Added converters for all stable diffusion models to convert back to ldm format from diffusers.

This commit is contained in:
Jaret Burkett
2023-08-28 16:12:32 -06:00
parent fab7c2b04a
commit bee0b6a235
9 changed files with 5120 additions and 150 deletions

View File

@@ -2,6 +2,11 @@ import argparse
import gc
import os
import re
import os
# add project root to sys path
import sys
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
import torch
from diffusers.loaders import LoraLoaderMixin
@@ -90,90 +95,134 @@ matched_diffusers_keys = []
error_margin = 1e-4
te_suffix = ''
proj_pattern_weight = None
proj_pattern_bias = None
text_proj_layer = None
if args.sdxl:
te_suffix = '1'
ldm_res_block_prefix = "conditioner.embedders.1.model.transformer.resblocks"
proj_pattern_weight = r"conditioner\.embedders\.1\.model\.transformer\.resblocks\.(\d+)\.attn\.in_proj_weight"
proj_pattern_bias = r"conditioner\.embedders\.1\.model\.transformer\.resblocks\.(\d+)\.attn\.in_proj_bias"
text_proj_layer = "conditioner.embedders.1.model.text_projection"
if args.sd2:
te_suffix = ''
ldm_res_block_prefix = "cond_stage_model.model.transformer.resblocks"
proj_pattern_weight = r"cond_stage_model\.model\.transformer\.resblocks\.(\d+)\.attn\.in_proj_weight"
proj_pattern_bias = r"cond_stage_model\.model\.transformer\.resblocks\.(\d+)\.attn\.in_proj_bias"
text_proj_layer = "cond_stage_model.model.text_projection"
if args.sdxl or args.sd2:
if "conditioner.embedders.1.model.text_projection" in ldm_dict_keys:
# d_model = int(checkpoint[prefix + "text_projection"].shape[0]))
d_model = int(ldm_state_dict["conditioner.embedders.1.model.text_projection"].shape[0])
else:
d_model = 1024
# do pre known merging
for ldm_key in ldm_dict_keys:
pattern = r"conditioner\.embedders\.1\.model\.transformer\.resblocks\.(\d+)\.attn\.in_proj_weight"
match = re.match(pattern, ldm_key)
if match:
number = int(match.group(1))
new_val = torch.cat([
diffusers_state_dict[f"te1_text_model.encoder.layers.{number}.self_attn.q_proj.weight"],
diffusers_state_dict[f"te1_text_model.encoder.layers.{number}.self_attn.k_proj.weight"],
diffusers_state_dict[f"te1_text_model.encoder.layers.{number}.self_attn.v_proj.weight"],
], dim=0)
# add to matched so we dont check them
matched_diffusers_keys.append(f"te1_text_model.encoder.layers.{number}.self_attn.q_proj.weight")
matched_diffusers_keys.append(f"te1_text_model.encoder.layers.{number}.self_attn.k_proj.weight")
matched_diffusers_keys.append(f"te1_text_model.encoder.layers.{number}.self_attn.v_proj.weight")
# make diffusers convertable_dict
diffusers_state_dict[f"te1_text_model.encoder.layers.{number}.self_attn.MERGED.weight"] = new_val
try:
match = re.match(proj_pattern_weight, ldm_key)
if match:
number = int(match.group(1))
new_val = torch.cat([
diffusers_state_dict[f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.q_proj.weight"],
diffusers_state_dict[f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.k_proj.weight"],
diffusers_state_dict[f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.v_proj.weight"],
], dim=0)
# add to matched so we dont check them
matched_diffusers_keys.append(
f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.q_proj.weight")
matched_diffusers_keys.append(
f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.k_proj.weight")
matched_diffusers_keys.append(
f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.v_proj.weight")
# make diffusers convertable_dict
diffusers_state_dict[
f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.MERGED.weight"] = new_val
# add operator
ldm_operator_map[ldm_key] = {
"cat": [
f"te1_text_model.encoder.layers.{number}.self_attn.q_proj.weight",
f"te1_text_model.encoder.layers.{number}.self_attn.k_proj.weight",
f"te1_text_model.encoder.layers.{number}.self_attn.v_proj.weight",
],
"target": f"te1_text_model.encoder.layers.{number}.self_attn.MERGED.weight"
}
# add operator
ldm_operator_map[ldm_key] = {
"cat": [
f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.q_proj.weight",
f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.k_proj.weight",
f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.v_proj.weight",
],
"target": f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.MERGED.weight"
}
if "conditioner.embedders.1.model.text_projection" in ldm_dict_keys:
# d_model = int(checkpoint[prefix + "text_projection"].shape[0]))
d_model = int(ldm_state_dict["conditioner.embedders.1.model.text_projection"].shape[0])
else:
d_model = 1024
# text_model_dict[new_key + ".q_proj.weight"] = checkpoint[key][:d_model, :]
# text_model_dict[new_key + ".k_proj.weight"] = checkpoint[key][d_model: d_model * 2, :]
# text_model_dict[new_key + ".v_proj.weight"] = checkpoint[key][d_model * 2:, :]
# text_model_dict[new_key + ".q_proj.weight"] = checkpoint[key][:d_model, :]
# text_model_dict[new_key + ".k_proj.weight"] = checkpoint[key][d_model: d_model * 2, :]
# text_model_dict[new_key + ".v_proj.weight"] = checkpoint[key][d_model * 2:, :]
# add diffusers operators
diffusers_operator_map[f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.q_proj.weight"] = {
"slice": [
f"{ldm_res_block_prefix}.{number}.attn.in_proj_weight",
f"0:{d_model}, :"
]
}
diffusers_operator_map[f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.k_proj.weight"] = {
