Added training for a custom version of ERSGAN arcitecture. Testing training now

This commit is contained in:
Jaret Burkett
2023-08-07 18:04:23 -06:00
parent 8c90fa86c6
commit 8bd536df7e
9 changed files with 1694 additions and 141 deletions

View File

@@ -20,6 +20,7 @@ process_dict = {
'slider_old': 'TrainSliderProcessOld',
'lora_hack': 'TrainLoRAHack',
'rescale_sd': 'TrainSDRescaleProcess',
'esrgan': 'TrainESRGANProcess',
}

View File

@@ -0,0 +1,575 @@
import copy
import glob
import os
import time
from collections import OrderedDict
from PIL import Image
from PIL.ImageOps import exif_transpose
# from basicsr.archs.rrdbnet_arch import RRDBNet
from toolkit.models.RRDB import RRDBNet as ESRGAN
from safetensors.torch import save_file, load_file
from torch.utils.data import DataLoader, ConcatDataset
import torch
from torch import nn
from torchvision.transforms import transforms
from jobs.process import BaseTrainProcess
from toolkit.data_loader import AugmentedImageDataset
from toolkit.esrgan_utils import convert_state_dict_to_basicsr, convert_basicsr_state_dict_to_save_format
from toolkit.losses import ComparativeTotalVariation, get_gradient_penalty, PatternLoss
from toolkit.metadata import get_meta_for_safetensors
from toolkit.optimizer import get_optimizer
from toolkit.style import get_style_model_and_losses
from toolkit.train_tools import get_torch_dtype
from diffusers import AutoencoderKL
from tqdm import tqdm
import time
import numpy as np
from .models.vgg19_critic import Critic
IMAGE_TRANSFORMS = transforms.Compose(
[
transforms.ToTensor(),
# transforms.Normalize([0.5], [0.5]),
]
)
class TrainESRGANProcess(BaseTrainProcess):
def __init__(self, process_id: int, job, config: OrderedDict):
super().__init__(process_id, job, config)
self.data_loader = None
self.model = None
self.device = self.get_conf('device', self.job.device)
self.pretrained_path = self.get_conf('pretrained_path', 'None')
self.datasets_objects = self.get_conf('datasets', required=True)
self.batch_size = self.get_conf('batch_size', 1, as_type=int)
self.resolution = self.get_conf('resolution', 256, as_type=int)
self.learning_rate = self.get_conf('learning_rate', 1e-6, as_type=float)
self.sample_every = self.get_conf('sample_every', None)
self.optimizer_type = self.get_conf('optimizer', 'adam')
self.epochs = self.get_conf('epochs', None, as_type=int)
self.max_steps = self.get_conf('max_steps', None, as_type=int)
self.save_every = self.get_conf('save_every', None)
self.upscale_sample = self.get_conf('upscale_sample', 4)
self.dtype = self.get_conf('dtype', 'float32')
self.sample_sources = self.get_conf('sample_sources', None)
self.log_every = self.get_conf('log_every', 100, as_type=int)
self.style_weight = self.get_conf('style_weight', 0, as_type=float)
self.content_weight = self.get_conf('content_weight', 0, as_type=float)
self.mse_weight = self.get_conf('mse_weight', 1e0, as_type=float)
self.zoom = self.get_conf('zoom', 4, as_type=int)
self.tv_weight = self.get_conf('tv_weight', 1e0, as_type=float)
self.critic_weight = self.get_conf('critic_weight', 1, as_type=float)
self.pattern_weight = self.get_conf('pattern_weight', 1, as_type=float)
self.optimizer_params = self.get_conf('optimizer_params', {})
self.augmentations = self.get_conf('augmentations', {})
self.torch_dtype = get_torch_dtype(self.dtype)
if self.torch_dtype == torch.bfloat16:
self.esrgan_dtype = torch.float16
else:
self.esrgan_dtype = torch.float32
self.vgg_19 = None
self.style_weight_scalers = []
self.content_weight_scalers = []
# throw error if zoom if not divisible by 2
if self.zoom % 2 != 0:
raise ValueError('zoom must be divisible by 2')
self.step_num = 0
self.epoch_num = 0
self.use_critic = self.get_conf('use_critic', False, as_type=bool)
self.critic = None
if self.use_critic:
self.critic = Critic(
device=self.device,
dtype=self.dtype,
process=self,
**self.get_conf('critic', {}) # pass any other params
)
if self.sample_every is not None and self.sample_sources is None:
raise ValueError('sample_every is specified but sample_sources is not')
if self.epochs is None and self.max_steps is None:
raise ValueError('epochs or max_steps must be specified')
self.data_loaders = []
# check datasets
assert isinstance(self.datasets_objects, list)
for dataset in self.datasets_objects:
if 'path' not in dataset:
raise ValueError('dataset must have a path')
# check if is dir
if not os.path.isdir(dataset['path']):
raise ValueError(f"dataset path does is not a directory: {dataset['path']}")
# make training folder
if not os.path.exists(self.save_root):
os.makedirs(self.save_root, exist_ok=True)
self._pattern_loss = None
# build augmentation transforms
aug_transforms = []
def update_training_metadata(self):
self.add_meta(OrderedDict({"training_info": self.get_training_info()}))
def get_training_info(self):
info = OrderedDict({
'step': self.step_num,
'epoch': self.epoch_num,
})
return info
def load_datasets(self):
if self.data_loader is None:
print(f"Loading datasets")
datasets = []
for dataset in self.datasets_objects:
print(f" - Dataset: {dataset['path']}")
ds = copy.copy(dataset)
ds['resolution'] = self.resolution
if 'augmentations' not in ds:
ds['augmentations'] = self.augmentations
# add the resize down augmentation
ds['augmentations'] = [{
'method': 'Resize',
'params': {
'width': int(self.resolution // self.zoom),
'height': int(self.resolution // self.zoom),
# downscale interpolation, string will be evaluated
'interpolation': 'cv2.INTER_AREA'
}
}] + ds['augmentations']
image_dataset = AugmentedImageDataset(ds)
datasets.append(image_dataset)
concatenated_dataset = ConcatDataset(datasets)
self.data_loader = DataLoader(
concatenated_dataset,
batch_size=self.batch_size,
shuffle=True,
num_workers=6
)
def setup_vgg19(self):
if self.vgg_19 is None:
self.vgg_19, self.style_losses, self.content_losses, self.vgg19_pool_4 = get_style_model_and_losses(
single_target=True,
device=self.device,
output_layer_name='pool_4',
dtype=self.torch_dtype
)
self.vgg_19.to(self.device, dtype=self.torch_dtype)
self.vgg_19.requires_grad_(False)
