mirror of
https://github.com/ostris/ai-toolkit.git
synced 2026-01-26 16:39:47 +00:00
112
config/examples/train_lora_hidream_48.yaml
Normal file
112
config/examples/train_lora_hidream_48.yaml
Normal file
@@ -0,0 +1,112 @@
|
||||
# HiDream training is still highly experimental. The settings here will take ~35.2GB of vram to train.
|
||||
# It is not possible to train on a single 24GB card yet, but I am working on it. If you have more VRAM
|
||||
# I highly recommend first disabling quantization on the model itself if you can. You can leave the TEs quantized.
|
||||
# HiDream has a mixture of experts that may take special training considerations that I do not
|
||||
# have implemented properly. The current implementation seems to work well for LoRA training, but
|
||||
# may not be effective for longer training runs. The implementation could change in future updates
|
||||
# so your results may vary when this happens.
|
||||
|
||||
---
|
||||
job: extension
|
||||
config:
|
||||
# this name will be the folder and filename name
|
||||
name: "my_first_hidream_lora_v1"
|
||||
process:
|
||||
- type: 'sd_trainer'
|
||||
# root folder to save training sessions/samples/weights
|
||||
training_folder: "output"
|
||||
# uncomment to see performance stats in the terminal every N steps
|
||||
# performance_log_every: 1000
|
||||
device: cuda:0
|
||||
# if a trigger word is specified, it will be added to captions of training data if it does not already exist
|
||||
# alternatively, in your captions you can add [trigger] and it will be replaced with the trigger word
|
||||
# trigger_word: "p3r5on"
|
||||
network:
|
||||
type: "lora"
|
||||
linear: 32
|
||||
linear_alpha: 32
|
||||
network_kwargs:
|
||||
# it is probably best to ignore the mixture of experts since only 2 are active each block. It works activating it, but I wouldnt.
|
||||
# proper training of it is not fully implemented
|
||||
ignore_if_contains:
|
||||
- "ff_i.experts"
|
||||
- "ff_i.gate"
|
||||
save:
|
||||
dtype: bfloat16 # precision to save
|
||||
save_every: 250 # save every this many steps
|
||||
max_step_saves_to_keep: 4 # how many intermittent saves to keep
|
||||
datasets:
|
||||
# datasets are a folder of images. captions need to be txt files with the same name as the image
|
||||
# for instance image2.jpg and image2.txt. Only jpg, jpeg, and png are supported currently
|
||||
# images will automatically be resized and bucketed into the resolution specified
|
||||
# on windows, escape back slashes with another backslash so
|
||||
# "C:\\path\\to\\images\\folder"
|
||||
- folder_path: "/path/to/images/folder"
|
||||
caption_ext: "txt"
|
||||
caption_dropout_rate: 0.05 # will drop out the caption 5% of time
|
||||
resolution: [ 512, 768, 1024 ] # hidream enjoys multiple resolutions
|
||||
train:
|
||||
batch_size: 1
|
||||
steps: 3000 # total number of steps to train 500 - 4000 is a good range
|
||||
gradient_accumulation_steps: 1
|
||||
train_unet: true
|
||||
train_text_encoder: false # wont work with hidream
|
||||
gradient_checkpointing: true # need the on unless you have a ton of vram
|
||||
noise_scheduler: "flowmatch" # for training only
|
||||
timestep_type: shift # sigmoid, shift, linear
|
||||
optimizer: "adamw8bit"
|
||||
lr: 2e-4
|
||||
# uncomment this to skip the pre training sample
|
||||
# skip_first_sample: true
|
||||
# uncomment to completely disable sampling
|
||||
# disable_sampling: true
|
||||
# uncomment to use new vell curved weighting. Experimental but may produce better results
|
||||
# linear_timesteps: true
|
||||
|
||||
# ema will smooth out learning, but could slow it down. Defaults off
|
||||
ema_config:
|
||||
use_ema: false
|
||||
ema_decay: 0.99
|
||||
|
||||
# will probably need this if gpu supports it for hidream, other dtypes may not work correctly
|
||||
dtype: bf16
|
||||
model:
|
||||
# the transformer will get grabbed from this hf repo
|