"slice": [
f"{ldm_res_block_prefix}.{number}.attn.in_proj_weight",
f"{d_model}:{d_model * 2}, :"
]
}
diffusers_operator_map[f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.v_proj.weight"] = {
"slice": [
f"{ldm_res_block_prefix}.{number}.attn.in_proj_weight",
f"{d_model * 2}:, :"
]
}
# add diffusers operators
diffusers_operator_map[f"te1_text_model.encoder.layers.{number}.self_attn.q_proj.weight"] = {
"slice": [
f"conditioner.embedders.1.model.transformer.resblocks.{number}.attn.in_proj_weight",
f"0:{d_model}, :"
]
}
diffusers_operator_map[f"te1_text_model.encoder.layers.{number}.self_attn.k_proj.weight"] = {
"slice": [
f"conditioner.embedders.1.model.transformer.resblocks.{number}.attn.in_proj_weight",
f"{d_model}:{d_model * 2}, :"
]
}
diffusers_operator_map[f"te1_text_model.encoder.layers.{number}.self_attn.v_proj.weight"] = {
"slice": [
f"conditioner.embedders.1.model.transformer.resblocks.{number}.attn.in_proj_weight",
f"{d_model * 2}:, :"
]
}
match = re.match(proj_pattern_bias, ldm_key)
if match:
number = int(match.group(1))
new_val = torch.cat([
diffusers_state_dict[f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.q_proj.bias"],
diffusers_state_dict[f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.k_proj.bias"],
diffusers_state_dict[f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.v_proj.bias"],
], dim=0)
# add to matched so we dont check them
matched_diffusers_keys.append(f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.q_proj.bias")
matched_diffusers_keys.append(f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.k_proj.bias")
matched_diffusers_keys.append(f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.v_proj.bias")
# make diffusers convertable_dict
diffusers_state_dict[
f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.MERGED.bias"] = new_val
pattern = r"conditioner\.embedders\.1\.model\.transformer\.resblocks\.(\d+)\.attn\.in_proj_bias"
match = re.match(pattern, ldm_key)
if match:
number = int(match.group(1))
new_val = torch.cat([
diffusers_state_dict[f"te1_text_model.encoder.layers.{number}.self_attn.q_proj.bias"],
diffusers_state_dict[f"te1_text_model.encoder.layers.{number}.self_attn.k_proj.bias"],
diffusers_state_dict[f"te1_text_model.encoder.layers.{number}.self_attn.v_proj.bias"],
], dim=0)
# add to matched so we dont check them
matched_diffusers_keys.append(f"te1_text_model.encoder.layers.{number}.self_attn.q_proj.bias")
matched_diffusers_keys.append(f"te1_text_model.encoder.layers.{number}.self_attn.k_proj.bias")
matched_diffusers_keys.append(f"te1_text_model.encoder.layers.{number}.self_attn.v_proj.bias")
# make diffusers convertable_dict
diffusers_state_dict[f"te1_text_model.encoder.layers.{number}.self_attn.MERGED.bias"] = new_val
# add operator
ldm_operator_map[ldm_key] = {
"cat": [
f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.q_proj.bias",
f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.k_proj.bias",
f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.v_proj.bias",
],
# "target": f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.MERGED.bias"
}
# add operator
ldm_operator_map[ldm_key] = {
"cat": [
f"te1_text_model.encoder.layers.{number}.self_attn.q_proj.bias",
f"te1_text_model.encoder.layers.{number}.self_attn.k_proj.bias",
f"te1_text_model.encoder.layers.{number}.self_attn.v_proj.bias",
],
"target": f"te1_text_model.encoder.layers.{number}.self_attn.MERGED.bias"
}
# add diffusers operators
diffusers_operator_map[f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.q_proj.bias"] = {
"slice": [
f"{ldm_res_block_prefix}.{number}.attn.in_proj_bias",
f"0:{d_model}, :"
]
}
diffusers_operator_map[f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.k_proj.bias"] = {
"slice": [
f"{ldm_res_block_prefix}.{number}.attn.in_proj_bias",
f"{d_model}:{d_model * 2}, :"
]
}
diffusers_operator_map[f"te{te_suffix}_text_model.encoder.layers.{number}.self_attn.v_proj.bias"] = {
"slice": [
f"{ldm_res_block_prefix}.{number}.attn.in_proj_bias",
f"{d_model * 2}:, :"
]
}
except Exception as e:
print(f"Error on key {ldm_key}")
print(e)
# update keys
diffusers_dict_keys = list(diffusers_state_dict.keys())
@@ -275,14 +324,10 @@ if has_unmatched_keys:
weight = ldm_state_dict[key]
weight_min = weight.min().item()
weight_max = weight.max().item()
weight_mean = weight.mean().item()
weight_std = weight.std().item()
unmatched_obj['ldm'][key] = {
'shape': weight.shape,
"min": weight_min,
"max": weight_max,
"mean": weight_mean,
"std": weight_std,
}
del weight
flush()
@@ -292,14 +337,10 @@ if has_unmatched_keys:
weight = diffusers_state_dict[key]
weight_min = weight.min().item()
weight_max = weight.max().item()
weight_mean = weight.mean().item()
weight_std = weight.std().item()
unmatched_obj['diffusers'][key] = {
"shape": weight.shape,
"min": weight_min,
"max": weight_max,
"mean": weight_mean,
"std": weight_std,
}
del weight
flush()
@@ -318,7 +359,6 @@ for key in unmatched_ldm_keys:
save_file(remaining_ldm_values, os.path.join(KEYMAPS_FOLDER, f'{name}_ldm_base.safetensors'))
print(f'Saved remaining ldm values to {os.path.join(KEYMAPS_FOLDER, f"{name}_ldm_base.safetensors")}')
dest_path = os.path.join(KEYMAPS_FOLDER, f'{name}.json')
save_obj = OrderedDict()
save_obj["ldm_diffusers_keymap"] = ldm_diffusers_keymap