# we run random noise through first to get layer scalers to normalize the loss per layer
# bs of 2 because we run pred and target through stacked
noise = torch.randn((2, 3, self.resolution, self.resolution), device=self.device, dtype=self.torch_dtype)
self.vgg_19(noise)
for style_loss in self.style_losses:
# get a scaler to normalize to 1
scaler = 1 / torch.mean(style_loss.loss).item()
self.style_weight_scalers.append(scaler)
for content_loss in self.content_losses:
# get a scaler to normalize to 1
scaler = 1 / torch.mean(content_loss.loss).item()
# if is nan, set to 1
if scaler != scaler:
scaler = 1
print(f"Warning: content loss scaler is nan, setting to 1")
self.content_weight_scalers.append(scaler)
self.print(f"Style weight scalers: {self.style_weight_scalers}")
self.print(f"Content weight scalers: {self.content_weight_scalers}")
def get_style_loss(self):
if self.style_weight > 0:
# scale all losses with loss scalers
loss = torch.sum(
torch.stack([loss.loss * scaler for loss, scaler in zip(self.style_losses, self.style_weight_scalers)]))
return loss
else:
return torch.tensor(0.0, device=self.device)
def get_content_loss(self):
if self.content_weight > 0:
# scale all losses with loss scalers
loss = torch.sum(torch.stack(
[loss.loss * scaler for loss, scaler in zip(self.content_losses, self.content_weight_scalers)]))
return loss
else:
return torch.tensor(0.0, device=self.device)
def get_mse_loss(self, pred, target):
if self.mse_weight > 0:
loss_fn = nn.MSELoss()
loss = loss_fn(pred, target)
return loss
else:
return torch.tensor(0.0, device=self.device)
def get_tv_loss(self, pred, target):
if self.tv_weight > 0:
get_tv_loss = ComparativeTotalVariation()
loss = get_tv_loss(pred, target)
return loss
else:
return torch.tensor(0.0, device=self.device)
def get_pattern_loss(self, pred, target):
if self._pattern_loss is None:
self._pattern_loss = PatternLoss(
pattern_size=self.zoom,
dtype=self.torch_dtype
).to(self.device, dtype=self.torch_dtype)
loss = torch.mean(self._pattern_loss(pred, target))
return loss
def save(self, step=None):
if not os.path.exists(self.save_root):
os.makedirs(self.save_root, exist_ok=True)
step_num = ''
if step is not None:
# zeropad 9 digits
step_num = f"_{str(step).zfill(9)}"
self.update_training_metadata()
filename = f'{self.job.name}{step_num}.safetensors'
# prepare meta
save_meta = get_meta_for_safetensors(self.meta, self.job.name)
# state_dict = self.model.state_dict()
# state has the original state dict keys so we can save what we started from
save_state_dict = self.model.state
for key in list(save_state_dict.keys()):
v = save_state_dict[key]
v = v.detach().clone().to("cpu").to(torch.float32)
save_state_dict[key] = v
# having issues with meta
save_file(save_state_dict, os.path.join(self.save_root, filename), save_meta)
self.print(f"Saved to {os.path.join(self.save_root, filename)}")
if self.use_critic:
self.critic.save(step)
def sample(self, step=None):
sample_folder = os.path.join(self.save_root, 'samples')
if not os.path.exists(sample_folder):
os.makedirs(sample_folder, exist_ok=True)
self.model.eval()
with torch.no_grad():
for i, img_url in enumerate(self.sample_sources):
img = exif_transpose(Image.open(img_url))
img = img.convert('RGB')
# crop if not square
if img.width != img.height:
min_dim = min(img.width, img.height)
img = img.crop((0, 0, min_dim, min_dim))
# resize
img = img.resize((self.resolution * self.zoom, self.resolution * self.zoom), resample=Image.BICUBIC)
target_image = img
# downscale the image input
img = img.resize((self.resolution, self.resolution), resample=Image.BICUBIC)
# downscale the image input
img = IMAGE_TRANSFORMS(img).unsqueeze(0).to(self.device, dtype=self.esrgan_dtype)
img = img
output = self.model(img)
# output = (output / 2 + 0.5).clamp(0, 1)
output = output.clamp(0, 1)
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
output = output.cpu().permute(0, 2, 3, 1).squeeze(0).float().numpy()
# convert to pillow image
output = Image.fromarray((output * 255).astype(np.uint8))
# upscale to size * self.upscale_sample while maintaining pixels
output = output.resize(
(self.resolution * self.upscale_sample, self.resolution * self.upscale_sample),
resample=Image.NEAREST
)
width, height = output.size
# stack input image and decoded image
target_image = target_image.resize((width, height))
output = output.resize((width, height))
output_img = Image.new('RGB', (width * 2, height))
output_img.paste(target_image, (0, 0))
output_img.paste(output, (width, 0))
step_num = ''
if step is not None:
# zero-pad 9 digits
step_num = f"_{str(step).zfill(9)}"
seconds_since_epoch = int(time.time())
# zero-pad 2 digits
i_str = str(i).zfill(2)
filename = f"{seconds_since_epoch}{step_num}_{i_str}.png"
output_img.save(os.path.join(sample_folder, filename))
self.model.train()
def load_model(self):
state_dict = None
path_to_load = self.pretrained_path
# see if we have a checkpoint in out output to resume from
self.print(f"Looking for latest checkpoint in {self.save_root}")
files = glob.glob(os.path.join(self.save_root, f"{self.job.name}*.safetensors"))
if files and len(files) > 0:
latest_file = max(files, key=os.path.getmtime)
print(f" - Latest checkpoint is: {latest_file}")
path_to_load = latest_file
# todo update step and epoch count
elif self.pretrained_path is None:
self.print(f" - No checkpoint found, starting from scratch")
else:
self.print(f" - No checkpoint found, loading pretrained model")
self.print(f" - path: {path_to_load}")
if path_to_load is not None:
self.print(f" - Loading pretrained checkpoint: {self.pretrained_path}")
# if ends with pth then assume pytorch checkpoint
if path_to_load.endswith('.pth') or path_to_load.endswith('.pt'):
state_dict = torch.load(path_to_load, map_location=self.device)
elif path_to_load.endswith('.safetensors'):
state_dict = load_file(path_to_load)
else:
raise Exception(f"Unknown file extension for checkpoint: {path_to_load}")
# todo determine architecture from checkpoint
self.model = ESRGAN(
state_dict
).to(self.device, dtype=self.esrgan_dtype)
# set the model to training mode
self.model.train()
self.model.requires_grad_(True)
def run(self):
super().run()
self.load_datasets()
max_step_epochs = self.max_steps // len(self.data_loader)
num_epochs = self.epochs
