Added v2 of dfp

This commit is contained in:
Jaret Burkett
2025-01-22 16:32:13 -07:00
parent e1549ad54d
commit bbfba0c188
3 changed files with 175 additions and 38 deletions

View File

@@ -378,15 +378,32 @@ class SDTrainer(BaseSDTrainProcess):
target = noise
if self.dfe is not None:
# do diffusion feature extraction on target
with torch.no_grad():
rectified_flow_target = noise.float() - batch.latents.float()
target_features = self.dfe(torch.cat([rectified_flow_target, noise.float()], dim=1))
# do diffusion feature extraction on prediction
pred_features = self.dfe(torch.cat([noise_pred.float(), noise.float()], dim=1))
additional_loss += torch.nn.functional.mse_loss(pred_features, target_features, reduction="mean") * \
self.train_config.diffusion_feature_extractor_weight
if self.dfe.version == 1:
# do diffusion feature extraction on target
with torch.no_grad():
rectified_flow_target = noise.float() - batch.latents.float()
target_features = self.dfe(torch.cat([rectified_flow_target, noise.float()], dim=1))
# do diffusion feature extraction on prediction
pred_features = self.dfe(torch.cat([noise_pred.float(), noise.float()], dim=1))
additional_loss += torch.nn.functional.mse_loss(pred_features, target_features, reduction="mean") * \
self.train_config.diffusion_feature_extractor_weight
else:
# version 2
# do diffusion feature extraction on target
with torch.no_grad():
rectified_flow_target = noise.float() - batch.latents.float()
target_feature_list = self.dfe(torch.cat([rectified_flow_target, noise.float()], dim=1))
# do diffusion feature extraction on prediction
pred_feature_list = self.dfe(torch.cat([noise_pred.float(), noise.float()], dim=1))
dfe_loss = 0.0
for i in range(len(target_feature_list)):
dfe_loss += torch.nn.functional.mse_loss(pred_feature_list[i], target_feature_list[i], reduction="mean")
additional_loss += dfe_loss * self.train_config.diffusion_feature_extractor_weight * 100.0
if target is None:
target = noise

View File

@@ -2,6 +2,116 @@ import torch
import os
from torch import nn
from safetensors.torch import load_file
import torch.nn.functional as F
class ResBlock(nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, 3, padding=1)
self.norm1 = nn.GroupNorm(8, out_channels)
self.conv2 = nn.Conv2d(out_channels, out_channels, 3, padding=1)
self.norm2 = nn.GroupNorm(8, out_channels)
self.skip = nn.Conv2d(in_channels, out_channels,
1) if in_channels != out_channels else nn.Identity()
def forward(self, x):
identity = self.skip(x)
x = self.conv1(x)
x = self.norm1(x)
x = F.silu(x)
x = self.conv2(x)
x = self.norm2(x)
x = F.silu(x + identity)
return x
class DiffusionFeatureExtractor2(nn.Module):
def __init__(self, in_channels=32):
super().__init__()
self.version = 2
# Path 1: Upsample to 512x512 (1, 64, 512, 512)
self.up_path = nn.ModuleList([
nn.Conv2d(in_channels, 64, 3, padding=1),
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True),
ResBlock(64, 64),
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True),
ResBlock(64, 64),
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True),
ResBlock(64, 64),
nn.Conv2d(64, 64, 3, padding=1),
])
# Path 2: Upsample to 256x256 (1, 128, 256, 256)
self.path2 = nn.ModuleList([
nn.Conv2d(in_channels, 128, 3, padding=1),
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True),
ResBlock(128, 128),
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True),
ResBlock(128, 128),
nn.Conv2d(128, 128, 3, padding=1),
])
# Path 3: Upsample to 128x128 (1, 256, 128, 128)
self.path3 = nn.ModuleList([
nn.Conv2d(in_channels, 256, 3, padding=1),
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True),
ResBlock(256, 256),
nn.Conv2d(256, 256, 3, padding=1)
])
# Path 4: Original size (1, 512, 64, 64)
self.path4 = nn.ModuleList([
nn.Conv2d(in_channels, 512, 3, padding=1),
ResBlock(512, 512),
ResBlock(512, 512),
nn.Conv2d(512, 512, 3, padding=1)
])
# Path 5: Downsample to 32x32 (1, 512, 32, 32)
self.path5 = nn.ModuleList([
nn.Conv2d(in_channels, 512, 3, padding=1),
ResBlock(512, 512),
nn.AvgPool2d(2),
ResBlock(512, 512),
nn.Conv2d(512, 512, 3, padding=1)
])
def forward(self, x):
outputs = []
# Path 1: 512x512
x1 = x
for layer in self.up_path:
x1 = layer(x1)
outputs.append(x1) # [1, 64, 512, 512]
# Path 2: 256x256
x2 = x
for layer in self.path2:
x2 = layer(x2)
outputs.append(x2) # [1, 128, 256, 256]
# Path 3: 128x128
x3 = x
for layer in self.path3:
x3 = layer(x3)
outputs.append(x3) # [1, 256, 128, 128]
# Path 4: 64x64
x4 = x
for layer in self.path4:
x4 = layer(x4)
outputs.append(x4) # [1, 512, 64, 64]
# Path 5: 32x32
x5 = x
for layer in self.path5:
x5 = layer(x5)
outputs.append(x5) # [1, 512, 32, 32]
return outputs
class DFEBlock(nn.Module):
@@ -23,6 +133,7 @@ class DFEBlock(nn.Module):
class DiffusionFeatureExtractor(nn.Module):
def __init__(self, in_channels=32):
super().__init__()
self.version = 1
num_blocks = 6
self.conv_in = nn.Conv2d(in_channels, 512, 1)
self.blocks = nn.ModuleList([DFEBlock(512) for _ in range(num_blocks)])
@@ -37,7 +148,6 @@ class DiffusionFeatureExtractor(nn.Module):
def load_dfe(model_path) -> DiffusionFeatureExtractor:
dfe = DiffusionFeatureExtractor()
if not os.path.exists(model_path):
raise FileNotFoundError(f"Model file not found: {model_path}")
# if it ende with safetensors
@@ -48,6 +158,11 @@ def load_dfe(model_path) -> DiffusionFeatureExtractor:
if 'model_state_dict' in state_dict:
state_dict = state_dict['model_state_dict']
if 'conv_in.weight' in state_dict:
dfe = DiffusionFeatureExtractor()
else:
dfe = DiffusionFeatureExtractor2()
dfe.load_state_dict(state_dict)
dfe.eval()
return dfe

