Added rescaling, locon, sdxl, all kinds of stuff. sdxl is still weird

This commit is contained in:
Jaret Burkett
2023-07-26 16:19:50 -06:00
parent 40e60fa021
commit d3ad195b51
11 changed files with 548 additions and 45 deletions

View File

@@ -18,6 +18,7 @@ process_dict = {
'vae': 'TrainVAEProcess',
'slider': 'TrainSliderProcess',
'lora_hack': 'TrainLoRAHack',
'rescale_sd': 'TrainSDRescaleProcess',
}

View File

@@ -1,7 +1,10 @@
import glob
import time
from collections import OrderedDict
import os
from safetensors import safe_open
from toolkit.kohya_model_util import load_vae
from toolkit.lora_special import LoRASpecialNetwork
from toolkit.optimizer import get_optimizer
@@ -14,7 +17,7 @@ sys.path.append(os.path.join(REPOS_ROOT, 'leco'))
from diffusers import StableDiffusionPipeline, StableDiffusionXLPipeline
from jobs.process import BaseTrainProcess
from toolkit.metadata import get_meta_for_safetensors
from toolkit.metadata import get_meta_for_safetensors, load_metadata_from_safetensors
from toolkit.train_tools import get_torch_dtype, apply_noise_offset
import gc
@@ -48,6 +51,7 @@ class BaseSDTrainProcess(BaseTrainProcess):
self.model_config = ModelConfig(**self.get_conf('model', {}))
self.save_config = SaveConfig(**self.get_conf('save', {}))
self.sample_config = SampleConfig(**self.get_conf('sample', {}))
self.first_sample_config = SampleConfig(**self.get_conf('first_sample', {})) if 'first_sample' in self.config else self.sample_config
self.logging_config = LogingConfig(**self.get_conf('logging', {}))
self.optimizer = None
self.lr_scheduler = None
@@ -56,7 +60,7 @@ class BaseSDTrainProcess(BaseTrainProcess):
# added later
self.network = None
def sample(self, step=None):
def sample(self, step=None, is_first=False):
sample_folder = os.path.join(self.save_root, 'samples')
if not os.path.exists(sample_folder):
os.makedirs(sample_folder, exist_ok=True)
@@ -112,7 +116,9 @@ class BaseSDTrainProcess(BaseTrainProcess):
# disable progress bar
pipeline.set_progress_bar_config(disable=True)
start_seed = self.sample_config.seed
sample_config = self.first_sample_config if is_first else self.sample_config
start_seed = sample_config.seed
start_multiplier = self.network.multiplier
current_seed = start_seed
@@ -127,14 +133,16 @@ class BaseSDTrainProcess(BaseTrainProcess):
'multiplier': self.network.multiplier,
})
for i in tqdm(range(len(self.sample_config.prompts)), desc=f"Generating Samples - step: {step}",
for i in tqdm(range(len(sample_config.prompts)), desc=f"Generating Samples - step: {step}",
leave=False):
raw_prompt = self.sample_config.prompts[i]
raw_prompt = sample_config.prompts[i]
neg = self.sample_config.neg
multiplier = self.sample_config.network_multiplier
neg = sample_config.neg
multiplier = sample_config.network_multiplier
p_split = raw_prompt.split('--')
prompt = p_split[0].strip()
height = sample_config.height
width = sample_config.width
if len(p_split) > 1:
for split in p_split:
@@ -145,13 +153,17 @@ class BaseSDTrainProcess(BaseTrainProcess):
elif flag == 'm':
# multiplier
multiplier = float(content)
elif flag == 'w':
# multiplier
width = int(content)
elif flag == 'h':
# multiplier
height = int(content)
height = self.sample_config.height
width = self.sample_config.width
height = max(64, height - height % 8) # round to divisible by 8
width = max(64, width - width % 8) # round to divisible by 8
if self.sample_config.walk_seed:
if sample_config.walk_seed:
