mirror of
https://github.com/ostris/ai-toolkit.git
synced 2026-01-26 16:39:47 +00:00
Various code to support experiments.
This commit is contained in:
12
.vscode/launch.json
vendored
12
.vscode/launch.json
vendored
@@ -40,5 +40,17 @@
|
||||
"console": "integratedTerminal",
|
||||
"justMyCode": false
|
||||
},
|
||||
{
|
||||
"name": "Python: Debug Current File (cuda:1)",
|
||||
"type": "python",
|
||||
"request": "launch",
|
||||
"program": "${file}",
|
||||
"console": "integratedTerminal",
|
||||
"env": {
|
||||
"CUDA_LAUNCH_BLOCKING": "1",
|
||||
"CUDA_VISIBLE_DEVICES": "1"
|
||||
},
|
||||
"justMyCode": false
|
||||
},
|
||||
]
|
||||
}
|
||||
@@ -438,7 +438,7 @@ class SDTrainer(BaseSDTrainProcess):
|
||||
dfe_loss += torch.nn.functional.mse_loss(pred_feature_list[i], target_feature_list[i], reduction="mean")
|
||||
|
||||
additional_loss += dfe_loss * self.train_config.diffusion_feature_extractor_weight * 100.0
|
||||
elif self.dfe.version == 3:
|
||||
elif self.dfe.version == 3 or self.dfe.version == 4:
|
||||
dfe_loss = self.dfe(
|
||||
noise=noise,
|
||||
noise_pred=noise_pred,
|
||||
@@ -518,7 +518,10 @@ class SDTrainer(BaseSDTrainProcess):
|
||||
v2=self.train_config.linear_timesteps2,
|
||||
timestep_type=self.train_config.timestep_type
|
||||
).to(loss.device, dtype=loss.dtype)
|
||||
if len(loss.shape) == 4:
|
||||
timestep_weight = timestep_weight.view(-1, 1, 1, 1).detach()
|
||||
elif len(loss.shape) == 5:
|
||||
timestep_weight = timestep_weight.view(-1, 1, 1, 1, 1).detach()
|
||||
loss = loss * timestep_weight
|
||||
|
||||
if self.train_config.do_prior_divergence and prior_pred is not None:
|
||||
|
||||
@@ -1116,6 +1116,7 @@ class BaseSDTrainProcess(BaseTrainProcess):
|
||||
self.train_config.linear_timesteps,
|
||||
self.train_config.linear_timesteps2,
|
||||
self.train_config.timestep_type == 'linear',
|
||||
self.train_config.timestep_type == 'one_step',
|
||||
])
|
||||
|
||||
timestep_type = 'linear' if linear_timesteps else None
|
||||
@@ -1159,6 +1160,8 @@ class BaseSDTrainProcess(BaseTrainProcess):
|
||||
device=self.device_torch
|
||||
)
|
||||
timestep_indices = timestep_indices.long()
|
||||
elif self.train_config.timestep_type == 'one_step':
|
||||
timestep_indices = torch.zeros((batch_size,), device=self.device_torch, dtype=torch.long)
|
||||
elif content_or_style in ['style', 'content']:
|
||||
# this is from diffusers training code
|
||||
# Cubic sampling for favoring later or earlier timesteps
|
||||
|
||||
@@ -4,7 +4,7 @@ torchao==0.9.0
|
||||
safetensors
|
||||
git+https://github.com/jaretburkett/easy_dwpose.git
|
||||
git+https://github.com/huggingface/diffusers@363d1ab7e24c5ed6c190abb00df66d9edb74383b
|
||||
transformers==4.49.0
|
||||
transformers==4.52.4
|
||||
lycoris-lora==1.8.3
|
||||
flatten_json
|
||||
pyyaml
|
||||
|
||||
@@ -437,7 +437,7 @@ class TrainConfig:
|
||||
# adds an additional loss to the network to encourage it output a normalized standard deviation
|
||||
self.target_norm_std = kwargs.get('target_norm_std', None)
|
||||
self.target_norm_std_value = kwargs.get('target_norm_std_value', 1.0)
|
||||
self.timestep_type = kwargs.get('timestep_type', 'sigmoid') # sigmoid, linear, lognorm_blend, next_sample, weighted
|
||||
self.timestep_type = kwargs.get('timestep_type', 'sigmoid') # sigmoid, linear, lognorm_blend, next_sample, weighted, one_step
|
||||
self.next_sample_timesteps = kwargs.get('next_sample_timesteps', 8)
|
||||
self.linear_timesteps = kwargs.get('linear_timesteps', False)
|
||||
self.linear_timesteps2 = kwargs.get('linear_timesteps2', False)
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
import math
|
||||
import torch
|
||||
import os
|
||||
from torch import nn
|
||||
@@ -351,12 +352,251 @@ class DiffusionFeatureExtractor3(nn.Module):
|
||||
|
||||
return total_loss
|
||||
|
||||
class DiffusionFeatureExtractor4(nn.Module):
|
||||
def __init__(self, device=torch.device("cuda"), dtype=torch.bfloat16, vae=None):
|
||||
super().__init__()
|
||||
self.version = 4
|
||||
if vae is None:
|
||||
raise ValueError("vae must be provided for DFE4")
|
||||
self.vae = vae
|
||||
# image_encoder_path = "google/siglip-so400m-patch14-384"
|
||||
image_encoder_path = "google/siglip2-so400m-patch16-naflex"
|
||||
from transformers import Siglip2ImageProcessor, Siglip2VisionModel
|
||||
try:
|
||||
self.image_processor = Siglip2ImageProcessor.from_pretrained(
|
||||
image_encoder_path)
|
||||
except EnvironmentError:
|
||||
self.image_processor = Siglip2ImageProcessor()
|
||||
|
||||
self.image_processor.max_num_patches = 1024
|
||||
|
||||
self.vision_encoder = Siglip2VisionModel.from_pretrained(
|
||||
image_encoder_path,
|
||||
ignore_mismatched_sizes=True
|
||||
).to(device, dtype=dtype)
|
||||
|
||||
self.losses = {}
|
||||
self.log_every = 100
|
||||
self.step = 0
|
||||
|
||||
def _target_hw(self, h, w, patch, max_patches, eps: float = 1e-5):
|
||||
def _snap(x, s):
|
||||
x = math.ceil((x * s) / patch) * patch
|
||||
return max(patch, int(x))
|
||||
|
||||
lo, hi = eps / 10, 1.0
|
||||
while hi - lo >= eps:
|
||||
mid = (lo + hi) / 2
|
||||
th, tw = _snap(h, mid), _snap(w, mid)
|
||||
if (th // patch) * (tw // patch) <= max_patches:
|
||||
lo = mid
|
||||
else:
|
||||
hi = mid
|
||||
return _snap(h, lo), _snap(w, lo)
|
||||
|
||||
|
||||
def tensors_to_siglip_like_features(self, batch: torch.Tensor):
|
||||
"""
|
||||
Args:
|
||||
batch: (bs, 3, H, W) tensor already in the desired value range
|
||||
(e.g. [-1, 1] or [0, 1]); no extra rescale / normalize here.
