scale=3,
|
||||
).images.to(self.device_torch, dtype=dtype)
|
||||
)
|
||||
|
||||
noise_scheduler.set_timesteps(1000)
|
||||
|
||||
@@ -325,103 +418,78 @@ class TrainSliderProcess(BaseSDTrainProcess):
|
||||
int(timesteps_to * 1000 / self.train_config.max_denoising_steps)
|
||||
]
|
||||
|
||||
assert not self.network.is_active
|
||||
positive_latents = get_noise_pred(
|
||||
positive, negative, 1, current_timestep, denoised_latents
|
||||
).to("cpu", dtype=torch.float32)
|
||||
|
||||
neutral_latents = get_noise_pred(
|
||||
positive, neutral, 1, current_timestep, denoised_latents
|
||||
).to("cpu", dtype=torch.float32)
|
||||
|
||||
# POSITIVE LATENTS
|
||||
POS_positive_latents = get_noise_pred(
|
||||
prompt_pair.negative_target_with_neutral,
|
||||
prompt_pair.positive_target_with_neutral,
|
||||
1, current_timestep, POS_denoised_latents,
|
||||
)
|
||||
NEG_positive_latents = get_noise_pred(
|
||||
prompt_pair.positive_target_with_neutral,
|
||||
prompt_pair.negative_target_with_neutral,
|
||||
1, current_timestep, NEG_denoised_latents,
|
||||
)
|
||||
unconditional_latents = get_noise_pred(
|
||||
positive, positive, 1, current_timestep, denoised_latents
|
||||
).to("cpu", dtype=torch.float32)
|
||||
|
||||
anchor_loss = None
|
||||
if len(self.anchor_pairs) > 0:
|
||||
# get a random anchor pair
|
||||
anchor: EncodedAnchor = self.anchor_pairs[
|
||||
torch.randint(0, len(self.anchor_pairs), (1,)).item()
|
||||
]
|
||||
with torch.no_grad():
|
||||
anchor_target_noise = get_noise_pred(
|
||||
anchor.prompt, anchor.neg_prompt, 1, current_timestep, denoised_latents
|
||||
).to("cpu", dtype=torch.float32)
|
||||
with self.network:
|
||||
# anchor whatever weight prompt pair is using
|
||||
pos_nem_mult = 1.0 if prompt_pair.multiplier > 0 else -1.0
|
||||
self.network.multiplier = anchor.multiplier * pos_nem_mult
|
||||
|
||||
# NEUTRAL LATENTS
|
||||
POS_neutral_latents = get_noise_pred(
|
||||
prompt_pair.neutral,
|
||||
prompt_pair.positive_target_with_neutral,
|
||||
1, current_timestep, POS_denoised_latents,
|
||||
)
|
||||
NEG_neutral_latents = get_noise_pred(
|
||||
prompt_pair.neutral,
|
||||
prompt_pair.negative_target_with_neutral,
|
||||
1, current_timestep, NEG_denoised_latents,
|
||||
)
|
||||
anchor_pred_noise = get_noise_pred(
|
||||
anchor.prompt, anchor.neg_prompt, 1, current_timestep, denoised_latents
|
||||
).to("cpu", dtype=torch.float32)
|
||||
|
||||
|
||||
# UNCONDITIONAL LATENTS
|
||||
POS_unconditional_latents = get_noise_pred(
|
||||
prompt_pair.positive_target_with_neutral,
|
||||
prompt_pair.positive_target_with_neutral,
|
||||
1, current_timestep, POS_denoised_latents,
|
||||
)
|
||||
NEG_unconditional_latents = get_noise_pred(
|
||||
prompt_pair.negative_target_with_neutral,
|
||||
prompt_pair.negative_target_with_neutral,
|
||||
1, current_timestep, NEG_denoised_latents,
|
||||
)
|
||||
|
||||
|
||||
# start grads
|
||||
self.optimizer.zero_grad()
|
||||
self.network.multiplier = prompt_pair.multiplier
|
||||
|
||||
with self.network:
|
||||
assert self.network.is_active
|
||||
self.network.multiplier = 1.0
|
||||
POS_target_latents = get_noise_pred(
|
||||
prompt_pair.negative_target_with_neutral,
|
||||
prompt_pair.positive_target_with_neutral,
|
||||
1, current_timestep, POS_denoised_latents,
|
||||
self.network.multiplier = prompt_pair.multiplier
|
||||
target_latents = get_noise_pred(
|
||||
positive, target_class, 1, current_timestep, denoised_latents
|
||||
).to("cpu", dtype=torch.float32)
|
||||
|
||||
# if self.logging_config.verbose:
|
||||
# self.print("target_latents:", target_latents[0, 0, :5, :5])
|
||||
|
||||
positive_latents.requires_grad = False
|
||||
neutral_latents.requires_grad = False
