Added stochastic rounding to adafactor. ILora adjustments

This commit is contained in:
Jaret Burkett
2024-03-05 07:07:09 -07:00
parent 1325613583
commit b01e8d889a
7 changed files with 153 additions and 3 deletions

View File

@@ -83,6 +83,8 @@ class SDTrainer(BaseSDTrainProcess):
self.taesd.requires_grad_(False)
def hook_before_train_loop(self):
if self.train_config.do_prior_divergence:
self.do_prior_prediction = True
# move vae to device if we did not cache latents
if not self.is_latents_cached:
self.sd.vae.eval()
@@ -290,7 +292,7 @@ class SDTrainer(BaseSDTrainProcess):
# target = (noise * mask_multiplier) + (prior_pred * prior_mask_multiplier)
# set masked multiplier to 1.0 so we dont double apply it
# mask_multiplier = 1.0
elif prior_pred is not None:
elif prior_pred is not None and not self.train_config.do_prior_divergence:
assert not self.train_config.train_turbo
# matching adapter prediction
target = prior_pred
@@ -347,6 +349,9 @@ class SDTrainer(BaseSDTrainProcess):
else:
loss = torch.nn.functional.mse_loss(pred.float(), target.float(), reduction="none")
if self.train_config.do_prior_divergence and prior_pred is not None:
loss = loss + (torch.nn.functional.mse_loss(pred.float(), prior_pred.float(), reduction="none") * -1.0)
# multiply by our mask
loss = loss * mask_multiplier

View File

@@ -688,6 +688,16 @@ class BaseSDTrainProcess(BaseTrainProcess):
trigger=self.trigger_word,
add_if_not_present=not is_reg,
)
if not is_reg and self.train_config.prompt_saturation_chance > 0.0:
# do random prompt saturation by expanding the prompt to hit at least 77 tokens
if random.random() < self.train_config.prompt_saturation_chance:
est_num_tokens = len(prompt.split(' '))
if est_num_tokens < 77:
num_repeats = int(77 / est_num_tokens) + 1
prompt = ', '.join([prompt] * num_repeats)
conditioned_prompts.append(prompt)
with self.timer('prepare_latents'):

View File

@@ -308,6 +308,13 @@ class TrainConfig:
# scale the prediction by this. Increase for more detail, decrease for less
self.pred_scaler = kwargs.get('pred_scaler', 1.0)
# repeats the prompt a few times to saturate the encoder
self.prompt_saturation_chance = kwargs.get('prompt_saturation_chance', 0.0)
# applies negative loss on the prior to encourage network to diverge from it
self.do_prior_divergence = kwargs.get('do_prior_divergence', False)
class ModelConfig:
def __init__(self, **kwargs):

View File

@@ -49,7 +49,7 @@ class InstantLoRAMidModule(torch.nn.Module):
print(scaler.shape)
raise e
# apply tanh to limit values to -1 to 1
scaler = torch.tanh(scaler)
# scaler = torch.tanh(scaler)
return x * scaler

View File

@@ -65,7 +65,16 @@ def get_optimizer(
elif lower_type == 'adagrad':
optimizer = torch.optim.Adagrad(params, lr=float(learning_rate), **optimizer_params)
elif lower_type == 'adafactor':
# hack in stochastic rounding
if 'relative_step' not in optimizer_params:
optimizer_params['relative_step'] = False
if 'scale_parameter' not in optimizer_params:
optimizer_params['scale_parameter'] = True
if 'warmup_init' not in optimizer_params:
optimizer_params['warmup_init'] = False
optimizer = Adafactor(params, lr=float(learning_rate), **optimizer_params)
from toolkit.util.adafactor_stochastic_rounding import step_adafactor
optimizer.step = step_adafactor.__get__(optimizer, Adafactor)
else:
raise ValueError(f'Unknown optimizer type {optimizer_type}')
return optimizer

