mirror of
https://github.com/ostris/ai-toolkit.git
synced 2026-01-26 16:39:47 +00:00
Fixed issue with key mapping from diffusers back to ldm
This commit is contained in:
142
testing/test_model_load_save.py
Normal file
142
testing/test_model_load_save.py
Normal file
@@ -0,0 +1,142 @@
|
||||
import argparse
|
||||
import os
|
||||
# add project root to sys path
|
||||
import sys
|
||||
|
||||
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||
|
||||
import torch
|
||||
from diffusers.loaders import LoraLoaderMixin
|
||||
from safetensors.torch import load_file
|
||||
from collections import OrderedDict
|
||||
import json
|
||||
|
||||
from toolkit.config_modules import ModelConfig
|
||||
from toolkit.paths import KEYMAPS_ROOT
|
||||
from toolkit.saving import convert_state_dict_to_ldm_with_mapping
|
||||
from toolkit.stable_diffusion_model import StableDiffusion
|
||||
|
||||
# this was just used to match the vae keys to the diffusers keys
|
||||
# you probably wont need this. Unless they change them.... again... again
|
||||
# on second thought, you probably will
|
||||
|
||||
device = torch.device('cpu')
|
||||
dtype = torch.float32
|
||||
|
||||
parser = argparse.ArgumentParser()
|
||||
|
||||
# require at lease one config file
|
||||
parser.add_argument(
|
||||
'file_1',
|
||||
nargs='+',
|
||||
type=str,
|
||||
help='Path an LDM model'
|
||||
)
|
||||
|
||||
parser.add_argument(
|
||||
'--is_xl',
|
||||
action='store_true',
|
||||
help='Is the model an XL model'
|
||||
)
|
||||
|
||||
args = parser.parse_args()
|
||||
|
||||
find_matches = False
|
||||
|
||||
print("Loading model")
|
||||
state_dict_file_1 = load_file(args.file_1[0])
|
||||
state_dict_1_keys = list(state_dict_file_1.keys())
|
||||
|
||||
print("Loading model into diffusers format")
|
||||
model_config = ModelConfig(
|
||||
name_or_path=args.file_1[0],
|
||||
is_xl=args.is_xl
|
||||
)
|
||||
sd = StableDiffusion(
|
||||
model_config=model_config,
|
||||
device=device,
|
||||
)
|
||||
sd.load_model()
|
||||
|
||||
if not args.is_xl:
|
||||
# not supported yet
|
||||
raise NotImplementedError("Only SDXL is supported at this time with this method")
|
||||
# load our base
|
||||
base_path = os.path.join(KEYMAPS_ROOT, 'stable_diffusion_sdxl_ldm_base.safetensors')
|
||||
mapping_path = os.path.join(KEYMAPS_ROOT, 'stable_diffusion_sdxl.json')
|
||||
|
||||
print("Converting model back to LDM")
|
||||
# convert the state dict
|
||||
state_dict_file_2 = convert_state_dict_to_ldm_with_mapping(
|
||||
sd.state_dict(),
|
||||
mapping_path,
|
||||
base_path,
|
||||
device='cpu',
|
||||
dtype=dtype
|
||||
)
|
||||
|
||||
# state_dict_file_2 = load_file(args.file_2[0])
|
||||
|
||||
state_dict_2_keys = list(state_dict_file_2.keys())
|
||||
keys_in_both = []
|
||||
|
||||
keys_not_in_state_dict_2 = []
|
||||
for key in state_dict_1_keys:
|
||||
if key not in state_dict_2_keys:
|
||||
keys_not_in_state_dict_2.append(key)
|
||||
|
||||
keys_not_in_state_dict_1 = []
|
||||
for key in state_dict_2_keys:
|
||||
if key not in state_dict_1_keys:
|
||||
keys_not_in_state_dict_1.append(key)
|
||||
|
||||
keys_in_both = []
|
||||
for key in state_dict_1_keys:
|
||||
if key in state_dict_2_keys:
|
||||
keys_in_both.append(key)
|
||||
|
||||
# sort them
|
||||
keys_not_in_state_dict_2.sort()
|
||||
keys_not_in_state_dict_1.sort()
|
||||
keys_in_both.sort()
|
||||
|
||||
if len(keys_not_in_state_dict_2) == 0 and len(keys_not_in_state_dict_1) == 0:
|
||||
print("All keys match!")