current_seed += i
if self.network is not None:
@@ -159,14 +171,24 @@ class BaseSDTrainProcess(BaseTrainProcess):
torch.manual_seed(current_seed)
torch.cuda.manual_seed(current_seed)
img = pipeline(
prompt,
height=height,
width=width,
num_inference_steps=self.sample_config.sample_steps,
guidance_scale=self.sample_config.guidance_scale,
negative_prompt=neg,
).images[0]
if self.sd.is_xl:
img = pipeline(
prompt,
height=height,
width=width,
num_inference_steps=sample_config.sample_steps,
guidance_scale=sample_config.guidance_scale,
negative_prompt=neg,
).images[0]
else:
img = pipeline(
prompt,
height=height,
width=width,
num_inference_steps=sample_config.sample_steps,
guidance_scale=sample_config.guidance_scale,
negative_prompt=neg,
).images[0]
step_num = ''
if step is not None:
@@ -209,6 +231,24 @@ class BaseSDTrainProcess(BaseTrainProcess):
})
return info
def clean_up_saves(self):
# remove old saves
# get latest saved step
if os.path.exists(self.save_root):
latest_file = None
# pattern is {job_name}_{zero_filles_step}.safetensors but NOT {job_name}.safetensors
pattern = f"{self.job.name}_*.safetensors"
files = glob.glob(os.path.join(self.save_root, pattern))
if len(files) > self.save_config.max_step_saves_to_keep:
# remove all but the latest max_step_saves_to_keep
files.sort(key=os.path.getctime)
for file in files[:-self.save_config.max_step_saves_to_keep]:
self.print(f"Removing old save: {file}")
os.remove(file)
return latest_file
else:
return None
def save(self, step=None):
if not os.path.exists(self.save_root):
os.makedirs(self.save_root, exist_ok=True)
@@ -231,9 +271,11 @@ class BaseSDTrainProcess(BaseTrainProcess):
metadata=save_meta
)
else:
# TODO handle dreambooth, fine tuning, etc
# will probably have to convert dict back to LDM
ValueError("Non network training is not currently supported")
self.sd.save(
file_path,
save_meta,
get_torch_dtype(self.save_config.dtype)
)
self.print(f"Saved to {file_path}")
@@ -258,6 +300,7 @@ class BaseSDTrainProcess(BaseTrainProcess):
):
if height is None and pixel_height is None:
raise ValueError("height or pixel_height must be specified")
raise ValueError("height or pixel_height must be specified")
if width is None and pixel_width is None:
raise ValueError("width or pixel_width must be specified")
if height is None:
@@ -316,18 +359,47 @@ class BaseSDTrainProcess(BaseTrainProcess):
if add_time_ids is None:
add_time_ids = self.get_time_ids_from_latents(latents)
# todo LECOs code looks like it is omitting noise_pred
noise_pred = train_util.predict_noise_xl(
self.sd.unet,
self.sd.noise_scheduler,
# noise_pred = train_util.predict_noise_xl(
# self.sd.unet,
# self.sd.noise_scheduler,
# timestep,
# latents,
# text_embeddings.text_embeds,
# text_embeddings.pooled_embeds,
# add_time_ids,
# guidance_scale=guidance_scale,
# guidance_rescale=guidance_rescale
# )
latent_model_input = torch.cat([latents] * 2)
latent_model_input = self.sd.noise_scheduler.scale_model_input(latent_model_input, timestep)
added_cond_kwargs = {
"text_embeds": text_embeddings.pooled_embeds,
"time_ids": add_time_ids,
}
# predict the noise residual
noise_pred = self.sd.unet(
latent_model_input,
timestep,
latents,
text_embeddings.text_embeds,
text_embeddings.pooled_embeds,
add_time_ids,
guidance_scale=guidance_scale,
guidance_rescale=guidance_rescale
encoder_hidden_states=text_embeddings.text_embeds,
added_cond_kwargs=added_cond_kwargs,
).sample