|
||||
unconditional_latents.requires_grad = False
|
||||
if len(self.anchor_pairs) > 0:
|
||||
anchor_target_noise.requires_grad = False
|
||||
anchor_loss = loss_function(
|
||||
anchor_target_noise,
|
||||
anchor_pred_noise,
|
||||
)
|
||||
|
||||
self.network.multiplier = -1.0
|
||||
NEG_target_latents = get_noise_pred(
|
||||
prompt_pair.positive_target_with_neutral,
|
||||
prompt_pair.negative_target_with_neutral,
|
||||
1, current_timestep, NEG_denoised_latents,
|
||||
)
|
||||
|
||||
POS_positive_latents.requires_grad = False
|
||||
NEG_positive_latents.requires_grad = False
|
||||
POS_neutral_latents.requires_grad = False
|
||||
NEG_neutral_latents.requires_grad = False
|
||||
POS_unconditional_latents.requires_grad = False
|
||||
NEG_unconditional_latents.requires_grad = False
|
||||
|
||||
erase = prompt_pair.action == ACTION_TYPES_SLIDER.ERASE_NEGATIVE
|
||||
guidance_scale = 1.0
|
||||
|
||||
POS_offset = guidance_scale * (POS_positive_latents - POS_unconditional_latents)
|
||||
NEG_offset = guidance_scale * (NEG_positive_latents - NEG_unconditional_latents)
|
||||
offset = guidance_scale * (positive_latents - unconditional_latents)
|
||||
|
||||
erase = True
|
||||
offset_neutral = neutral_latents
|
||||
if erase:
|
||||
offset_neutral -= offset
|
||||
else:
|
||||
# enhance
|
||||
offset_neutral += offset
|
||||
|
||||
POS_offset_neutral = POS_neutral_latents
|
||||
NEG_offset_neutral = NEG_neutral_latents
|
||||
# if erase:
|
||||
# POS_offset_neutral -= POS_offset
|
||||
# NEG_offset_neutral -= NEG_offset
|
||||
# else:
|
||||
# # enhance
|
||||
# POS_offset_neutral += POS_offset
|
||||
# NEG_offset_neutral += NEG_offset
|
||||
loss = loss_function(
|
||||
target_latents,
|
||||
offset_neutral,
|
||||
) * weight
|
||||
|
||||
POS_erase_loss = loss_function(
|
||||
POS_target_latents,
|
||||
POS_neutral_latents - POS_offset,
|
||||
) * prompt_pair.weight
|
||||
loss_slide = loss.item()
|
||||
|
||||
NEG_erase_loss = loss_function(
|
||||
NEG_target_latents,
|
||||
NEG_neutral_latents - NEG_offset,
|
||||
) * prompt_pair.weight
|
||||
|
||||
|
||||
loss = (POS_erase_loss + NEG_erase_loss) * 0.5
|
||||
if anchor_loss is not None:
|
||||
loss += anchor_loss
|
||||
|
||||
loss_float = loss.item()
|
||||
|
||||
@@ -432,28 +500,11 @@ class TrainSliderProcess(BaseSDTrainProcess):
|
||||
lr_scheduler.step()
|
||||
|
||||
del (
|
||||
# denoised_latents,
|
||||
POS_denoised_latents,
|
||||
NEG_denoised_latents,
|
||||
# positive_neg_noise_prediction,
|
||||
POS_positive_latents,
|
||||
NEG_positive_latents,
|
||||
# neutral_noise_prediction,
|
||||
POS_neutral_latents,
|
||||
NEG_neutral_latents,
|
||||
# unconditional_noise_prediction,
|
||||
POS_unconditional_latents,
|
||||
NEG_unconditional_latents,
|
||||
# target_noise_prediction,
|
||||
POS_target_latents,
|
||||
NEG_target_latents,
|
||||
# offset,
|
||||
POS_offset,
|
||||
NEG_offset,
|
||||
# offset_neutral,
|
||||
POS_offset_neutral,
|
||||
NEG_offset_neutral,
|
||||
|
||||
positive_latents,
|
||||
neutral_latents,
|
||||
unconditional_latents,
|
||||
target_latents,
|
||||
latents,
|
||||
)
|
||||
# move back to cpu
|
||||
prompt_pair.to("cpu")
|
||||
@@ -463,12 +514,11 @@ class TrainSliderProcess(BaseSDTrainProcess):
|
||||
self.network.multiplier = 1.0
|
||||
|
||||
loss_dict = OrderedDict(
|
||||
{
|
||||
'loss': loss.item(),
|
||||
'l+er': POS_erase_loss.item(),
|
||||
'l-er': NEG_erase_loss.item(),
|
||||
},
|
||||
{'loss': loss_float},
|
||||
)
|
||||
if anchor_loss is not None:
|
||||
loss_dict['sl_l'] = loss_slide
|
||||
loss_dict['an_l'] = anchor_loss.item()
|
||||
|
||||
return loss_dict
|
||||
# end hook_train_loop
|
||||
|
||||
Reference in New Issue
Block a user