mirror of
https://github.com/ostris/ai-toolkit.git
synced 2026-01-26 16:39:47 +00:00
Added timestep modifications to lcm scheduler for more evenly spaced timesteps
This commit is contained in:
@@ -688,7 +688,12 @@ class BaseSDTrainProcess(BaseTrainProcess):
|
||||
with self.timer('prepare_noise'):
|
||||
num_train_timesteps = self.sd.noise_scheduler.config['num_train_timesteps']
|
||||
|
||||
if self.train_config.noise_scheduler == 'lcm':
|
||||
if self.train_config.noise_scheduler in ['custom_lcm']:
|
||||
# we store this value on our custom one
|
||||
self.sd.noise_scheduler.set_timesteps(
|
||||
self.sd.noise_scheduler.train_timesteps, device=self.device_torch
|
||||
)
|
||||
elif self.train_config.noise_scheduler in ['lcm']:
|
||||
self.sd.noise_scheduler.set_timesteps(
|
||||
num_train_timesteps, device=self.device_torch, original_inference_steps=num_train_timesteps
|
||||
)
|
||||
@@ -727,12 +732,15 @@ class BaseSDTrainProcess(BaseTrainProcess):
|
||||
)
|
||||
|
||||
elif self.train_config.content_or_style == 'balanced':
|
||||
timesteps = torch.randint(
|
||||
min_noise_steps,
|
||||
max_noise_steps,
|
||||
(batch_size,),
|
||||
device=self.device_torch
|
||||
)
|
||||
if min_noise_steps == max_noise_steps:
|
||||
timesteps = torch.ones((batch_size,), device=self.device_torch) * min_noise_steps
|
||||
else:
|
||||
timesteps = torch.randint(
|
||||
min_noise_steps,
|
||||
max_noise_steps,
|
||||
(batch_size,),
|
||||
device=self.device_torch
|
||||
)
|
||||
timesteps = timesteps.long()
|
||||
else:
|
||||
raise ValueError(f"Unknown content_or_style {self.train_config.content_or_style}")
|
||||
|
||||
@@ -17,7 +17,7 @@ from diffusers import (
|
||||
|
||||
from k_diffusion.external import CompVisDenoiser
|
||||
|
||||
from toolkit.samplers.scheduling_ddpm import ADDPMScheduler
|
||||
from toolkit.samplers.custom_lcm_scheduler import CustomLCMScheduler
|
||||
|
||||
# scheduler:
|
||||
SCHEDULER_LINEAR_START = 0.00085
|
||||
@@ -78,8 +78,8 @@ def get_sampler(
|
||||
scheduler_cls = KDPM2AncestralDiscreteScheduler
|
||||
elif sampler == "lcm":
|
||||
scheduler_cls = LCMScheduler
|
||||
elif sampler == "addpm":
|
||||
scheduler_cls = ADDPMScheduler
|
||||
elif sampler == "custom_lcm":
|
||||
scheduler_cls = CustomLCMScheduler
|
||||
|
||||
config = copy.deepcopy(sdxl_sampler_config)
|
||||
config.update(sched_init_args)
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
# Copyright 2023 UC Berkeley Team and The HuggingFace Team. All rights reserved.
|
||||
# Copyright 2023 Stanford University Team and The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
@@ -12,7 +12,8 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
# DISCLAIMER: This file is strongly influenced by https://github.com/ermongroup/ddim
|
||||
# DISCLAIMER: This code is strongly influenced by https://github.com/pesser/pytorch_diffusion
|
||||
# and https://github.com/hojonathanho/diffusion
|
||||
|
||||
import math
|
||||
from dataclasses import dataclass
|
||||
@@ -22,13 +23,16 @@ import numpy as np
|
||||
import torch
|
||||
|
||||
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
||||
from diffusers.utils import BaseOutput
|
||||
from diffusers.utils import BaseOutput, logging
|
||||
from diffusers.utils.torch_utils import randn_tensor
|
||||
from diffusers.schedulers.scheduling_utils import KarrasDiffusionSchedulers, SchedulerMixin
|
||||
from diffusers.schedulers.scheduling_utils import SchedulerMixin
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
|
||||
@dataclass
|
||||
class DDPMSchedulerOutput(BaseOutput):
|
||||
class LCMSchedulerOutput(BaseOutput):
|
||||
"""
|
||||
Output class for the scheduler's `step` function output.