# perform guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
guided_target = noise_pred_uncond + guidance_scale * (
noise_pred_text - noise_pred_uncond
)
# https://github.com/huggingface/diffusers/blob/7a91ea6c2b53f94da930a61ed571364022b21044/src/diffusers/pipelines/stable_diffusion_xl/pipeline_stable_diffusion_xl.py#L775
# noise_pred = rescale_noise_cfg(
# noise_pred, noise_pred_text, guidance_rescale=guidance_rescale
# )
noise_pred = guided_target
else:
noise_pred = train_util.predict_noise(
self.sd.unet,
@@ -366,6 +438,32 @@ class BaseSDTrainProcess(BaseTrainProcess):
# return latents_steps
return latents
def get_latest_save_path(self):
# get latest saved step
if os.path.exists(self.save_root):
latest_file = None
# pattern is {job_name}_{zero_filles_step}.safetensors or {job_name}.safetensors
pattern = f"{self.job.name}*.safetensors"
files = glob.glob(os.path.join(self.save_root, pattern))
if len(files) > 0:
latest_file = max(files, key=os.path.getctime)
return latest_file
else:
return None
def load_weights(self, path):
if self.network is not None:
self.network.load_weights(path)
meta = load_metadata_from_safetensors(path)
# if 'training_info' in Orderdict keys
if 'training_info' in meta and 'step' in meta['training_info']:
self.step_num = meta['training_info']['step']
self.start_step = self.step_num
print(f"Found step {self.step_num} in metadata, starting from there")
else:
print("load_weights not implemented for non-network models")
def run(self):
super().run()
@@ -407,20 +505,26 @@ class BaseSDTrainProcess(BaseTrainProcess):
unet.to(self.device_torch, dtype=dtype)
if self.train_config.xformers:
unet.enable_xformers_memory_efficient_attention()
if self.train_config.gradient_checkpointing:
unet.enable_gradient_checkpointing()
unet.requires_grad_(False)
unet.eval()
if self.network_config is not None:
conv = self.network_config.conv if self.network_config.conv is not None and self.network_config.conv > 0 else None
self.network = LoRASpecialNetwork(
text_encoder=text_encoder,
unet=unet,
lora_dim=self.network_config.rank,
lora_dim=self.network_config.linear,
multiplier=1.0,
alpha=self.network_config.alpha,
train_unet=self.train_config.train_unet,
train_text_encoder=self.train_config.train_text_encoder,
conv_lora_dim=conv,
conv_alpha=self.network_config.alpha if conv is not None else None,
)
self.network.force_to(self.device_torch, dtype=dtype)
self.network.apply_to(
@@ -438,6 +542,15 @@ class BaseSDTrainProcess(BaseTrainProcess):
default_lr=self.train_config.lr
)
latest_save_path = self.get_latest_save_path()
if latest_save_path is not None:
self.print(f"#### IMPORTANT RESUMING FROM {latest_save_path} ####")
self.print(f"Loading from {latest_save_path}")
self.load_weights(latest_save_path)
self.network.multiplier = 1.0
else:
params = []
# assume dreambooth/finetune
@@ -475,15 +588,17 @@ class BaseSDTrainProcess(BaseTrainProcess):
self.print("Skipping first sample due to config setting")
else:
self.print("Generating baseline samples before training")
self.sample(0)
self.sample(0, is_first=True)
self.progress_bar = tqdm(
total=self.train_config.steps,
desc=self.job.name,
leave=True
)
self.step_num = 0
for step in range(self.train_config.steps):
# set it to our current step in case it was updated from a load
self.progress_bar.update(self.step_num)
# self.step_num = 0
for step in range(self.step_num, self.train_config.steps):
# todo handle dataloader here maybe, not sure
### HOOK ###

