fixed various issues with llm attention masking. Added block training on the llm adapter.

This commit is contained in:
Jaret Burkett
2025-02-14 11:24:01 -07:00
parent 2be6926398
commit bd8d7dc081
3 changed files with 52 additions and 6 deletions

View File

@@ -216,6 +216,9 @@ class AdapterConfig:
self.conv_pooling: bool = kwargs.get('conv_pooling', False)
self.conv_pooling_stacks: int = kwargs.get('conv_pooling_stacks', 1)
self.sparse_autoencoder_dim: Optional[int] = kwargs.get('sparse_autoencoder_dim', None)
# for llm adapter
self.num_cloned_blocks: int = kwargs.get('num_cloned_blocks', 0)
class EmbeddingConfig:

View File

@@ -212,6 +212,7 @@ class CustomAdapter(torch.nn.Module):
sd=self.sd_ref(),
llm=self.te,
tokenizer=self.tokenizer,
num_cloned_blocks=self.config.num_cloned_blocks,
)
self.llm_adapter.to(self.device, torch_dtype)
elif self.adapter_type == 'te_augmenter':

View File

@@ -5,14 +5,15 @@ import torch
import torch.nn as nn
import torch.nn.functional as F
import weakref
from typing import List, Optional, Tuple, Union, TYPE_CHECKING
from typing import Any, Dict, List, Optional, Tuple, Union, TYPE_CHECKING
from diffusers.models.transformers.transformer_flux import FluxTransformerBlock
from transformers import AutoModel, AutoTokenizer, Qwen2Model, LlamaModel, Qwen2Tokenizer, LlamaTokenizer
from toolkit import train_tools
from toolkit.prompt_utils import PromptEmbeds
from diffusers import Transformer2DModel
from toolkit.dequantize import patch_dequantization_on_save
if TYPE_CHECKING:
@@ -30,6 +31,19 @@ def new_context_embedder_forward(self, x):
x = self._orig_forward(x)
return x
def new_block_forward(
self: FluxTransformerBlock,
hidden_states: torch.Tensor,
encoder_hidden_states: torch.Tensor,
temb: torch.Tensor,
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
) -> Tuple[torch.Tensor, torch.Tensor]:
if self._adapter_ref().is_active:
return self._new_block_ref()(hidden_states, encoder_hidden_states, temb, image_rotary_emb, joint_attention_kwargs)
else:
return self._orig_forward(hidden_states, encoder_hidden_states, temb, image_rotary_emb, joint_attention_kwargs)
class LLMAdapter(torch.nn.Module):
def __init__(
@@ -38,12 +52,15 @@ class LLMAdapter(torch.nn.Module):
sd: 'StableDiffusion',
llm: LLM,
tokenizer: LLMTokenizer,
num_cloned_blocks: int = 0,
):
super(LLMAdapter, self).__init__()
self.adapter_ref: weakref.ref = weakref.ref(adapter)
self.sd_ref: weakref.ref = weakref.ref(sd)
self.llm_ref: weakref.ref = weakref.ref(llm)
self.tokenizer_ref: weakref.ref = weakref.ref(tokenizer)
self.num_cloned_blocks = num_cloned_blocks
self.apply_embedding_mask = False
# make sure we can pad
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
@@ -65,8 +82,11 @@ class LLMAdapter(torch.nn.Module):
print(f"System prompt length: {self.system_prompt_length}")
self.hidden_size = llm.config.hidden_size
blocks = []
if sd.is_flux:
self.apply_embedding_mask = True
self.context_embedder = nn.Linear(
self.hidden_size, sd.unet.inner_dim)
self.sequence_length = 512
@@ -77,6 +97,25 @@ class LLMAdapter(torch.nn.Module):
# add a is active property to the context embedder
sd.unet.context_embedder._adapter_ref = self.adapter_ref
for idx in range(self.num_cloned_blocks):
block = FluxTransformerBlock(
dim=sd.unet.inner_dim,
num_attention_heads=24,
attention_head_dim=128,
)
# patch it in case it is quantized
patch_dequantization_on_save(sd.unet.transformer_blocks[idx])
state_dict = sd.unet.transformer_blocks[idx].state_dict()
for key, value in state_dict.items():
block.state_dict()[key].copy_(value)
blocks.append(block)
orig_block = sd.unet.transformer_blocks[idx]
orig_block._orig_forward = orig_block.forward
orig_block.forward = partial(
new_block_forward, orig_block)
orig_block._new_block_ref = weakref.ref(block)
orig_block._adapter_ref = self.adapter_ref
elif sd.is_lumina2:
self.context_embedder = nn.Linear(
self.hidden_size, sd.unet.hidden_size)
@@ -84,6 +123,8 @@ class LLMAdapter(torch.nn.Module):
else:
raise ValueError(
"llm adapter currently only supports flux or lumina2")
self.blocks = nn.ModuleList(blocks)
def _get_prompt_embeds(
self,
@@ -103,11 +144,12 @@ class LLMAdapter(torch.nn.Module):
)
text_input_ids = text_inputs.input_ids.to(device)
# remove the system prompt from the input
text_input_ids = text_input_ids[:, self.system_prompt_length:]
prompt_attention_mask = text_inputs.attention_mask.to(device)
# remove the system prompt from the input and attention mask
text_input_ids = text_input_ids[:, self.system_prompt_length:]
prompt_attention_mask = prompt_attention_mask[:, self.system_prompt_length:]
prompt_embeds = text_encoder(
text_input_ids, attention_mask=prompt_attention_mask, output_hidden_states=True
)