View File

@@ -0,0 +1,119 @@
# ref https://github.com/Nerogar/OneTrainer/compare/master...stochastic_rounding
import math
import torch
from torch import Tensor
def copy_stochastic_(target: Tensor, source: Tensor):
# create a random 16 bit integer
result = torch.randint_like(
source,
dtype=torch.int32,
low=0,
high=(1 << 16),
)
# add the random number to the lower 16 bit of the mantissa
result.add_(source.view(dtype=torch.int32))
# mask off the lower 16 bit of the mantissa
result.bitwise_and_(-65536) # -65536 = FFFF0000 as a signed int32
# copy the higher 16 bit into the target tensor
target.copy_(result.view(dtype=torch.float32))
@torch.no_grad()
def step_adafactor(self, closure=None):
"""
Performs a single optimization step
Arguments:
closure (callable, optional): A closure that reevaluates the model
and returns the loss.
"""
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group["params"]:
if p.grad is None:
continue
grad = p.grad
if grad.dtype in {torch.float16, torch.bfloat16}:
grad = grad.float()
if grad.is_sparse:
raise RuntimeError("Adafactor does not support sparse gradients.")
state = self.state[p]
grad_shape = grad.shape
factored, use_first_moment = self._get_options(group, grad_shape)
# State Initialization
if len(state) == 0:
state["step"] = 0
if use_first_moment:
# Exponential moving average of gradient values
state["exp_avg"] = torch.zeros_like(grad)
if factored:
state["exp_avg_sq_row"] = torch.zeros(grad_shape[:-1]).to(grad)
state["exp_avg_sq_col"] = torch.zeros(grad_shape[:-2] + grad_shape[-1:]).to(grad)
else:
state["exp_avg_sq"] = torch.zeros_like(grad)
state["RMS"] = 0
else:
if use_first_moment:
state["exp_avg"] = state["exp_avg"].to(grad)
if factored:
state["exp_avg_sq_row"] = state["exp_avg_sq_row"].to(grad)
state["exp_avg_sq_col"] = state["exp_avg_sq_col"].to(grad)
else:
state["exp_avg_sq"] = state["exp_avg_sq"].to(grad)
p_data_fp32 = p
if p.dtype in {torch.float16, torch.bfloat16}:
p_data_fp32 = p_data_fp32.float()
state["step"] += 1
state["RMS"] = self._rms(p_data_fp32)
lr = self._get_lr(group, state)
beta2t = 1.0 - math.pow(state["step"], group["decay_rate"])
update = (grad ** 2) + group["eps"][0]
if factored:
exp_avg_sq_row = state["exp_avg_sq_row"]
exp_avg_sq_col = state["exp_avg_sq_col"]
exp_avg_sq_row.mul_(beta2t).add_(update.mean(dim=-1), alpha=(1.0 - beta2t))
exp_avg_sq_col.mul_(beta2t).add_(update.mean(dim=-2), alpha=(1.0 - beta2t))
# Approximation of exponential moving average of square of gradient
update = self._approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col)
update.mul_(grad)
else:
exp_avg_sq = state["exp_avg_sq"]
exp_avg_sq.mul_(beta2t).add_(update, alpha=(1.0 - beta2t))
update = exp_avg_sq.rsqrt().mul_(grad)
update.div_((self._rms(update) / group["clip_threshold"]).clamp_(min=1.0))
update.mul_(lr)
if use_first_moment:
exp_avg = state["exp_avg"]
exp_avg.mul_(group["beta1"]).add_(update, alpha=(1 - group["beta1"]))
update = exp_avg
if group["weight_decay"] != 0:
p_data_fp32.add_(p_data_fp32, alpha=(-group["weight_decay"] * lr))
p_data_fp32.add_(-update)
if p.dtype == torch.bfloat16:
copy_stochastic_(p, p_data_fp32)
elif p.dtype == torch.float16:
p.copy_(p_data_fp32)
return loss