View File

@@ -0,0 +1,278 @@
# ref:
# - https://github.com/p1atdev/LECO/blob/main/train_lora.py
import time
from collections import OrderedDict
import os
from typing import Optional
from safetensors.torch import load_file, save_file
from tqdm import tqdm
from toolkit.config_modules import SliderConfig
from toolkit.layers import ReductionKernel
from toolkit.paths import REPOS_ROOT
import sys
from toolkit.stable_diffusion_model import PromptEmbeds
sys.path.append(REPOS_ROOT)
sys.path.append(os.path.join(REPOS_ROOT, 'leco'))
from toolkit.train_tools import get_torch_dtype, apply_noise_offset
import gc
from toolkit import train_tools
import torch
from leco import train_util, model_util
from .BaseSDTrainProcess import BaseSDTrainProcess, StableDiffusion
def flush():
torch.cuda.empty_cache()
gc.collect()
class RescaleConfig:
def __init__(
self,
**kwargs
):
self.from_resolution = kwargs.get('from_resolution', 512)
self.scale = kwargs.get('scale', 0.5)
self.prompt_file = kwargs.get('prompt_file', None)
self.prompt_tensors = kwargs.get('prompt_tensors', None)
self.to_resolution = kwargs.get('to_resolution', int(self.from_resolution * self.scale))
if self.prompt_file is None:
raise ValueError("prompt_file is required")
class PromptEmbedsCache:
prompts: dict[str, PromptEmbeds] = {}
def __setitem__(self, __name: str, __value: PromptEmbeds) -> None:
self.prompts[__name] = __value
def __getitem__(self, __name: str) -> Optional[PromptEmbeds]:
if __name in self.prompts:
return self.prompts[__name]
else:
return None
class TrainSDRescaleProcess(BaseSDTrainProcess):
def __init__(self, process_id: int, job, config: OrderedDict):
super().__init__(process_id, job, config)
self.step_num = 0
self.start_step = 0
self.device = self.get_conf('device', self.job.device)
self.device_torch = torch.device(self.device)
self.prompt_cache = PromptEmbedsCache()
self.rescale_config = RescaleConfig(**self.get_conf('rescale', required=True))
self.reduce_size_fn = ReductionKernel(
in_channels=4,
kernel_size=int(self.rescale_config.from_resolution // self.rescale_config.to_resolution),
dtype=get_torch_dtype(self.train_config.dtype),
device=self.device_torch,
)
self.prompt_txt_list = []
def before_model_load(self):
pass
def hook_before_train_loop(self):
self.print(f"Loading prompt file from {self.rescale_config.prompt_file}")
# read line by line from file
with open(self.rescale_config.prompt_file, 'r') as f:
self.prompt_txt_list = f.readlines()
# clean empty lines
self.prompt_txt_list = [line.strip() for line in self.prompt_txt_list if len(line.strip()) > 0]
self.print(f"Loaded {len(self.prompt_txt_list)} prompts. Encoding them..")
cache = PromptEmbedsCache()
# get encoded latents for our prompts
with torch.no_grad():
if self.rescale_config.prompt_tensors is not None:
# check to see if it exists
if os.path.exists(self.rescale_config.prompt_tensors):
# load it.
self.print(f"Loading prompt tensors from {self.rescale_config.prompt_tensors}")
prompt_tensors = load_file(self.rescale_config.prompt_tensors, device='cpu')
# add them to the cache
for prompt_txt, prompt_tensor in prompt_tensors.items():
if prompt_txt.startswith("te:"):
prompt = prompt_txt[3:]
# text_embeds
text_embeds = prompt_tensor
pooled_embeds = None
# find pool embeds
if f"pe:{prompt}" in prompt_tensors:
pooled_embeds = prompt_tensors[f"pe:{prompt}"]
# make it
prompt_embeds = PromptEmbeds([text_embeds, pooled_embeds])
cache[prompt] = prompt_embeds.to(device='cpu', dtype=torch.float32)
if len(cache.prompts) == 0:
print("Prompt tensors not found. Encoding prompts..")
neutral = ""
# encode neutral
cache[neutral] = self.sd.encode_prompt(neutral)
for prompt in tqdm(self.prompt_txt_list, desc="Encoding prompts", leave=False):
# build the cache
if cache[prompt] is None:
cache[prompt] = self.sd.encode_prompt(prompt).to(device="cpu", dtype=torch.float32)