View File

@@ -13,7 +13,7 @@ import json
from toolkit.config_modules import ModelConfig
from toolkit.paths import KEYMAPS_ROOT
from toolkit.saving import convert_state_dict_to_ldm_with_mapping
from toolkit.saving import convert_state_dict_to_ldm_with_mapping, get_ldm_state_dict_from_diffusers
from toolkit.stable_diffusion_model import StableDiffusion
# this was just used to match the vae keys to the diffusers keys
@@ -39,6 +39,12 @@ parser.add_argument(
help='Is the model an XL model'
)
parser.add_argument(
'--is_v2',
action='store_true',
help='Is the model a v2 model'
)
args = parser.parse_args()
find_matches = False
@@ -58,19 +64,20 @@ sd = StableDiffusion(
)
sd.load_model()
if not args.is_xl:
# not supported yet
raise NotImplementedError("Only SDXL is supported at this time with this method")
# load our base
base_path = os.path.join(KEYMAPS_ROOT, 'stable_diffusion_sdxl_ldm_base.safetensors')
mapping_path = os.path.join(KEYMAPS_ROOT, 'stable_diffusion_sdxl.json')
print("Converting model back to LDM")
version_string = '1'
if args.is_v2:
version_string = '2'
if args.is_xl:
version_string = 'sdxl'
# convert the state dict
state_dict_file_2 = convert_state_dict_to_ldm_with_mapping(
state_dict_file_2 = get_ldm_state_dict_from_diffusers(
sd.state_dict(),
mapping_path,
base_path,
version_string,
device='cpu',
dtype=dtype
)