mirror of
https://github.com/ostris/ai-toolkit.git
synced 2026-01-26 16:39:47 +00:00
Initial but untested support for qwen_image
This commit is contained in:
@@ -4,6 +4,7 @@ from .f_light import FLiteModel
|
||||
from .omnigen2 import OmniGen2Model
|
||||
from .flux_kontext import FluxKontextModel
|
||||
from .wan22 import Wan22Model
|
||||
from .qwen_image import QwenImageModel
|
||||
|
||||
AI_TOOLKIT_MODELS = [
|
||||
# put a list of models here
|
||||
@@ -14,4 +15,5 @@ AI_TOOLKIT_MODELS = [
|
||||
OmniGen2Model,
|
||||
FluxKontextModel,
|
||||
Wan22Model,
|
||||
QwenImageModel,
|
||||
]
|
||||
|
||||
@@ -0,0 +1 @@
|
||||
from .qwen_image import QwenImageModel
|
||||
323
extensions_built_in/diffusion_models/qwen_image/qwen_image.py
Normal file
323
extensions_built_in/diffusion_models/qwen_image/qwen_image.py
Normal file
@@ -0,0 +1,323 @@
|
||||
import os
|
||||
from typing import TYPE_CHECKING, List, Optional
|
||||
|
||||
import torch
|
||||
import yaml
|
||||
from toolkit import train_tools
|
||||
from toolkit.config_modules import GenerateImageConfig, ModelConfig
|
||||
from PIL import Image
|
||||
from toolkit.models.base_model import BaseModel
|
||||
from toolkit.basic import flush
|
||||
from toolkit.prompt_utils import PromptEmbeds
|
||||
from toolkit.samplers.custom_flowmatch_sampler import CustomFlowMatchEulerDiscreteScheduler
|
||||
from toolkit.dequantize import patch_dequantization_on_save
|
||||
from toolkit.accelerator import get_accelerator, unwrap_model
|
||||
from optimum.quanto import freeze, QTensor
|
||||
from toolkit.util.quantize import quantize, get_qtype
|
||||
import torch.nn.functional as F
|
||||
|
||||
from diffusers import QwenImagePipeline, QwenImageTransformer2DModel, AutoencoderKLQwenImage
|
||||
from transformers import Qwen2_5_VLForConditionalGeneration, Qwen2Tokenizer
|
||||
from tqdm import tqdm
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO
|
||||
|
||||
scheduler_config = {
|
||||
"base_image_seq_len": 256,
|
||||
"base_shift": 0.5,
|
||||
"invert_sigmas": False,
|
||||
"max_image_seq_len": 8192,
|
||||
"max_shift": 0.9,
|
||||
"num_train_timesteps": 1000,
|
||||
"shift": 1.0,
|
||||
"shift_terminal": 0.02,
|
||||
"stochastic_sampling": False,
|
||||
"time_shift_type": "exponential",
|
||||
"use_beta_sigmas": False,
|
||||
"use_dynamic_shifting": True,
|
||||
"use_exponential_sigmas": False,
|
||||
"use_karras_sigmas": False
|
||||
}
|
||||
|
||||
|
||||
|
||||
class QwenImageModel(BaseModel):
|
||||
arch = "qwen_image"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
device,
|
||||
model_config: ModelConfig,
|
||||
dtype='bf16',
|
||||
custom_pipeline=None,
|
||||
noise_scheduler=None,
|
||||
**kwargs
|
||||
):
|
||||
super().__init__(
|
||||
device,
|
||||
model_config,
|
||||
dtype,
|
||||
custom_pipeline,
|
||||
noise_scheduler,
|
||||
**kwargs
|
||||
)
|
||||
self.is_flow_matching = True
|
||||
self.is_transformer = True
|
||||
self.target_lora_modules = ['QwenImageTransformer2DModel']
|
||||
|
||||
# static method to get the noise scheduler
|
||||
@staticmethod
|
||||
def get_train_scheduler():
|
||||
return CustomFlowMatchEulerDiscreteScheduler(**scheduler_config)
|
||||
|
||||
def get_bucket_divisibility(self):
|
||||
return 16 * 2 # 16 for the VAE, 2 for patch size
|
||||
|
||||
def load_model(self):
|
||||
dtype = self.torch_dtype
|
||||
self.print_and_status_update("Loading Qwen Image model")
|
||||
model_path = self.model_config.name_or_path
|
||||
base_model_path = self.model_config.extras_name_or_path
|
||||
|
||||
transformer_path = model_path
|
||||
transformer_subfolder = 'transformer'
|
||||
if os.path.exists(transformer_path):
|
||||
transformer_subfolder = None
|
||||
transformer_path = os.path.join(transformer_path, 'transformer')
