mirror of
https://github.com/ostris/ai-toolkit.git
synced 2026-01-27 00:49:47 +00:00
Added initial support for Hidream E1 training
This commit is contained in:
@@ -1,10 +1,15 @@
|
||||
from .chroma import ChromaModel
|
||||
from .hidream import HidreamModel
|
||||
from .hidream import HidreamModel, HidreamE1Model
|
||||
from .f_light import FLiteModel
|
||||
from .omnigen2 import OmniGen2Model
|
||||
from .flux_kontext import FluxKontextModel
|
||||
|
||||
AI_TOOLKIT_MODELS = [
|
||||
# put a list of models here
|
||||
ChromaModel, HidreamModel, FLiteModel, OmniGen2Model, FluxKontextModel
|
||||
ChromaModel,
|
||||
HidreamModel,
|
||||
HidreamE1Model,
|
||||
FLiteModel,
|
||||
OmniGen2Model,
|
||||
FluxKontextModel
|
||||
]
|
||||
|
||||
@@ -1 +1,2 @@
|
||||
from .hidream_model import HidreamModel
|
||||
from .hidream_model import HidreamModel
|
||||
from .hidream_e1_model import HidreamE1Model
|
||||
189
extensions_built_in/diffusion_models/hidream/hidream_e1_model.py
Normal file
189
extensions_built_in/diffusion_models/hidream/hidream_e1_model.py
Normal file
@@ -0,0 +1,189 @@
|
||||
from .hidream_model import HidreamModel
|
||||
from .src.pipelines.hidream_image.pipeline_hidream_image_editing import (
|
||||
HiDreamImageEditingPipeline,
|
||||
)
|
||||
from .src.schedulers.fm_solvers_unipc import FlowUniPCMultistepScheduler
|
||||
from toolkit.accelerator import unwrap_model
|
||||
import torch
|
||||
from toolkit.prompt_utils import PromptEmbeds
|
||||
from toolkit.config_modules import GenerateImageConfig
|
||||
from diffusers.models import HiDreamImageTransformer2DModel
|
||||
|
||||
import torch.nn.functional as F
|
||||
from PIL import Image
|
||||
from typing import TYPE_CHECKING
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO
|
||||
|
||||
|
||||
class HidreamE1Model(HidreamModel):
|
||||
arch = "hidream_e1"
|
||||
hidream_transformer_class = HiDreamImageTransformer2DModel
|
||||
hidream_pipeline_class = HiDreamImageEditingPipeline
|
||||
|
||||
def get_generation_pipeline(self):
|
||||
scheduler = FlowUniPCMultistepScheduler(
|
||||
num_train_timesteps=1000, shift=3.0, use_dynamic_shifting=False
|
||||
)
|
||||
|
||||
pipeline: HiDreamImageEditingPipeline = HiDreamImageEditingPipeline(
|
||||
scheduler=scheduler,
|
||||
vae=self.vae,
|
||||
text_encoder=self.text_encoder[0],
|
||||
tokenizer=self.tokenizer[0],
|
||||
text_encoder_2=self.text_encoder[1],
|
||||
tokenizer_2=self.tokenizer[1],
|
||||
text_encoder_3=self.text_encoder[2],
|
||||
tokenizer_3=self.tokenizer[2],
|
||||
text_encoder_4=self.text_encoder[3],
|
||||
tokenizer_4=self.tokenizer[3],
|
||||
transformer=unwrap_model(self.model),
|
||||
aggressive_unloading=self.low_vram,
|
||||
)
|
||||
|
||||
pipeline = pipeline.to(self.device_torch)
|
||||
|
||||
return pipeline
|
||||
|
||||
def generate_single_image(
|
||||
self,
|
||||
pipeline: HiDreamImageEditingPipeline,
|
||||
gen_config: GenerateImageConfig,
|
||||
conditional_embeds: PromptEmbeds,
|
||||
unconditional_embeds: PromptEmbeds,
|
||||
generator: torch.Generator,
|
||||
extra: dict,
|
||||
):
|
||||
if gen_config.ctrl_img is None:
|
||||
raise ValueError(
|
||||
"Control image is required for Flux Kontext model generation."