if self.rescale_config.prompt_tensors:
print(f"Saving prompt tensors to {self.rescale_config.prompt_tensors}")
state_dict = {}
for prompt_txt, prompt_embeds in cache.prompts.items():
state_dict[f"te:{prompt_txt}"] = prompt_embeds.text_embeds.to("cpu", dtype=get_torch_dtype('fp16'))
if prompt_embeds.pooled_embeds is not None:
state_dict[f"pe:{prompt_txt}"] = prompt_embeds.pooled_embeds.to("cpu", dtype=get_torch_dtype('fp16'))
save_file(state_dict, self.rescale_config.prompt_tensors)
self.print("Encoding complete.")
# move to cpu to save vram
# We don't need text encoder anymore, but keep it on cpu for sampling
# if text encoder is list
if isinstance(self.sd.text_encoder, list):
for encoder in self.sd.text_encoder:
encoder.to("cpu")
else:
self.sd.text_encoder.to("cpu")
self.prompt_cache = cache
flush()
# end hook_before_train_loop
def hook_train_loop(self):
dtype = get_torch_dtype(self.train_config.dtype)
# get random encoded prompt from cache
prompt_txt = self.prompt_txt_list[
torch.randint(0, len(self.prompt_txt_list), (1,)).item()
]
prompt = self.prompt_cache[prompt_txt].to(device=self.device_torch, dtype=dtype)
neutral = self.prompt_cache[""].to(device=self.device_torch, dtype=dtype)
if prompt is None:
raise ValueError(f"Prompt {prompt_txt} is not in cache")
prompt_batch = train_tools.concat_prompt_embeddings(
prompt,
neutral,
self.train_config.batch_size,
)
noise_scheduler = self.sd.noise_scheduler
optimizer = self.optimizer
lr_scheduler = self.lr_scheduler
loss_function = torch.nn.MSELoss()
def get_noise_pred(p, n, gs, cts, dn):
return self.predict_noise(
latents=dn,
text_embeddings=train_tools.concat_prompt_embeddings(
p, # unconditional
n, # positive
self.train_config.batch_size,
),
timestep=cts,
guidance_scale=gs,
)
with torch.no_grad():
self.sd.noise_scheduler.set_timesteps(
self.train_config.max_denoising_steps, device=self.device_torch
)
self.optimizer.zero_grad()
# # ger a random number of steps
timesteps_to = torch.randint(
1, self.train_config.max_denoising_steps, (1,)
).item()
# get noise
noise = self.get_latent_noise(
pixel_height=self.rescale_config.from_resolution,
pixel_width=self.rescale_config.from_resolution,
).to(self.device_torch, dtype=dtype)
# get latents
latents = noise * self.sd.noise_scheduler.init_noise_sigma
latents = latents.to(self.device_torch, dtype=dtype)
#
# # predict without network
# assert self.network.is_active is False
# denoised_latents = self.diffuse_some_steps(
# latents, # pass simple noise latents
# prompt_batch,
# start_timesteps=0,
# total_timesteps=timesteps_to,
# guidance_scale=3,
# )
# noise_scheduler.set_timesteps(1000)
#
# current_timestep = noise_scheduler.timesteps[
# int(timesteps_to * 1000 / self.train_config.max_denoising_steps)
# ]
current_timestep = 0
denoised_latents = latents
# get noise prediction at full scale
from_prediction = get_noise_pred(
prompt, neutral, 1, current_timestep, denoised_latents
)
reduced_from_prediction = self.reduce_size_fn(from_prediction).to("cpu", dtype=torch.float32)
# get noise prediction at reduced scale
to_denoised_latents = self.reduce_size_fn(denoised_latents)
# start gradient
optimizer.zero_grad()
self.network.multiplier = 1.0
with self.network:
assert self.network.is_active is True
to_prediction = get_noise_pred(
prompt, neutral, 1, current_timestep, to_denoised_latents
).to("cpu", dtype=torch.float32)
reduced_from_prediction.requires_grad = False
from_prediction.requires_grad = False
loss = loss_function(
reduced_from_prediction,
to_prediction,
)
loss_float = loss.item()
loss = loss.to(self.device_torch)
loss.backward()
optimizer.step()
lr_scheduler.step()
del (
reduced_from_prediction,
from_prediction,
to_denoised_latents,
to_prediction,
latents,
)
flush()
# reset network
self.network.multiplier = 1.0
loss_dict = OrderedDict(
{'loss': loss_float},
)
return loss_dict
# end hook_train_loop

View File

@@ -669,7 +669,7 @@ class TrainVAEProcess(BaseTrainProcess):
if self.writer is not None:
# get avg loss
for key in log_losses:
log_losses[key] = sum(log_losses[key]) / len(log_losses[key])
log_losses[key] = sum(log_losses[key]) / (len(log_losses[key]) + 1e-6)
# if log_losses[key] > 0:
self.writer.add_scalar(f"loss/{key}", log_losses[key], self.step_num)
# reset log losses
@@ -678,9 +678,10 @@ class TrainVAEProcess(BaseTrainProcess):
self.step_num += 1
# end epoch
if self.writer is not None:
eps = 1e-6
# get avg loss
for key in epoch_losses:
epoch_losses[key] = sum(log_losses[key]) / len(log_losses[key])
epoch_losses[key] = sum(log_losses[key]) / (len(log_losses[key]) + eps)
if epoch_losses[key] > 0:
self.writer.add_scalar(f"epoch loss/{key}", epoch_losses[key], epoch)
# reset epoch losses

View File

@@ -7,3 +7,4 @@ from .TrainVAEProcess import TrainVAEProcess
from .BaseMergeProcess import BaseMergeProcess
from .TrainSliderProcess import TrainSliderProcess
from .TrainLoRAHack import TrainLoRAHack
from .TrainSDRescaleProcess import TrainSDRescaleProcess

View File

@@ -10,4 +10,6 @@ pyyaml
oyaml
tensorboard
kornia
invisible-watermark
invisible-watermark
einops
accelerate

View File

@@ -5,6 +5,7 @@ class SaveConfig:
def __init__(self, **kwargs):
self.save_every: int = kwargs.get('save_every', 1000)
self.dtype: str = kwargs.get('save_dtype', 'float16')
self.max_step_saves_to_keep: int = kwargs.get('max_step_saves_to_keep', 5)
class LogingConfig:
@@ -30,8 +31,16 @@ class SampleConfig:
class NetworkConfig:
def __init__(self, **kwargs):
self.type: str = kwargs.get('type', 'lierla')
self.rank: int = kwargs.get('rank', 4)
self.type: str = kwargs.get('type', 'lora')
rank = kwargs.get('rank', None)
linear = kwargs.get('linear', None)
if rank is not None:
self.rank: int = rank # rank for backward compatibility
self.linear: int = rank
elif linear is not None:
self.rank: int = linear
self.linear: int = linear
self.conv: int = kwargs.get('conv', None)
self.alpha: float = kwargs.get('alpha', 1.0)
@@ -51,6 +60,7 @@ class TrainConfig:
self.noise_offset = kwargs.get('noise_offset', 0.0)
self.optimizer_params = kwargs.get('optimizer_params', {})
self.skip_first_sample = kwargs.get('skip_first_sample', False)
self.gradient_checkpointing = kwargs.get('gradient_checkpointing', False)
class ModelConfig:

31
toolkit/layers.py Normal file
View File

@@ -0,0 +1,31 @@
import torch
import torch.nn as nn
import numpy as np
class ReductionKernel(nn.Module):
# Tensorflow
def __init__(self, in_channels, kernel_size=2, dtype=torch.float32, device=None):
if device is None:
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
super(ReductionKernel, self).__init__()
self.kernel_size = kernel_size
self.in_channels = in_channels
numpy_kernel = self.build_kernel()
self.kernel = torch.from_numpy(numpy_kernel).to(device=device, dtype=dtype)
def build_kernel(self):
# tensorflow kernel is (height, width, in_channels, out_channels)
# pytorch kernel is (out_channels, in_channels, height, width)
kernel_size = self.kernel_size
channels = self.in_channels
kernel_shape = [channels, channels, kernel_size, kernel_size]
kernel = np.zeros(kernel_shape, np.float32)
kernel_value = 1.0 / (kernel_size * kernel_size)
for i in range(0, channels):
kernel[i, i, :, :] = kernel_value
return kernel
def forward(self, x):
return nn.functional.conv2d(x, self.kernel, stride=self.kernel_size, padding=0, groups=1)