|
||||
# check if the path is a full checkpoint.
|
||||
te_folder_path = os.path.join(model_path, 'text_encoder')
|
||||
# if we have the te, this folder is a full checkpoint, use it as the base
|
||||
if os.path.exists(te_folder_path):
|
||||
base_model_path = model_path
|
||||
|
||||
self.print_and_status_update("Loading transformer")
|
||||
transformer = QwenImageTransformer2DModel.from_pretrained(
|
||||
transformer_path,
|
||||
subfolder=transformer_subfolder,
|
||||
torch_dtype=dtype
|
||||
)
|
||||
# transformer.to(self.quantize_device, dtype=dtype)
|
||||
|
||||
if self.model_config.quantize:
|
||||
# patch the state dict method
|
||||
patch_dequantization_on_save(transformer)
|
||||
# quantization_type = get_qtype(self.model_config.qtype)
|
||||
# self.print_and_status_update("Quantizing transformer")
|
||||
# quantize(transformer, weights=quantization_type,
|
||||
# **self.model_config.quantize_kwargs)
|
||||
# freeze(transformer)
|
||||
# transformer.to(self.device_torch)
|
||||
# move and quantize only certain pieces at a time.
|
||||
quantization_type = get_qtype(self.model_config.qtype)
|
||||
all_blocks = list(transformer.transformer_blocks)
|
||||
self.print_and_status_update(" - quantizing transformer blocks")
|
||||
for block in tqdm(all_blocks):
|
||||
block.to(self.device_torch, dtype=dtype)
|
||||
quantize(block, weights=quantization_type)
|
||||
freeze(block)
|
||||
block.to('cpu')
|
||||
# flush()
|
||||
|
||||
self.print_and_status_update(" - quantizing extras")
|
||||
transformer.to(self.device_torch, dtype=dtype)
|
||||
quantize(transformer, weights=quantization_type)
|
||||
freeze(transformer)
|
||||
|
||||
if self.model_config.low_vram:
|
||||
self.print_and_status_update("Moving transformer to CPU")
|
||||
transformer.to('cpu')
|
||||
|
||||
flush()
|
||||
|
||||
self.print_and_status_update("Text Encoder")
|
||||
tokenizer = Qwen2Tokenizer.from_pretrained(
|
||||
base_model_path, subfolder="tokenizer", torch_dtype=dtype
|
||||
)
|
||||
text_encoder = Qwen2_5_VLForConditionalGeneration.from_pretrained(
|
||||
base_model_path, subfolder="text_encoder", torch_dtype=dtype
|
||||
)
|
||||
text_encoder.to(self.device_torch, dtype=dtype)
|
||||
flush()
|
||||
|
||||
if self.model_config.quantize_te:
|
||||
self.print_and_status_update("Quantizing Text Encoder")
|
||||
quantize(text_encoder, weights=get_qtype(
|
||||
self.model_config.qtype))
|
||||
freeze(text_encoder)
|
||||
flush()
|
||||
|
||||
self.print_and_status_update("Loading VAE")
|
||||
vae = AutoencoderKLQwenImage.from_pretrained(
|
||||
base_model_path, subfolder="vae", torch_dtype=dtype)
|
||||
|
||||
self.noise_scheduler = QwenImageModel.get_train_scheduler()
|
||||
|
||||
self.print_and_status_update("Making pipe")
|
||||
|
||||
pipe: QwenImagePipeline = QwenImagePipeline(
|
||||
scheduler=self.noise_scheduler,
|
||||
text_encoder=None,
|
||||
tokenizer=tokenizer,
|
||||
vae=vae,
|
||||
transformer=None,
|
||||
)
|
||||
# for quantization, it works best to do these after making the pipe
|
||||