|
||||
|
||||
@@ -42,9 +46,10 @@ class DDPMSchedulerOutput(BaseOutput):
|
||||
"""
|
||||
|
||||
prev_sample: torch.FloatTensor
|
||||
pred_original_sample: Optional[torch.FloatTensor] = None
|
||||
denoised: Optional[torch.FloatTensor] = None
|
||||
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_ddpm.betas_for_alpha_bar
|
||||
def betas_for_alpha_bar(
|
||||
num_diffusion_timesteps,
|
||||
max_beta=0.999,
|
||||
@@ -89,12 +94,52 @@ def betas_for_alpha_bar(
|
||||
return torch.tensor(betas, dtype=torch.float32)
|
||||
|
||||
|
||||
class ADDPMScheduler(SchedulerMixin, ConfigMixin):
|
||||
# Copied from diffusers.schedulers.scheduling_ddim.rescale_zero_terminal_snr
|
||||
def rescale_zero_terminal_snr(betas: torch.FloatTensor) -> torch.FloatTensor:
|
||||
"""
|
||||
`DDPMScheduler` explores the connections between denoising score matching and Langevin dynamics sampling.
|
||||
Rescales betas to have zero terminal SNR Based on https://arxiv.org/pdf/2305.08891.pdf (Algorithm 1)
|
||||
|
||||
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
|
||||
methods the library implements for all schedulers such as loading and saving.
|
||||
|
||||
Args:
|
||||
betas (`torch.FloatTensor`):
|
||||
the betas that the scheduler is being initialized with.
|
||||
|
||||
Returns:
|
||||
`torch.FloatTensor`: rescaled betas with zero terminal SNR
|
||||
"""
|
||||
# Convert betas to alphas_bar_sqrt
|
||||
alphas = 1.0 - betas
|
||||
alphas_cumprod = torch.cumprod(alphas, dim=0)
|
||||
alphas_bar_sqrt = alphas_cumprod.sqrt()
|
||||
|
||||
# Store old values.
|
||||
alphas_bar_sqrt_0 = alphas_bar_sqrt[0].clone()
|
||||
alphas_bar_sqrt_T = alphas_bar_sqrt[-1].clone()
|
||||
|
||||
# Shift so the last timestep is zero.
|
||||
alphas_bar_sqrt -= alphas_bar_sqrt_T
|
||||
|
||||
# Scale so the first timestep is back to the old value.
|
||||
alphas_bar_sqrt *= alphas_bar_sqrt_0 / (alphas_bar_sqrt_0 - alphas_bar_sqrt_T)
|
||||
|
||||
# Convert alphas_bar_sqrt to betas
|
||||
alphas_bar = alphas_bar_sqrt**2 # Revert sqrt
|
||||
alphas = alphas_bar[1:] / alphas_bar[:-1] # Revert cumprod
|
||||
alphas = torch.cat([alphas_bar[0:1], alphas])
|
||||
betas = 1 - alphas
|
||||
|
||||
return betas
|
||||
|
||||
|
||||
class CustomLCMScheduler(SchedulerMixin, ConfigMixin):
|
||||
"""
|
||||
`LCMScheduler` extends the denoising procedure introduced in denoising diffusion probabilistic models (DDPMs) with
|
||||
non-Markovian guidance.
|
||||
|
||||
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. [`~ConfigMixin`] takes care of storing all config
|
||||
attributes that are passed in the scheduler's `__init__` function, such as `num_train_timesteps`. They can be
|
||||
accessed via `scheduler.config.num_train_timesteps`. [`SchedulerMixin`] provides general loading and saving
|
||||
functionality via the [`SchedulerMixin.save_pretrained`] and [`~SchedulerMixin.from_pretrained`] functions.
|
||||
|
||||
Args:
|
||||
num_train_timesteps (`int`, defaults to 1000):
|
||||
@@ -106,13 +151,23 @@ class ADDPMScheduler(SchedulerMixin, ConfigMixin):
|
||||
beta_schedule (`str`, defaults to `"linear"`):
|
||||
The beta schedule, a mapping from a beta range to a sequence of betas for stepping the model. Choose from
|
||||
`linear`, `scaled_linear`, or `squaredcos_cap_v2`.
|
||||
variance_type (`str`, defaults to `"fixed_small"`):
|
||||
Clip the variance when adding noise to the denoised sample. Choose from `fixed_small`, `fixed_small_log`,
|
||||
`fixed_large`, `fixed_large_log`, `learned` or `learned_range`.
|
||||
trained_betas (`np.ndarray`, *optional*):
|
||||
Pass an array of betas directly to the constructor to bypass `beta_start` and `beta_end`.
|
||||
original_inference_steps (`int`, *optional*, defaults to 50):
|
||||
The default number of inference steps used to generate a linearly-spaced timestep schedule, from which we
|
||||
will ultimately take `num_inference_steps` evenly spaced timesteps to form the final timestep schedule.
|
||||
clip_sample (`bool`, defaults to `True`):
|
||||
Clip the predicted sample for numerical stability.
|
||||
clip_sample_range (`float`, defaults to 1.0):
|
||||
The maximum magnitude for sample clipping. Valid only when `clip_sample=True`.
|
||||
set_alpha_to_one (`bool`, defaults to `True`):
|
||||
Each diffusion step uses the alphas product value at that step and at the previous one. For the final step
|
||||
there is no previous alpha. When this option is `True` the previous alpha product is fixed to `1`,
|
||||
otherwise it uses the alpha value at step 0.
|
||||
steps_offset (`int`, defaults to 0):
|
||||
An offset added to the inference steps. You can use a combination of `offset=1` and
|
||||
`set_alpha_to_one=False` to make the last step use step 0 for the previous alpha product like in Stable
|
||||
Diffusion.
|
||||
prediction_type (`str`, defaults to `epsilon`, *optional*):
|
||||
Prediction type of the scheduler function; can be `epsilon` (predicts the noise of the diffusion process),
|
||||
`sample` (directly predicts the noisy sample`) or `v_prediction` (see section 2.4 of [Imagen
|
||||
@@ -127,32 +182,38 @@ class ADDPMScheduler(SchedulerMixin, ConfigMixin):
|
||||
timestep_spacing (`str`, defaults to `"leading"`):
|
||||
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
|
||||
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
|
||||
steps_offset (`int`, defaults to 0):
|
||||
An offset added to the inference steps. You can use a combination of `offset=1` and
|
||||
`set_alpha_to_one=False` to make the last step use step 0 for the previous alpha product like in Stable
|
||||
Diffusion.
|
||||
timestep_scaling (`float`, defaults to 10.0):
|
||||
The factor the timesteps will be multiplied by when calculating the consistency model boundary conditions
|
||||
`c_skip` and `c_out`. Increasing this will decrease the approximation error (although the approximation
|
||||
error at the default of `10.0` is already pretty small).
|
||||
rescale_betas_zero_snr (`bool`, defaults to `False`):
|
||||
Whether to rescale the betas to have zero terminal SNR. This enables the model to generate very bright and
|
||||
dark samples instead of limiting it to samples with medium brightness. Loosely related to
|
||||
[`--offset_noise`](https://github.com/huggingface/diffusers/blob/74fd735eb073eb1d774b1ab4154a0876eb82f055/examples/dreambooth/train_dreambooth.py#L506).
|
||||
"""
|
||||
|
||||
_compatibles = [e.name for e in KarrasDiffusionSchedulers]
|
||||
order = 1
|
||||
|
||||
@register_to_config
|
||||
def __init__(
|
||||
self,
|
||||
num_train_timesteps: int = 1000,
|
||||
beta_start: float = 0.0001,
|
||||
beta_end: float = 0.02,
|
||||
beta_schedule: str = "linear",
|
||||
beta_start: float = 0.00085,
|
||||
beta_end: float = 0.012,
|
||||
beta_schedule: str = "scaled_linear",
|
||||
trained_betas: Optional[Union[np.ndarray, List[float]]] = None,
|
||||
variance_type: str = "fixed_small",
|
||||
clip_sample: bool = True,
|
||||
original_inference_steps: int = 50,
|
||||
clip_sample: bool = False,
|
||||
clip_sample_range: float = 1.0,
|
||||
set_alpha_to_one: bool = True,
|
||||
steps_offset: int = 0,
|
||||
prediction_type: str = "epsilon",
|
||||
thresholding: bool = False,
|
||||
dynamic_thresholding_ratio: float = 0.995,
|
||||
clip_sample_range: float = 1.0,
|
||||
sample_max_value: float = 1.0,
|
||||
timestep_spacing: str = "leading",
|
||||
steps_offset: int = 0,
|
||||
timestep_scaling: float = 10.0,
|
||||
rescale_betas_zero_snr: bool = False,
|
||||
):
|
||||
if trained_betas is not None:
|
||||
self.betas = torch.tensor(trained_betas, dtype=torch.float32)
|
||||
@@ -166,27 +227,55 @@ class ADDPMScheduler(SchedulerMixin, ConfigMixin):
|
||||
elif beta_schedule == "squaredcos_cap_v2":
|
||||
# Glide cosine schedule
|
||||
self.betas = betas_for_alpha_bar(num_train_timesteps)
|
||||
elif beta_schedule == "sigmoid":
|
||||
# GeoDiff sigmoid schedule
|
||||
betas = torch.linspace(-6, 6, num_train_timesteps)
|
||||
self.betas = torch.sigmoid(betas) * (beta_end - beta_start) + beta_start
|
||||
else:
|
||||
raise NotImplementedError(f"{beta_schedule} does is not implemented for {self.__class__}")
|
||||
|
||||
# Rescale for zero SNR
|
||||
if rescale_betas_zero_snr:
|
||||
self.betas = rescale_zero_terminal_snr(self.betas)
|
||||
|
||||
self.alphas = 1.0 - self.betas
|
||||
self.alphas_cumprod = torch.cumprod(self.alphas, dim=0)
|
||||
self.one = torch.tensor(1.0)
|
||||
|
||||
# At every step in ddim, we are looking into the previous alphas_cumprod
|
||||
# For the final step, there is no previous alphas_cumprod because we are already at 0
|
||||
# `set_alpha_to_one` decides whether we set this parameter simply to one or
|
||||
# whether we use the final alpha of the "non-previous" one.
|
||||
self.final_alpha_cumprod = torch.tensor(1.0) if set_alpha_to_one else self.alphas_cumprod[0]
|
||||
|
||||
# standard deviation of the initial noise distribution
|
||||
self.init_noise_sigma = 1.0
|
||||
self.is_training = False
|
||||
self.original_inference_steps = 50
|
||||
|
||||
# setable values
|
||||
self.custom_timesteps = False
|
||||
self.num_inference_steps = None
|
||||
self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy())
|
||||
self.timesteps = torch.from_numpy(np.arange(0, num_train_timesteps)[::-1].copy().astype(np.int64))
|
||||
|
||||
self.variance_type = variance_type
|
||||
self.train_timesteps = 1000
|
||||
|
||||
self._step_index = None
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._init_step_index
|
||||
def _init_step_index(self, timestep):
|
||||
if isinstance(timestep, torch.Tensor):
|
||||
timestep = timestep.to(self.timesteps.device)
|
||||
|
||||
index_candidates = (self.timesteps == timestep).nonzero()
|
||||
|
||||
# The sigma index that is taken for the **very** first `step`
|
||||
# is always the second index (or the last index if there is only 1)
|
||||
# This way we can ensure we don't accidentally skip a sigma in
|
||||
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
|
||||
if len(index_candidates) > 1:
|
||||
step_index = index_candidates[1]
|
||||
else:
|
||||
step_index = index_candidates[0]
|
||||
|
||||
self._step_index = step_index.item()
|
||||
|
||||
@property
|
||||
def step_index(self):
|
||||
return self._step_index
|
||||
|
||||
def scale_model_input(self, sample: torch.FloatTensor, timestep: Optional[int] = None) -> torch.FloatTensor:
|
||||
"""
|
||||
@@ -198,73 +287,13 @@ class ADDPMScheduler(SchedulerMixin, ConfigMixin):
|
||||
The input sample.
|
||||
timestep (`int`, *optional*):
|
||||
The current timestep in the diffusion chain.
|
||||
|
||||
Returns:
|
||||
`torch.FloatTensor`:
|
||||
A scaled input sample.