|
||||
|
||||
Returns:
|
||||
dict(
|
||||
pixel_values – (bs, L, P) where L = n_h*n_w, P = 3*patch*patch
|
||||
pixel_attention_mask– (L,) all-ones
|
||||
spatial_shapes – (n_h, n_w)
|
||||
)
|
||||
"""
|
||||
if batch.ndim != 4:
|
||||
raise ValueError("Expected (bs, 3, H, W) tensor")
|
||||
|
||||
bs, c, H, W = batch.shape
|
||||
proc = self.image_processor
|
||||
patch = proc.patch_size
|
||||
max_patches = proc.max_num_patches
|
||||
|
||||
# One shared resize for the whole batch
|
||||
tgt_h, tgt_w = self._target_hw(H, W, patch, max_patches)
|
||||
batch = torch.nn.functional.interpolate(
|
||||
batch, size=(tgt_h, tgt_w), mode="bilinear", align_corners=False
|
||||
)
|
||||
|
||||
n_h, n_w = tgt_h // patch, tgt_w // patch
|
||||
# flat_dim = c * patch * patch
|
||||
num_p = n_h * n_w
|
||||
|
||||
# unfold → (bs, flat_dim, num_p) → (bs, num_p, flat_dim)
|
||||
patches = (
|
||||
torch.nn.functional.unfold(batch, kernel_size=patch, stride=patch)
|
||||
.transpose(1, 2)
|
||||
)
|
||||
|
||||
attn_mask = torch.ones(num_p, dtype=torch.long, device=batch.device)
|
||||
spatial = torch.tensor((n_h, n_w), device=batch.device, dtype=torch.int32)
|
||||
|
||||
# repeat attn_mask for each batch element
|
||||
attn_mask = attn_mask.unsqueeze(0).repeat(bs, 1)
|
||||
spatial = spatial.unsqueeze(0).repeat(bs, 1)
|
||||
|
||||
return {
|
||||
"pixel_values": patches, # (bs, num_patches, patch_dim)
|
||||
"pixel_attention_mask": attn_mask, # (num_patches,)
|
||||
"spatial_shapes": spatial
|
||||
}
|
||||
|
||||
def get_siglip_features(self, tensors_0_1):
|
||||
dtype = torch.bfloat16
|
||||
device = self.vae.device
|
||||
|
||||
tensors_0_1 = torch.clamp(tensors_0_1, 0.0, 1.0)
|
||||
|
||||
mean = torch.tensor(self.image_processor.image_mean).to(
|
||||
device, dtype=dtype
|
||||
).detach()
|
||||
std = torch.tensor(self.image_processor.image_std).to(
|
||||
device, dtype=dtype
|
||||
).detach()
|
||||
# tensors_0_1 = torch.clip((255. * tensors_0_1), 0, 255).round() / 255.0
|
||||
clip_image = (tensors_0_1 - mean.view([1, 3, 1, 1])) / std.view([1, 3, 1, 1])
|
||||
|
||||
encoder_kwargs = self.tensors_to_siglip_like_features(clip_image)
|
||||
id_embeds = self.vision_encoder(
|
||||
pixel_values=encoder_kwargs['pixel_values'],
|
||||
pixel_attention_mask=encoder_kwargs['pixel_attention_mask'],
|
||||
spatial_shapes=encoder_kwargs['spatial_shapes'],
|
||||
output_hidden_states=True,
|
||||
)
|
||||
|
||||
# embeds = id_embeds['hidden_states'][-2] # penultimate layer
|
||||
embeds = id_embeds['pooler_output']
|
||||
return embeds
|
||||
|
||||
def forward(
|
||||
self,
|
||||
noise,
|
||||
noise_pred,
|
||||
noisy_latents,
|
||||
timesteps,
|
||||
batch: DataLoaderBatchDTO,
|
||||
scheduler: CustomFlowMatchEulerDiscreteScheduler,
|
||||
clip_weight=1.0,
|
||||
mse_weight=0.0,
|
||||
model=None
|
||||
):
|
||||
dtype = torch.bfloat16
|
||||
device = self.vae.device
|
||||
tensors = batch.tensor.to(device, dtype=dtype)
|
||||
is_video = False
|
||||
# stack time for video models on the batch dimension
|
||||
if len(noise_pred.shape) == 5:
|
||||
# B, C, T, H, W = images.shape
|
||||
# only take first time
|
||||
noise = noise[:, :, 0, :, :]
|
||||
noise_pred = noise_pred[:, :, 0, :, :]
|
||||
noisy_latents = noisy_latents[:, :, 0, :, :]
|
||||
is_video = True
|
||||
|
||||
if len(tensors.shape) == 5:
|
||||
# batch is different
|
||||
# (B, T, C, H, W)
|
||||
# only take first time
|
||||
tensors = tensors[:, 0, :, :, :]
|
||||
|
||||
if model is not None and hasattr(model, 'get_stepped_pred'):
|
||||
stepped_latents = model.get_stepped_pred(noise_pred, noise)
|
||||
else:
|
||||
# stepped_latents = noise - noise_pred
|
||||
# first we step the scheduler from current timestep to the very end for a full denoise
|
||||
bs = noise_pred.shape[0]
|
||||
noise_pred_chunks = torch.chunk(noise_pred, bs)
|
||||
timestep_chunks = torch.chunk(timesteps, bs)
|
||||
noisy_latent_chunks = torch.chunk(noisy_latents, bs)
|
||||
stepped_chunks = []
|
||||
for idx in range(bs):
|
||||
model_output = noise_pred_chunks[idx]
|
||||
timestep = timestep_chunks[idx]
|
||||
scheduler._step_index = None
|
||||
scheduler._init_step_index(timestep)
|
||||
sample = noisy_latent_chunks[idx].to(torch.float32)
|
||||
|
||||
sigma = scheduler.sigmas[scheduler.step_index]
|
||||
sigma_next = scheduler.sigmas[-1] # use last sigma for final step
|
||||
prev_sample = sample + (sigma_next - sigma) * model_output
|
||||
stepped_chunks.append(prev_sample)
|
||||
|
||||
stepped_latents = torch.cat(stepped_chunks, dim=0)
|
||||
|
||||
latents = stepped_latents.to(self.vae.device, dtype=self.vae.dtype)
|
||||
|
||||
scaling_factor = self.vae.config['scaling_factor'] if 'scaling_factor' in self.vae.config else 1.0
|
||||
shift_factor = self.vae.config['shift_factor'] if 'shift_factor' in self.vae.config else 0.0
|
||||
latents = (latents / scaling_factor) + shift_factor
|
||||
if is_video:
|
||||
# if video, we need to unsqueeze the latents to match the vae input shape
|
||||
latents = latents.unsqueeze(2)
|
||||
tensors_n1p1 = self.vae.decode(latents).sample # -1 to 1
|
||||
|
||||
if is_video:
|
||||
# if video, we need to squeeze the tensors to match the output shape
|
||||
tensors_n1p1 = tensors_n1p1.squeeze(2)
|
||||
|
||||
pred_images = (tensors_n1p1 + 1) / 2 # 0 to 1
|
||||
|
||||
total_loss = 0
|
||||
|
||||
with torch.no_grad():
|
||||
target_img = tensors.to(device, dtype=dtype)
|
||||
# go from -1 to 1 to 0 to 1
|
||||
target_img = (target_img + 1) / 2
|
||||
if clip_weight > 0:
|
||||
target_clip_output = self.get_siglip_features(target_img).detach()
|
||||
if clip_weight > 0:
|
||||
pred_clip_output = self.get_siglip_features(pred_images)
|
||||
clip_loss = torch.nn.functional.mse_loss(
|
||||
pred_clip_output.float(), target_clip_output.float()
|
||||
) * clip_weight
|
||||
|
||||
if 'clip_loss' not in self.losses:
|
||||
self.losses['clip_loss'] = clip_loss.item()
|
||||
else:
|
||||
self.losses['clip_loss'] += clip_loss.item()
|
||||
|
||||
total_loss += clip_loss
|
||||
if mse_weight > 0:
|
||||
mse_loss = torch.nn.functional.mse_loss(
|
||||
pred_images.float(), target_img.float()
|
||||
) * mse_weight
|
||||
|
||||
if 'mse_loss' not in self.losses:
|
||||
self.losses['mse_loss'] = mse_loss.item()
|
||||
else:
|
||||
self.losses['mse_loss'] += mse_loss.item()
|
||||
|
||||
total_loss += mse_loss
|
||||
|
||||
if self.step % self.log_every == 0 and self.step > 0:
|
||||
print(f"DFE losses:")
|
||||
for key in self.losses:
|
||||
self.losses[key] /= self.log_every
|
||||
# print in 2.000e-01 format
|
||||
print(f" - {key}: {self.losses[key]:.3e}")
|
||||
self.losses[key] = 0.0
|
||||
|
||||
# total_loss += mse_loss
|
||||
self.step += 1
|
||||
|
||||
return total_loss
|
||||
|
||||
def load_dfe(model_path, vae=None) -> DiffusionFeatureExtractor:
|
||||
if model_path == "v3":
|
||||
dfe = DiffusionFeatureExtractor3(vae=vae)
|
||||
dfe.eval()
|
||||
return dfe
|
||||
if model_path == "v4":
|
||||
dfe = DiffusionFeatureExtractor4(vae=vae)
|
||||
dfe.eval()
|
||||
return dfe
|
||||
if not os.path.exists(model_path):
|
||||
raise FileNotFoundError(f"Model file not found: {model_path}")
|
||||
# if it ende with safetensors
|
||||
|
||||
865
toolkit/models/wan21/autoencoder_kl_wan.py
Normal file
865
toolkit/models/wan21/autoencoder_kl_wan.py
Normal file
@@ -0,0 +1,865 @@
|
||||
# Copyright 2025 The Wan Team and The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torch.utils.checkpoint
|
||||
|
||||
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
||||
from diffusers.utils import logging
|
||||
from diffusers.utils.accelerate_utils import apply_forward_hook
|
||||
from diffusers.models.activations import get_activation
|
||||
from diffusers.models.modeling_outputs import AutoencoderKLOutput
|
||||
from diffusers.models.modeling_utils import ModelMixin
|
||||
from diffusers.models.autoencoders.vae import DecoderOutput, DiagonalGaussianDistribution
|
||||
import copy
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
CACHE_T = 2
|
||||
|
||||
|
||||
class WanCausalConv3d(nn.Conv3d):
|
||||
r"""
|
||||
A custom 3D causal convolution layer with feature caching support.
|
||||
|
||||
This layer extends the standard Conv3D layer by ensuring causality in the time dimension and handling feature
|
||||
caching for efficient inference.
|
||||
|
||||
Args:
|
||||
in_channels (int): Number of channels in the input image
|
||||
out_channels (int): Number of channels produced by the convolution
|
||||
kernel_size (int or tuple): Size of the convolving kernel
|
||||
stride (int or tuple, optional): Stride of the convolution. Default: 1
|
||||
padding (int or tuple, optional): Zero-padding added to all three sides of the input. Default: 0
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int,
|
||||
out_channels: int,
|
||||
kernel_size: Union[int, Tuple[int, int, int]],
|
||||
stride: Union[int, Tuple[int, int, int]] = 1,
|
||||
padding: Union[int, Tuple[int, int, int]] = 0,
|
||||
) -> None:
|
||||
super().__init__(
|
||||
in_channels=in_channels,
|
||||
out_channels=out_channels,
|
||||
kernel_size=kernel_size,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
)
|
||||
|
||||
# Set up causal padding
|
||||
self._padding = (self.padding[2], self.padding[2], self.padding[1], self.padding[1], 2 * self.padding[0], 0)
|
||||
self.padding = (0, 0, 0)
|
||||
|
||||
def forward(self, x, cache_x=None):
|
||||
padding = list(self._padding)
|
||||
if cache_x is not None and self._padding[4] > 0:
|
||||
cache_x = cache_x.to(x.device)
|
||||
x = torch.cat([cache_x, x], dim=2)
|
||||
padding[4] -= cache_x.shape[2]
|
||||
x = F.pad(x, padding)
|
||||
return super().forward(x)
|
||||
|
||||
|
||||
class WanRMS_norm(nn.Module):
|
||||
r"""
|
||||
A custom RMS normalization layer.
|
||||
|
||||
Args:
|
||||
dim (int): The number of dimensions to normalize over.
|
||||
channel_first (bool, optional): Whether the input tensor has channels as the first dimension.
|
||||
Default is True.
|
||||
images (bool, optional): Whether the input represents image data. Default is True.
|
||||
bias (bool, optional): Whether to include a learnable bias term. Default is False.
|
||||
"""
|
||||
|
||||
def __init__(self, dim: int, channel_first: bool = True, images: bool = True, bias: bool = False) -> None:
|
||||
super().__init__()
|
||||
broadcastable_dims = (1, 1, 1) if not images else (1, 1)
|
||||
shape = (dim, *broadcastable_dims) if channel_first else (dim,)
|
||||
|
||||
self.channel_first = channel_first
|
||||
self.scale = dim**0.5
|
||||
self.gamma = nn.Parameter(torch.ones(shape))
|
||||
self.bias = nn.Parameter(torch.zeros(shape)) if bias else 0.0
|
||||
|
||||
def forward(self, x):
|
||||
return F.normalize(x, dim=(1 if self.channel_first else -1)) * self.scale * self.gamma + self.bias
|
||||
|
||||
|
||||
class WanUpsample(nn.Upsample):
|
||||
r"""
|
||||
Perform upsampling while ensuring the output tensor has the same data type as the input.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor to be upsampled.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Upsampled tensor with the same data type as the input.
|
||||
"""
|
||||
|
||||
def forward(self, x):
|
||||
return super().forward(x.float()).type_as(x)
|
||||
|
||||
|
||||
class WanResample(nn.Module):
|
||||
r"""
|
||||
A custom resampling module for 2D and 3D data.
|
||||
|
||||
Args:
|
||||
dim (int): The number of input/output channels.
|
||||
mode (str): The resampling mode. Must be one of:
|
||||
- 'none': No resampling (identity operation).
|
||||
- 'upsample2d': 2D upsampling with nearest-exact interpolation and convolution.
|
||||
- 'upsample3d': 3D upsampling with nearest-exact interpolation, convolution, and causal 3D convolution.
|
||||
- 'downsample2d': 2D downsampling with zero-padding and convolution.
|
||||
- 'downsample3d': 3D downsampling with zero-padding, convolution, and causal 3D convolution.
|
||||
"""
|
||||
|
||||
def __init__(self, dim: int, mode: str) -> None:
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.mode = mode
|
||||
|
||||
# layers
|
||||
if mode == "upsample2d":
|
||||
self.resample = nn.Sequential(
|
||||
WanUpsample(scale_factor=(2.0, 2.0), mode="nearest-exact"), nn.Conv2d(dim, dim // 2, 3, padding=1)
|
||||
)
|
||||
elif mode == "upsample3d":
|
||||
self.resample = nn.Sequential(
|
||||
WanUpsample(scale_factor=(2.0, 2.0), mode="nearest-exact"), nn.Conv2d(dim, dim // 2, 3, padding=1)
|
||||
)
|
||||
self.time_conv = WanCausalConv3d(dim, dim * 2, (3, 1, 1), padding=(1, 0, 0))
|
||||
|
||||
elif mode == "downsample2d":
|
||||
self.resample = nn.Sequential(nn.ZeroPad2d((0, 1, 0, 1)), nn.Conv2d(dim, dim, 3, stride=(2, 2)))
|
||||
elif mode == "downsample3d":
|
||||
self.resample = nn.Sequential(nn.ZeroPad2d((0, 1, 0, 1)), nn.Conv2d(dim, dim, 3, stride=(2, 2)))
|
||||
self.time_conv = WanCausalConv3d(dim, dim, (3, 1, 1), stride=(2, 1, 1), padding=(0, 0, 0))
|
||||
|
||||
else:
|
||||
self.resample = nn.Identity()
|
||||
|
||||
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
||||
b, c, t, h, w = x.size()
|
||||
if self.mode == "upsample3d":
|
||||
if feat_cache is not None:
|
||||
idx = feat_idx[0]
|
||||
if feat_cache[idx] is None:
|
||||
feat_cache[idx] = "Rep"
|
||||
feat_idx[0] += 1
|
||||
else:
|
||||
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
||||
if cache_x.shape[2] < 2 and feat_cache[idx] is not None and feat_cache[idx] != "Rep":
|
||||
# cache last frame of last two chunk
|
||||
cache_x = torch.cat(
|
||||
[feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2
|
||||
)
|
||||
if cache_x.shape[2] < 2 and feat_cache[idx] is not None and feat_cache[idx] == "Rep":
|
||||
cache_x = torch.cat([torch.zeros_like(cache_x).to(cache_x.device), cache_x], dim=2)
|
||||
if feat_cache[idx] == "Rep":
|
||||
x = self.time_conv(x)
|
||||
else:
|
||||
x = self.time_conv(x, feat_cache[idx])
|
||||
feat_cache[idx] = cache_x
|
||||
feat_idx[0] += 1
|
||||
|
||||
x = x.reshape(b, 2, c, t, h, w)
|
||||
x = torch.stack((x[:, 0, :, :, :, :], x[:, 1, :, :, :, :]), 3)
|
||||
x = x.reshape(b, c, t * 2, h, w)
|
||||
t = x.shape[2]
|
||||
x = x.permute(0, 2, 1, 3, 4).reshape(b * t, c, h, w)
|
||||
x = self.resample(x)
|
||||
x = x.view(b, t, x.size(1), x.size(2), x.size(3)).permute(0, 2, 1, 3, 4)
|
||||
|
||||
if self.mode == "downsample3d":
|
||||
if feat_cache is not None:
|
||||
idx = feat_idx[0]
|
||||
if feat_cache[idx] is None:
|
||||
feat_cache[idx] = x.clone()
|
||||
feat_idx[0] += 1
|
||||
else:
|
||||
cache_x = x[:, :, -1:, :, :].clone()
|
||||
x = self.time_conv(torch.cat([feat_cache[idx][:, :, -1:, :, :], x], 2))
|
||||
feat_cache[idx] = cache_x
|
||||
feat_idx[0] += 1
|
||||
return x
|
||||
|
||||
|
||||
class WanResidualBlock(nn.Module):
|
||||
r"""
|
||||
A custom residual block module.
|
||||
|
||||
Args:
|
||||
in_dim (int): Number of input channels.
|
||||
out_dim (int): Number of output channels.
|
||||
dropout (float, optional): Dropout rate for the dropout layer. Default is 0.0.
|
||||
non_linearity (str, optional): Type of non-linearity to use. Default is "silu".
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
in_dim: int,
|
||||
out_dim: int,
|
||||
dropout: float = 0.0,
|
||||
non_linearity: str = "silu",
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.in_dim = in_dim
|
||||
self.out_dim = out_dim
|
||||
self.nonlinearity = get_activation(non_linearity)
|
||||
|
||||
# layers
|
||||
self.norm1 = WanRMS_norm(in_dim, images=False)
|
||||
self.conv1 = WanCausalConv3d(in_dim, out_dim, 3, padding=1)
|
||||
self.norm2 = WanRMS_norm(out_dim, images=False)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
self.conv2 = WanCausalConv3d(out_dim, out_dim, 3, padding=1)
|
||||
self.conv_shortcut = WanCausalConv3d(in_dim, out_dim, 1) if in_dim != out_dim else nn.Identity()
|
||||
|
||||
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
||||
# Apply shortcut connection
|
||||
h = self.conv_shortcut(x)
|
||||
|
||||
# First normalization and activation
|
||||
x = self.norm1(x)
|
||||
x = self.nonlinearity(x)
|
||||
|
||||
if feat_cache is not None:
|
||||
idx = feat_idx[0]
|
||||
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
||||
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
||||
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
|
||||
|
||||
x = self.conv1(x, feat_cache[idx])
|
||||
feat_cache[idx] = cache_x
|
||||
feat_idx[0] += 1
|
||||
else:
|
||||
x = self.conv1(x)
|
||||
|
||||
# Second normalization and activation
|
||||
x = self.norm2(x)
|
||||
x = self.nonlinearity(x)
|
||||
|
||||
# Dropout
|
||||
x = self.dropout(x)
|
||||
|
||||
if feat_cache is not None:
|
||||
idx = feat_idx[0]
|
||||
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
||||
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
||||
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
|
||||
|
||||
x = self.conv2(x, feat_cache[idx])
|
||||
feat_cache[idx] = cache_x
|
||||
feat_idx[0] += 1
|
||||
else:
|
||||
x = self.conv2(x)
|
||||
|
||||
# Add residual connection
|
||||
return x + h
|
||||
|
||||
|
||||
class WanAttentionBlock(nn.Module):
|
||||
r"""
|
||||
Causal self-attention with a single head.
|
||||
|
||||
Args:
|
||||
dim (int): The number of channels in the input tensor.
|
||||
"""
|
||||
|
||||
def __init__(self, dim):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
|
||||
# layers
|
||||
self.norm = WanRMS_norm(dim)
|
||||
self.to_qkv = nn.Conv2d(dim, dim * 3, 1)
|
||||
self.proj = nn.Conv2d(dim, dim, 1)
|
||||
|
||||
def forward(self, x):
|
||||
identity = x
|
||||
batch_size, channels, time, height, width = x.size()
|
||||
|
||||
x = x.permute(0, 2, 1, 3, 4).reshape(batch_size * time, channels, height, width)
|
||||
x = self.norm(x)
|
||||
|
||||
# compute query, key, value
|
||||
qkv = self.to_qkv(x)
|
||||
qkv = qkv.reshape(batch_size * time, 1, channels * 3, -1)
|
||||
qkv = qkv.permute(0, 1, 3, 2).contiguous()
|
||||
q, k, v = qkv.chunk(3, dim=-1)
|
||||
|
||||
# apply attention
|
||||
x = F.scaled_dot_product_attention(q, k, v)
|
||||
|
||||
x = x.squeeze(1).permute(0, 2, 1).reshape(batch_size * time, channels, height, width)
|
||||
|
||||
# output projection
|
||||
x = self.proj(x)
|
||||
|
||||
# Reshape back: [(b*t), c, h, w] -> [b, c, t, h, w]
|
||||
x = x.view(batch_size, time, channels, height, width)
|
||||
x = x.permute(0, 2, 1, 3, 4)
|
||||
|
||||
return x + identity
|
||||
|
||||
|
||||
class WanMidBlock(nn.Module):
|
||||
"""
|
||||
Middle block for WanVAE encoder and decoder.
|
||||
|
||||
Args:
|
||||
dim (int): Number of input/output channels.
|
||||
dropout (float): Dropout rate.
|
||||
non_linearity (str): Type of non-linearity to use.
|
||||
"""
|
||||
|
||||
def __init__(self, dim: int, dropout: float = 0.0, non_linearity: str = "silu", num_layers: int = 1):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
|
||||
# Create the components
|
||||
resnets = [WanResidualBlock(dim, dim, dropout, non_linearity)]
|
||||
attentions = []
|
||||
for _ in range(num_layers):
|
||||
attentions.append(WanAttentionBlock(dim))
|
||||
resnets.append(WanResidualBlock(dim, dim, dropout, non_linearity))
|
||||
self.attentions = nn.ModuleList(attentions)
|
||||
self.resnets = nn.ModuleList(resnets)
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
||||
# First residual block
|
||||
x = self.resnets[0](x, feat_cache, feat_idx)
|
||||
|
||||
# Process through attention and residual blocks
|
||||
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
||||
if attn is not None:
|
||||
x = attn(x)
|
||||
|
||||
x = resnet(x, feat_cache, feat_idx)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class WanEncoder3d(nn.Module):
|
||||
r"""
|
||||
A 3D encoder module.
|
||||
|
||||
Args:
|
||||
dim (int): The base number of channels in the first layer.
|
||||
z_dim (int): The dimensionality of the latent space.
|
||||
dim_mult (list of int): Multipliers for the number of channels in each block.
|
||||
num_res_blocks (int): Number of residual blocks in each block.
|
||||
attn_scales (list of float): Scales at which to apply attention mechanisms.
|
||||
temperal_downsample (list of bool): Whether to downsample temporally in each block.
|
||||
dropout (float): Dropout rate for the dropout layers.
|
||||
non_linearity (str): Type of non-linearity to use.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim=128,
|
||||
z_dim=4,
|
||||
dim_mult=[1, 2, 4, 4],
|
||||
num_res_blocks=2,
|
||||
attn_scales=[],
|
||||
temperal_downsample=[True, True, False],
|
||||
dropout=0.0,
|
||||
non_linearity: str = "silu",
|
||||
):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.z_dim = z_dim
|
||||
self.dim_mult = dim_mult
|
||||
self.num_res_blocks = num_res_blocks
|
||||
self.attn_scales = attn_scales
|
||||
self.temperal_downsample = temperal_downsample
|
||||
self.nonlinearity = get_activation(non_linearity)
|
||||
|
||||
# dimensions
|
||||
dims = [dim * u for u in [1] + dim_mult]
|
||||
scale = 1.0
|
||||
|
||||
# init block
|
||||
self.conv_in = WanCausalConv3d(3, dims[0], 3, padding=1)
|
||||
|
||||
# downsample blocks
|
||||
self.down_blocks = nn.ModuleList([])
|
||||
for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
|
||||
# residual (+attention) blocks
|
||||
for _ in range(num_res_blocks):
|
||||
self.down_blocks.append(WanResidualBlock(in_dim, out_dim, dropout))
|
||||
if scale in attn_scales:
|
||||
self.down_blocks.append(WanAttentionBlock(out_dim))
|
||||
in_dim = out_dim
|
||||
|
||||
# downsample block
|
||||
if i != len(dim_mult) - 1:
|
||||
mode = "downsample3d" if temperal_downsample[i] else "downsample2d"
|
||||
self.down_blocks.append(WanResample(out_dim, mode=mode))
|
||||
scale /= 2.0
|
||||
|
||||
# middle blocks
|
||||
self.mid_block = WanMidBlock(out_dim, dropout, non_linearity, num_layers=1)
|
||||
|
||||
# output blocks
|
||||
self.norm_out = WanRMS_norm(out_dim, images=False)
|
||||
self.conv_out = WanCausalConv3d(out_dim, z_dim, 3, padding=1)
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
||||
if feat_cache is not None:
|
||||
idx = feat_idx[0]
|
||||
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
||||
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
||||
# cache last frame of last two chunk
|
||||
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
|
||||
x = self.conv_in(x, feat_cache[idx])
|
||||
feat_cache[idx] = cache_x
|
||||
feat_idx[0] += 1
|
||||
else:
|
||||
x = self.conv_in(x)
|
||||
|
||||
## downsamples
|
||||
for layer in self.down_blocks:
|
||||
if feat_cache is not None:
|
||||
x = layer(x, feat_cache, feat_idx)
|
||||
else:
|
||||
x = layer(x)
|
||||
|
||||
## middle
|
||||
x = self.mid_block(x, feat_cache, feat_idx)
|
||||
|
||||
## head
|
||||
x = self.norm_out(x)
|
||||
x = self.nonlinearity(x)
|
||||
if feat_cache is not None:
|
||||
idx = feat_idx[0]
|
||||
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
||||
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
||||
# cache last frame of last two chunk
|
||||
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
|
||||
x = self.conv_out(x, feat_cache[idx])
|
||||
feat_cache[idx] = cache_x
|
||||
feat_idx[0] += 1
|
||||
else:
|
||||
x = self.conv_out(x)
|
||||
return x
|
||||
|
||||
|
||||
class WanUpBlock(nn.Module):
|
||||
"""
|
||||
A block that handles upsampling for the WanVAE decoder.
|
||||
|
||||
Args:
|
||||
in_dim (int): Input dimension
|
||||
out_dim (int): Output dimension
|
||||
num_res_blocks (int): Number of residual blocks
|
||||
dropout (float): Dropout rate
|
||||
upsample_mode (str, optional): Mode for upsampling ('upsample2d' or 'upsample3d')
|
||||
non_linearity (str): Type of non-linearity to use
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
in_dim: int,
|
||||
out_dim: int,
|
||||
num_res_blocks: int,
|
||||
dropout: float = 0.0,
|
||||
upsample_mode: Optional[str] = None,
|
||||
non_linearity: str = "silu",
|
||||
):
|
||||
super().__init__()
|
||||
self.in_dim = in_dim
|
||||
self.out_dim = out_dim
|
||||
|
||||
# Create layers list
|
||||
resnets = []
|
||||
# Add residual blocks and attention if needed
|
||||
current_dim = in_dim
|
||||
for _ in range(num_res_blocks + 1):
|
||||
resnets.append(WanResidualBlock(current_dim, out_dim, dropout, non_linearity))
|
||||
current_dim = out_dim
|
||||
|
||||
self.resnets = nn.ModuleList(resnets)
|
||||
|
||||
# Add upsampling layer if needed
|
||||
self.upsamplers = None
|
||||
if upsample_mode is not None:
|
||||
self.upsamplers = nn.ModuleList([WanResample(out_dim, mode=upsample_mode)])
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
||||
"""
|
||||
Forward pass through the upsampling block.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor
|
||||
feat_cache (list, optional): Feature cache for causal convolutions
|
||||
feat_idx (list, optional): Feature index for cache management
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Output tensor
|
||||
"""
|
||||
for resnet in self.resnets:
|
||||
if feat_cache is not None:
|
||||
x = resnet(x, feat_cache, feat_idx)
|
||||
else:
|
||||
x = resnet(x)
|
||||
|
||||
if self.upsamplers is not None:
|
||||
if feat_cache is not None:
|
||||
x = self.upsamplers[0](x, feat_cache, feat_idx)
|
||||
else:
|
||||
x = self.upsamplers[0](x)
|
||||
return x
|
||||
|
||||
|
||||
class WanDecoder3d(nn.Module):
|
||||
r"""
|
||||
A 3D decoder module.
|
||||
|
||||
Args:
|
||||
dim (int): The base number of channels in the first layer.
|
||||
z_dim (int): The dimensionality of the latent space.
|
||||
dim_mult (list of int): Multipliers for the number of channels in each block.
|
||||
num_res_blocks (int): Number of residual blocks in each block.
|
||||
attn_scales (list of float): Scales at which to apply attention mechanisms.
|
||||
temperal_upsample (list of bool): Whether to upsample temporally in each block.
|
||||
dropout (float): Dropout rate for the dropout layers.
|
||||
non_linearity (str): Type of non-linearity to use.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim=128,
|
||||
z_dim=4,
|
||||
dim_mult=[1, 2, 4, 4],
|
||||
num_res_blocks=2,
|
||||
attn_scales=[],
|
||||
temperal_upsample=[False, True, True],
|
||||
dropout=0.0,
|
||||
non_linearity: str = "silu",
|
||||
):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.z_dim = z_dim
|
||||
self.dim_mult = dim_mult
|
||||
self.num_res_blocks = num_res_blocks
|
||||
self.attn_scales = attn_scales
|
||||
self.temperal_upsample = temperal_upsample
|
||||
|
||||
self.nonlinearity = get_activation(non_linearity)
|
||||
|
||||
# dimensions
|
||||
dims = [dim * u for u in [dim_mult[-1]] + dim_mult[::-1]]
|
||||
scale = 1.0 / 2 ** (len(dim_mult) - 2)
|
||||
|
||||
# init block
|
||||
self.conv_in = WanCausalConv3d(z_dim, dims[0], 3, padding=1)
|
||||
|
||||
# middle blocks
|
||||
self.mid_block = WanMidBlock(dims[0], dropout, non_linearity, num_layers=1)
|
||||
|
||||
# upsample blocks
|
||||
self.up_blocks = nn.ModuleList([])
|
||||
for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
|
||||
# residual (+attention) blocks
|
||||
if i > 0:
|
||||
in_dim = in_dim // 2
|
||||
|
||||
# Determine if we need upsampling
|
||||
upsample_mode = None
|
||||
if i != len(dim_mult) - 1:
|
||||
upsample_mode = "upsample3d" if temperal_upsample[i] else "upsample2d"
|
||||
|
||||
# Create and add the upsampling block
|
||||
up_block = WanUpBlock(
|
||||
in_dim=in_dim,
|
||||
out_dim=out_dim,
|
||||
num_res_blocks=num_res_blocks,
|
||||
dropout=dropout,
|
||||
upsample_mode=upsample_mode,
|
||||
non_linearity=non_linearity,
|
||||
)
|
||||
self.up_blocks.append(up_block)
|
||||
|
||||
# Update scale for next iteration
|
||||
if upsample_mode is not None:
|
||||
scale *= 2.0
|
||||
|
||||
# output blocks
|
||||
self.norm_out = WanRMS_norm(out_dim, images=False)
|
||||
self.conv_out = WanCausalConv3d(out_dim, 3, 3, padding=1)
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
||||
## conv1
|
||||
if feat_cache is not None:
|
||||
idx = feat_idx[0]
|
||||
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
||||
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
||||
# cache last frame of last two chunk
|
||||
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
|
||||
x = self.conv_in(x, feat_cache[idx])
|
||||
feat_cache[idx] = cache_x
|
||||
feat_idx[0] += 1
|
||||
else:
|
||||
x = self.conv_in(x)
|
||||
|
||||
## middle
|
||||
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
||||
# middle
|
||||
x = self._gradient_checkpointing_func(self.mid_block, x, feat_cache, feat_idx)
|
||||
|
||||
## upsamples
|
||||
for up_block in self.up_blocks:
|
||||
x = self._gradient_checkpointing_func(up_block, x, feat_cache, feat_idx)
|
||||
|
||||
else:
|
||||
x = self.mid_block(x, feat_cache, feat_idx)
|
||||
|
||||
## upsamples
|
||||
for up_block in self.up_blocks:
|
||||
x = up_block(x, feat_cache, feat_idx)
|
||||
|
||||
## head
|
||||
x = self.norm_out(x)
|
||||
x = self.nonlinearity(x)
|
||||
if feat_cache is not None:
|
||||
idx = feat_idx[0]
|
||||
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
||||
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
||||
# cache last frame of last two chunk
|
||||
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
|
||||
x = self.conv_out(x, feat_cache[idx])
|
||||
feat_cache[idx] = cache_x
|
||||
feat_idx[0] += 1
|
||||
else:
|
||||
x = self.conv_out(x)
|
||||
return x
|
||||
|
||||
|
||||
class AutoencoderKLWan(ModelMixin, ConfigMixin):
|
||||
r"""
|
||||
A VAE model with KL loss for encoding videos into latents and decoding latent representations into videos.
|
||||
Introduced in [Wan 2.1].
|
||||
|
||||
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
||||
for all models (such as downloading or saving).