if num_epochs is None or num_epochs > max_step_epochs:
num_epochs = max_step_epochs
max_epoch_steps = len(self.data_loader) * num_epochs
num_steps = self.max_steps
if num_steps is None or num_steps > max_epoch_steps:
num_steps = max_epoch_steps
self.max_steps = num_steps
self.epochs = num_epochs
start_step = self.step_num
self.first_step = start_step
self.print(f"Training ESRGAN model:")
self.print(f" - Training folder: {self.training_folder}")
self.print(f" - Batch size: {self.batch_size}")
self.print(f" - Learning rate: {self.learning_rate}")
self.print(f" - Epochs: {num_epochs}")
self.print(f" - Max steps: {self.max_steps}")
# load model
self.load_model()
params = self.model.parameters()
if self.style_weight > 0 or self.content_weight > 0 or self.use_critic:
self.setup_vgg19()
self.vgg_19.requires_grad_(False)
self.vgg_19.eval()
if self.use_critic:
self.critic.setup()
optimizer = get_optimizer(params, self.optimizer_type, self.learning_rate,
optimizer_params=self.optimizer_params)
# setup scheduler
# todo allow other schedulers
scheduler = torch.optim.lr_scheduler.ConstantLR(
optimizer,
total_iters=num_steps,
factor=1,
verbose=False
)
# setup tqdm progress bar
self.progress_bar = tqdm(
total=num_steps,
desc='Training ESRGAN',
leave=True
)
blank_losses = OrderedDict({
"total": [],
"style": [],
"content": [],
"mse": [],
"kl": [],
"tv": [],
"ptn": [],
"crD": [],
"crG": [],
})
epoch_losses = copy.deepcopy(blank_losses)
log_losses = copy.deepcopy(blank_losses)
print("Generating baseline samples")
self.sample(step=0)
# range start at self.epoch_num go to self.epochs
for epoch in range(self.epoch_num, self.epochs, 1):
if self.step_num >= self.max_steps:
break
for targets, inputs in self.data_loader:
if self.step_num >= self.max_steps:
break
with torch.no_grad():
targets = targets.to(self.device, dtype=self.esrgan_dtype).clamp(0, 1)
inputs = inputs.to(self.device, dtype=self.esrgan_dtype).clamp(0, 1)
pred = self.model(inputs)
pred = pred.to(self.device, dtype=self.torch_dtype).clamp(0, 1)
targets = targets.to(self.device, dtype=self.torch_dtype).clamp(0, 1)
# Run through VGG19
if self.style_weight > 0 or self.content_weight > 0 or self.use_critic:
stacked = torch.cat([pred, targets], dim=0)
# stacked = (stacked / 2 + 0.5).clamp(0, 1)
stacked = stacked.clamp(0, 1)
self.vgg_19(stacked)
if self.use_critic:
critic_d_loss = self.critic.step(self.vgg19_pool_4.tensor.detach())
else:
critic_d_loss = 0.0
style_loss = self.get_style_loss() * self.style_weight
content_loss = self.get_content_loss() * self.content_weight
mse_loss = self.get_mse_loss(pred, targets) * self.mse_weight
tv_loss = self.get_tv_loss(pred, targets) * self.tv_weight
pattern_loss = self.get_pattern_loss(pred, targets) * self.pattern_weight
if self.use_critic:
critic_gen_loss = self.critic.get_critic_loss(self.vgg19_pool_4.tensor) * self.critic_weight
else:
critic_gen_loss = torch.tensor(0.0, device=self.device, dtype=self.torch_dtype)
loss = style_loss + content_loss + mse_loss + tv_loss + critic_gen_loss + pattern_loss
# Backward pass and optimization
optimizer.zero_grad()
loss.backward()
optimizer.step()
scheduler.step()
# update progress bar
loss_value = loss.item()
# get exponent like 3.54e-4
loss_string = f"loss: {loss_value:.2e}"
if self.content_weight > 0:
loss_string += f" cnt: {content_loss.item():.2e}"
if self.style_weight > 0:
loss_string += f" sty: {style_loss.item():.2e}"
if self.mse_weight > 0:
loss_string += f" mse: {mse_loss.item():.2e}"
if self.tv_weight > 0:
loss_string += f" tv: {tv_loss.item():.2e}"
if self.pattern_weight > 0:
loss_string += f" ptn: {pattern_loss.item():.2e}"
if self.use_critic and self.critic_weight > 0:
loss_string += f" crG: {critic_gen_loss.item():.2e}"
if self.use_critic:
loss_string += f" crD: {critic_d_loss:.2e}"
if self.optimizer_type.startswith('dadaptation') or self.optimizer_type.startswith('prodigy'):
learning_rate = (
optimizer.param_groups[0]["d"] *
optimizer.param_groups[0]["lr"]
)
else:
learning_rate = optimizer.param_groups[0]['lr']
lr_critic_string = ''
if self.use_critic:
lr_critic = self.critic.get_lr()
lr_critic_string = f" lrC: {lr_critic:.1e}"
self.progress_bar.set_postfix_str(f"lr: {learning_rate:.1e}{lr_critic_string} {loss_string}")
self.progress_bar.set_description(f"E: {epoch}")
self.progress_bar.update(1)
epoch_losses["total"].append(loss_value)
epoch_losses["style"].append(style_loss.item())
epoch_losses["content"].append(content_loss.item())
epoch_losses["mse"].append(mse_loss.item())
epoch_losses["tv"].append(tv_loss.item())
epoch_losses["ptn"].append(pattern_loss.item())
epoch_losses["crG"].append(critic_gen_loss.item())
epoch_losses["crD"].append(critic_d_loss)
log_losses["total"].append(loss_value)
log_losses["style"].append(style_loss.item())
log_losses["content"].append(content_loss.item())
log_losses["mse"].append(mse_loss.item())
log_losses["tv"].append(tv_loss.item())
log_losses["ptn"].append(pattern_loss.item())
log_losses["crG"].append(critic_gen_loss.item())
log_losses["crD"].append(critic_d_loss)
# don't do on first step
if self.step_num != start_step:
if self.sample_every and self.step_num % self.sample_every == 0:
# print above the progress bar
self.print(f"Sampling at step {self.step_num}")
self.sample(self.step_num)
if self.save_every and self.step_num % self.save_every == 0:
# print above the progress bar
self.print(f"Saving at step {self.step_num}")
self.save(self.step_num)
if self.log_every and self.step_num % self.log_every == 0:
# log to tensorboard
if self.writer is not None:
# get avg loss
for key in log_losses:
log_losses[key] = sum(log_losses[key]) / (len(log_losses[key]) + 1e-6)
# if log_losses[key] > 0:
self.writer.add_scalar(f"loss/{key}", log_losses[key], self.step_num)
# reset log losses
log_losses = copy.deepcopy(blank_losses)
self.step_num += 1
# end epoch
if self.writer is not None:
eps = 1e-6
# get avg loss
for key in epoch_losses:
epoch_losses[key] = sum(log_losses[key]) / (len(log_losses[key]) + eps)
if epoch_losses[key] > 0:
self.writer.add_scalar(f"epoch loss/{key}", epoch_losses[key], epoch)
# reset epoch losses
epoch_losses = copy.deepcopy(blank_losses)
self.save()