|
||||
"""
|
||||
return sample
|
||||
|
||||
def set_timesteps(
|
||||
self,
|
||||
num_inference_steps: Optional[int] = None,
|
||||
device: Union[str, torch.device] = None,
|
||||
timesteps: Optional[List[int]] = None,
|
||||
):
|
||||
original_steps = 50 if num_inference_steps != 1000 else 1000
|
||||
train_timesteps = self.config['num_train_timesteps']
|
||||
strength = 1.0
|
||||
c = train_timesteps // original_steps
|
||||
# LCM Training Steps Schedule
|
||||
lcm_origin_timesteps = np.asarray(list(range(1, int(original_steps * strength) + 1))) * c - 1
|
||||
skipping_step = len(lcm_origin_timesteps) // num_inference_steps
|
||||
# LCM Inference Steps Schedule
|
||||
timesteps = lcm_origin_timesteps[::-skipping_step][:num_inference_steps]
|
||||
|
||||
self._step_index = None
|
||||
|
||||
self.timesteps = torch.from_numpy(timesteps.copy()).to(device)
|
||||
|
||||
def _get_variance(self, t, predicted_variance=None, variance_type=None):
|
||||
prev_t = self.previous_timestep(t)
|
||||
|
||||
alpha_prod_t = self.alphas_cumprod[t]
|
||||
alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one
|
||||
current_beta_t = 1 - alpha_prod_t / alpha_prod_t_prev
|
||||
|
||||
# For t > 0, compute predicted variance βt (see formula (6) and (7) from https://arxiv.org/pdf/2006.11239.pdf)
|
||||
# and sample from it to get previous sample
|
||||
# x_{t-1} ~ N(pred_prev_sample, variance) == add variance to pred_sample
|
||||
variance = (1 - alpha_prod_t_prev) / (1 - alpha_prod_t) * current_beta_t
|
||||
|
||||
# we always take the log of variance, so clamp it to ensure it's not 0
|
||||
variance = torch.clamp(variance, min=1e-20)
|
||||
|
||||
if variance_type is None:
|
||||
variance_type = self.config.variance_type
|
||||
|
||||
# hacks - were probably added for training stability
|
||||
if variance_type == "fixed_small":
|
||||
variance = variance
|
||||
# for rl-diffuser https://arxiv.org/abs/2205.09991
|
||||
elif variance_type == "fixed_small_log":
|
||||
variance = torch.log(variance)
|
||||
variance = torch.exp(0.5 * variance)
|
||||
elif variance_type == "fixed_large":
|
||||
variance = current_beta_t
|
||||
elif variance_type == "fixed_large_log":
|
||||
# Glide max_log
|
||||
variance = torch.log(current_beta_t)
|
||||
elif variance_type == "learned":
|
||||
return predicted_variance
|
||||
elif variance_type == "learned_range":
|
||||
min_log = torch.log(variance)
|
||||
max_log = torch.log(current_beta_t)
|
||||
frac = (predicted_variance + 1) / 2
|
||||
variance = frac * max_log + (1 - frac) * min_log
|
||||
|
||||
return variance
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
|
||||
def _threshold_sample(self, sample: torch.FloatTensor) -> torch.FloatTensor:
|
||||
"""
|
||||
"Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
|
||||
@@ -298,14 +327,95 @@ class ADDPMScheduler(SchedulerMixin, ConfigMixin):
|
||||
|
||||
return sample
|
||||
|
||||
def set_timesteps(
|
||||
self,
|
||||
num_inference_steps: int,
|
||||
device: Union[str, torch.device] = None,
|
||||
strength: int = 1.0,
|
||||
):
|
||||
"""
|
||||
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
||||
|
||||
Args:
|
||||
num_inference_steps (`int`):
|
||||
The number of diffusion steps used when generating samples with a pre-trained model.
|
||||
device (`str` or `torch.device`, *optional*):
|
||||
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
||||
original_inference_steps (`int`, *optional*):
|
||||
The original number of inference steps, which will be used to generate a linearly-spaced timestep
|
||||
schedule (which is different from the standard `diffusers` implementation). We will then take
|
||||
`num_inference_steps` timesteps from this schedule, evenly spaced in terms of indices, and use that as
|
||||
our final timestep schedule. If not set, this will default to the `original_inference_steps` attribute.
|
||||
"""
|
||||
|
||||
original_inference_steps = self.original_inference_steps
|
||||
|
||||
if num_inference_steps > self.config.num_train_timesteps:
|
||||
raise ValueError(
|
||||
f"`num_inference_steps`: {num_inference_steps} cannot be larger than `self.config.train_timesteps`:"
|
||||
f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
|
||||
f" maximal {self.config.num_train_timesteps} timesteps."
|
||||
)
|
||||
|
||||
self.num_inference_steps = num_inference_steps
|
||||
original_steps = (
|
||||
original_inference_steps if original_inference_steps is not None else self.config.original_inference_steps
|
||||
)
|
||||
|
||||
if original_steps > self.config.num_train_timesteps:
|
||||
raise ValueError(
|
||||
f"`original_steps`: {original_steps} cannot be larger than `self.config.train_timesteps`:"
|
||||
f" {self.config.num_train_timesteps} as the unet model trained with this scheduler can only handle"
|
||||
f" maximal {self.config.num_train_timesteps} timesteps."
|
||||
)
|
||||
|
||||
if num_inference_steps > original_steps:
|
||||
raise ValueError(
|
||||
f"`num_inference_steps`: {num_inference_steps} cannot be larger than `original_inference_steps`:"
|
||||
f" {original_steps} because the final timestep schedule will be a subset of the"
|
||||
f" `original_inference_steps`-sized initial timestep schedule."
|
||||
)
|
||||
|
||||
# LCM Timesteps Setting
|
||||
# The skipping step parameter k from the paper.
|
||||
k = self.config.num_train_timesteps // original_steps
|
||||
# LCM Training/Distillation Steps Schedule
|
||||
# Currently, only a linearly-spaced schedule is supported (same as in the LCM distillation scripts).
|
||||
lcm_origin_timesteps = np.asarray(list(range(1, int(original_steps * strength) + 1))) * k - 1
|
||||
skipping_step = len(lcm_origin_timesteps) // num_inference_steps
|
||||
|
||||
if skipping_step < 1:
|
||||
raise ValueError(
|
||||
f"The combination of `original_steps x strength`: {original_steps} x {strength} is smaller than `num_inference_steps`: {num_inference_steps}. Make sure to either reduce `num_inference_steps` to a value smaller than {int(original_steps * strength)} or increase `strength` to a value higher than {float(num_inference_steps / original_steps)}."
|
||||
)
|
||||
|
||||
# LCM Inference Steps Schedule
|
||||
lcm_origin_timesteps = lcm_origin_timesteps[::-1].copy()
|
||||
# Select (approximately) evenly spaced indices from lcm_origin_timesteps.
|
||||
inference_indices = np.linspace(0, len(lcm_origin_timesteps) - 1, num=num_inference_steps)
|
||||
inference_indices = np.floor(inference_indices).astype(np.int64)
|
||||
timesteps = lcm_origin_timesteps[inference_indices]
|
||||
|
||||
self.timesteps = torch.from_numpy(timesteps).to(device=device, dtype=torch.long)
|
||||
|
||||
self._step_index = None
|
||||
|
||||
def get_scalings_for_boundary_condition_discrete(self, timestep):
|
||||
self.sigma_data = 0.5 # Default: 0.5
|
||||
scaled_timestep = timestep * self.config.timestep_scaling
|
||||
|
||||
c_skip = self.sigma_data**2 / (scaled_timestep**2 + self.sigma_data**2)
|
||||
c_out = scaled_timestep / (scaled_timestep**2 + self.sigma_data**2) ** 0.5
|
||||
return c_skip, c_out
|
||||
|
||||
def step(
|
||||
self,
|
||||
model_output: torch.FloatTensor,
|
||||
timestep: int,
|
||||
sample: torch.FloatTensor,
|
||||
generator=None,
|
||||
generator: Optional[torch.Generator] = None,
|
||||
return_dict: bool = True,
|
||||
) -> Union[DDPMSchedulerOutput, Tuple]:
|
||||
) -> Union[LCMSchedulerOutput, Tuple]:
|
||||
"""
|
||||
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
||||
process from the learned model outputs (most often the predicted noise).
|
||||
@@ -320,84 +430,81 @@ class ADDPMScheduler(SchedulerMixin, ConfigMixin):
|
||||
generator (`torch.Generator`, *optional*):
|
||||
A random number generator.
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to return a [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] or `tuple`.
|
||||
|
||||
Whether or not to return a [`~schedulers.scheduling_lcm.LCMSchedulerOutput`] or `tuple`.
|
||||
Returns:
|
||||
[`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] or `tuple`:
|
||||
If return_dict is `True`, [`~schedulers.scheduling_ddpm.DDPMSchedulerOutput`] is returned, otherwise a
|
||||
[`~schedulers.scheduling_utils.LCMSchedulerOutput`] or `tuple`:
|
||||
If return_dict is `True`, [`~schedulers.scheduling_lcm.LCMSchedulerOutput`] is returned, otherwise a
|
||||
tuple is returned where the first element is the sample tensor.
