Setup the base process for merging things. WIP

This commit is contained in:
Jaret Burkett
2023-07-20 07:39:31 -06:00
parent 557732e7ff
commit c29b9d075f
6 changed files with 99 additions and 0 deletions

29
jobs/MergeJob.py Normal file
View File

@@ -0,0 +1,29 @@
from toolkit.kohya_model_util import load_models_from_stable_diffusion_checkpoint
from collections import OrderedDict
from jobs import BaseJob
from toolkit.train_tools import get_torch_dtype
process_dict = {
}
class MergeJob(BaseJob):
def __init__(self, config: OrderedDict):
super().__init__(config)
self.dtype = self.get_conf('dtype', 'fp16')
self.torch_dtype = get_torch_dtype(self.dtype)
self.is_v2 = self.get_conf('is_v2', False)
self.device = self.get_conf('device', 'cpu')
# loads the processes from the config
self.load_processes(process_dict)
def run(self):
super().run()
print("")
print(f"Running {len(self.process)} process{'' if len(self.process) == 1 else 'es'}")
for process in self.process:
process.run()

View File

@@ -1,3 +1,4 @@
from .BaseJob import BaseJob
from .ExtractJob import ExtractJob
from .TrainJob import TrainJob
from .MergeJob import MergeJob

View File

@@ -0,0 +1,46 @@
import os
from collections import OrderedDict
from safetensors.torch import save_file
from jobs.process.BaseProcess import BaseProcess
from toolkit.metadata import get_meta_for_safetensors
from toolkit.train_tools import get_torch_dtype
class BaseMergeProcess(BaseProcess):
process_id: int
config: OrderedDict
def __init__(
self,
process_id: int,
job,
config: OrderedDict
):
super().__init__(process_id, job, config)
self.output_path = self.get_conf('output_path', required=True)
self.dtype = self.get_conf('dtype', self.job.dtype)
self.torch_dtype = get_torch_dtype(self.dtype)
def run(self):
# implement in child class
# be sure to call super().run() first
pass
def save(self, state_dict):
# prepare meta
save_meta = get_meta_for_safetensors(self.meta, self.job.name)
# save
os.makedirs(os.path.dirname(self.output_path), exist_ok=True)
for key in list(state_dict.keys()):
v = state_dict[key]
v = v.detach().clone().to("cpu").to(self.torch_dtype)
state_dict[key] = v
# having issues with meta
save_file(state_dict, self.output_path, save_meta)
print(f"Saved to {self.output_path}")

View File

@@ -0,0 +1,20 @@
from collections import OrderedDict
from toolkit.lycoris_utils import extract_diff
from .BaseExtractProcess import BaseExtractProcess
class MergeLoconProcess(BaseExtractProcess):
def __init__(self, process_id: int, job, config: OrderedDict):
super().__init__(process_id, job, config)
def run(self):
super().run()
new_state_dict = {}
raise NotImplementedError("This is not implemented yet")
def get_output_path(self, prefix=None, suffix=None):
if suffix is None:
suffix = f"_{self.mode}_{self.linear_param}_{self.conv_param}"
return super().get_output_path(prefix, suffix)

View File

@@ -196,6 +196,7 @@ class TrainVAEProcess(BaseTrainProcess):
self.mse_weight = self.get_conf('mse_weight', 1e0, as_type=float)
self.tv_weight = self.get_conf('tv_weight', 1e0, as_type=float)
self.critic_weight = self.get_conf('critic_weight', 1, as_type=float)
self.first_step = 0
self.blocks_to_train = self.get_conf('blocks_to_train', ['all'])
self.writer = self.job.writer
@@ -462,6 +463,7 @@ class TrainVAEProcess(BaseTrainProcess):
self.max_steps = num_steps
self.epochs = num_epochs
start_step = self.step_num
self.first_step = start_step
self.print(f"Training VAE")
self.print(f" - Training folder: {self.training_folder}")

View File

@@ -4,3 +4,4 @@ from .ExtractLoraProcess import ExtractLoraProcess
from .BaseProcess import BaseProcess
from .BaseTrainProcess import BaseTrainProcess
from .TrainVAEProcess import TrainVAEProcess
from .BaseMergeProcess import BaseMergeProcess