View File

@@ -24,6 +24,7 @@ from diffusers import AutoencoderKL
from tqdm import tqdm
import time
import numpy as np
from .models.vgg19_critic import Critic
IMAGE_TRANSFORMS = transforms.Compose(
[
@@ -37,145 +38,6 @@ def unnormalize(tensor):
return (tensor / 2 + 0.5).clamp(0, 1)
class Critic:
process: 'TrainVAEProcess'
def __init__(
self,
learning_rate=1e-5,
device='cpu',
optimizer='adam',
num_critic_per_gen=1,
dtype='float32',
lambda_gp=10,
start_step=0,
warmup_steps=1000,
process=None,
optimizer_params=None,
):
self.learning_rate = learning_rate
self.device = device
self.optimizer_type = optimizer
self.num_critic_per_gen = num_critic_per_gen
self.dtype = dtype
self.torch_dtype = get_torch_dtype(self.dtype)
self.process = process
self.model = None
self.optimizer = None
self.scheduler = None
self.warmup_steps = warmup_steps
self.start_step = start_step
self.lambda_gp = lambda_gp
if optimizer_params is None:
optimizer_params = {}
self.optimizer_params = optimizer_params
self.print = self.process.print
print(f" Critic config: {self.__dict__}")
def setup(self):
from .models.vgg19_critic import Vgg19Critic
self.model = Vgg19Critic().to(self.device, dtype=self.torch_dtype)
self.load_weights()
self.model.train()
self.model.requires_grad_(True)
params = self.model.parameters()
self.optimizer = get_optimizer(params, self.optimizer_type, self.learning_rate,
optimizer_params=self.optimizer_params)
self.scheduler = torch.optim.lr_scheduler.ConstantLR(
self.optimizer,
total_iters=self.process.max_steps * self.num_critic_per_gen,
factor=1,
verbose=False
)
def load_weights(self):
path_to_load = None
self.print(f"Critic: Looking for latest checkpoint in {self.process.save_root}")
files = glob.glob(os.path.join(self.process.save_root, f"CRITIC_{self.process.job.name}*.safetensors"))
if files and len(files) > 0:
latest_file = max(files, key=os.path.getmtime)
print(f" - Latest checkpoint is: {latest_file}")
path_to_load = latest_file
else:
self.print(f" - No checkpoint found, starting from scratch")
if path_to_load:
self.model.load_state_dict(load_file(path_to_load))
def save(self, step=None):
self.process.update_training_metadata()
save_meta = get_meta_for_safetensors(self.process.meta, self.process.job.name)
step_num = ''
if step is not None:
# zeropad 9 digits
step_num = f"_{str(step).zfill(9)}"
save_path = os.path.join(self.process.save_root, f"CRITIC_{self.process.job.name}{step_num}.safetensors")
save_file(self.model.state_dict(), save_path, save_meta)
self.print(f"Saved critic to {save_path}")
def get_critic_loss(self, vgg_output):
if self.start_step > self.process.step_num:
return torch.tensor(0.0, dtype=self.torch_dtype, device=self.device)
warmup_scaler = 1.0
# we need a warmup when we come on of 1000 steps
# we want to scale the loss by 0.0 at self.start_step steps and 1.0 at self.start_step + warmup_steps
if self.process.step_num < self.start_step + self.warmup_steps:
warmup_scaler = (self.process.step_num - self.start_step) / self.warmup_steps
# set model to not train for generator loss
self.model.eval()
self.model.requires_grad_(False)
vgg_pred, vgg_target = torch.chunk(vgg_output, 2, dim=0)
# run model
stacked_output = self.model(vgg_pred)
return (-torch.mean(stacked_output)) * warmup_scaler
def step(self, vgg_output):
# train critic here
self.model.train()
self.model.requires_grad_(True)
critic_losses = []
for i in range(self.num_critic_per_gen):
inputs = vgg_output.detach()
inputs = inputs.to(self.device, dtype=self.torch_dtype)
self.optimizer.zero_grad()
vgg_pred, vgg_target = torch.chunk(inputs, 2, dim=0)
stacked_output = self.model(inputs)
out_pred, out_target = torch.chunk(stacked_output, 2, dim=0)
# Compute gradient penalty
gradient_penalty = get_gradient_penalty(self.model, vgg_target, vgg_pred, self.device)
# Compute WGAN-GP critic loss
critic_loss = -(torch.mean(out_target) - torch.mean(out_pred)) + self.lambda_gp * gradient_penalty
critic_loss.backward()
self.optimizer.zero_grad()
self.optimizer.step()
self.scheduler.step()
critic_losses.append(critic_loss.item())
# avg loss
loss = np.mean(critic_losses)
return loss
def get_lr(self):
if self.optimizer_type.startswith('dadaptation'):
learning_rate = (
self.optimizer.param_groups[0]["d"] *
self.optimizer.param_groups[0]["lr"]
)
else:
learning_rate = self.optimizer.param_groups[0]['lr']
return learning_rate
class TrainVAEProcess(BaseTrainProcess):
def __init__(self, process_id: int, job, config: OrderedDict):
super().__init__(process_id, job, config)

View File

@@ -12,3 +12,4 @@ from .TrainSDRescaleProcess import TrainSDRescaleProcess
from .ModRescaleLoraProcess import ModRescaleLoraProcess
from .GenerateProcess import GenerateProcess
from .BaseExtensionProcess import BaseExtensionProcess
from .TrainESRGANProcess import TrainESRGANProcess

View File

@@ -1,5 +1,17 @@
import glob
import os
import numpy as np
import torch
import torch.nn as nn
from safetensors.torch import load_file, save_file
from toolkit.losses import get_gradient_penalty
from toolkit.metadata import get_meta_for_safetensors
from toolkit.optimizer import get_optimizer
from toolkit.train_tools import get_torch_dtype
from typing import TYPE_CHECKING, Union
class MeanReduce(nn.Module):
@@ -36,3 +48,147 @@ class Vgg19Critic(nn.Module):
def forward(self, inputs):
return self.main(inputs)
if TYPE_CHECKING:
from jobs.process.TrainVAEProcess import TrainVAEProcess
from jobs.process.TrainESRGANProcess import TrainESRGANProcess
class Critic:
process: Union['TrainVAEProcess', 'TrainESRGANProcess']
def __init__(
self,
learning_rate=1e-5,
device='cpu',
optimizer='adam',
num_critic_per_gen=1,
dtype='float32',
lambda_gp=10,
start_step=0,
warmup_steps=1000,
process=None,
optimizer_params=None,
):
self.learning_rate = learning_rate
self.device = device
self.optimizer_type = optimizer
self.num_critic_per_gen = num_critic_per_gen
self.dtype = dtype
self.torch_dtype = get_torch_dtype(self.dtype)
self.process = process
self.model = None
self.optimizer = None
self.scheduler = None
self.warmup_steps = warmup_steps
self.start_step = start_step
self.lambda_gp = lambda_gp
if optimizer_params is None:
optimizer_params = {}
self.optimizer_params = optimizer_params
self.print = self.process.print
print(f" Critic config: {self.__dict__}")
def setup(self):
self.model = Vgg19Critic().to(self.device, dtype=self.torch_dtype)
self.load_weights()
self.model.train()
self.model.requires_grad_(True)
params = self.model.parameters()
self.optimizer = get_optimizer(params, self.optimizer_type, self.learning_rate,
optimizer_params=self.optimizer_params)
self.scheduler = torch.optim.lr_scheduler.ConstantLR(
self.optimizer,
total_iters=self.process.max_steps * self.num_critic_per_gen,
factor=1,
verbose=False
)
def load_weights(self):
path_to_load = None
self.print(f"Critic: Looking for latest checkpoint in {self.process.save_root}")
files = glob.glob(os.path.join(self.process.save_root, f"CRITIC_{self.process.job.name}*.safetensors"))
if files and len(files) > 0:
latest_file = max(files, key=os.path.getmtime)
print(f" - Latest checkpoint is: {latest_file}")
path_to_load = latest_file
else:
self.print(f" - No checkpoint found, starting from scratch")
if path_to_load:
self.model.load_state_dict(load_file(path_to_load))
def save(self, step=None):
self.process.update_training_metadata()
save_meta = get_meta_for_safetensors(self.process.meta, self.process.job.name)
step_num = ''
if step is not None:
# zeropad 9 digits
step_num = f"_{str(step).zfill(9)}"
save_path = os.path.join(self.process.save_root, f"CRITIC_{self.process.job.name}{step_num}.safetensors")
save_file(self.model.state_dict(), save_path, save_meta)
self.print(f"Saved critic to {save_path}")
def get_critic_loss(self, vgg_output):
if self.start_step > self.process.step_num:
return torch.tensor(0.0, dtype=self.torch_dtype, device=self.device)
warmup_scaler = 1.0
# we need a warmup when we come on of 1000 steps
# we want to scale the loss by 0.0 at self.start_step steps and 1.0 at self.start_step + warmup_steps
if self.process.step_num < self.start_step + self.warmup_steps:
warmup_scaler = (self.process.step_num - self.start_step) / self.warmup_steps
# set model to not train for generator loss
self.model.eval()
self.model.requires_grad_(False)
vgg_pred, vgg_target = torch.chunk(vgg_output, 2, dim=0)
# run model
stacked_output = self.model(vgg_pred)
return (-torch.mean(stacked_output)) * warmup_scaler
def step(self, vgg_output):
# train critic here
self.model.train()
self.model.requires_grad_(True)
critic_losses = []
for i in range(self.num_critic_per_gen):
inputs = vgg_output.detach()
inputs = inputs.to(self.device, dtype=self.torch_dtype)
self.optimizer.zero_grad()
vgg_pred, vgg_target = torch.chunk(inputs, 2, dim=0)
stacked_output = self.model(inputs)
out_pred, out_target = torch.chunk(stacked_output, 2, dim=0)
# Compute gradient penalty
gradient_penalty = get_gradient_penalty(self.model, vgg_target, vgg_pred, self.device)
# Compute WGAN-GP critic loss
critic_loss = -(torch.mean(out_target) - torch.mean(out_pred)) + self.lambda_gp * gradient_penalty
critic_loss.backward()
self.optimizer.zero_grad()
self.optimizer.step()
self.scheduler.step()
critic_losses.append(critic_loss.item())
# avg loss
loss = np.mean(critic_losses)
return loss
def get_lr(self):
if self.optimizer_type.startswith('dadaptation'):
learning_rate = (
self.optimizer.param_groups[0]["d"] *
self.optimizer.param_groups[0]["lr"]
)
else:
learning_rate = self.optimizer.param_groups[0]['lr']
return learning_rate