|
||||
"""
|
||||
|
||||
_supports_gradient_checkpointing = True
|
||||
|
||||
@register_to_config
|
||||
def __init__(
|
||||
self,
|
||||
base_dim: int = 96,
|
||||
z_dim: int = 16,
|
||||
dim_mult: Tuple[int] = [1, 2, 4, 4],
|
||||
num_res_blocks: int = 2,
|
||||
attn_scales: List[float] = [],
|
||||
temperal_downsample: List[bool] = [False, True, True],
|
||||
dropout: float = 0.0,
|
||||
latents_mean: List[float] = [
|
||||
-0.7571,
|
||||
-0.7089,
|
||||
-0.9113,
|
||||
0.1075,
|
||||
-0.1745,
|
||||
0.9653,
|
||||
-0.1517,
|
||||
1.5508,
|
||||
0.4134,
|
||||
-0.0715,
|
||||
0.5517,
|
||||
-0.3632,
|
||||
-0.1922,
|
||||
-0.9497,
|
||||
0.2503,
|
||||
-0.2921,
|
||||
],
|
||||
latents_std: List[float] = [
|
||||
2.8184,
|
||||
1.4541,
|
||||
2.3275,
|
||||
2.6558,
|
||||
1.2196,
|
||||
1.7708,
|
||||
2.6052,
|
||||
2.0743,
|
||||
3.2687,
|
||||
2.1526,
|
||||
2.8652,
|
||||
1.5579,
|
||||
1.6382,
|
||||
1.1253,
|
||||
2.8251,
|
||||
1.9160,
|
||||
],
|
||||
) -> None:
|
||||
super().__init__()
|
||||
|
||||
self.z_dim = z_dim
|
||||
self.temperal_downsample = temperal_downsample
|
||||
self.temperal_upsample = temperal_downsample[::-1]
|
||||
|
||||
self.encoder = WanEncoder3d(
|
||||
base_dim, z_dim * 2, dim_mult, num_res_blocks, attn_scales, self.temperal_downsample, dropout
|
||||
)
|
||||
self.quant_conv = WanCausalConv3d(z_dim * 2, z_dim * 2, 1)
|
||||
self.post_quant_conv = WanCausalConv3d(z_dim, z_dim, 1)
|
||||
|
||||
self.decoder = WanDecoder3d(
|
||||
base_dim, z_dim, dim_mult, num_res_blocks, attn_scales, self.temperal_upsample, dropout
|
||||
)
|
||||
|
||||
def clear_cache(self):
|
||||
def _count_conv3d(model):
|
||||
count = 0
|
||||
for m in model.modules():
|
||||
if isinstance(m, WanCausalConv3d):
|
||||
count += 1
|
||||
return count
|
||||
|
||||
self._conv_num = _count_conv3d(self.decoder)
|
||||
self._conv_idx = [0]
|
||||
self._feat_map = [None] * self._conv_num
|
||||
# cache encode
|
||||
self._enc_conv_num = _count_conv3d(self.encoder)
|
||||
self._enc_conv_idx = [0]
|
||||
self._enc_feat_map = [None] * self._enc_conv_num
|
||||
|
||||
def _encode(self, x: torch.Tensor) -> torch.Tensor:
|
||||
self.clear_cache()
|
||||
## cache
|
||||
t = x.shape[2]
|
||||
iter_ = 1 + (t - 1) // 4
|
||||
for i in range(iter_):
|
||||
self._enc_conv_idx = [0]
|
||||
if i == 0:
|
||||
out = self.encoder(x[:, :, :1, :, :], feat_cache=self._enc_feat_map, feat_idx=self._enc_conv_idx)
|
||||
else:
|
||||
out_ = self.encoder(
|
||||
x[:, :, 1 + 4 * (i - 1) : 1 + 4 * i, :, :],
|
||||
feat_cache=self._enc_feat_map,
|
||||
feat_idx=self._enc_conv_idx,
|
||||
)
|
||||
out = torch.cat([out, out_], 2)
|
||||
|
||||
enc = self.quant_conv(out)
|
||||
mu, logvar = enc[:, : self.z_dim, :, :, :], enc[:, self.z_dim :, :, :, :]
|
||||
enc = torch.cat([mu, logvar], dim=1)
|
||||
self.clear_cache()
|
||||
return enc
|
||||
|
||||
@apply_forward_hook
|
||||
def encode(
|
||||
self, x: torch.Tensor, return_dict: bool = True
|
||||
) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
|
||||
r"""
|
||||
Encode a batch of images into latents.
|
||||
|
||||
Args:
|
||||
x (`torch.Tensor`): Input batch of images.
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
|
||||
|
||||
Returns:
|
||||
The latent representations of the encoded videos. If `return_dict` is True, a
|
||||
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
|
||||
"""
|
||||
h = self._encode(x)
|
||||
posterior = DiagonalGaussianDistribution(h)
|
||||
if not return_dict:
|
||||
return (posterior,)
|
||||
return AutoencoderKLOutput(latent_dist=posterior)
|
||||
|
||||
def _decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
|
||||
self.clear_cache()
|
||||
|
||||
iter_ = z.shape[2]
|
||||
x = self.post_quant_conv(z)
|
||||
for i in range(iter_):
|
||||
|
||||
self._conv_idx = [0]
|
||||
if i == 0:
|
||||
out = self.decoder(x[:, :, i : i + 1, :, :], feat_cache=self._feat_map, feat_idx=self._conv_idx)
|
||||
else:
|
||||
out_ = self.decoder(x[:, :, i : i + 1, :, :], feat_cache=self._feat_map, feat_idx=self._conv_idx)
|
||||
out = torch.cat([out, out_], 2)
|
||||
|
||||
out = torch.clamp(out, min=-1.0, max=1.0)
|
||||
self.clear_cache()
|
||||
if not return_dict:
|
||||
return (out,)
|
||||
|
||||
return DecoderOutput(sample=out)
|
||||
|
||||
@apply_forward_hook
|
||||
def decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
|
||||
r"""
|
||||
Decode a batch of images.
|
||||
|
||||
Args:
|
||||
z (`torch.Tensor`): Input batch of latent vectors.
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
|
||||
|
||||
Returns:
|
||||
[`~models.vae.DecoderOutput`] or `tuple`:
|
||||
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
|
||||
returned.
|
||||
"""
|
||||
decoded = self._decode(z).sample
|
||||
if not return_dict:
|
||||
return (decoded,)
|
||||
|
||||
return DecoderOutput(sample=decoded)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
sample: torch.Tensor,
|
||||
sample_posterior: bool = False,
|
||||
return_dict: bool = True,
|
||||
generator: Optional[torch.Generator] = None,
|
||||
) -> Union[DecoderOutput, torch.Tensor]:
|
||||
"""
|
||||
Args:
|
||||
sample (`torch.Tensor`): Input sample.
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
|
||||
"""
|
||||
x = sample
|
||||
posterior = self.encode(x).latent_dist
|
||||
if sample_posterior:
|
||||
z = posterior.sample(generator=generator)
|
||||
else:
|
||||
z = posterior.mode()
|
||||
dec = self.decode(z, return_dict=return_dict)
|
||||
return dec
|
||||
@@ -9,7 +9,8 @@ from toolkit.dequantize import patch_dequantization_on_save
|
||||
from toolkit.models.base_model import BaseModel
|
||||
from toolkit.prompt_utils import PromptEmbeds
|
||||
from transformers import AutoTokenizer, UMT5EncoderModel
|
||||
from diffusers import AutoencoderKLWan, WanPipeline, WanTransformer3DModel
|
||||
from diffusers import WanPipeline, WanTransformer3DModel, AutoencoderKL
|
||||
from .autoencoder_kl_wan import AutoencoderKLWan
|
||||
import os
|
||||
import sys
|
||||
|
||||
|
||||
Reference in New Issue
Block a user