View File

@@ -1285,20 +1285,21 @@ class FluxWithCFGPipeline(FluxPipeline):
max_sequence_length=max_sequence_length,
lora_scale=lora_scale,
)
(
negative_prompt_embeds,
negative_pooled_prompt_embeds,
negative_text_ids,
) = self.encode_prompt(
prompt=negative_prompt,
prompt_2=negative_prompt_2,
prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=negative_pooled_prompt_embeds,
device=device,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
lora_scale=lora_scale,
)
if guidance_scale > 1.00001:
(
negative_prompt_embeds,
negative_pooled_prompt_embeds,
negative_text_ids,
) = self.encode_prompt(
prompt=negative_prompt,
prompt_2=negative_prompt_2,
prompt_embeds=negative_prompt_embeds,
pooled_prompt_embeds=negative_pooled_prompt_embeds,
device=device,
num_images_per_prompt=num_images_per_prompt,
max_sequence_length=max_sequence_length,
lora_scale=lora_scale,
)
# 4. Prepare latent variables
num_channels_latents = self.transformer.config.in_channels // 4
@@ -1361,21 +1362,25 @@ class FluxWithCFGPipeline(FluxPipeline):
joint_attention_kwargs=self.joint_attention_kwargs,
return_dict=False,
)[0]
if guidance_scale > 1.00001:
# todo combine these
noise_pred_uncond = self.transformer(
hidden_states=latents,
timestep=timestep / 1000,
guidance=guidance,
pooled_projections=negative_pooled_prompt_embeds,
encoder_hidden_states=negative_prompt_embeds,
txt_ids=negative_text_ids,
img_ids=latent_image_ids,
joint_attention_kwargs=self.joint_attention_kwargs,
return_dict=False,
)[0]
# todo combine these
noise_pred_uncond = self.transformer(
hidden_states=latents,
timestep=timestep / 1000,
guidance=guidance,
pooled_projections=negative_pooled_prompt_embeds,
encoder_hidden_states=negative_prompt_embeds,
txt_ids=negative_text_ids,
img_ids=latent_image_ids,
joint_attention_kwargs=self.joint_attention_kwargs,
return_dict=False,
)[0]
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
else:
noise_pred = noise_pred_text
# compute the previous noisy sample x_t -> x_t-1
latents_dtype = latents.dtype