Bug fixes, speed improvements, compatability adjustments withdiffusers updates

This commit is contained in:
Jaret Burkett
2023-09-13 07:03:53 -06:00
parent d8d1e6fd1e
commit ae70200d3c
8 changed files with 52 additions and 11 deletions

View File

@@ -8,6 +8,7 @@ from typing import Union
# from lycoris.config import PRESET
from torch.utils.data import DataLoader
from toolkit.basic import value_map
from toolkit.data_loader import get_dataloader_from_datasets
from toolkit.data_transfer_object.data_loader import FileItemDTO, DataLoaderBatchDTO
from toolkit.embedding import Embedding
@@ -401,10 +402,35 @@ class BaseSDTrainProcess(BaseTrainProcess):
batch_size = latents.shape[0]
self.sd.noise_scheduler.set_timesteps(
self.train_config.max_denoising_steps, device=self.device_torch
1000, device=self.device_torch
)
if self.train_config.use_progressive_denoising:
min_timestep = int(value_map(
self.step_num,
min_in=0,
max_in=self.train_config.max_denoising_steps,
min_out=self.train_config.min_denoising_steps,
max_out=self.train_config.max_denoising_steps
))
timesteps = torch.randint(0, self.train_config.max_denoising_steps, (batch_size,), device=self.device_torch)
elif self.train_config.use_linear_denoising:
# starts at max steps and walks down to min steps
min_timestep = int(value_map(
self.step_num,
min_in=0,
max_in=self.train_config.max_denoising_steps,
min_out=self.train_config.max_denoising_steps - 1,
max_out=self.train_config.min_denoising_steps
))
else:
min_timestep = self.train_config.min_denoising_steps
timesteps = torch.randint(
min_timestep,
self.train_config.max_denoising_steps,
(batch_size,),
device=self.device_torch
)
timesteps = timesteps.long()
# get noise
@@ -760,7 +786,7 @@ class BaseSDTrainProcess(BaseTrainProcess):
# setup the networks to gradient checkpointing and everything works
with torch.no_grad():
torch.cuda.empty_cache()
# torch.cuda.empty_cache()
if self.train_config.optimizer.lower().startswith('dadaptation') or \
self.train_config.optimizer.lower().startswith('prodigy'):
learning_rate = (
@@ -814,8 +840,8 @@ class BaseSDTrainProcess(BaseTrainProcess):
batch.cleanup()
# flush every 10 steps
if self.step_num % 10 == 0:
flush()
# if self.step_num % 10 == 0:
# flush()
self.progress_bar.close()
self.sample(self.step_num + 1)

View File

@@ -1,8 +1,10 @@
import random
from datetime import datetime
import os
from collections import OrderedDict
from typing import TYPE_CHECKING, Union
import torch
import yaml
from jobs.process.BaseProcess import BaseProcess
@@ -28,6 +30,14 @@ class BaseTrainProcess(BaseProcess):
self.job: Union['TrainJob', 'BaseJob', 'ExtensionJob']
self.progress_bar: 'tqdm' = None
self.training_seed = self.get_conf('training_seed', self.job.training_seed if hasattr(self.job, 'training_seed') else None)
# if training seed is set, use it
if self.training_seed is not None:
torch.manual_seed(self.training_seed)
if torch.cuda.is_available():
torch.cuda.manual_seed(self.training_seed)
random.seed(self.training_seed)
self.progress_bar = None
self.writer = None
self.training_folder = self.get_conf('training_folder',

2
run.py
View File

@@ -4,7 +4,7 @@ from typing import Union, OrderedDict
sys.path.insert(0, os.getcwd())
# must come before ANY torch or fastai imports
import toolkit.cuda_malloc
# import toolkit.cuda_malloc
import argparse
from toolkit.job import get_job

View File

@@ -77,7 +77,10 @@ class TrainConfig:
self.optimizer_params = kwargs.get('optimizer_params', {})
self.lr_scheduler = kwargs.get('lr_scheduler', 'constant')
self.lr_scheduler_params = kwargs.get('lr_scheduler_params', {})
self.min_denoising_steps: int = kwargs.get('min_denoising_steps', 0)
self.max_denoising_steps: int = kwargs.get('max_denoising_steps', 1000)
self.use_linear_denoising: int = kwargs.get('use_linear_denoising', False)
self.use_progressive_denoising: int = kwargs.get('use_progressive_denoising', False)
self.batch_size: int = kwargs.get('batch_size', 1)
self.dtype: str = kwargs.get('dtype', 'fp32')
self.xformers = kwargs.get('xformers', False)

View File

@@ -418,7 +418,6 @@ class AiToolkitDataset(LatentCachingMixin, BucketsMixin, CaptionMixin, Dataset):
file_item.load_caption(self.caption_dict)
return file_item
@lru_cache(maxsize=300)
def __getitem__(self, item):
if self.dataset_config.buckets:
# for buckets we collate ourselves for now

View File

@@ -53,7 +53,7 @@ class FileItemDTO(LatentCachingFileItemDTOMixin, CaptionProcessingDTOMixin, Imag
self.tensor: Union[torch.Tensor, None] = None
def cleanup(self):
del self.tensor
self.tensor = None
self.cleanup_latent()

View File

@@ -334,6 +334,9 @@ class ToolkitNetworkMixin:
@multiplier.setter
def multiplier(self, value: Union[float, List[float]]):
# only update if the value has changed
if self._multiplier == value:
return
self._multiplier = value
self._update_lora_multiplier()

View File

@@ -138,9 +138,9 @@ class StableDiffusion:
self.noise_scheduler = scheduler
# move the betas alphas and alphas_cumprod to device. Sometimed they get stuck on cpu, not sure why
self.noise_scheduler.betas = self.noise_scheduler.betas.to(self.device_torch)
self.noise_scheduler.alphas = self.noise_scheduler.alphas.to(self.device_torch)
self.noise_scheduler.alphas_cumprod = self.noise_scheduler.alphas_cumprod.to(self.device_torch)
# self.noise_scheduler.betas = self.noise_scheduler.betas.to(self.device_torch)
# self.noise_scheduler.alphas = self.noise_scheduler.alphas.to(self.device_torch)
# self.noise_scheduler.alphas_cumprod = self.noise_scheduler.alphas_cumprod.to(self.device_torch)
model_path = self.model_config.name_or_path
if 'civitai.com' in self.model_config.name_or_path: