mirror of
https://github.com/ostris/ai-toolkit.git
synced 2026-01-26 16:39:47 +00:00
Base for loopback lora training setup, still working on proper sliders
This commit is contained in:
@@ -1,10 +1,14 @@
|
||||
import os
|
||||
from collections import OrderedDict
|
||||
from typing import ForwardRef
|
||||
|
||||
from jobs.process.BaseProcess import BaseProcess
|
||||
|
||||
|
||||
class BaseTrainProcess(BaseProcess):
|
||||
process_id: int
|
||||
config: OrderedDict
|
||||
progress_bar: ForwardRef('tqdm') = None
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
@@ -13,8 +17,23 @@ class BaseTrainProcess(BaseProcess):
|
||||
config: OrderedDict
|
||||
):
|
||||
super().__init__(process_id, job, config)
|
||||
self.progress_bar = None
|
||||
self.writer = self.job.writer
|
||||
self.training_folder = self.get_conf('training_folder', self.job.training_folder)
|
||||
self.save_root = os.path.join(self.training_folder, self.job.name)
|
||||
self.step = 0
|
||||
self.first_step = 0
|
||||
|
||||
def run(self):
|
||||
super().run()
|
||||
# implement in child class
|
||||
# be sure to call super().run() first
|
||||
pass
|
||||
|
||||
# def print(self, message, **kwargs):
|
||||
def print(self, *args):
|
||||
if self.progress_bar is not None:
|
||||
self.progress_bar.write(' '.join(map(str, args)))
|
||||
self.progress_bar.update()
|
||||
else:
|
||||
print(*args)
|
||||
|
||||
609
jobs/process/TrainSliderProcess.py
Normal file
609
jobs/process/TrainSliderProcess.py
Normal file
@@ -0,0 +1,609 @@
|
||||
# ref:
|
||||
# - https://github.com/p1atdev/LECO/blob/main/train_lora.py
|
||||
import time
|
||||
from collections import OrderedDict
|
||||
import os
|
||||
from toolkit.kohya_model_util import load_vae
|
||||
from toolkit.lora_special import LoRASpecialNetwork
|
||||
from toolkit.paths import REPOS_ROOT
|
||||
import sys
|
||||
|
||||
sys.path.append(REPOS_ROOT)
|
||||
sys.path.append(os.path.join(REPOS_ROOT, 'leco'))
|
||||
|
||||
from diffusers import StableDiffusionPipeline
|
||||
|
||||
from jobs.process import BaseTrainProcess
|
||||
from toolkit.metadata import get_meta_for_safetensors
|
||||
from toolkit.train_tools import get_torch_dtype
|
||||
import gc
|
||||
|
||||
import torch
|
||||
from tqdm import tqdm
|
||||
|
||||
from toolkit.lora import LoRANetwork, DEFAULT_TARGET_REPLACE, UNET_TARGET_REPLACE_MODULE_CONV, TRAINING_METHODS
|
||||
from leco import train_util, model_util
|
||||
from leco.prompt_util import PromptEmbedsCache, PromptEmbedsPair, ACTION_TYPES
|
||||
from leco import debug_util
|
||||
|
||||
|
||||
def flush():
|
||||
torch.cuda.empty_cache()
|
||||
gc.collect()
|
||||
|
||||
|
||||
class StableDiffusion:
|
||||
def __init__(self, vae, tokenizer, text_encoder, unet, noise_scheduler):
|
||||
self.vae = vae
|
||||
self.tokenizer = tokenizer
|
||||
self.text_encoder = text_encoder
|
||||
self.unet = unet
|
||||
self.noise_scheduler = noise_scheduler
|
||||
|
||||
|
||||
class SaveConfig:
|
||||
def __init__(self, **kwargs):
|
||||
self.save_every: int = kwargs.get('save_every', 1000)
|
||||
self.dtype: str = kwargs.get('save_dtype', 'float16')
|
||||
|
||||
|
||||
class LogingConfig:
|
||||
def __init__(self, **kwargs):
|
||||
self.log_every: int = kwargs.get('log_every', 100)
|
||||
self.verbose: bool = kwargs.get('verbose', False)
|
||||
self.use_wandb: bool = kwargs.get('use_wandb', False)
|
||||
|
||||
|
||||
class SampleConfig:
|
||||
def __init__(self, **kwargs):
|
||||
self.sample_every: int = kwargs.get('sample_every', 100)
|
||||
self.width: int = kwargs.get('width', 512)
|
||||
self.height: int = kwargs.get('height', 512)
|
||||
self.prompts: list[str] = kwargs.get('prompts', [])
|
||||
self.neg = kwargs.get('neg', False)
|
||||
self.seed = kwargs.get('seed', 0)
|
||||
self.walk_seed = kwargs.get('walk_seed', False)
|
||||
self.guidance_scale = kwargs.get('guidance_scale', 7)
|
||||
self.sample_steps = kwargs.get('sample_steps', 20)
|
||||
|
||||
|
||||
class NetworkConfig:
|
||||
def __init__(self, **kwargs):
|
||||
self.type: str = kwargs.get('type', 'lierla')
|
||||
self.rank: int = kwargs.get('rank', 4)
|
||||
self.alpha: float = kwargs.get('alpha', 1.0)
|
||||
|
||||
|
||||
class TrainConfig:
|
||||
def __init__(self, **kwargs):
|
||||
self.noise_scheduler: 'model_util.AVAILABLE_SCHEDULERS' = kwargs.get('noise_scheduler', 'ddpm')
|
||||
self.steps: int = kwargs.get('steps', 1000)
|
||||
self.lr = kwargs.get('lr', 1e-6)
|
||||
self.optimizer = kwargs.get('optimizer', 'adamw')
|
||||
self.lr_scheduler = kwargs.get('lr_scheduler', 'constant')
|
||||
self.max_denoising_steps: int = kwargs.get('max_denoising_steps', 50)
|
||||
self.batch_size: int = kwargs.get('batch_size', 1)
|
||||
self.dtype: str = kwargs.get('dtype', 'fp32')
|
||||
self.xformers = kwargs.get('xformers', False)
|
||||
self.train_unet = kwargs.get('train_unet', True)
|
||||
self.train_text_encoder = kwargs.get('train_text_encoder', True)
|
||||
|
||||
|
||||
class ModelConfig:
|
||||
def __init__(self, **kwargs):
|
||||
self.name_or_path: str = kwargs.get('name_or_path', None)
|
||||
self.is_v2: bool = kwargs.get('is_v2', False)
|
||||
self.is_v_pred: bool = kwargs.get('is_v_pred', False)
|
||||
|
||||
if self.name_or_path is None:
|
||||
raise ValueError('name_or_path must be specified')
|
||||
|
||||
|
||||
class PromptSettingsOld:
|
||||
def __init__(self, **kwargs):
|
||||
self.target: str = kwargs.get('target', None)
|
||||
self.positive = kwargs.get('positive', None) # if None, target will be used
|
||||
self.unconditional = kwargs.get('unconditional', "") # default is ""
|
||||
self.neutral = kwargs.get('neutral', None) # if None, unconditional will be used
|
||||
self.action: ACTION_TYPES = kwargs.get('action', "erase") # default is "erase"
|
||||
self.guidance_scale: float = kwargs.get('guidance_scale', 1.0) # default is 1.0
|
||||
self.resolution: int = kwargs.get('resolution', 512) # default is 512
|
||||
self.dynamic_resolution: bool = kwargs.get('dynamic_resolution', False) # default is False
|
||||
self.batch_size: int = kwargs.get('batch_size', 1) # default is 1
|
||||
self.dynamic_crops: bool = kwargs.get('dynamic_crops', False) # default is False. only used when model is XL
|
||||
|
||||
|
||||
class TrainSliderProcess(BaseTrainProcess):
|
||||
def __init__(self, process_id: int, job, config: OrderedDict):
|
||||
super().__init__(process_id, job, config)
|
||||
self.step_num = 0
|
||||
self.start_step = 0
|
||||
self.device = self.get_conf('device', self.job.device)
|
||||
self.device_torch = torch.device(self.device)
|
||||
self.network_config = NetworkConfig(**self.get_conf('network', {}))
|
||||
self.training_folder = self.get_conf('training_folder', self.job.training_folder)
|
||||
self.train_config = TrainConfig(**self.get_conf('train', {}))
|
||||
self.model_config = ModelConfig(**self.get_conf('model', {}))
|
||||
self.save_config = SaveConfig(**self.get_conf('save', {}))
|
||||
self.sample_config = SampleConfig(**self.get_conf('sample', {}))
|
||||
self.logging_config = LogingConfig(**self.get_conf('logging', {}))
|
||||
self.sd = None
|
||||
|
||||
self.prompt_settings = self.get_prompt_settings()
|
||||
|
||||
# added later
|
||||
self.network = None
|
||||
self.scheduler = None
|
||||
self.is_flipped = False
|
||||
|
||||
def flip_network(self):
|
||||
for param in self.network.parameters():
|
||||
# apply opposite weight to the network
|
||||
param.data = -param.data
|
||||
self.is_flipped = not self.is_flipped
|
||||
|
||||
def get_prompt_settings(self):
|
||||
prompts = self.get_conf('prompts', required=True)
|
||||
prompt_settings = [PromptSettingsOld(**prompt) for prompt in prompts]
|
||||
# for i, prompt in enumerate(prompts):
|
||||
# prompt_settings[i].fill_prompts(prompt)
|
||||
|
||||
return prompt_settings
|
||||
|
||||
def sample(self, step=None):
|
||||
sample_folder = os.path.join(self.save_root, 'samples')
|
||||
if not os.path.exists(sample_folder):
|
||||
os.makedirs(sample_folder, exist_ok=True)
|
||||
|
||||
self.network.eval()
|
||||
|
||||
# save current seed state for training
|
||||
rng_state = torch.get_rng_state()
|
||||
cuda_rng_state = torch.cuda.get_rng_state() if torch.cuda.is_available() else None
|
||||
|
||||
original_device_dict = {
|
||||
'vae': self.sd.vae.device,
|
||||
'unet': self.sd.unet.device,
|
||||
'text_encoder': self.sd.text_encoder.device,
|
||||
# 'tokenizer': self.sd.tokenizer.device,
|
||||
}
|
||||
|
||||
self.sd.vae.to(self.device_torch)
|
||||
self.sd.unet.to(self.device_torch)
|
||||
self.sd.text_encoder.to(self.device_torch)
|
||||
# self.sd.tokenizer.to(self.device_torch)
|
||||
# TODO add clip skip
|
||||
|
||||
pipeline = StableDiffusionPipeline(
|
||||
vae=self.sd.vae,
|
||||
unet=self.sd.unet,
|
||||
text_encoder=self.sd.text_encoder,
|
||||
tokenizer=self.sd.tokenizer,
|
||||
scheduler=self.sd.noise_scheduler,
|
||||
safety_checker=None,
|
||||
feature_extractor=None,
|
||||
requires_safety_checker=False,
|
||||
)
|
||||
# disable progress bar
|
||||
pipeline.set_progress_bar_config(disable=True)
|
||||
|
||||
start_seed = self.sample_config.seed
|
||||
current_seed = start_seed
|
||||
|
||||
pipeline.to(self.device_torch)
|
||||
with self.network:
|
||||
with torch.no_grad():
|
||||
assert self.network.is_active
|
||||
if self.logging_config.verbose:
|
||||
print("network_state", {
|
||||
'is_active': self.network.is_active,
|
||||
'multiplier': self.network.multiplier,
|
||||
})
|
||||
|
||||
for i in tqdm(range(len(self.sample_config.prompts)), desc=f"Generating Samples - step: {step}"):
|
||||
raw_prompt = self.sample_config.prompts[i]
|
||||
prompt = raw_prompt
|
||||
neg = self.sample_config.neg
|
||||
p_split = raw_prompt.split('--n')
|
||||
if len(p_split) > 1:
|
||||
prompt = p_split[0].strip()
|
||||
neg = p_split[1].strip()
|
||||
height = self.sample_config.height
|
||||
width = self.sample_config.width
|
||||
height = max(64, height - height % 8) # round to divisible by 8
|
||||
width = max(64, width - width % 8) # round to divisible by 8
|
||||
|
||||
if self.sample_config.walk_seed:
|
||||
current_seed += i
|
||||
|
||||
torch.manual_seed(current_seed)
|
||||
torch.cuda.manual_seed(current_seed)
|
||||
|
||||
img = pipeline(
|
||||
prompt,
|
||||
height=height,
|
||||
width=width,
|
||||
num_inference_steps=self.sample_config.sample_steps,
|
||||
guidance_scale=self.sample_config.guidance_scale,
|
||||
negative_prompt=neg,
|
||||
).images[0]
|
||||
|
||||
step_num = ''
|
||||
if step is not None:
|
||||
# zero-pad 9 digits
|
||||
step_num = f"_{str(step).zfill(9)}"
|
||||
seconds_since_epoch = int(time.time())
|
||||
# zero-pad 2 digits
|
||||
i_str = str(i).zfill(2)
|
||||
filename = f"{seconds_since_epoch}{step_num}_{i_str}.png"
|
||||
output_path = os.path.join(sample_folder, filename)
|
||||
img.save(output_path)
|
||||
|
||||
# clear pipeline and cache to reduce vram usage
|
||||
del pipeline
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
# restore training state
|
||||
torch.set_rng_state(rng_state)
|
||||
if cuda_rng_state is not None:
|
||||
torch.cuda.set_rng_state(cuda_rng_state)
|
||||
|
||||
self.sd.vae.to(original_device_dict['vae'])
|
||||
self.sd.unet.to(original_device_dict['unet'])
|
||||
self.sd.text_encoder.to(original_device_dict['text_encoder'])
|
||||
self.network.train()
|
||||
# self.sd.tokenizer.to(original_device_dict['tokenizer'])
|
||||
|
||||
def update_training_metadata(self):
|
||||
self.add_meta(OrderedDict({"training_info": self.get_training_info()}))
|
||||
|
||||
def get_training_info(self):
|
||||
info = OrderedDict({
|
||||
'step': self.step_num
|
||||
})
|
||||
return info
|
||||
|
||||
def save(self, step=None):
|
||||
if not os.path.exists(self.save_root):
|
||||
os.makedirs(self.save_root, exist_ok=True)
|
||||
|
||||
step_num = ''
|
||||
if step is not None:
|
||||
# zeropad 9 digits
|
||||
step_num = f"_{str(step).zfill(9)}"
|
||||
|
||||
self.update_training_metadata()
|
||||
filename = f'{self.job.name}{step_num}.safetensors'
|
||||
file_path = os.path.join(self.save_root, filename)
|
||||
# prepare meta
|
||||
save_meta = get_meta_for_safetensors(self.meta, self.job.name)
|
||||
self.network.save_weights(
|
||||
file_path,
|
||||
dtype=get_torch_dtype(self.save_config.dtype),
|
||||
metadata=save_meta
|
||||
)
|
||||
|
||||
self.print(f"Saved to {file_path}")
|
||||
|
||||
def run(self):
|
||||
super().run()
|
||||
|
||||
dtype = get_torch_dtype(self.train_config.dtype)
|
||||
|
||||
modules = DEFAULT_TARGET_REPLACE
|
||||
loss = None
|
||||
if self.network_config.type == "c3lier":
|
||||
modules += UNET_TARGET_REPLACE_MODULE_CONV
|
||||
|
||||
tokenizer, text_encoder, unet, noise_scheduler = model_util.load_models(
|
||||
self.model_config.name_or_path,
|
||||
scheduler_name=self.train_config.noise_scheduler,
|
||||
v2=self.model_config.is_v2,
|
||||
v_pred=self.model_config.is_v_pred,
|
||||
)
|
||||
# just for now or of we want to load a custom one
|
||||
# put on cpu for now, we only need it when sampling
|
||||
vae = load_vae(self.model_config.name_or_path, dtype=dtype).to('cpu', dtype=dtype)
|
||||
vae.eval()
|
||||
self.sd = StableDiffusion(vae, tokenizer, text_encoder, unet, noise_scheduler)
|
||||
|
||||
text_encoder.to(self.device_torch, dtype=dtype)
|
||||
text_encoder.eval()
|
||||
|
||||
unet.to(self.device_torch, dtype=dtype)
|
||||
if self.train_config.xformers:
|
||||
unet.enable_xformers_memory_efficient_attention()
|
||||
unet.requires_grad_(False)
|
||||
unet.eval()
|
||||
|
||||
self.network = LoRASpecialNetwork(
|
||||
text_encoder=text_encoder,
|
||||
unet=unet,
|
||||
lora_dim=self.network_config.rank,
|
||||
multiplier=1.0,
|
||||
alpha=self.network_config.alpha
|
||||
)
|
||||
|
||||
self.network.force_to(self.device_torch, dtype=dtype)
|
||||
|
||||
self.network.apply_to(
|
||||
text_encoder,
|
||||
unet,
|
||||
self.train_config.train_text_encoder,
|
||||
self.train_config.train_unet
|
||||
)
|
||||
|
||||
self.network.prepare_grad_etc(text_encoder, unet)
|
||||
|
||||
optimizer_type = self.train_config.optimizer.lower()
|
||||
# we call it something different than leco
|
||||
if optimizer_type == "dadaptation":
|
||||
optimizer_type = "dadaptadam"
|
||||
optimizer_module = train_util.get_optimizer(optimizer_type)
|
||||
optimizer = optimizer_module(
|
||||
self.network.prepare_optimizer_params(
|
||||
self.train_config.lr, self.train_config.lr, self.train_config.lr
|
||||
),
|
||||
lr=self.train_config.lr
|
||||
)
|
||||
lr_scheduler = train_util.get_lr_scheduler(
|
||||
self.train_config.lr_scheduler,
|
||||
optimizer,
|
||||
max_iterations=self.train_config.steps,
|
||||
lr_min=self.train_config.lr / 100, # not sure why leco did this, but ill do it to
|
||||
)
|
||||
criteria = torch.nn.MSELoss()
|
||||
|
||||
if self.logging_config.verbose:
|
||||
print("Prompts")
|
||||
for settings in self.prompt_settings:
|
||||
print(settings)
|
||||
|
||||
# debug
|
||||
# debug_util.check_requires_grad(network)
|
||||
# debug_util.check_training_mode(network)
|
||||
|
||||
cache = PromptEmbedsCache()
|
||||
prompt_pairs: list[PromptEmbedsPair] = []
|
||||
|
||||
with torch.no_grad():
|
||||
for settings in self.prompt_settings:
|
||||
self.print(settings)
|
||||
for prompt in [
|
||||
settings.target,
|
||||
settings.positive,
|
||||
settings.neutral,
|
||||
settings.unconditional,
|
||||
]:
|
||||
if cache[prompt] == None:
|
||||
cache[prompt] = train_util.encode_prompts(
|
||||
tokenizer, text_encoder, [prompt]
|
||||
)
|
||||
|
||||
prompt_pairs.append(
|
||||
PromptEmbedsPair(
|
||||
criteria,
|
||||
cache[settings.target],
|
||||
cache[settings.positive],
|
||||
cache[settings.unconditional],
|
||||
cache[settings.neutral],
|
||||
settings,
|
||||
)
|
||||
)
|
||||
|
||||
# move to cpu to save vram
|
||||
# tokenizer.to("cpu")
|
||||
text_encoder.to("cpu")
|
||||
flush()
|
||||
|
||||
# sample first
|
||||
self.print("Generating baseline samples before training")
|
||||
self.sample(0)
|
||||
|
||||
self.progress_bar = tqdm(range(self.train_config.steps))
|
||||
self.progress_bar = tqdm(
|
||||
total=self.train_config.steps,
|
||||
desc=self.job.name,
|
||||
leave=True
|
||||
)
|
||||
self.step_num = 0
|
||||
for step in range(self.train_config.steps):
|
||||
with torch.no_grad():
|
||||
noise_scheduler.set_timesteps(
|
||||
self.train_config.max_denoising_steps, device=self.device_torch
|
||||
)
|
||||
|
||||
optimizer.zero_grad()
|
||||
|
||||
prompt_pair: PromptEmbedsPair = prompt_pairs[
|
||||
torch.randint(0, len(prompt_pairs), (1,)).item()
|
||||
]
|
||||
|
||||
# 1 ~ 49 random from 1 to 49
|
||||
timesteps_to = torch.randint(
|
||||
1, self.train_config.max_denoising_steps, (1,)
|
||||
).item()
|
||||
|
||||
height, width = (
|
||||
prompt_pair.resolution,
|
||||
prompt_pair.resolution,
|
||||
)
|
||||
if prompt_pair.dynamic_resolution:
|
||||
height, width = train_util.get_random_resolution_in_bucket(
|
||||
prompt_pair.resolution
|
||||
)
|
||||
|
||||
if self.logging_config.verbose:
|
||||
self.print("guidance_scale:", prompt_pair.guidance_scale)
|
||||
self.print("resolution:", prompt_pair.resolution)
|
||||
self.print("dynamic_resolution:", prompt_pair.dynamic_resolution)
|
||||
if prompt_pair.dynamic_resolution:
|
||||
self.print("bucketed resolution:", (height, width))
|
||||
self.print("batch_size:", prompt_pair.batch_size)
|
||||
|
||||
latents = train_util.get_initial_latents(
|
||||
noise_scheduler, prompt_pair.batch_size, height, width, 1
|
||||
).to(self.device_torch, dtype=dtype)
|
||||
|
||||
with self.network:
|
||||
assert self.network.is_active
|
||||
# A little denoised one is returned
|
||||
denoised_latents = train_util.diffusion(
|
||||
unet,
|
||||
noise_scheduler,
|
||||
latents, # pass simple noise latents
|
||||
train_util.concat_embeddings(
|
||||
prompt_pair.unconditional,
|
||||
prompt_pair.target,
|
||||
prompt_pair.batch_size,
|
||||
),
|
||||
start_timesteps=0,
|
||||
total_timesteps=timesteps_to,
|
||||
guidance_scale=3,
|
||||
)
|
||||
|
||||
noise_scheduler.set_timesteps(1000)
|
||||
|
||||
current_timestep = noise_scheduler.timesteps[
|
||||
int(timesteps_to * 1000 / self.train_config.max_denoising_steps)
|
||||
]
|
||||
|
||||
# with network: Only empty LoRA is enabled outside with network :
|
||||
positive_latents = train_util.predict_noise(
|
||||
unet,
|
||||
noise_scheduler,
|
||||
current_timestep,
|
||||
denoised_latents,
|
||||
train_util.concat_embeddings(
|
||||
prompt_pair.unconditional,
|
||||
prompt_pair.positive,
|
||||
prompt_pair.batch_size,
|
||||
),
|
||||
guidance_scale=1,
|
||||
).to("cpu", dtype=torch.float32)
|
||||
neutral_latents = train_util.predict_noise(
|
||||
unet,
|
||||
noise_scheduler,
|
||||
current_timestep,
|
||||
denoised_latents,
|
||||
train_util.concat_embeddings(
|
||||
prompt_pair.unconditional,
|
||||
prompt_pair.neutral,
|
||||
prompt_pair.batch_size,
|
||||
),
|
||||
guidance_scale=1,
|
||||
).to("cpu", dtype=torch.float32)
|
||||
unconditional_latents = train_util.predict_noise(
|
||||
unet,
|
||||
noise_scheduler,
|
||||
current_timestep,
|
||||
denoised_latents,
|
||||
train_util.concat_embeddings(
|
||||
prompt_pair.unconditional,
|
||||
prompt_pair.unconditional,
|
||||
prompt_pair.batch_size,
|
||||
),
|
||||
guidance_scale=1,
|
||||
).to("cpu", dtype=torch.float32)
|
||||
# if self.logging_config.verbose:
|
||||
# self.print("positive_latents:", positive_latents[0, 0, :5, :5])
|
||||
# self.print("neutral_latents:", neutral_latents[0, 0, :5, :5])
|
||||
# self.print("unconditional_latents:", unconditional_latents[0, 0, :5, :5])
|
||||
|
||||
with self.network:
|
||||
target_latents = train_util.predict_noise(
|
||||
unet,
|
||||
noise_scheduler,
|
||||
current_timestep,
|
||||
denoised_latents,
|
||||
train_util.concat_embeddings(
|
||||
prompt_pair.unconditional,
|
||||
prompt_pair.target,
|
||||
prompt_pair.batch_size,
|
||||
),
|
||||
guidance_scale=1,
|
||||
).to("cpu", dtype=torch.float32)
|
||||
|
||||
# if self.logging_config.verbose:
|
||||
# self.print("target_latents:", target_latents[0, 0, :5, :5])
|
||||
|
||||
positive_latents.requires_grad = False
|
||||
neutral_latents.requires_grad = False
|
||||
unconditional_latents.requires_grad = False
|
||||
|
||||
loss = prompt_pair.loss(
|
||||
target_latents=target_latents,
|
||||
positive_latents=positive_latents,
|
||||
neutral_latents=neutral_latents,
|
||||
unconditional_latents=unconditional_latents,
|
||||
)
|
||||
loss_float = loss.item()
|
||||
if self.train_config.optimizer.startswith('dadaptation'):
|
||||
learning_rate = (
|
||||
optimizer.param_groups[0]["d"] *
|
||||
optimizer.param_groups[0]["lr"]
|
||||
)
|
||||
else:
|
||||
learning_rate = optimizer.param_groups[0]['lr']
|
||||
|
||||
self.progress_bar.set_postfix_str(f"lr: {learning_rate:.1e} loss: {loss.item():.3e}")
|
||||
|
||||
loss.backward()
|
||||
optimizer.step()
|
||||
lr_scheduler.step()
|
||||
|
||||
del (
|
||||
positive_latents,
|
||||
neutral_latents,
|
||||
unconditional_latents,
|
||||
target_latents,
|
||||
latents,
|
||||
)
|
||||
flush()
|
||||
|
||||
# don't do on first step
|
||||
if self.step_num != self.start_step:
|
||||
# pause progress bar
|
||||
self.progress_bar.unpause() # makes it so doesn't track time
|
||||
if self.sample_config.sample_every and self.step_num % self.sample_config.sample_every == 0:
|
||||
# print above the progress bar
|
||||
self.sample(self.step_num)
|
||||
|
||||
if self.save_config.save_every and self.step_num % self.save_config.save_every == 0:
|
||||
# print above the progress bar
|
||||
self.print(f"Saving at step {self.step_num}")
|
||||
self.save(self.step_num)
|
||||
|
||||
if self.logging_config.log_every and self.step_num % self.logging_config.log_every == 0:
|
||||
# log to tensorboard
|
||||
if self.writer is not None:
|
||||
# get avg loss
|
||||
self.writer.add_scalar(f"loss", loss_float, self.step_num)
|
||||
if self.train_config.optimizer.startswith('dadaptation'):
|
||||
learning_rate = (
|
||||
optimizer.param_groups[0]["d"] *
|
||||
optimizer.param_groups[0]["lr"]
|
||||
)
|
||||
else:
|
||||
learning_rate = optimizer.param_groups[0]['lr']
|
||||
self.writer.add_scalar(f"lr", learning_rate, self.step_num)
|
||||
self.progress_bar.refresh()
|
||||
|
||||
# sets progress bar to match out step
|
||||
self.progress_bar.update(step - self.progress_bar.n)
|
||||
# end of step
|
||||
self.step_num = step
|
||||
|
||||
self.save()
|
||||
|
||||
del (
|
||||
unet,
|
||||
noise_scheduler,
|
||||
loss,
|
||||
optimizer,
|
||||
self.network,
|
||||
tokenizer,
|
||||
text_encoder,
|
||||
)
|
||||
|
||||
flush()
|
||||
@@ -178,7 +178,6 @@ class TrainVAEProcess(BaseTrainProcess):
|
||||
self.device = self.get_conf('device', self.job.device)
|
||||
self.vae_path = self.get_conf('vae_path', required=True)
|
||||
self.datasets_objects = self.get_conf('datasets', required=True)
|
||||
self.training_folder = self.get_conf('training_folder', self.job.training_folder)
|
||||
self.batch_size = self.get_conf('batch_size', 1, as_type=int)
|
||||
self.resolution = self.get_conf('resolution', 256, as_type=int)
|
||||
self.learning_rate = self.get_conf('learning_rate', 1e-6, as_type=float)
|
||||
@@ -197,14 +196,10 @@ class TrainVAEProcess(BaseTrainProcess):
|
||||
self.tv_weight = self.get_conf('tv_weight', 1e0, as_type=float)
|
||||
self.critic_weight = self.get_conf('critic_weight', 1, as_type=float)
|
||||
self.pattern_weight = self.get_conf('pattern_weight', 1, as_type=float)
|
||||
self.first_step = 0
|
||||
|
||||
self.blocks_to_train = self.get_conf('blocks_to_train', ['all'])
|
||||
self.writer = self.job.writer
|
||||
self.torch_dtype = get_torch_dtype(self.dtype)
|
||||
self.save_root = os.path.join(self.training_folder, self.job.name)
|
||||
self.vgg_19 = None
|
||||
self.progress_bar = None
|
||||
self.style_weight_scalers = []
|
||||
self.content_weight_scalers = []
|
||||
|
||||
@@ -254,13 +249,6 @@ class TrainVAEProcess(BaseTrainProcess):
|
||||
})
|
||||
return info
|
||||
|
||||
def print(self, message, **kwargs):
|
||||
if self.progress_bar is not None:
|
||||
self.progress_bar.write(message, **kwargs)
|
||||
self.progress_bar.update()
|
||||
else:
|
||||
print(message, **kwargs)
|
||||
|
||||
def load_datasets(self):
|
||||
if self.data_loader is None:
|
||||
print(f"Loading datasets")
|
||||
|
||||
@@ -5,3 +5,4 @@ from .BaseProcess import BaseProcess
|
||||
from .BaseTrainProcess import BaseTrainProcess
|
||||
from .TrainVAEProcess import TrainVAEProcess
|
||||
from .BaseMergeProcess import BaseMergeProcess
|
||||
from .TrainSliderProcess import TrainSliderProcess
|
||||
|
||||
@@ -8,4 +8,5 @@ flatten_json
|
||||
accelerator
|
||||
pyyaml
|
||||
oyaml
|
||||
tensorboard
|
||||
tensorboard
|
||||
kornia
|
||||
238
toolkit/lora.py
Normal file
238
toolkit/lora.py
Normal file
@@ -0,0 +1,238 @@
|
||||
# ref:
|
||||
# - https://github.com/cloneofsimo/lora/blob/master/lora_diffusion/lora.py
|
||||
# - https://github.com/kohya-ss/sd-scripts/blob/main/networks/lora.py
|
||||
# - https://github.com/p1atdev/LECO/blob/main/lora.py
|
||||
|
||||
import os
|
||||
import math
|
||||
from typing import Optional, List, Type, Set, Literal
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
from diffusers import UNet2DConditionModel
|
||||
from safetensors.torch import save_file
|
||||
|
||||
|
||||
UNET_TARGET_REPLACE_MODULE_TRANSFORMER = [
|
||||
"Transformer2DModel", # どうやらこっちの方らしい? # attn1, 2
|
||||
]
|
||||
UNET_TARGET_REPLACE_MODULE_CONV = [
|
||||
"ResnetBlock2D",
|
||||
"Downsample2D",
|
||||
"Upsample2D",
|
||||
] # locon, 3clier
|
||||
|
||||
LORA_PREFIX_UNET = "lora_unet"
|
||||
|
||||
DEFAULT_TARGET_REPLACE = UNET_TARGET_REPLACE_MODULE_TRANSFORMER
|
||||
|
||||
TRAINING_METHODS = Literal[
|
||||
"noxattn", # train all layers except x-attns and time_embed layers
|
||||
"innoxattn", # train all layers except self attention layers
|
||||
"selfattn", # ESD-u, train only self attention layers
|
||||
"xattn", # ESD-x, train only x attention layers
|
||||
"full", # train all layers
|
||||
# "notime",
|
||||
# "xlayer",
|
||||
# "outxattn",
|
||||
# "outsattn",
|
||||
# "inxattn",
|
||||
# "inmidsattn",
|
||||
# "selflayer",
|
||||
]
|
||||
|
||||
|
||||
class LoRAModule(nn.Module):
|
||||
"""
|
||||
replaces forward method of the original Linear, instead of replacing the original Linear module.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
lora_name,
|
||||
org_module: nn.Module,
|
||||
multiplier=1.0,
|
||||
lora_dim=4,
|
||||
alpha=1,
|
||||
):
|
||||
"""if alpha == 0 or None, alpha is rank (no scaling)."""
|
||||
super().__init__()
|
||||
self.lora_name = lora_name
|
||||
self.lora_dim = lora_dim
|
||||
|
||||
if org_module.__class__.__name__ == "Linear":
|
||||
in_dim = org_module.in_features
|
||||
out_dim = org_module.out_features
|
||||
self.lora_down = nn.Linear(in_dim, lora_dim, bias=False)
|
||||
self.lora_up = nn.Linear(lora_dim, out_dim, bias=False)
|
||||
|
||||
elif org_module.__class__.__name__ == "Conv2d": # 一応
|
||||
in_dim = org_module.in_channels
|
||||
out_dim = org_module.out_channels
|
||||
|
||||
self.lora_dim = min(self.lora_dim, in_dim, out_dim)
|
||||
if self.lora_dim != lora_dim:
|
||||
print(f"{lora_name} dim (rank) is changed to: {self.lora_dim}")
|
||||
|
||||
kernel_size = org_module.kernel_size
|
||||
stride = org_module.stride
|
||||
padding = org_module.padding
|
||||
self.lora_down = nn.Conv2d(
|
||||
in_dim, self.lora_dim, kernel_size, stride, padding, bias=False
|
||||
)
|
||||
self.lora_up = nn.Conv2d(self.lora_dim, out_dim, (1, 1), (1, 1), bias=False)
|
||||
|
||||
if type(alpha) == torch.Tensor:
|
||||
alpha = alpha.detach().numpy()
|
||||
alpha = lora_dim if alpha is None or alpha == 0 else alpha
|
||||
self.scale = alpha / self.lora_dim
|
||||
self.register_buffer("alpha", torch.tensor(alpha)) # 定数として扱える
|
||||
|
||||
# same as microsoft's
|
||||
nn.init.kaiming_uniform_(self.lora_down.weight, a=math.sqrt(5))
|
||||
nn.init.zeros_(self.lora_up.weight)
|
||||
|
||||
self.multiplier = multiplier
|
||||
self.org_module = org_module # remove in applying
|
||||
|
||||
def apply_to(self):
|
||||
self.org_forward = self.org_module.forward
|
||||
self.org_module.forward = self.forward
|
||||
del self.org_module
|
||||
|
||||
def forward(self, x):
|
||||
return (
|
||||
self.org_forward(x)
|
||||
+ self.lora_up(self.lora_down(x)) * self.multiplier * self.scale
|
||||
)
|
||||
|
||||
|
||||
class LoRANetwork(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
unet: UNet2DConditionModel,
|
||||
rank: int = 4,
|
||||
multiplier: float = 1.0,
|
||||
alpha: float = 1.0,
|
||||
train_method: TRAINING_METHODS = "full",
|
||||
) -> None:
|
||||
super().__init__()
|
||||
|
||||
self.multiplier = multiplier
|
||||
self.lora_dim = rank
|
||||
self.alpha = alpha
|
||||
|
||||
# LoRAのみ
|
||||
self.module = LoRAModule
|
||||
|
||||
# unetのloraを作る
|
||||
self.unet_loras = self.create_modules(
|
||||
LORA_PREFIX_UNET,
|
||||
unet,
|
||||
DEFAULT_TARGET_REPLACE,
|
||||
self.lora_dim,
|
||||
self.multiplier,
|
||||
train_method=train_method,
|
||||
)
|
||||
print(f"create LoRA for U-Net: {len(self.unet_loras)} modules.")
|
||||
|
||||
# assertion 名前の被りがないか確認しているようだ
|
||||
lora_names = set()
|
||||
for lora in self.unet_loras:
|
||||
assert (
|
||||
lora.lora_name not in lora_names
|
||||
), f"duplicated lora name: {lora.lora_name}. {lora_names}"
|
||||
lora_names.add(lora.lora_name)
|
||||
|
||||
# 適用する
|
||||
for lora in self.unet_loras:
|
||||
lora.apply_to()
|
||||
self.add_module(
|
||||
lora.lora_name,
|
||||
lora,
|
||||
)
|
||||
|
||||
del unet
|
||||
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
def create_modules(
|
||||
self,
|
||||
prefix: str,
|
||||
root_module: nn.Module,
|
||||
target_replace_modules: List[str],
|
||||
rank: int,
|
||||
multiplier: float,
|
||||
train_method: TRAINING_METHODS,
|
||||
) -> list:
|
||||
loras = []
|
||||
|
||||
for name, module in root_module.named_modules():
|
||||
if train_method == "noxattn": # Cross Attention と Time Embed 以外学習
|
||||
if "attn2" in name or "time_embed" in name:
|
||||
continue
|
||||
elif train_method == "innoxattn": # Cross Attention 以外学習
|
||||
if "attn2" in name:
|
||||
continue
|
||||
elif train_method == "selfattn": # Self Attention のみ学習
|
||||
if "attn1" not in name:
|
||||
continue
|
||||
elif train_method == "xattn": # Cross Attention のみ学習
|
||||
if "attn2" not in name:
|
||||
continue
|
||||
elif train_method == "full": # 全部学習
|
||||
pass
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
f"train_method: {train_method} is not implemented."
|
||||
)
|
||||
if module.__class__.__name__ in target_replace_modules:
|
||||
for child_name, child_module in module.named_modules():
|
||||
if child_module.__class__.__name__ in ["Linear", "Conv2d"]:
|
||||
lora_name = prefix + "." + name + "." + child_name
|
||||
lora_name = lora_name.replace(".", "_")
|
||||
print(f"{lora_name}")
|
||||
lora = self.module(
|
||||
lora_name, child_module, multiplier, rank, self.alpha
|
||||
)
|
||||
loras.append(lora)
|
||||
|
||||
return loras
|
||||
|
||||
def prepare_optimizer_params(self):
|
||||
all_params = []
|
||||
|
||||
if self.unet_loras: # 実質これしかない
|
||||
params = []
|
||||
[params.extend(lora.parameters()) for lora in self.unet_loras]
|
||||
param_data = {"params": params}
|
||||
all_params.append(param_data)
|
||||
|
||||
return all_params
|
||||
|
||||
def save_weights(self, file, dtype=None, metadata: Optional[dict] = None):
|
||||
state_dict = self.state_dict()
|
||||
|
||||
if dtype is not None:
|
||||
for key in list(state_dict.keys()):
|
||||
v = state_dict[key]
|
||||
v = v.detach().clone().to("cpu").to(dtype)
|
||||
state_dict[key] = v
|
||||
|
||||
for key in list(state_dict.keys()):
|
||||
if not key.startswith("lora"):
|
||||
# lora以外除外
|
||||
del state_dict[key]
|
||||
|
||||
if os.path.splitext(file)[1] == ".safetensors":
|
||||
save_file(state_dict, file, metadata)
|
||||
else:
|
||||
torch.save(state_dict, file)
|
||||
|
||||
def __enter__(self):
|
||||
for lora in self.unet_loras:
|
||||
lora.multiplier = 1.0
|
||||
|
||||
def __exit__(self, exc_type, exc_value, tb):
|
||||
for lora in self.unet_loras:
|
||||
lora.multiplier = 0
|
||||
226
toolkit/lora_special.py
Normal file
226
toolkit/lora_special.py
Normal file
@@ -0,0 +1,226 @@
|
||||
import os
|
||||
import sys
|
||||
from typing import List
|
||||
|
||||
import torch
|
||||
from .paths import SD_SCRIPTS_ROOT
|
||||
|
||||
sys.path.append(SD_SCRIPTS_ROOT)
|
||||
|
||||
from networks.lora import LoRANetwork, LoRAModule, get_block_index
|
||||
|
||||
|
||||
class LoRASpecialNetwork(LoRANetwork):
|
||||
_multiplier: float = 1.0
|
||||
is_active: bool = False
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
text_encoder,
|
||||
unet,
|
||||
multiplier=1.0,
|
||||
lora_dim=4,
|
||||
alpha=1,
|
||||
dropout=None,
|
||||
rank_dropout=None,
|
||||
module_dropout=None,
|
||||
conv_lora_dim=None,
|
||||
conv_alpha=None,
|
||||
block_dims=None,
|
||||
block_alphas=None,
|
||||
conv_block_dims=None,
|
||||
conv_block_alphas=None,
|
||||
modules_dim=None,
|
||||
modules_alpha=None,
|
||||
module_class=LoRAModule,
|
||||
varbose=False,
|
||||
) -> None:
|
||||
"""
|
||||
LoRA network: すごく引数が多いが、パターンは以下の通り
|
||||
1. lora_dimとalphaを指定
|
||||
2. lora_dim、alpha、conv_lora_dim、conv_alphaを指定
|
||||
3. block_dimsとblock_alphasを指定 : Conv2d3x3には適用しない
|
||||
4. block_dims、block_alphas、conv_block_dims、conv_block_alphasを指定 : Conv2d3x3にも適用する
|
||||
5. modules_dimとmodules_alphaを指定 (推論用)
|
||||
"""
|
||||
# call the parent of the parent we are replacing (LoRANetwork) init
|
||||
super(LoRANetwork, self).__init__()
|
||||
self.multiplier = multiplier
|
||||
|
||||
self.lora_dim = lora_dim
|
||||
self.alpha = alpha
|
||||
self.conv_lora_dim = conv_lora_dim
|
||||
self.conv_alpha = conv_alpha
|
||||
self.dropout = dropout
|
||||
self.rank_dropout = rank_dropout
|
||||
self.module_dropout = module_dropout
|
||||
|
||||
if modules_dim is not None:
|
||||
print(f"create LoRA network from weights")
|
||||
elif block_dims is not None:
|
||||
print(f"create LoRA network from block_dims")
|
||||
print(
|
||||
f"neuron dropout: p={self.dropout}, rank dropout: p={self.rank_dropout}, module dropout: p={self.module_dropout}")
|
||||
print(f"block_dims: {block_dims}")
|
||||
print(f"block_alphas: {block_alphas}")
|
||||
if conv_block_dims is not None:
|
||||
print(f"conv_block_dims: {conv_block_dims}")
|
||||
print(f"conv_block_alphas: {conv_block_alphas}")
|
||||
else:
|
||||
print(f"create LoRA network. base dim (rank): {lora_dim}, alpha: {alpha}")
|
||||
print(
|
||||
f"neuron dropout: p={self.dropout}, rank dropout: p={self.rank_dropout}, module dropout: p={self.module_dropout}")
|
||||
if self.conv_lora_dim is not None:
|
||||
print(
|
||||
f"apply LoRA to Conv2d with kernel size (3,3). dim (rank): {self.conv_lora_dim}, alpha: {self.conv_alpha}")
|
||||
|
||||
# create module instances
|
||||
def create_modules(is_unet, root_module: torch.nn.Module, target_replace_modules) -> List[LoRAModule]:
|
||||
prefix = LoRANetwork.LORA_PREFIX_UNET if is_unet else LoRANetwork.LORA_PREFIX_TEXT_ENCODER
|
||||
loras = []
|
||||
skipped = []
|
||||
for name, module in root_module.named_modules():
|
||||
if module.__class__.__name__ in target_replace_modules:
|
||||
for child_name, child_module in module.named_modules():
|
||||
is_linear = child_module.__class__.__name__ == "Linear"
|
||||
is_conv2d = child_module.__class__.__name__ == "Conv2d"
|
||||
is_conv2d_1x1 = is_conv2d and child_module.kernel_size == (1, 1)
|
||||
|
||||
if is_linear or is_conv2d:
|
||||
lora_name = prefix + "." + name + "." + child_name
|
||||
lora_name = lora_name.replace(".", "_")
|
||||
|
||||
dim = None
|
||||
alpha = None
|
||||
if modules_dim is not None:
|
||||
if lora_name in modules_dim:
|
||||
dim = modules_dim[lora_name]
|
||||
alpha = modules_alpha[lora_name]
|
||||
elif is_unet and block_dims is not None:
|
||||
block_idx = get_block_index(lora_name)
|
||||
if is_linear or is_conv2d_1x1:
|
||||
dim = block_dims[block_idx]
|
||||
alpha = block_alphas[block_idx]
|
||||
elif conv_block_dims is not None:
|
||||
dim = conv_block_dims[block_idx]
|
||||
alpha = conv_block_alphas[block_idx]
|
||||
else:
|
||||
if is_linear or is_conv2d_1x1:
|
||||
dim = self.lora_dim
|
||||
alpha = self.alpha
|
||||
elif self.conv_lora_dim is not None:
|
||||
dim = self.conv_lora_dim
|
||||
alpha = self.conv_alpha
|
||||
|
||||
if dim is None or dim == 0:
|
||||
if is_linear or is_conv2d_1x1 or (
|
||||
self.conv_lora_dim is not None or conv_block_dims is not None):
|
||||
skipped.append(lora_name)
|
||||
continue
|
||||
|
||||
lora = module_class(
|
||||
lora_name,
|
||||
child_module,
|
||||
self.multiplier,
|
||||
dim,
|
||||
alpha,
|
||||
dropout=dropout,
|
||||
rank_dropout=rank_dropout,
|
||||
module_dropout=module_dropout,
|
||||
)
|
||||
loras.append(lora)
|
||||
return loras, skipped
|
||||
|
||||
self.text_encoder_loras, skipped_te = create_modules(False, text_encoder,
|
||||
LoRANetwork.TEXT_ENCODER_TARGET_REPLACE_MODULE)
|
||||
print(f"create LoRA for Text Encoder: {len(self.text_encoder_loras)} modules.")
|
||||
|
||||
# extend U-Net target modules if conv2d 3x3 is enabled, or load from weights
|
||||
target_modules = LoRANetwork.UNET_TARGET_REPLACE_MODULE
|
||||
if modules_dim is not None or self.conv_lora_dim is not None or conv_block_dims is not None:
|
||||
target_modules += LoRANetwork.UNET_TARGET_REPLACE_MODULE_CONV2D_3X3
|
||||
|
||||
self.unet_loras, skipped_un = create_modules(True, unet, target_modules)
|
||||
print(f"create LoRA for U-Net: {len(self.unet_loras)} modules.")
|
||||
|
||||
skipped = skipped_te + skipped_un
|
||||
if varbose and len(skipped) > 0:
|
||||
print(
|
||||
f"because block_lr_weight is 0 or dim (rank) is 0, {len(skipped)} LoRA modules are skipped / block_lr_weightまたはdim (rank)が0の為、次の{len(skipped)}個のLoRAモジュールはスキップされます:"
|
||||
)
|
||||
for name in skipped:
|
||||
print(f"\t{name}")
|
||||
|
||||
self.up_lr_weight: List[float] = None
|
||||
self.down_lr_weight: List[float] = None
|
||||
self.mid_lr_weight: float = None
|
||||
self.block_lr = False
|
||||
|
||||
# assertion
|
||||
names = set()
|
||||
for lora in self.text_encoder_loras + self.unet_loras:
|
||||
# doesnt work on new diffusers. TODO make sure we are not missing something
|
||||
# assert lora.lora_name not in names, f"duplicated lora name: {lora.lora_name}"
|
||||
names.add(lora.lora_name)
|
||||
|
||||
def save_weights(self, file, dtype, metadata):
|
||||
if metadata is not None and len(metadata) == 0:
|
||||
metadata = None
|
||||
|
||||
state_dict = self.state_dict()
|
||||
|
||||
if dtype is not None:
|
||||
for key in list(state_dict.keys()):
|
||||
v = state_dict[key]
|
||||
v = v.detach().clone().to("cpu").to(dtype)
|
||||
state_dict[key] = v
|
||||
|
||||
if os.path.splitext(file)[1] == ".safetensors":
|
||||
from safetensors.torch import save_file
|
||||
save_file(state_dict, file, metadata)
|
||||
else:
|
||||
torch.save(state_dict, file)
|
||||
|
||||
@property
|
||||
def multiplier(self):
|
||||
return self._multiplier
|
||||
|
||||
@multiplier.setter
|
||||
def multiplier(self, value):
|
||||
self._multiplier = value
|
||||
self._update_lora_multiplier()
|
||||
|
||||
def _update_lora_multiplier(self):
|
||||
|
||||
if self.is_active:
|
||||
if hasattr(self, 'unet_loras'):
|
||||
for lora in self.unet_loras:
|
||||
lora.multiplier = self._multiplier
|
||||
if hasattr(self, 'text_encoder_loras'):
|
||||
for lora in self.text_encoder_loras:
|
||||
lora.multiplier = self._multiplier
|
||||
else:
|
||||
if hasattr(self, 'unet_loras'):
|
||||
for lora in self.unet_loras:
|
||||
lora.multiplier = 0
|
||||
if hasattr(self, 'text_encoder_loras'):
|
||||
for lora in self.text_encoder_loras:
|
||||
lora.multiplier = 0
|
||||
|
||||
def __enter__(self):
|
||||
self.is_active = True
|
||||
self._update_lora_multiplier()
|
||||
|
||||
def __exit__(self, exc_type, exc_value, tb):
|
||||
self.is_active = False
|
||||
self._update_lora_multiplier()
|
||||
|
||||
def force_to(self, device, dtype):
|
||||
self.to(device, dtype)
|
||||
loras = []
|
||||
if hasattr(self, 'unet_loras'):
|
||||
loras += self.unet_loras
|
||||
if hasattr(self, 'text_encoder_loras'):
|
||||
loras += self.text_encoder_loras
|
||||
for lora in loras:
|
||||
lora.to(device, dtype)
|
||||
@@ -83,3 +83,5 @@ class PatternLoss(torch.nn.Module):
|
||||
g_chan_loss = torch.abs(separated_chan_loss(g_chans) - separated_chan_loss(g_chans_target))
|
||||
b_chan_loss = torch.abs(separated_chan_loss(b_chans) - separated_chan_loss(b_chans_target))
|
||||
return (r_chan_loss + g_chan_loss + b_chan_loss) * 0.3333
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user