View File

@@ -1,10 +1,14 @@
import os
import random
import cv2
import numpy as np
from PIL import Image
from PIL.ImageOps import exif_transpose
from torchvision import transforms
from torch.utils.data import Dataset
from tqdm import tqdm
import albumentations as A
class ImageDataset(Dataset):
@@ -38,7 +42,7 @@ class ImageDataset(Dataset):
self.transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.5], [0.5]),
transforms.Normalize([0.5], [0.5]), # normalize to [-1, 1]
])
def get_config(self, key, default=None, required=False):
@@ -65,7 +69,7 @@ class ImageDataset(Dataset):
if self.random_scale and min_img_size > self.resolution:
if min_img_size < self.resolution:
print(
f"Unexpected values: min_img_size={min_img_size}, self.resolution={self.resolution}, image file={file}")
f"Unexpected values: min_img_size={min_img_size}, self.resolution={self.resolution}, image file={img_path}")
scale_size = self.resolution
else:
scale_size = random.randint(self.resolution, int(min_img_size))
@@ -78,3 +82,61 @@ class ImageDataset(Dataset):
img = self.transform(img)
return img
class Augments:
def __init__(self, **kwargs):
self.method_name = kwargs.get('method', None)
self.params = kwargs.get('params', {})
# convert kwargs enums for cv2
for key, value in self.params.items():
if isinstance(value, str):
# split the string
split_string = value.split('.')
if len(split_string) == 2 and split_string[0] == 'cv2':
if hasattr(cv2, split_string[1]):
self.params[key] = getattr(cv2, split_string[1].upper())
else:
raise ValueError(f"invalid cv2 enum: {split_string[1]}")
class AugmentedImageDataset(ImageDataset):
def __init__(self, config):
super().__init__(config)
self.augmentations = self.get_config('augmentations', [])
self.augmentations = [Augments(**aug) for aug in self.augmentations]
augmentation_list = []
for aug in self.augmentations:
# make sure method name is valid
assert hasattr(A, aug.method_name), f"invalid augmentation method: {aug.method_name}"
# get the method
method = getattr(A, aug.method_name)
# add the method to the list
augmentation_list.append(method(**aug.params))
self.aug_transform = A.Compose(augmentation_list)
self.original_transform = self.transform
# replace transform so we get raw pil image
self.transform = transforms.Compose([])
def __getitem__(self, index):
# get the original image
# image is a PIL image, convert to bgr
pil_image = super().__getitem__(index)
open_cv_image = np.array(pil_image)
# Convert RGB to BGR
open_cv_image = open_cv_image[:, :, ::-1].copy()
# apply augmentations
augmented = self.aug_transform(image=open_cv_image)["image"]
# convert back to RGB tensor
augmented = cv2.cvtColor(augmented, cv2.COLOR_BGR2RGB)
# convert to PIL image
augmented = Image.fromarray(augmented)
# return both # return image as 0 - 1 tensor
return transforms.ToTensor()(pil_image), transforms.ToTensor()(augmented)

51
toolkit/esrgan_utils.py Normal file
View File

@@ -0,0 +1,51 @@
to_basicsr_dict = {
'model.0.weight': 'conv_first.weight',
'model.0.bias': 'conv_first.bias',
'model.1.sub.23.weight': 'conv_body.weight',
'model.1.sub.23.bias': 'conv_body.bias',
'model.3.weight': 'conv_up1.weight',
'model.3.bias': 'conv_up1.bias',
'model.6.weight': 'conv_up2.weight',
'model.6.bias': 'conv_up2.bias',
'model.8.weight': 'conv_hr.weight',
'model.8.bias': 'conv_hr.bias',
'model.10.bias': 'conv_last.bias',
'model.10.weight': 'conv_last.weight',
# 'model.1.sub.0.RDB1.conv1.0.weight': 'body.0.rdb1.conv1.weight'
}
def convert_state_dict_to_basicsr(state_dict):
new_state_dict = {}
for k, v in state_dict.items():
if k in to_basicsr_dict:
new_state_dict[to_basicsr_dict[k]] = v
elif k.startswith('model.1.sub.'):
bsr_name = k.replace('model.1.sub.', 'body.').lower()
bsr_name = bsr_name.replace('.0.weight', '.weight')
bsr_name = bsr_name.replace('.0.bias', '.bias')
new_state_dict[bsr_name] = v
else:
new_state_dict[k] = v
return new_state_dict
# just matching a commonly used format
def convert_basicsr_state_dict_to_save_format(state_dict):
new_state_dict = {}
to_basicsr_dict_values = list(to_basicsr_dict.values())
for k, v in state_dict.items():
if k in to_basicsr_dict_values:
for key, value in to_basicsr_dict.items():
if value == k:
new_state_dict[key] = v
elif k.startswith('body.'):
bsr_name = k.replace('body.', 'model.1.sub.').lower()
bsr_name = bsr_name.replace('rdb', 'RDB')
bsr_name = bsr_name.replace('.weight', '.0.weight')
bsr_name = bsr_name.replace('.bias', '.0.bias')
new_state_dict[bsr_name] = v
else:
new_state_dict[k] = v
return new_state_dict