|
||||
|
||||
"""
|
||||
t = timestep
|
||||
if self.num_inference_steps is None:
|
||||
raise ValueError(
|
||||
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
|
||||
)
|
||||
|
||||
prev_t = self.previous_timestep(t)
|
||||
if self.step_index is None:
|
||||
self._init_step_index(timestep)
|
||||
|
||||
if model_output.shape[1] == sample.shape[1] * 2 and self.variance_type in ["learned", "learned_range"]:
|
||||
model_output, predicted_variance = torch.split(model_output, sample.shape[1], dim=1)
|
||||
# 1. get previous step value
|
||||
prev_step_index = self.step_index + 1
|
||||
if prev_step_index < len(self.timesteps):
|
||||
prev_timestep = self.timesteps[prev_step_index]
|
||||
else:
|
||||
predicted_variance = None
|
||||
prev_timestep = timestep
|
||||
|
||||
# 2. compute alphas, betas
|
||||
alpha_prod_t = self.alphas_cumprod[timestep]
|
||||
alpha_prod_t_prev = self.alphas_cumprod[prev_timestep] if prev_timestep >= 0 else self.final_alpha_cumprod
|
||||
|
||||
# 1. compute alphas, betas
|
||||
alpha_prod_t = self.alphas_cumprod[t]
|
||||
alpha_prod_t_prev = self.alphas_cumprod[prev_t] if prev_t >= 0 else self.one
|
||||
beta_prod_t = 1 - alpha_prod_t
|
||||
beta_prod_t_prev = 1 - alpha_prod_t_prev
|
||||
current_alpha_t = alpha_prod_t / alpha_prod_t_prev
|
||||
current_beta_t = 1 - current_alpha_t
|
||||
|
||||
# 2. compute predicted original sample from predicted noise also called
|
||||
# "predicted x_0" of formula (15) from https://arxiv.org/pdf/2006.11239.pdf
|
||||
if self.config.prediction_type == "epsilon":
|
||||
pred_original_sample = (sample - beta_prod_t ** (0.5) * model_output) / alpha_prod_t ** (0.5)
|
||||
elif self.config.prediction_type == "sample":
|
||||
pred_original_sample = model_output
|
||||
elif self.config.prediction_type == "v_prediction":
|
||||
pred_original_sample = (alpha_prod_t**0.5) * sample - (beta_prod_t**0.5) * model_output
|
||||
# 3. Get scalings for boundary conditions
|
||||
c_skip, c_out = self.get_scalings_for_boundary_condition_discrete(timestep)
|
||||
|
||||
# 4. Compute the predicted original sample x_0 based on the model parameterization
|
||||
if self.config.prediction_type == "epsilon": # noise-prediction
|
||||
predicted_original_sample = (sample - beta_prod_t.sqrt() * model_output) / alpha_prod_t.sqrt()
|
||||
elif self.config.prediction_type == "sample": # x-prediction
|
||||
predicted_original_sample = model_output
|
||||
elif self.config.prediction_type == "v_prediction": # v-prediction
|
||||
predicted_original_sample = alpha_prod_t.sqrt() * sample - beta_prod_t.sqrt() * model_output
|
||||
else:
|
||||
raise ValueError(
|
||||
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample` or"
|
||||
" `v_prediction` for the DDPMScheduler."
|
||||
" `v_prediction` for `LCMScheduler`."
|
||||
)
|
||||
|
||||
# 3. Clip or threshold "predicted x_0"
|
||||
# 5. Clip or threshold "predicted x_0"
|
||||
if self.config.thresholding:
|
||||
pred_original_sample = self._threshold_sample(pred_original_sample)
|
||||
predicted_original_sample = self._threshold_sample(predicted_original_sample)
|
||||
elif self.config.clip_sample:
|
||||
pred_original_sample = pred_original_sample.clamp(
|
||||
predicted_original_sample = predicted_original_sample.clamp(
|
||||
-self.config.clip_sample_range, self.config.clip_sample_range
|
||||
)
|
||||
|
||||
# 4. Compute coefficients for pred_original_sample x_0 and current sample x_t
|
||||
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
|
||||
pred_original_sample_coeff = (alpha_prod_t_prev ** (0.5) * current_beta_t) / beta_prod_t
|
||||
current_sample_coeff = current_alpha_t ** (0.5) * beta_prod_t_prev / beta_prod_t
|
||||
# 6. Denoise model output using boundary conditions
|
||||
denoised = c_out * predicted_original_sample + c_skip * sample
|
||||
|
||||
# 5. Compute predicted previous sample µ_t
|
||||
# See formula (7) from https://arxiv.org/pdf/2006.11239.pdf
|
||||
pred_prev_sample = pred_original_sample_coeff * pred_original_sample + current_sample_coeff * sample
|
||||
|
||||
# 6. Add noise
|
||||
variance = 0
|
||||
if t > 0:
|
||||
device = model_output.device
|
||||
variance_noise = randn_tensor(
|
||||
model_output.shape, generator=generator, device=device, dtype=model_output.dtype
|
||||
# 7. Sample and inject noise z ~ N(0, I) for MultiStep Inference
|
||||
# Noise is not used on the final timestep of the timestep schedule.
|
||||
# This also means that noise is not used for one-step sampling.
|
||||
if self.step_index != self.num_inference_steps - 1:
|
||||
noise = randn_tensor(
|
||||
model_output.shape, generator=generator, device=model_output.device, dtype=denoised.dtype
|
||||
)
|
||||
if self.variance_type == "fixed_small_log":
|
||||
variance = self._get_variance(t, predicted_variance=predicted_variance) * variance_noise
|
||||
elif self.variance_type == "learned_range":
|
||||
variance = self._get_variance(t, predicted_variance=predicted_variance)
|
||||
variance = torch.exp(0.5 * variance) * variance_noise
|
||||
else:
|
||||
variance = (self._get_variance(t, predicted_variance=predicted_variance) ** 0.5) * variance_noise
|
||||
prev_sample = alpha_prod_t_prev.sqrt() * denoised + beta_prod_t_prev.sqrt() * noise
|
||||
else:
|
||||
prev_sample = denoised
|
||||
|
||||
pred_prev_sample = pred_prev_sample + variance
|
||||
# upon completion increase step index by one
|
||||
self._step_index += 1
|
||||
|
||||
if not return_dict:
|
||||
return (pred_prev_sample,)
|
||||
return (prev_sample, denoised)
|
||||
|
||||
return DDPMSchedulerOutput(prev_sample=pred_prev_sample, pred_original_sample=pred_original_sample)
|
||||
return LCMSchedulerOutput(prev_sample=prev_sample, denoised=denoised)
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.add_noise
|
||||
def add_noise(
|
||||
self,
|
||||
original_samples: torch.FloatTensor,
|
||||
@@ -421,6 +528,7 @@ class ADDPMScheduler(SchedulerMixin, ConfigMixin):
|
||||
noisy_samples = sqrt_alpha_prod * original_samples + sqrt_one_minus_alpha_prod * noise
|
||||
return noisy_samples
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler.get_velocity
|
||||
def get_velocity(
|
||||
self, sample: torch.FloatTensor, noise: torch.FloatTensor, timesteps: torch.IntTensor
|
||||
) -> torch.FloatTensor:
|
||||
@@ -442,19 +550,4 @@ class ADDPMScheduler(SchedulerMixin, ConfigMixin):
|
||||
return velocity
|
||||
|
||||
def __len__(self):
|
||||
return self.config.num_train_timesteps
|
||||
|
||||
def previous_timestep(self, timestep):
|
||||
if self.custom_timesteps:
|
||||
index = (self.timesteps == timestep).nonzero(as_tuple=True)[0][0]
|
||||
if index == self.timesteps.shape[0] - 1:
|
||||
prev_t = torch.tensor(-1)
|
||||
else:
|
||||
prev_t = self.timesteps[index + 1]
|
||||
else:
|
||||
num_inference_steps = (
|
||||
self.num_inference_steps if self.num_inference_steps else self.config.num_train_timesteps
|
||||
)
|
||||
prev_t = timestep - self.config.num_train_timesteps // num_inference_steps
|
||||
|
||||
return prev_t
|
||||
return self.config.num_train_timesteps
|
||||
@@ -836,8 +836,9 @@ class StableDiffusion:
|
||||
bleed_latents: torch.FloatTensor = None,
|
||||
**kwargs,
|
||||
):
|
||||
timesteps_to_run = self.noise_scheduler.timesteps[start_timesteps:total_timesteps]
|
||||
|
||||
for timestep in tqdm(self.noise_scheduler.timesteps[start_timesteps:total_timesteps], leave=False):
|
||||
for timestep in tqdm(timesteps_to_run, leave=False):
|
||||
noise_pred = self.predict_noise(
|
||||
latents,
|
||||
text_embeddings,
|
||||
|
||||
Reference in New Issue
Block a user