|
||||
)
|
||||
else:
|
||||
control_img = Image.open(gen_config.ctrl_img)
|
||||
control_img = control_img.convert("RGB")
|
||||
# resize to width and height
|
||||
if control_img.size != (gen_config.width, gen_config.height):
|
||||
control_img = control_img.resize(
|
||||
(gen_config.width, gen_config.height), Image.BILINEAR
|
||||
)
|
||||
img = pipeline(
|
||||
prompt_embeds_t5=conditional_embeds.text_embeds[0],
|
||||
prompt_embeds_llama3=conditional_embeds.text_embeds[1],
|
||||
pooled_prompt_embeds=conditional_embeds.pooled_embeds,
|
||||
negative_prompt_embeds_t5=unconditional_embeds.text_embeds[0],
|
||||
negative_prompt_embeds_llama3=unconditional_embeds.text_embeds[1],
|
||||
negative_pooled_prompt_embeds=unconditional_embeds.pooled_embeds,
|
||||
height=gen_config.height,
|
||||
width=gen_config.width,
|
||||
num_inference_steps=gen_config.num_inference_steps,
|
||||
guidance_scale=gen_config.guidance_scale,
|
||||
latents=gen_config.latents,
|
||||
generator=generator,
|
||||
image=control_img,
|
||||
**extra,
|
||||
).images[0]
|
||||
return img
|
||||
|
||||
def get_prompt_embeds(self, prompt: str) -> PromptEmbeds:
|
||||
self.text_encoder_to(self.device_torch, dtype=self.torch_dtype)
|
||||
max_sequence_length = 128
|
||||
(
|
||||
prompt_embeds_t5,
|
||||
negative_prompt_embeds_t5,
|
||||
prompt_embeds_llama3,
|
||||
negative_prompt_embeds_llama3,
|
||||
pooled_prompt_embeds,
|
||||
negative_pooled_prompt_embeds,
|
||||
) = self.pipeline.encode_prompt(
|
||||
prompt=prompt,
|
||||
prompt_2=prompt,
|
||||
prompt_3=prompt,
|
||||
prompt_4=prompt,
|
||||
device=self.device_torch,
|
||||
dtype=self.torch_dtype,
|
||||
num_images_per_prompt=1,
|
||||
max_sequence_length=max_sequence_length,
|
||||
do_classifier_free_guidance=False,
|
||||
)
|
||||
prompt_embeds = [prompt_embeds_t5, prompt_embeds_llama3]
|
||||
pe = PromptEmbeds([prompt_embeds, pooled_prompt_embeds])
|
||||
return pe
|
||||
|
||||
def condition_noisy_latents(
|
||||
self, latents: torch.Tensor, batch: "DataLoaderBatchDTO"
|
||||
):
|
||||
with torch.no_grad():
|
||||
control_tensor = batch.control_tensor
|
||||
if control_tensor is not None:
|
||||
self.vae.to(self.device_torch)
|
||||
# we are not packed here, so we just need to pass them so we can pack them later
|
||||
control_tensor = control_tensor * 2 - 1
|
||||
control_tensor = control_tensor.to(
|
||||
self.vae_device_torch, dtype=self.torch_dtype
|
||||
)
|
||||
|
||||
# if it is not the size of batch.tensor, (bs,ch,h,w) then we need to resize it
|
||||
if batch.tensor is not None:
|
||||
target_h, target_w = batch.tensor.shape[2], batch.tensor.shape[3]
|
||||
else:
|
||||
# When caching latents, batch.tensor is None. We get the size from the file_items instead.
|
||||
target_h = batch.file_items[0].crop_height
|
||||
target_w = batch.file_items[0].crop_width
|
||||
|
||||
if (
|
||||
control_tensor.shape[2] != target_h
|
||||
or control_tensor.shape[3] != target_w
|
||||
):
|
||||
control_tensor = F.interpolate(
|
||||
control_tensor, size=(target_h, target_w), mode="bilinear"
|
||||
)
|
||||
|
||||
control_latent = self.encode_images(control_tensor).to(
|
||||
latents.device, latents.dtype
|
||||
)
|
||||
latents = torch.cat((latents, control_latent), dim=1)
|
||||
|
||||
return latents.detach()
|
||||
|
||||
def get_noise_prediction(
|
||||
self,
|
||||
latent_model_input: torch.Tensor,
|
||||
timestep: torch.Tensor, # 0 to 1000 scale
|
||||
text_embeddings: PromptEmbeds,
|
||||
**kwargs,
|
||||
):
|
||||
with torch.no_grad():
|
||||
# make sure config is set
|
||||
self.model.config.force_inference_output = True
|
||||
has_control = False
|
||||
lat_size = latent_model_input.shape[-1]
|
||||
if latent_model_input.shape[1] == 32:
|
||||
# chunk it and stack it on batch dimension
|
||||
# dont update batch size for img_its
|
||||
lat, control = torch.chunk(latent_model_input, 2, dim=1)
|
||||
latent_model_input = torch.cat([lat, control], dim=-1)
|
||||
has_control = True
|
||||
|
||||
dtype = self.model.dtype
|
||||
device = self.device_torch
|
||||
|
||||
text_embeds = text_embeddings.text_embeds
|
||||
# run the to for the list
|
||||
text_embeds = [te.to(device, dtype=dtype) for te in text_embeds]
|
||||
|
||||
noise_pred = self.transformer(
|
||||
hidden_states=latent_model_input,
|
||||
timesteps=timestep,
|
||||
encoder_hidden_states_t5=text_embeds[0],
|
||||
encoder_hidden_states_llama3=text_embeds[1],
|
||||
pooled_embeds=text_embeddings.pooled_embeds.to(device, dtype=dtype),
|
||||
return_dict=False,
|
||||
)[0]
|
||||
|
||||
if has_control:
|
||||
noise_pred = -1.0 * noise_pred[..., :lat_size]
|
||||
else:
|
||||
noise_pred = -1.0 * noise_pred
|
||||
|
||||
return noise_pred
|
||||
@@ -52,6 +52,8 @@ BASE_MODEL_PATH = "HiDream-ai/HiDream-I1-Full"
|
||||
|
||||
class HidreamModel(BaseModel):
|
||||
arch = "hidream"
|
||||
hidream_transformer_class = HiDreamImageTransformer2DModel
|
||||
hidream_pipeline_class = HiDreamImagePipeline
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
@@ -123,7 +125,7 @@ class HidreamModel(BaseModel):
|
||||
|
||||
self.print_and_status_update("Loading transformer")
|
||||
|
||||
transformer = HiDreamImageTransformer2DModel.from_pretrained(
|
||||
transformer = self.hidream_transformer_class.from_pretrained(
|
||||
model_path,
|
||||
subfolder="transformer",
|
||||
torch_dtype=torch.bfloat16
|
||||
@@ -216,7 +218,7 @@ class HidreamModel(BaseModel):
|
||||
flush()
|
||||
|
||||
if self.low_vram:
|
||||
self.print_and_status_update("Moving ecerything to device")
|
||||
self.print_and_status_update("Moving everything to device")
|
||||
# move it all back
|
||||
transformer.to(self.device_torch, dtype=dtype)
|
||||
vae.to(self.device_torch, dtype=dtype)
|
||||
@@ -233,7 +235,7 @@ class HidreamModel(BaseModel):
|
||||
text_encoder_4.eval()
|
||||
text_encoder_3.eval()
|
||||
|
||||
pipe = HiDreamImagePipeline(
|
||||
pipe = self.hidream_pipeline_class(
|
||||
scheduler=scheduler,
|
||||
vae=vae,
|
||||
text_encoder=text_encoder,
|
||||
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1019,7 +1019,7 @@ class BaseModel:
|
||||
image_list[i] = Resize((image.shape[1] // VAE_SCALE_FACTOR * VAE_SCALE_FACTOR,
|
||||
image.shape[2] // VAE_SCALE_FACTOR * VAE_SCALE_FACTOR))(image)
|
||||
|
||||
images = torch.stack(image_list)
|
||||
images = torch.stack(image_list).to(device, dtype=dtype)
|
||||
if isinstance(self.vae, AutoencoderTiny):
|
||||
latents = self.vae.encode(images, return_dict=False)[0]
|
||||
else:
|
||||
|
||||
Reference in New Issue
Block a user