296
toolkit/models/RRDB.py Normal file
View File

@@ -0,0 +1,296 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import functools
import math
import re
from collections import OrderedDict
import torch
import torch.nn as nn
import torch.nn.functional as F
from . import block as B
# Borrowed from https://github.com/rlaphoenix/VSGAN/blob/master/vsgan/archs/ESRGAN.py
# Which enhanced stuff that was already here
class RRDBNet(nn.Module):
def __init__(
self,
state_dict,
norm=None,
act: str = "leakyrelu",
upsampler: str = "upconv",
mode: B.ConvMode = "CNA",
) -> None:
"""
ESRGAN - Enhanced Super-Resolution Generative Adversarial Networks.
By Xintao Wang, Ke Yu, Shixiang Wu, Jinjin Gu, Yihao Liu, Chao Dong, Yu Qiao,
and Chen Change Loy.
This is old-arch Residual in Residual Dense Block Network and is not
the newest revision that's available at github.com/xinntao/ESRGAN.
This is on purpose, the newest Network has severely limited the
potential use of the Network with no benefits.
This network supports model files from both new and old-arch.
Args:
norm: Normalization layer
act: Activation layer
upsampler: Upsample layer. upconv, pixel_shuffle
mode: Convolution mode
"""
super(RRDBNet, self).__init__()
self.model_arch = "ESRGAN"
self.sub_type = "SR"
self.state = state_dict
self.norm = norm
self.act = act
self.upsampler = upsampler
self.mode = mode
self.state_map = {
# currently supports old, new, and newer RRDBNet arch models
# ESRGAN, BSRGAN/RealSR, Real-ESRGAN
"model.0.weight": ("conv_first.weight",),
"model.0.bias": ("conv_first.bias",),
"model.1.sub./NB/.weight": ("trunk_conv.weight", "conv_body.weight"),
"model.1.sub./NB/.bias": ("trunk_conv.bias", "conv_body.bias"),
r"model.1.sub.\1.RDB\2.conv\3.0.\4": (
r"RRDB_trunk\.(\d+)\.RDB(\d)\.conv(\d+)\.(weight|bias)",
r"body\.(\d+)\.rdb(\d)\.conv(\d+)\.(weight|bias)",
),
}
if "params_ema" in self.state:
self.state = self.state["params_ema"]
# self.model_arch = "RealESRGAN"
self.num_blocks = self.get_num_blocks()
self.plus = any("conv1x1" in k for k in self.state.keys())
if self.plus:
self.model_arch = "ESRGAN+"
self.state = self.new_to_old_arch(self.state)
self.key_arr = list(self.state.keys())
self.in_nc: int = self.state[self.key_arr[0]].shape[1]
self.out_nc: int = self.state[self.key_arr[-1]].shape[0]
self.scale: int = self.get_scale()
self.num_filters: int = self.state[self.key_arr[0]].shape[0]
c2x2 = False
if self.state["model.0.weight"].shape[-2] == 2:
c2x2 = True
self.scale = round(math.sqrt(self.scale / 4))
self.model_arch = "ESRGAN-2c2"
self.supports_fp16 = True
self.supports_bfp16 = True
self.min_size_restriction = None
# Detect if pixelunshuffle was used (Real-ESRGAN)
if self.in_nc in (self.out_nc * 4, self.out_nc * 16) and self.out_nc in (
self.in_nc / 4,
self.in_nc / 16,
):
self.shuffle_factor = int(math.sqrt(self.in_nc / self.out_nc))
else:
self.shuffle_factor = None
upsample_block = {
"upconv": B.upconv_block,
"pixel_shuffle": B.pixelshuffle_block,
}.get(self.upsampler)
if upsample_block is None:
raise NotImplementedError(f"Upsample mode [{self.upsampler}] is not found")
if self.scale == 3:
upsample_blocks = upsample_block(
in_nc=self.num_filters,
out_nc=self.num_filters,
upscale_factor=3,
act_type=self.act,
c2x2=c2x2,
)
else:
upsample_blocks = [
upsample_block(
in_nc=self.num_filters,
out_nc=self.num_filters,
act_type=self.act,
c2x2=c2x2,
)
for _ in range(int(math.log(self.scale, 2)))
]
self.model = B.sequential(
# fea conv
B.conv_block(
in_nc=self.in_nc,
out_nc=self.num_filters,
kernel_size=3,
norm_type=None,
act_type=None,
c2x2=c2x2,
),
B.ShortcutBlock(
B.sequential(
# rrdb blocks
*[
B.RRDB(
nf=self.num_filters,
kernel_size=3,
gc=32,
stride=1,
bias=True,
pad_type="zero",
norm_type=self.norm,
act_type=self.act,
mode="CNA",
plus=self.plus,
c2x2=c2x2,
)
for _ in range(self.num_blocks)
],
# lr conv
B.conv_block(
in_nc=self.num_filters,
out_nc=self.num_filters,
kernel_size=3,
norm_type=self.norm,
act_type=None,
mode=self.mode,
c2x2=c2x2,
),
)
),
*upsample_blocks,
# hr_conv0
B.conv_block(
in_nc=self.num_filters,
out_nc=self.num_filters,
kernel_size=3,
norm_type=None,
act_type=self.act,
c2x2=c2x2,
),
# hr_conv1
B.conv_block(
in_nc=self.num_filters,
out_nc=self.out_nc,
kernel_size=3,
norm_type=None,
act_type=None,
c2x2=c2x2,
),
)
# Adjust these properties for calculations outside of the model
if self.shuffle_factor:
self.in_nc //= self.shuffle_factor ** 2
self.scale //= self.shuffle_factor
self.load_state_dict(self.state, strict=False)
def new_to_old_arch(self, state):
"""Convert a new-arch model state dictionary to an old-arch dictionary."""
if "params_ema" in state:
state = state["params_ema"]
if "conv_first.weight" not in state:
# model is already old arch, this is a loose check, but should be sufficient
return state
# add nb to state keys
for kind in ("weight", "bias"):
self.state_map[f"model.1.sub.{self.num_blocks}.{kind}"] = self.state_map[
f"model.1.sub./NB/.{kind}"
]
del self.state_map[f"model.1.sub./NB/.{kind}"]
old_state = OrderedDict()
for old_key, new_keys in self.state_map.items():
for new_key in new_keys:
if r"\1" in old_key:
for k, v in state.items():
sub = re.sub(new_key, old_key, k)
if sub != k:
old_state[sub] = v
else:
if new_key in state:
old_state[old_key] = state[new_key]
# upconv layers
max_upconv = 0
for key in state.keys():
match = re.match(r"(upconv|conv_up)(\d)\.(weight|bias)", key)
if match is not None:
_, key_num, key_type = match.groups()
old_state[f"model.{int(key_num) * 3}.{key_type}"] = state[key]
max_upconv = max(max_upconv, int(key_num) * 3)
# final layers
for key in state.keys():
if key in ("HRconv.weight", "conv_hr.weight"):
old_state[f"model.{max_upconv + 2}.weight"] = state[key]
elif key in ("HRconv.bias", "conv_hr.bias"):
old_state[f"model.{max_upconv + 2}.bias"] = state[key]
elif key in ("conv_last.weight",):
old_state[f"model.{max_upconv + 4}.weight"] = state[key]
elif key in ("conv_last.bias",):
old_state[f"model.{max_upconv + 4}.bias"] = state[key]
# Sort by first numeric value of each layer
def compare(item1, item2):
parts1 = item1.split(".")
parts2 = item2.split(".")
int1 = int(parts1[1])
int2 = int(parts2[1])
return int1 - int2
sorted_keys = sorted(old_state.keys(), key=functools.cmp_to_key(compare))
# Rebuild the output dict in the right order
out_dict = OrderedDict((k, old_state[k]) for k in sorted_keys)
return out_dict
def get_scale(self, min_part: int = 6) -> int:
n = 0
for part in list(self.state):
parts = part.split(".")[1:]
if len(parts) == 2:
part_num = int(parts[0])
if part_num > min_part and parts[1] == "weight":
n += 1
return 2 ** n
def get_num_blocks(self) -> int:
nbs = []
state_keys = self.state_map[r"model.1.sub.\1.RDB\2.conv\3.0.\4"] + (
r"model\.\d+\.sub\.(\d+)\.RDB(\d+)\.conv(\d+)\.0\.(weight|bias)",
)
for state_key in state_keys:
for k in self.state:
m = re.search(state_key, k)
if m:
nbs.append(int(m.group(1)))
if nbs:
break
return max(*nbs) + 1
def forward(self, x):
if self.shuffle_factor:
_, _, h, w = x.size()
mod_pad_h = (
self.shuffle_factor - h % self.shuffle_factor
) % self.shuffle_factor
mod_pad_w = (
self.shuffle_factor - w % self.shuffle_factor
) % self.shuffle_factor
x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), "reflect")
x = torch.pixel_unshuffle(x, downscale_factor=self.shuffle_factor)
x = self.model(x)
return x[:, :, : h * self.scale, : w * self.scale]
return self.model(x)

