mirror of
https://github.com/ostris/ai-toolkit.git
synced 2026-01-26 16:39:47 +00:00
Cleanup and small bug fixes
This commit is contained in:
@@ -177,6 +177,14 @@ class BaseSDTrainProcess(BaseTrainProcess):
|
||||
)
|
||||
o_dict['ss_output_name'] = self.job.name
|
||||
|
||||
if self.trigger_word is not None:
|
||||
# just so auto1111 will pick it up
|
||||
o_dict['ss_tag_frequency'] = {
|
||||
'actfig': {
|
||||
'actfig': 1
|
||||
}
|
||||
}
|
||||
|
||||
self.add_meta(o_dict)
|
||||
|
||||
def get_training_info(self):
|
||||
|
||||
@@ -213,9 +213,12 @@ class LoRAModule(torch.nn.Module):
|
||||
device = state_dict['lora_up.weight'].device
|
||||
|
||||
# todo should we do this at fp32?
|
||||
if isinstance(self.normalize_scaler, torch.Tensor):
|
||||
scaler = self.normalize_scaler.clone().detach()
|
||||
else:
|
||||
scaler = torch.tensor(self.normalize_scaler).to(device, dtype=dtype)
|
||||
|
||||
total_module_scale = torch.tensor(self.normalize_scaler / target_normalize_scaler) \
|
||||
.to(device, dtype=dtype)
|
||||
total_module_scale = scaler / target_normalize_scaler
|
||||
num_modules_layers = 2 # up and down
|
||||
up_down_scale = torch.pow(total_module_scale, 1.0 / num_modules_layers) \
|
||||
.to(device, dtype=dtype)
|
||||
|
||||
@@ -35,6 +35,8 @@ def get_optimizer(
|
||||
if use_lr < 0.1:
|
||||
# dadaptation uses different lr that is values of 0.1 to 1.0. default to 1.0
|
||||
use_lr = 1.0
|
||||
|
||||
print(f"Using lr {use_lr}")
|
||||
# let net be the neural network you want to train
|
||||
# you can choose weight decay value based on your problem, 0 by default
|
||||
optimizer = Prodigy(params, lr=use_lr, **optimizer_params)
|
||||
|
||||
Reference in New Issue
Block a user