pipe.text_encoder = text_encoder
|
||||
pipe.transformer = transformer
|
||||
|
||||
self.print_and_status_update("Preparing Model")
|
||||
|
||||
text_encoder = [pipe.text_encoder]
|
||||
tokenizer = [pipe.tokenizer]
|
||||
|
||||
pipe.transformer = pipe.transformer.to(self.device_torch)
|
||||
|
||||
flush()
|
||||
# just to make sure everything is on the right device and dtype
|
||||
text_encoder[0].to(self.device_torch)
|
||||
text_encoder[0].requires_grad_(False)
|
||||
text_encoder[0].eval()
|
||||
pipe.transformer = pipe.transformer.to(self.device_torch)
|
||||
flush()
|
||||
|
||||
# save it to the model class
|
||||
self.vae = vae
|
||||
self.text_encoder = text_encoder # list of text encoders
|
||||
self.tokenizer = tokenizer # list of tokenizers
|
||||
self.model = pipe.transformer
|
||||
self.pipeline = pipe
|
||||
self.print_and_status_update("Model Loaded")
|
||||
|
||||
def get_generation_pipeline(self):
|
||||
scheduler = QwenImageModel.get_train_scheduler()
|
||||
|
||||
pipeline: QwenImagePipeline = QwenImagePipeline(
|
||||
scheduler=scheduler,
|
||||
text_encoder=unwrap_model(self.text_encoder[0]),
|
||||
tokenizer=self.tokenizer[0],
|
||||
vae=unwrap_model(self.vae),
|
||||
transformer=unwrap_model(self.transformer)
|
||||
)
|
||||
|
||||
pipeline = pipeline.to(self.device_torch)
|
||||
|
||||
return pipeline
|
||||
|
||||
def generate_single_image(
|
||||
self,
|
||||
pipeline: QwenImagePipeline,
|
||||
gen_config: GenerateImageConfig,
|
||||
conditional_embeds: PromptEmbeds,
|
||||
unconditional_embeds: PromptEmbeds,
|
||||
generator: torch.Generator,
|
||||
extra: dict,
|
||||
):
|
||||
control_img = None
|
||||
if gen_config.ctrl_img is not None:
|
||||
raise NotImplementedError(
|
||||
"Control image generation is not supported in Qwen Image model... yet"
|
||||
)
|
||||
control_img = Image.open(gen_config.ctrl_img)
|
||||
control_img = control_img.convert("RGB")
|
||||
# resize to width and height
|
||||
if control_img.size != (gen_config.width, gen_config.height):
|
||||
control_img = control_img.resize(
|
||||
(gen_config.width, gen_config.height), Image.BILINEAR
|
||||
)
|
||||
sc = self.get_bucket_divisibility()
|
||||
gen_config.width = int(gen_config.width // sc * sc)
|
||||
gen_config.height = int(gen_config.height // sc * sc)
|
||||
img = pipeline(
|
||||
image=control_img,
|
||||
prompt_embeds=conditional_embeds.text_embeds,
|
||||
prompt_embeds_mask=conditional_embeds.attention_mask,
|
||||
negative_prompt_embeds=unconditional_embeds.text_embeds,
|
||||
negative_prompt_embeds_mask=unconditional_embeds.attention_mask,
|
||||
height=gen_config.height,
|
||||
width=gen_config.width,
|
||||
num_inference_steps=gen_config.num_inference_steps,
|
||||
true_cfg_scale=gen_config.guidance_scale,
|
||||
latents=gen_config.latents,
|
||||
generator=generator,
|
||||
**extra
|
||||
).images[0]
|
||||
return img
|
||||
|
||||
def get_noise_prediction(
|
||||
self,
|
||||
latent_model_input: torch.Tensor,
|
||||
timestep: torch.Tensor, # 0 to 1000 scale
|
||||