View File

@@ -1,5 +1,8 @@
import json
from collections import OrderedDict
from safetensors import safe_open
from info import software_meta
@@ -25,4 +28,10 @@ def parse_metadata_from_safetensors(meta: OrderedDict) -> OrderedDict:
parsed_meta[key] = json.loads(value)
except json.decoder.JSONDecodeError:
parsed_meta[key] = value
return meta
return parsed_meta
def load_metadata_from_safetensors(file_path: str) -> OrderedDict:
with safe_open(file_path, framework="pt") as f:
metadata = f.metadata()
return parse_metadata_from_safetensors(metadata)

View File

@@ -1,11 +1,18 @@
from typing import Union
from typing import Union, OrderedDict
import sys
import os
from safetensors.torch import save_file
from toolkit.paths import REPOS_ROOT
from toolkit.train_tools import get_torch_dtype
sys.path.append(REPOS_ROOT)
sys.path.append(os.path.join(REPOS_ROOT, 'leco'))
from leco import train_util
import torch
from library import model_util
from library.sdxl_model_util import convert_text_encoder_2_state_dict_to_sdxl
class PromptEmbeds:
@@ -22,6 +29,12 @@ class PromptEmbeds:
self.text_embeds = args
self.pooled_embeds = None
def to(self, **kwargs):
self.text_embeds = self.text_embeds.to(**kwargs)
if self.pooled_embeds is not None:
self.pooled_embeds = self.pooled_embeds.to(**kwargs)
return self
class StableDiffusion:
def __init__(
@@ -61,3 +74,41 @@ class StableDiffusion:
self.tokenizer, self.text_encoder, prompt
)
)
def save(self, output_file: str, meta: OrderedDict, save_dtype=get_torch_dtype('fp16'), logit_scale=None):
# todo see what logit scale is
if self.is_xl:
state_dict = {}
def update_sd(prefix, sd):
for k, v in sd.items():
key = prefix + k
v = v.detach().clone().to("cpu").to(get_torch_dtype(save_dtype))
state_dict[key] = v
# Convert the UNet model
update_sd("model.diffusion_model.", self.unet.state_dict())
# Convert the text encoders
update_sd("conditioner.embedders.0.transformer.", self.text_encoder[0].state_dict())
text_enc2_dict = convert_text_encoder_2_state_dict_to_sdxl(self.text_encoder[1].state_dict(), logit_scale)
update_sd("conditioner.embedders.1.model.", text_enc2_dict)
# Convert the VAE
vae_dict = model_util.convert_vae_state_dict(self.vae.state_dict())
update_sd("first_stage_model.", vae_dict)
# Put together new checkpoint
key_count = len(state_dict.keys())
new_ckpt = {"state_dict": state_dict}
if model_util.is_safetensors(output_file):
save_file(state_dict, output_file)
else:
torch.save(new_ckpt, output_file, meta)
return key_count
else:
raise NotImplementedError("sdv1.x, sdv2.x is not implemented yet")

View File

@@ -2,6 +2,7 @@ import argparse
import json
import os
import time
from typing import TYPE_CHECKING
from diffusers import (
StableDiffusionPipeline,
@@ -21,8 +22,6 @@ from library.lpw_stable_diffusion import StableDiffusionLongPromptWeightingPipel
import torch
import re
from toolkit.stable_diffusion_model import PromptEmbeds
SCHEDULER_LINEAR_START = 0.00085
SCHEDULER_LINEAR_END = 0.0120
SCHEDULER_TIMESTEPS = 1000
@@ -381,11 +380,16 @@ def apply_noise_offset(noise, noise_offset):
return noise
if TYPE_CHECKING:
from toolkit.stable_diffusion_model import PromptEmbeds
def concat_prompt_embeddings(
unconditional: PromptEmbeds,
conditional: PromptEmbeds,
unconditional: 'PromptEmbeds',
conditional: 'PromptEmbeds',
n_imgs: int,
):
from toolkit.stable_diffusion_model import PromptEmbeds
text_embeds = torch.cat(
[unconditional.text_embeds, conditional.text_embeds]
).repeat_interleave(n_imgs, dim=0)