|
||||
exit(0)
|
||||
else:
|
||||
print("Keys don't match!, generating info...")
|
||||
|
||||
json_data = {
|
||||
"both": keys_in_both,
|
||||
"not_in_state_dict_2": keys_not_in_state_dict_2,
|
||||
"not_in_state_dict_1": keys_not_in_state_dict_1
|
||||
}
|
||||
json_data = json.dumps(json_data, indent=4)
|
||||
|
||||
remaining_diffusers_values = OrderedDict()
|
||||
for key in keys_not_in_state_dict_1:
|
||||
remaining_diffusers_values[key] = state_dict_file_2[key]
|
||||
|
||||
# print(remaining_diffusers_values.keys())
|
||||
|
||||
remaining_ldm_values = OrderedDict()
|
||||
for key in keys_not_in_state_dict_2:
|
||||
remaining_ldm_values[key] = state_dict_file_1[key]
|
||||
|
||||
# print(json_data)
|
||||
|
||||
project_root = os.path.dirname(os.path.dirname(os.path.abspath(__file__)))
|
||||
json_save_path = os.path.join(project_root, 'config', 'keys.json')
|
||||
json_matched_save_path = os.path.join(project_root, 'config', 'matched.json')
|
||||
json_duped_save_path = os.path.join(project_root, 'config', 'duped.json')
|
||||
state_dict_1_filename = os.path.basename(args.file_1[0])
|
||||
state_dict_2_filename = os.path.basename(args.file_2[0])
|
||||
# save key names for each in own file
|
||||
with open(os.path.join(project_root, 'config', f'{state_dict_1_filename}.json'), 'w') as f:
|
||||
f.write(json.dumps(state_dict_1_keys, indent=4))
|
||||
|
||||
with open(os.path.join(project_root, 'config', f'{state_dict_2_filename}.json'), 'w') as f:
|
||||
f.write(json.dumps(state_dict_2_keys, indent=4))
|
||||
|
||||
with open(json_save_path, 'w') as f:
|
||||
f.write(json_data)
|
||||
@@ -47,15 +47,15 @@ def convert_state_dict_to_ldm_with_mapping(
|
||||
# process operators first
|
||||
for ldm_key in ldm_diffusers_operator_map:
|
||||
# if the key cat is in the ldm key, we need to process it
|
||||
if 'cat' in ldm_key:
|
||||
if 'cat' in ldm_diffusers_operator_map[ldm_key]:
|
||||
cat_list = []
|
||||
for diffusers_key in ldm_diffusers_operator_map[ldm_key]['cat']:
|
||||
cat_list.append(diffusers_state_dict[diffusers_key].detatch())
|
||||
cat_list.append(diffusers_state_dict[diffusers_key].detach())
|
||||
converted_state_dict[ldm_key] = torch.cat(cat_list, dim=0).to(device, dtype=dtype)
|
||||
if 'slice' in ldm_key:
|
||||
if 'slice' in ldm_diffusers_operator_map[ldm_key]:
|
||||
tensor_to_slice = diffusers_state_dict[ldm_diffusers_operator_map[ldm_key]['slice'][0]]
|
||||
slice_text = diffusers_state_dict[ldm_diffusers_operator_map[ldm_key]['slice'][1]]
|
||||
converted_state_dict[ldm_key] = tensor_to_slice[get_slices_from_string(slice_text)].detatch().to(device,
|
||||
converted_state_dict[ldm_key] = tensor_to_slice[get_slices_from_string(slice_text)].detach().to(device,
|
||||
dtype=dtype)
|
||||
|
||||
# process the rest of the keys
|
||||
|
||||
Reference in New Issue
Block a user