549
toolkit/models/block.py Normal file
View File

@@ -0,0 +1,549 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
from __future__ import annotations
from collections import OrderedDict
try:
from typing import Literal
except ImportError:
from typing_extensions import Literal
import torch
import torch.nn as nn
####################
# Basic blocks
####################
def act(act_type: str, inplace=True, neg_slope=0.2, n_prelu=1):
# helper selecting activation
# neg_slope: for leakyrelu and init of prelu
# n_prelu: for p_relu num_parameters
act_type = act_type.lower()
if act_type == "relu":
layer = nn.ReLU(inplace)
elif act_type == "leakyrelu":
layer = nn.LeakyReLU(neg_slope, inplace)
elif act_type == "prelu":
layer = nn.PReLU(num_parameters=n_prelu, init=neg_slope)
else:
raise NotImplementedError(
"activation layer [{:s}] is not found".format(act_type)
)
return layer
def norm(norm_type: str, nc: int):
# helper selecting normalization layer
norm_type = norm_type.lower()
if norm_type == "batch":
layer = nn.BatchNorm2d(nc, affine=True)
elif norm_type == "instance":
layer = nn.InstanceNorm2d(nc, affine=False)
else:
raise NotImplementedError(
"normalization layer [{:s}] is not found".format(norm_type)
)
return layer
def pad(pad_type: str, padding):
# helper selecting padding layer
# if padding is 'zero', do by conv layers
pad_type = pad_type.lower()
if padding == 0:
return None
if pad_type == "reflect":
layer = nn.ReflectionPad2d(padding)
elif pad_type == "replicate":
layer = nn.ReplicationPad2d(padding)
else:
raise NotImplementedError(
"padding layer [{:s}] is not implemented".format(pad_type)
)
return layer
def get_valid_padding(kernel_size, dilation):
kernel_size = kernel_size + (kernel_size - 1) * (dilation - 1)
padding = (kernel_size - 1) // 2
return padding
class ConcatBlock(nn.Module):
# Concat the output of a submodule to its input
def __init__(self, submodule):
super(ConcatBlock, self).__init__()
self.sub = submodule
def forward(self, x):
output = torch.cat((x, self.sub(x)), dim=1)
return output
def __repr__(self):
tmpstr = "Identity .. \n|"
modstr = self.sub.__repr__().replace("\n", "\n|")
tmpstr = tmpstr + modstr
return tmpstr
class ShortcutBlock(nn.Module):
# Elementwise sum the output of a submodule to its input
def __init__(self, submodule):
super(ShortcutBlock, self).__init__()
self.sub = submodule
def forward(self, x):
output = x + self.sub(x)
return output
def __repr__(self):
tmpstr = "Identity + \n|"
modstr = self.sub.__repr__().replace("\n", "\n|")
tmpstr = tmpstr + modstr
return tmpstr
class ShortcutBlockSPSR(nn.Module):
# Elementwise sum the output of a submodule to its input
def __init__(self, submodule):
super(ShortcutBlockSPSR, self).__init__()
self.sub = submodule
def forward(self, x):
return x, self.sub
def __repr__(self):
tmpstr = "Identity + \n|"
modstr = self.sub.__repr__().replace("\n", "\n|")
tmpstr = tmpstr + modstr
return tmpstr
def sequential(*args):
# Flatten Sequential. It unwraps nn.Sequential.
if len(args) == 1:
if isinstance(args[0], OrderedDict):
raise NotImplementedError("sequential does not support OrderedDict input.")
return args[0] # No sequential is needed.
modules = []
for module in args:
if isinstance(module, nn.Sequential):
for submodule in module.children():
modules.append(submodule)
elif isinstance(module, nn.Module):
modules.append(module)
return nn.Sequential(*modules)
ConvMode = Literal["CNA", "NAC", "CNAC"]
# 2x2x2 Conv Block
def conv_block_2c2(
in_nc,
out_nc,
act_type="relu",
):
return sequential(
nn.Conv2d(in_nc, out_nc, kernel_size=2, padding=1),
nn.Conv2d(out_nc, out_nc, kernel_size=2, padding=0),
act(act_type) if act_type else None,
)
def conv_block(
in_nc: int,
out_nc: int,
kernel_size,
stride=1,
dilation=1,
groups=1,
bias=True,
pad_type="zero",
norm_type: str | None = None,
act_type: str | None = "relu",
mode: ConvMode = "CNA",
c2x2=False,
):
"""
Conv layer with padding, normalization, activation
mode: CNA --> Conv -> Norm -> Act
NAC --> Norm -> Act --> Conv (Identity Mappings in Deep Residual Networks, ECCV16)
"""
if c2x2:
return conv_block_2c2(in_nc, out_nc, act_type=act_type)
assert mode in ("CNA", "NAC", "CNAC"), "Wrong conv mode [{:s}]".format(mode)
padding = get_valid_padding(kernel_size, dilation)
p = pad(pad_type, padding) if pad_type and pad_type != "zero" else None
padding = padding if pad_type == "zero" else 0
c = nn.Conv2d(
in_nc,
out_nc,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
bias=bias,
groups=groups,
)
a = act(act_type) if act_type else None
if mode in ("CNA", "CNAC"):
n = norm(norm_type, out_nc) if norm_type else None
return sequential(p, c, n, a)
elif mode == "NAC":
if norm_type is None and act_type is not None:
a = act(act_type, inplace=False)
# Important!
# input----ReLU(inplace)----Conv--+----output
# |________________________|
# inplace ReLU will modify the input, therefore wrong output
n = norm(norm_type, in_nc) if norm_type else None
return sequential(n, a, p, c)
else:
assert False, f"Invalid conv mode {mode}"
####################
# Useful blocks
####################
class ResNetBlock(nn.Module):
"""
ResNet Block, 3-3 style
with extra residual scaling used in EDSR
(Enhanced Deep Residual Networks for Single Image Super-Resolution, CVPRW 17)
"""
def __init__(
self,
in_nc,
mid_nc,
out_nc,
kernel_size=3,
stride=1,