text_embeddings: PromptEmbeds,
|
||||
**kwargs
|
||||
):
|
||||
noise_pred = self.transformer(
|
||||
hidden_states=latent_model_input.to(self.device_torch, self.torch_dtype),
|
||||
timestep=timestep / 1000,
|
||||
guidance=None,
|
||||
encoder_hidden_states=text_embeddings.text_embeds.to(self.device_torch),
|
||||
encoder_hidden_states_mask=text_embeddings.attention_mask.to(self.device_torch),
|
||||
return_dict=False,
|
||||
**kwargs,
|
||||
)[0]
|
||||
|
||||
return noise_pred
|
||||
|
||||
def get_prompt_embeds(self, prompt: str) -> PromptEmbeds:
|
||||
if self.pipeline.text_encoder.device != self.device_torch:
|
||||
self.pipeline.text_encoder.to(self.device_torch)
|
||||
|
||||
prompt_embeds, prompt_embeds_mask = self.pipeline.encode_prompt(
|
||||
prompt,
|
||||
device=self.device_torch,
|
||||
num_images_per_prompt=1,
|
||||
)
|
||||
pe = PromptEmbeds(
|
||||
prompt_embeds
|
||||
)
|
||||
pe.attention_mask = prompt_embeds_mask
|
||||
return pe
|
||||
|
||||
def get_model_has_grad(self):
|
||||
return False
|
||||
|
||||
def get_te_has_grad(self):
|
||||
return False
|
||||
|
||||
def save_model(self, output_path, meta, save_dtype):
|
||||
# only save the unet
|
||||
transformer: QwenImageTransformer2DModel = unwrap_model(self.model)
|
||||
transformer.save_pretrained(
|
||||
save_directory=os.path.join(output_path, 'transformer'),
|
||||
safe_serialization=True,
|
||||
)
|
||||
|
||||
meta_path = os.path.join(output_path, 'aitk_meta.yaml')
|
||||
with open(meta_path, 'w') as f:
|
||||
yaml.dump(meta, f)
|
||||
|
||||
def get_loss_target(self, *args, **kwargs):
|
||||
noise = kwargs.get('noise')
|
||||
batch = kwargs.get('batch')
|
||||
return (noise - batch.latents).detach()
|
||||
|
||||
|
||||
def get_base_model_version(self):
|
||||
return "qwen_image"
|
||||
|
||||
def get_transformer_block_names(self) -> Optional[List[str]]:
|
||||
return ['transformer_blocks']
|
||||
|
||||
def convert_lora_weights_before_save(self, state_dict):
|
||||
new_sd = {}
|
||||
for key, value in state_dict.items():
|
||||
new_key = key.replace("transformer.", "diffusion_model.")
|
||||
new_sd[new_key] = value
|
||||
return new_sd
|
||||
|
||||
def convert_lora_weights_before_load(self, state_dict):
|
||||
new_sd = {}
|
||||
for key, value in state_dict.items():
|
||||
new_key = key.replace("diffusion_model.", "transformer.")
|
||||
new_sd[new_key] = value
|
||||
return new_sd
|
||||
@@ -1,7 +1,7 @@
|
||||
torchao==0.10.0
|
||||
safetensors
|
||||
git+https://github.com/jaretburkett/easy_dwpose.git
|
||||
git+https://github.com/huggingface/diffusers@56d438727036b0918b30bbe3110c5fe1634ed19d
|
||||
git+https://github.com/huggingface/diffusers@7ea065c5070a5278259e6f1effa9dccea232e62a
|
||||
transformers==4.52.4
|
||||
lycoris-lora==1.8.3
|
||||
flatten_json
|
||||
|
||||
@@ -95,4 +95,4 @@ def quantize(
|
||||
activations=activations, optimizer=optimizer)
|
||||
except Exception as e:
|
||||
print(f"Failed to quantize {name}: {e}")
|
||||
raise e
|
||||
# raise e
|
||||
Reference in New Issue
Block a user