mirror of
https://github.com/ostris/ai-toolkit.git
synced 2026-01-26 08:29:45 +00:00
Add Gradio UI for ai-toolkit (#141)
* Add Gradio UI for FLUX.1 * small text changes * no flash-attn? no problem! * bye flash-attn! * fixes for windows --------- Co-authored-by: multimodalart <joaopaulo.passos+multimodal@gmail.com>
This commit is contained in:
14
README.md
14
README.md
@@ -53,6 +53,20 @@ pip install -r requirements.txt
|
||||
|
||||
## FLUX.1 Training
|
||||
|
||||
### Gradio UI
|
||||
|
||||
To get started training locally with a with a custom UI, once you followed the steps above and `ai-toolkit` is installed:
|
||||
|
||||
```bash
|
||||
cd ai-toolkit #in case you are not yet in the ai-toolkit folder
|
||||
huggingface-cli login #provide a `write` token to publish your LoRA at the end
|
||||
python flux_train_ui.py
|
||||
```
|
||||
|
||||
You will instantiate a UI that will let you upload your images, caption them, train and publish your LoRA
|
||||

|
||||
|
||||
|
||||
### Tutorial
|
||||
|
||||
To get started quickly, check out [@araminta_k](https://x.com/araminta_k) tutorial on [Finetuning Flux Dev on a 3090](https://www.youtube.com/watch?v=HzGW_Kyermg) with 24GB VRAM.
|
||||
|
||||
BIN
assets/lora_ease_ui.png
Normal file
BIN
assets/lora_ease_ui.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 340 KiB |
414
flux_train_ui.py
Normal file
414
flux_train_ui.py
Normal file
@@ -0,0 +1,414 @@
|
||||
import os
|
||||
from huggingface_hub import whoami
|
||||
os.environ["HF_HUB_ENABLE_HF_TRANSFER"] = "1"
|
||||
import sys
|
||||
|
||||
# Add the current working directory to the Python path
|
||||
sys.path.insert(0, os.getcwd())
|
||||
|
||||
import gradio as gr
|
||||
from PIL import Image
|
||||
import torch
|
||||
import uuid
|
||||
import os
|
||||
import shutil
|
||||
import json
|
||||
import yaml
|
||||
from slugify import slugify
|
||||
from transformers import AutoProcessor, AutoModelForCausalLM
|
||||
|
||||
sys.path.insert(0, "ai-toolkit")
|
||||
from toolkit.job import get_job
|
||||
|
||||
MAX_IMAGES = 150
|
||||
|
||||
def load_captioning(uploaded_files, concept_sentence):
|
||||
uploaded_images = [file for file in uploaded_files if not file.endswith('.txt')]
|
||||
txt_files = [file for file in uploaded_files if file.endswith('.txt')]
|
||||
txt_files_dict = {os.path.splitext(os.path.basename(txt_file))[0]: txt_file for txt_file in txt_files}
|
||||
updates = []
|
||||
if len(uploaded_images) <= 1:
|
||||
raise gr.Error(
|
||||
"Please upload at least 2 images to train your model (the ideal number with default settings is between 4-30)"
|
||||
)
|
||||
elif len(uploaded_images) > MAX_IMAGES:
|
||||
raise gr.Error(f"For now, only {MAX_IMAGES} or less images are allowed for training")
|
||||
# Update for the captioning_area
|
||||
# for _ in range(3):
|
||||
updates.append(gr.update(visible=True))
|
||||
# Update visibility and image for each captioning row and image
|
||||
for i in range(1, MAX_IMAGES + 1):
|
||||
# Determine if the current row and image should be visible
|
||||
visible = i <= len(uploaded_images)
|
||||
|
||||
# Update visibility of the captioning row
|
||||
updates.append(gr.update(visible=visible))
|
||||
|
||||
# Update for image component - display image if available, otherwise hide
|
||||
image_value = uploaded_images[i - 1] if visible else None
|
||||
updates.append(gr.update(value=image_value, visible=visible))
|
||||
|
||||
corresponding_caption = False
|
||||
if(image_value):
|
||||
base_name = os.path.splitext(os.path.basename(image_value))[0]
|
||||
print(base_name)
|
||||
print(image_value)
|
||||
if base_name in txt_files_dict:
|
||||
print("entrou")
|
||||
with open(txt_files_dict[base_name], 'r') as file:
|
||||
corresponding_caption = file.read()
|
||||
|
||||
# Update value of captioning area
|
||||
text_value = corresponding_caption if visible and corresponding_caption else "[trigger]" if visible and concept_sentence else None
|
||||
updates.append(gr.update(value=text_value, visible=visible))
|
||||
|
||||
# Update for the sample caption area
|
||||
updates.append(gr.update(visible=True))
|
||||
# Update prompt samples
|
||||
updates.append(gr.update(placeholder=f'A portrait of person in a bustling cafe {concept_sentence}', value=f'A person in a bustling cafe {concept_sentence}'))
|
||||
updates.append(gr.update(placeholder=f"A mountainous landscape in the style of {concept_sentence}"))
|
||||
updates.append(gr.update(placeholder=f"A {concept_sentence} in a mall"))
|
||||
updates.append(gr.update(visible=True))
|
||||
return updates
|
||||
|
||||
def hide_captioning():
|
||||
return gr.update(visible=False), gr.update(visible=False), gr.update(visible=False)
|
||||
|
||||
def create_dataset(*inputs):
|
||||
print("Creating dataset")
|
||||
images = inputs[0]
|
||||
destination_folder = str(f"datasets/{uuid.uuid4()}")
|
||||
if not os.path.exists(destination_folder):
|
||||
os.makedirs(destination_folder)
|
||||
|
||||
jsonl_file_path = os.path.join(destination_folder, "metadata.jsonl")
|
||||
with open(jsonl_file_path, "a") as jsonl_file:
|
||||
for index, image in enumerate(images):
|
||||
new_image_path = shutil.copy(image, destination_folder)
|
||||
|
||||
original_caption = inputs[index + 1]
|
||||
file_name = os.path.basename(new_image_path)
|
||||
|
||||
data = {"file_name": file_name, "prompt": original_caption}
|
||||
|
||||
jsonl_file.write(json.dumps(data) + "\n")
|
||||
|
||||
return destination_folder
|
||||
|
||||
|
||||
def run_captioning(images, concept_sentence, *captions):
|
||||
#Load internally to not consume resources for training
|
||||
device = "cuda" if torch.cuda.is_available() else "cpu"
|
||||
torch_dtype = torch.float16
|
||||
model = AutoModelForCausalLM.from_pretrained(
|
||||
"multimodalart/Florence-2-large-no-flash-attn", torch_dtype=torch_dtype, trust_remote_code=True
|
||||
).to(device)
|
||||
processor = AutoProcessor.from_pretrained("multimodalart/Florence-2-large-no-flash-attn", trust_remote_code=True)
|
||||
|
||||
captions = list(captions)
|
||||
for i, image_path in enumerate(images):
|
||||
print(captions[i])
|
||||
if isinstance(image_path, str): # If image is a file path
|
||||
image = Image.open(image_path).convert("RGB")
|
||||
|
||||
prompt = "<DETAILED_CAPTION>"
|
||||
inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, torch_dtype)
|
||||
|
||||
generated_ids = model.generate(
|
||||
input_ids=inputs["input_ids"], pixel_values=inputs["pixel_values"], max_new_tokens=1024, num_beams=3
|
||||
)
|
||||
|
||||
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
||||
parsed_answer = processor.post_process_generation(
|
||||
generated_text, task=prompt, image_size=(image.width, image.height)
|
||||
)
|
||||
caption_text = parsed_answer["<DETAILED_CAPTION>"].replace("The image shows ", "")
|
||||
if concept_sentence:
|
||||
caption_text = f"{caption_text} [trigger]"
|
||||
captions[i] = caption_text
|
||||
|
||||
yield captions
|
||||
model.to("cpu")
|
||||
del model
|
||||
del processor
|
||||
|
||||
def recursive_update(d, u):
|
||||
for k, v in u.items():
|
||||
if isinstance(v, dict) and v:
|
||||
d[k] = recursive_update(d.get(k, {}), v)
|
||||
else:
|
||||
d[k] = v
|
||||
return d
|
||||
|
||||
def start_training(
|
||||
lora_name,
|
||||
concept_sentence,
|
||||
steps,
|
||||
lr,
|
||||
rank,
|
||||
model_to_train,
|
||||
low_vram,
|
||||
dataset_folder,
|
||||
sample_1,
|
||||
sample_2,
|
||||
sample_3,
|
||||
use_more_advanced_options,
|
||||
more_advanced_options,
|
||||
):
|
||||
push_to_hub = True
|
||||
if not lora_name:
|
||||
raise gr.Error("You forgot to insert your LoRA name! This name has to be unique.")
|
||||
try:
|
||||
if whoami()["auth"]["accessToken"]["role"] == "write" or "repo.write" in whoami()["auth"]["accessToken"]["fineGrained"]["scoped"][0]["permissions"]:
|
||||
gr.Info(f"Starting training locally {whoami()['name']}. Your LoRA will be available locally and in Hugging Face after it finishes.")
|
||||
else:
|
||||
push_to_hub = False
|
||||
gr.Warning("Started training locally. Your LoRa will only be available locally because you didn't login with a `write` token to Hugging Face")
|
||||
except:
|
||||
push_to_hub = False
|
||||
gr.Warning("Started training locally. Your LoRa will only be available locally because you didn't login with a `write` token to Hugging Face")
|
||||
|
||||
print("Started training")
|
||||
slugged_lora_name = slugify(lora_name)
|
||||
|
||||
# Load the default config
|
||||
with open("config/examples/train_lora_flux_24gb.yaml", "r") as f:
|
||||
config = yaml.safe_load(f)
|
||||
|
||||
# Update the config with user inputs
|
||||
config["config"]["name"] = slugged_lora_name
|
||||
config["config"]["process"][0]["model"]["low_vram"] = low_vram
|
||||
config["config"]["process"][0]["train"]["skip_first_sample"] = True
|
||||
config["config"]["process"][0]["train"]["steps"] = int(steps)
|
||||
config["config"]["process"][0]["train"]["lr"] = float(lr)
|
||||
config["config"]["process"][0]["network"]["linear"] = int(rank)
|
||||
config["config"]["process"][0]["network"]["linear_alpha"] = int(rank)
|
||||
config["config"]["process"][0]["datasets"][0]["folder_path"] = dataset_folder
|
||||
config["config"]["process"][0]["save"]["push_to_hub"] = push_to_hub
|
||||
if(push_to_hub):
|
||||
try:
|
||||
username = whoami()["name"]
|
||||
except:
|
||||
raise gr.Error("Error trying to retrieve your username. Are you sure you are logged in with Hugging Face?")
|
||||
config["config"]["process"][0]["save"]["hf_repo_id"] = f"{username}/{slugged_lora_name}"
|
||||
config["config"]["process"][0]["save"]["hf_private"] = True
|
||||
if concept_sentence:
|
||||
config["config"]["process"][0]["trigger_word"] = concept_sentence
|
||||
|
||||
if sample_1 or sample_2 or sample_3:
|
||||
config["config"]["process"][0]["train"]["disable_sampling"] = False
|
||||
config["config"]["process"][0]["sample"]["sample_every"] = steps
|
||||
config["config"]["process"][0]["sample"]["sample_steps"] = 28
|
||||
config["config"]["process"][0]["sample"]["prompts"] = []
|
||||
if sample_1:
|
||||
config["config"]["process"][0]["sample"]["prompts"].append(sample_1)
|
||||
if sample_2:
|
||||
config["config"]["process"][0]["sample"]["prompts"].append(sample_2)
|
||||
if sample_3:
|
||||
config["config"]["process"][0]["sample"]["prompts"].append(sample_3)
|
||||
else:
|
||||
config["config"]["process"][0]["train"]["disable_sampling"] = True
|
||||
if(model_to_train == "schnell"):
|
||||
config["config"]["process"][0]["model"]["name_or_path"] = "black-forest-labs/FLUX.1-schnell"
|
||||
config["config"]["process"][0]["model"]["assistant_lora_path"] = "ostris/FLUX.1-schnell-training-adapter"
|
||||
config["config"]["process"][0]["sample"]["sample_steps"] = 4
|
||||
if(use_more_advanced_options):
|
||||
more_advanced_options_dict = yaml.safe_load(more_advanced_options)
|
||||
config["config"]["process"][0] = recursive_update(config["config"]["process"][0], more_advanced_options_dict)
|
||||
print(config)
|
||||
|
||||
# Save the updated config
|
||||
# generate a random name for the config
|
||||
random_config_name = str(uuid.uuid4())
|
||||
os.makedirs("tmp", exist_ok=True)
|
||||
config_path = f"tmp/{random_config_name}-{slugged_lora_name}.yaml"
|
||||
with open(config_path, "w") as f:
|
||||
yaml.dump(config, f)
|
||||
|
||||
# run the job locally
|
||||
job = get_job(config_path)
|
||||
job.run()
|
||||
job.cleanup()
|
||||
|
||||
return f"Training completed successfully. Model saved as {slugged_lora_name}"
|
||||
|
||||
config_yaml = '''
|
||||
device: cuda:0
|
||||
model:
|
||||
is_flux: true
|
||||
quantize: true
|
||||
network:
|
||||
linear: 16 #it will overcome the 'rank' parameter
|
||||
linear_alpha: 16 #you can have an alpha different than the ranking if you'd like
|
||||
type: lora
|
||||
sample:
|
||||
guidance_scale: 3.5
|
||||
height: 1024
|
||||
neg: '' #doesn't work for FLUX
|
||||
sample_every: 1000
|
||||
sample_steps: 28
|
||||
sampler: flowmatch
|
||||
seed: 42
|
||||
walk_seed: true
|
||||
width: 1024
|
||||
save:
|
||||
dtype: float16
|
||||
hf_private: true
|
||||
max_step_saves_to_keep: 4
|
||||
push_to_hub: true
|
||||
save_every: 10000
|
||||
train:
|
||||
batch_size: 1
|
||||
dtype: bf16
|
||||
ema_config:
|
||||
ema_decay: 0.99
|
||||
use_ema: true
|
||||
gradient_accumulation_steps: 1
|
||||
gradient_checkpointing: true
|
||||
noise_scheduler: flowmatch
|
||||
optimizer: adamw8bit #options: prodigy, dadaptation, adamw, adamw8bit, lion, lion8bit
|
||||
train_text_encoder: false #probably doesn't work for flux
|
||||
train_unet: true
|
||||
'''
|
||||
|
||||
theme = gr.themes.Monochrome(
|
||||
text_size=gr.themes.Size(lg="18px", md="15px", sm="13px", xl="22px", xs="12px", xxl="24px", xxs="9px"),
|
||||
font=[gr.themes.GoogleFont("Source Sans Pro"), "ui-sans-serif", "system-ui", "sans-serif"],
|
||||
)
|
||||
css = """
|
||||
h1{font-size: 2em}
|
||||
h3{margin-top: 0}
|
||||
#component-1{text-align:center}
|
||||
.main_ui_logged_out{opacity: 0.3; pointer-events: none}
|
||||
.tabitem{border: 0px}
|
||||
.group_padding{padding: .55em}
|
||||
"""
|
||||
with gr.Blocks(theme=theme, css=css) as demo:
|
||||
gr.Markdown(
|
||||
"""# LoRA Ease for FLUX 🧞♂️
|
||||
### Train a high quality FLUX LoRA in a breeze ༄ using [Ostris' AI Toolkit](https://github.com/ostris/ai-toolkit)"""
|
||||
)
|
||||
with gr.Column() as main_ui:
|
||||
with gr.Row():
|
||||
lora_name = gr.Textbox(
|
||||
label="The name of your LoRA",
|
||||
info="This has to be a unique name",
|
||||
placeholder="e.g.: Persian Miniature Painting style, Cat Toy",
|
||||
)
|
||||
concept_sentence = gr.Textbox(
|
||||
label="Trigger word/sentence",
|
||||
info="Trigger word or sentence to be used",
|
||||
placeholder="uncommon word like p3rs0n or trtcrd, or sentence like 'in the style of CNSTLL'",
|
||||
interactive=True,
|
||||
)
|
||||
with gr.Group(visible=True) as image_upload:
|
||||
with gr.Row():
|
||||
images = gr.File(
|
||||
file_types=["image", ".txt"],
|
||||
label="Upload your images",
|
||||
file_count="multiple",
|
||||
interactive=True,
|
||||
visible=True,
|
||||
scale=1,
|
||||
)
|
||||
with gr.Column(scale=3, visible=False) as captioning_area:
|
||||
with gr.Column():
|
||||
gr.Markdown(
|
||||
"""# Custom captioning
|
||||
<p style="margin-top:0">You can optionally add a custom caption for each image (or use an AI model for this). [trigger] will represent your concept sentence/trigger word.</p>
|
||||
""", elem_classes="group_padding")
|
||||
do_captioning = gr.Button("Add AI captions with Florence-2")
|
||||
output_components = [captioning_area]
|
||||
caption_list = []
|
||||
for i in range(1, MAX_IMAGES + 1):
|
||||
locals()[f"captioning_row_{i}"] = gr.Row(visible=False)
|
||||
with locals()[f"captioning_row_{i}"]:
|
||||
locals()[f"image_{i}"] = gr.Image(
|
||||
type="filepath",
|
||||
width=111,
|
||||
height=111,
|
||||
min_width=111,
|
||||
interactive=False,
|
||||
scale=2,
|
||||
show_label=False,
|
||||
show_share_button=False,
|
||||
show_download_button=False,
|
||||
)
|
||||
locals()[f"caption_{i}"] = gr.Textbox(
|
||||
label=f"Caption {i}", scale=15, interactive=True
|
||||
)
|
||||
|
||||
output_components.append(locals()[f"captioning_row_{i}"])
|
||||
output_components.append(locals()[f"image_{i}"])
|
||||
output_components.append(locals()[f"caption_{i}"])
|
||||
caption_list.append(locals()[f"caption_{i}"])
|
||||
|
||||
with gr.Accordion("Advanced options", open=False):
|
||||
steps = gr.Number(label="Steps", value=1000, minimum=1, maximum=10000, step=1)
|
||||
lr = gr.Number(label="Learning Rate", value=4e-4, minimum=1e-6, maximum=1e-3, step=1e-6)
|
||||
rank = gr.Number(label="LoRA Rank", value=16, minimum=4, maximum=128, step=4)
|
||||
model_to_train = gr.Radio(["dev", "schnell"], value="dev", label="Model to train")
|
||||
low_vram = gr.Checkbox(label="Low VRAM", value=True)
|
||||
with gr.Accordion("Even more advanced options", open=False):
|
||||
use_more_advanced_options = gr.Checkbox(label="Use more advanced options", value=False)
|
||||
more_advanced_options = gr.Code(config_yaml, language="yaml")
|
||||
|
||||
with gr.Accordion("Sample prompts (optional)", visible=False) as sample:
|
||||
gr.Markdown(
|
||||
"Include sample prompts to test out your trained model. Don't forget to include your trigger word/sentence (optional)"
|
||||
)
|
||||
sample_1 = gr.Textbox(label="Test prompt 1")
|
||||
sample_2 = gr.Textbox(label="Test prompt 2")
|
||||
sample_3 = gr.Textbox(label="Test prompt 3")
|
||||
|
||||
output_components.append(sample)
|
||||
output_components.append(sample_1)
|
||||
output_components.append(sample_2)
|
||||
output_components.append(sample_3)
|
||||
start = gr.Button("Start training", visible=False)
|
||||
output_components.append(start)
|
||||
progress_area = gr.Markdown("")
|
||||
|
||||
dataset_folder = gr.State()
|
||||
|
||||
images.upload(
|
||||
load_captioning,
|
||||
inputs=[images, concept_sentence],
|
||||
outputs=output_components
|
||||
)
|
||||
|
||||
images.delete(
|
||||
load_captioning,
|
||||
inputs=[images, concept_sentence],
|
||||
outputs=output_components
|
||||
)
|
||||
|
||||
images.clear(
|
||||
hide_captioning,
|
||||
outputs=[captioning_area, sample, start]
|
||||
)
|
||||
|
||||
start.click(fn=create_dataset, inputs=[images] + caption_list, outputs=dataset_folder).then(
|
||||
fn=start_training,
|
||||
inputs=[
|
||||
lora_name,
|
||||
concept_sentence,
|
||||
steps,
|
||||
lr,
|
||||
rank,
|
||||
model_to_train,
|
||||
low_vram,
|
||||
dataset_folder,
|
||||
sample_1,
|
||||
sample_2,
|
||||
sample_3,
|
||||
use_more_advanced_options,
|
||||
more_advanced_options
|
||||
],
|
||||
outputs=progress_area,
|
||||
)
|
||||
|
||||
do_captioning.click(fn=run_captioning, inputs=[images, concept_sentence] + caption_list, outputs=caption_list)
|
||||
|
||||
if __name__ == "__main__":
|
||||
demo.launch(share=True, show_error=True)
|
||||
@@ -29,4 +29,6 @@ pytorch_fid
|
||||
optimum-quanto
|
||||
sentencepiece
|
||||
huggingface_hub
|
||||
peft
|
||||
peft
|
||||
gradio
|
||||
python-slugify
|
||||
Reference in New Issue
Block a user