dilation=1,
groups=1,
bias=True,
pad_type="zero",
norm_type=None,
act_type="relu",
mode: ConvMode = "CNA",
res_scale=1,
):
super(ResNetBlock, self).__init__()
conv0 = conv_block(
in_nc,
mid_nc,
kernel_size,
stride,
dilation,
groups,
bias,
pad_type,
norm_type,
act_type,
mode,
)
if mode == "CNA":
act_type = None
if mode == "CNAC": # Residual path: |-CNAC-|
act_type = None
norm_type = None
conv1 = conv_block(
mid_nc,
out_nc,
kernel_size,
stride,
dilation,
groups,
bias,
pad_type,
norm_type,
act_type,
mode,
)
# if in_nc != out_nc:
# self.project = conv_block(in_nc, out_nc, 1, stride, dilation, 1, bias, pad_type, \
# None, None)
# print('Need a projecter in ResNetBlock.')
# else:
# self.project = lambda x:x
self.res = sequential(conv0, conv1)
self.res_scale = res_scale
def forward(self, x):
res = self.res(x).mul(self.res_scale)
return x + res
class RRDB(nn.Module):
"""
Residual in Residual Dense Block
(ESRGAN: Enhanced Super-Resolution Generative Adversarial Networks)
"""
def __init__(
self,
nf,
kernel_size=3,
gc=32,
stride=1,
bias: bool = True,
pad_type="zero",
norm_type=None,
act_type="leakyrelu",
mode: ConvMode = "CNA",
_convtype="Conv2D",
_spectral_norm=False,
plus=False,
c2x2=False,
):
super(RRDB, self).__init__()
self.RDB1 = ResidualDenseBlock_5C(
nf,
kernel_size,
gc,
stride,
bias,
pad_type,
norm_type,
act_type,
mode,
plus=plus,
c2x2=c2x2,
)
self.RDB2 = ResidualDenseBlock_5C(
nf,
kernel_size,
gc,
stride,
bias,
pad_type,
norm_type,
act_type,
mode,
plus=plus,
c2x2=c2x2,
)
self.RDB3 = ResidualDenseBlock_5C(
nf,
kernel_size,
gc,
stride,
bias,
pad_type,
norm_type,
act_type,
mode,
plus=plus,
c2x2=c2x2,
)
def forward(self, x):
out = self.RDB1(x)
out = self.RDB2(out)
out = self.RDB3(out)
return out * 0.2 + x
class ResidualDenseBlock_5C(nn.Module):
"""
Residual Dense Block
style: 5 convs
The core module of paper: (Residual Dense Network for Image Super-Resolution, CVPR 18)
Modified options that can be used:
- "Partial Convolution based Padding" arXiv:1811.11718
- "Spectral normalization" arXiv:1802.05957
- "ICASSP 2020 - ESRGAN+ : Further Improving ESRGAN" N. C.
{Rakotonirina} and A. {Rasoanaivo}
Args:
nf (int): Channel number of intermediate features (num_feat).
gc (int): Channels for each growth (num_grow_ch: growth channel,
i.e. intermediate channels).
convtype (str): the type of convolution to use. Default: 'Conv2D'
gaussian_noise (bool): enable the ESRGAN+ gaussian noise (no new
trainable parameters)
plus (bool): enable the additional residual paths from ESRGAN+
(adds trainable parameters)
"""
def __init__(
self,
nf=64,
kernel_size=3,
gc=32,
stride=1,
bias: bool = True,
pad_type="zero",
norm_type=None,
act_type="leakyrelu",
mode: ConvMode = "CNA",
plus=False,
c2x2=False,
):
super(ResidualDenseBlock_5C, self).__init__()
## +
self.conv1x1 = conv1x1(nf, gc) if plus else None
## +
self.conv1 = conv_block(
nf,
gc,
kernel_size,
stride,
bias=bias,
pad_type=pad_type,
norm_type=norm_type,
act_type=act_type,
mode=mode,
c2x2=c2x2,
)
self.conv2 = conv_block(
nf + gc,
gc,
kernel_size,
stride,
bias=bias,
pad_type=pad_type,
norm_type=norm_type,
act_type=act_type,
mode=mode,
c2x2=c2x2,
)
self.conv3 = conv_block(
nf + 2 * gc,
gc,
kernel_size,
stride,
bias=bias,
pad_type=pad_type,
norm_type=norm_type,
act_type=act_type,
mode=mode,
c2x2=c2x2,
)
self.conv4 = conv_block(
nf + 3 * gc,
gc,
kernel_size,
stride,
bias=bias,
pad_type=pad_type,
norm_type=norm_type,
act_type=act_type,
mode=mode,
c2x2=c2x2,
)
if mode == "CNA":
last_act = None
else:
last_act = act_type
self.conv5 = conv_block(
nf + 4 * gc,
nf,
3,
stride,
bias=bias,
pad_type=pad_type,
norm_type=norm_type,
act_type=last_act,
mode=mode,
c2x2=c2x2,
)
def forward(self, x):
x1 = self.conv1(x)
x2 = self.conv2(torch.cat((x, x1), 1))
if self.conv1x1:
# pylint: disable=not-callable
x2 = x2 + self.conv1x1(x) # +
x3 = self.conv3(torch.cat((x, x1, x2), 1))
x4 = self.conv4(torch.cat((x, x1, x2, x3), 1))
if self.conv1x1:
x4 = x4 + x2 # +
x5 = self.conv5(torch.cat((x, x1, x2, x3, x4), 1))
return x5 * 0.2 + x
def conv1x1(in_planes, out_planes, stride=1):
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
####################
# Upsampler
####################
def pixelshuffle_block(
in_nc: int,
out_nc: int,
upscale_factor=2,
kernel_size=3,
stride=1,
bias=True,
pad_type="zero",
norm_type: str | None = None,
act_type="relu",
):
"""
Pixel shuffle layer
(Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional
Neural Network, CVPR17)
"""
conv = conv_block(
in_nc,
out_nc * (upscale_factor ** 2),
kernel_size,
stride,
bias=bias,
pad_type=pad_type,
norm_type=None,
act_type=None,
)
pixel_shuffle = nn.PixelShuffle(upscale_factor)
n = norm(norm_type, out_nc) if norm_type else None
a = act(act_type) if act_type else None
return sequential(conv, pixel_shuffle, n, a)
def upconv_block(
in_nc: int,
out_nc: int,
upscale_factor=2,
kernel_size=3,
stride=1,
bias=True,
pad_type="zero",
norm_type: str | None = None,
act_type="relu",
mode="nearest",
c2x2=False,
):
# Up conv
# described in https://distill.pub/2016/deconv-checkerboard/
# convert to float 16 if is bfloat16
upsample = nn.Upsample(scale_factor=upscale_factor, mode=mode)
conv = conv_block(
in_nc,
out_nc,
kernel_size,
stride,
bias=bias,
pad_type=pad_type,
norm_type=norm_type,
act_type=act_type,
c2x2=c2x2,
)
return sequential(upsample, conv)