mirror of
https://github.com/ostris/ai-toolkit.git
synced 2026-02-04 04:38:57 +00:00
Added stochastic rounding to adafactor. ILora adjustments
This commit is contained in:
@@ -83,6 +83,8 @@ class SDTrainer(BaseSDTrainProcess):
|
||||
self.taesd.requires_grad_(False)
|
||||
|
||||
def hook_before_train_loop(self):
|
||||
if self.train_config.do_prior_divergence:
|
||||
self.do_prior_prediction = True
|
||||
# move vae to device if we did not cache latents
|
||||
if not self.is_latents_cached:
|
||||
self.sd.vae.eval()
|
||||
@@ -290,7 +292,7 @@ class SDTrainer(BaseSDTrainProcess):
|
||||
# target = (noise * mask_multiplier) + (prior_pred * prior_mask_multiplier)
|
||||
# set masked multiplier to 1.0 so we dont double apply it
|
||||
# mask_multiplier = 1.0
|
||||
elif prior_pred is not None:
|
||||
elif prior_pred is not None and not self.train_config.do_prior_divergence:
|
||||
assert not self.train_config.train_turbo
|
||||
# matching adapter prediction
|
||||
target = prior_pred
|
||||
@@ -347,6 +349,9 @@ class SDTrainer(BaseSDTrainProcess):
|
||||
else:
|
||||
loss = torch.nn.functional.mse_loss(pred.float(), target.float(), reduction="none")
|
||||
|
||||
if self.train_config.do_prior_divergence and prior_pred is not None:
|
||||
loss = loss + (torch.nn.functional.mse_loss(pred.float(), prior_pred.float(), reduction="none") * -1.0)
|
||||
|
||||
# multiply by our mask
|
||||
loss = loss * mask_multiplier
|
||||
|
||||
|
||||
@@ -688,6 +688,16 @@ class BaseSDTrainProcess(BaseTrainProcess):
|
||||
trigger=self.trigger_word,
|
||||
add_if_not_present=not is_reg,
|
||||
)
|
||||
|
||||
if not is_reg and self.train_config.prompt_saturation_chance > 0.0:
|
||||
# do random prompt saturation by expanding the prompt to hit at least 77 tokens
|
||||
if random.random() < self.train_config.prompt_saturation_chance:
|
||||
est_num_tokens = len(prompt.split(' '))
|
||||
if est_num_tokens < 77:
|
||||
num_repeats = int(77 / est_num_tokens) + 1
|
||||
prompt = ', '.join([prompt] * num_repeats)
|
||||
|
||||
|
||||
conditioned_prompts.append(prompt)
|
||||
|
||||
with self.timer('prepare_latents'):
|
||||
|
||||
Submodule repositories/ipadapter updated: f71c943b7e...5a18b1f366
@@ -308,6 +308,13 @@ class TrainConfig:
|
||||
# scale the prediction by this. Increase for more detail, decrease for less
|
||||
self.pred_scaler = kwargs.get('pred_scaler', 1.0)
|
||||
|
||||
# repeats the prompt a few times to saturate the encoder
|
||||
self.prompt_saturation_chance = kwargs.get('prompt_saturation_chance', 0.0)
|
||||
|
||||
# applies negative loss on the prior to encourage network to diverge from it
|
||||
self.do_prior_divergence = kwargs.get('do_prior_divergence', False)
|
||||
|
||||
|
||||
|
||||
class ModelConfig:
|
||||
def __init__(self, **kwargs):
|
||||
|
||||
@@ -49,7 +49,7 @@ class InstantLoRAMidModule(torch.nn.Module):
|
||||
print(scaler.shape)
|
||||
raise e
|
||||
# apply tanh to limit values to -1 to 1
|
||||
scaler = torch.tanh(scaler)
|
||||
# scaler = torch.tanh(scaler)
|
||||
return x * scaler
|
||||
|
||||
|
||||
|
||||
@@ -65,7 +65,16 @@ def get_optimizer(
|
||||
elif lower_type == 'adagrad':
|
||||
optimizer = torch.optim.Adagrad(params, lr=float(learning_rate), **optimizer_params)
|
||||
elif lower_type == 'adafactor':
|
||||
# hack in stochastic rounding
|
||||
if 'relative_step' not in optimizer_params:
|
||||
optimizer_params['relative_step'] = False
|
||||
if 'scale_parameter' not in optimizer_params:
|
||||
optimizer_params['scale_parameter'] = True
|
||||
if 'warmup_init' not in optimizer_params:
|
||||
optimizer_params['warmup_init'] = False
|
||||
optimizer = Adafactor(params, lr=float(learning_rate), **optimizer_params)
|
||||
from toolkit.util.adafactor_stochastic_rounding import step_adafactor
|
||||
optimizer.step = step_adafactor.__get__(optimizer, Adafactor)
|
||||
else:
|
||||
raise ValueError(f'Unknown optimizer type {optimizer_type}')
|
||||
return optimizer
|
||||
|
||||
119
toolkit/util/adafactor_stochastic_rounding.py
Normal file
119
toolkit/util/adafactor_stochastic_rounding.py
Normal file
@@ -0,0 +1,119 @@
|
||||
# ref https://github.com/Nerogar/OneTrainer/compare/master...stochastic_rounding
|
||||
import math
|
||||
import torch
|
||||
from torch import Tensor
|
||||
|
||||
|
||||
def copy_stochastic_(target: Tensor, source: Tensor):
|
||||
# create a random 16 bit integer
|
||||
result = torch.randint_like(
|
||||
source,
|
||||
dtype=torch.int32,
|
||||
low=0,
|
||||
high=(1 << 16),
|
||||
)
|
||||
|
||||
# add the random number to the lower 16 bit of the mantissa
|
||||
result.add_(source.view(dtype=torch.int32))
|
||||
|
||||
# mask off the lower 16 bit of the mantissa
|
||||
result.bitwise_and_(-65536) # -65536 = FFFF0000 as a signed int32
|
||||
|
||||
# copy the higher 16 bit into the target tensor
|
||||
target.copy_(result.view(dtype=torch.float32))
|
||||
|
||||
|
||||
@torch.no_grad()
|
||||
def step_adafactor(self, closure=None):
|
||||
"""
|
||||
Performs a single optimization step
|
||||
Arguments:
|
||||
closure (callable, optional): A closure that reevaluates the model
|
||||
and returns the loss.
|
||||
"""
|
||||
loss = None
|
||||
if closure is not None:
|
||||
loss = closure()
|
||||
|
||||
for group in self.param_groups:
|
||||
for p in group["params"]:
|
||||
if p.grad is None:
|
||||
continue
|
||||
grad = p.grad
|
||||
if grad.dtype in {torch.float16, torch.bfloat16}:
|
||||
grad = grad.float()
|
||||
if grad.is_sparse:
|
||||
raise RuntimeError("Adafactor does not support sparse gradients.")
|
||||
|
||||
state = self.state[p]
|
||||
grad_shape = grad.shape
|
||||
|
||||
factored, use_first_moment = self._get_options(group, grad_shape)
|
||||
# State Initialization
|
||||
if len(state) == 0:
|
||||
state["step"] = 0
|
||||
|
||||
if use_first_moment:
|
||||
# Exponential moving average of gradient values
|
||||
state["exp_avg"] = torch.zeros_like(grad)
|
||||
if factored:
|
||||
state["exp_avg_sq_row"] = torch.zeros(grad_shape[:-1]).to(grad)
|
||||
state["exp_avg_sq_col"] = torch.zeros(grad_shape[:-2] + grad_shape[-1:]).to(grad)
|
||||
else:
|
||||
state["exp_avg_sq"] = torch.zeros_like(grad)
|
||||
|
||||
state["RMS"] = 0
|
||||
else:
|
||||
if use_first_moment:
|
||||
state["exp_avg"] = state["exp_avg"].to(grad)
|
||||
if factored:
|
||||
state["exp_avg_sq_row"] = state["exp_avg_sq_row"].to(grad)
|
||||
state["exp_avg_sq_col"] = state["exp_avg_sq_col"].to(grad)
|
||||
else:
|
||||
state["exp_avg_sq"] = state["exp_avg_sq"].to(grad)
|
||||
|
||||
p_data_fp32 = p
|
||||
if p.dtype in {torch.float16, torch.bfloat16}:
|
||||
p_data_fp32 = p_data_fp32.float()
|
||||
|
||||
state["step"] += 1
|
||||
state["RMS"] = self._rms(p_data_fp32)
|
||||
lr = self._get_lr(group, state)
|
||||
|
||||
beta2t = 1.0 - math.pow(state["step"], group["decay_rate"])
|
||||
update = (grad ** 2) + group["eps"][0]
|
||||
if factored:
|
||||
exp_avg_sq_row = state["exp_avg_sq_row"]
|
||||
exp_avg_sq_col = state["exp_avg_sq_col"]
|
||||
|
||||
exp_avg_sq_row.mul_(beta2t).add_(update.mean(dim=-1), alpha=(1.0 - beta2t))
|
||||
exp_avg_sq_col.mul_(beta2t).add_(update.mean(dim=-2), alpha=(1.0 - beta2t))
|
||||
|
||||
# Approximation of exponential moving average of square of gradient
|
||||
update = self._approx_sq_grad(exp_avg_sq_row, exp_avg_sq_col)
|
||||
update.mul_(grad)
|
||||
else:
|
||||
exp_avg_sq = state["exp_avg_sq"]
|
||||
|
||||
exp_avg_sq.mul_(beta2t).add_(update, alpha=(1.0 - beta2t))
|
||||
update = exp_avg_sq.rsqrt().mul_(grad)
|
||||
|
||||
update.div_((self._rms(update) / group["clip_threshold"]).clamp_(min=1.0))
|
||||
update.mul_(lr)
|
||||
|
||||
if use_first_moment:
|
||||
exp_avg = state["exp_avg"]
|
||||
exp_avg.mul_(group["beta1"]).add_(update, alpha=(1 - group["beta1"]))
|
||||
update = exp_avg
|
||||
|
||||
if group["weight_decay"] != 0:
|
||||
p_data_fp32.add_(p_data_fp32, alpha=(-group["weight_decay"] * lr))
|
||||
|
||||
p_data_fp32.add_(-update)
|
||||
|
||||
if p.dtype == torch.bfloat16:
|
||||
copy_stochastic_(p, p_data_fp32)
|
||||
elif p.dtype == torch.float16:
|
||||
p.copy_(p_data_fp32)
|
||||
|
||||
return loss
|
||||
Reference in New Issue
Block a user