||||
# warning ONLY train on Full. The dev and fast models are distilled and will break
|
||||
name_or_path: "HiDream-ai/HiDream-I1-Full"
|
||||
# the extras will be grabbed from this hf repo. (text encoder, vae)
|
||||
extras_name_or_path: "HiDream-ai/HiDream-I1-Full"
|
||||
arch: "hidream"
|
||||
# both need to be quantized to train on 48GB currently
|
||||
quantize: true
|
||||
quantize_te: true
|
||||
model_kwargs:
|
||||
# llama is a gated model, It defaults to unsloth version, but you can set the llama path here
|
||||
llama_model_path: "unsloth/Meta-Llama-3.1-8B-Instruct"
|
||||
sample:
|
||||
sampler: "flowmatch" # must match train.noise_scheduler
|
||||
sample_every: 250 # sample every this many steps
|
||||
width: 1024
|
||||
height: 1024
|
||||
prompts:
|
||||
# you can add [trigger] to the prompts here and it will be replaced with the trigger word
|
||||
# - "[trigger] holding a sign that says 'I LOVE PROMPTS!'"\
|
||||
- "woman with red hair, playing chess at the park, bomb going off in the background"
|
||||
- "a woman holding a coffee cup, in a beanie, sitting at a cafe"
|
||||
- "a horse is a DJ at a night club, fish eye lens, smoke machine, lazer lights, holding a martini"
|
||||
- "a man showing off his cool new t shirt at the beach, a shark is jumping out of the water in the background"
|
||||
- "a bear building a log cabin in the snow covered mountains"
|
||||
- "woman playing the guitar, on stage, singing a song, laser lights, punk rocker"
|
||||
- "hipster man with a beard, building a chair, in a wood shop"
|
||||
- "photo of a man, white background, medium shot, modeling clothing, studio lighting, white backdrop"
|
||||
- "a man holding a sign that says, 'this is a sign'"
|
||||
- "a bulldog, in a post apocalyptic world, with a shotgun, in a leather jacket, in a desert, with a motorcycle"
|
||||
neg: ""
|
||||
seed: 42
|
||||
walk_seed: true
|
||||
guidance_scale: 4
|
||||
sample_steps: 25
|
||||
# you can add any additional meta info here. [name] is replaced with config name at top
|
||||
meta:
|
||||
name: "[name]"
|
||||
version: '1.0'
|
||||
@@ -1,4 +1,4 @@
|
||||
FROM nvidia/cuda:12.6.3-base-ubuntu22.04
|
||||
FROM nvidia/cuda:12.6.3-devel-ubuntu22.04
|
||||
|
||||
LABEL authors="jaret"
|
||||
|
||||
@@ -58,7 +58,8 @@ RUN echo "Cache bust: ${CACHEBUST}" && \
|
||||
WORKDIR /app/ai-toolkit
|
||||
|
||||
# Install Python dependencies
|
||||
RUN pip install --no-cache-dir -r requirements.txt
|
||||
RUN pip install --no-cache-dir -r requirements.txt && \
|
||||
pip install flash-attn --no-build-isolation --no-cache-dir
|
||||
|
||||
# Build UI
|
||||
WORKDIR /app/ai-toolkit/ui
|
||||
|
||||
@@ -1,6 +1,7 @@
|
||||
from .chroma import ChromaModel
|
||||
from .hidream import HidreamModel
|
||||
|
||||
AI_TOOLKIT_MODELS = [
|
||||
# put a list of models here
|
||||
ChromaModel
|
||||
ChromaModel, HidreamModel
|
||||
]
|
||||
|
||||
1
extensions_built_in/diffusion_models/hidream/__init__.py
Normal file
1
extensions_built_in/diffusion_models/hidream/__init__.py
Normal file
@@ -0,0 +1 @@
|
||||
from .hidream_model import HidreamModel
|
||||
445
extensions_built_in/diffusion_models/hidream/hidream_model.py
Normal file
445
extensions_built_in/diffusion_models/hidream/hidream_model.py
Normal file
@@ -0,0 +1,445 @@
|
||||
import os
|
||||
from typing import TYPE_CHECKING, List, Optional
|
||||
|
||||
import einops
|
||||
import torch
|
||||
import torchvision
|
||||
import yaml
|
||||
from toolkit import train_tools
|
||||
from toolkit.config_modules import GenerateImageConfig, ModelConfig
|
||||
from PIL import Image
|
||||
from toolkit.models.base_model import BaseModel
|
||||
from diffusers import AutoencoderKL, TorchAoConfig
|
||||
from toolkit.basic import flush
|
||||
from toolkit.prompt_utils import PromptEmbeds
|
||||
from toolkit.samplers.custom_flowmatch_sampler import CustomFlowMatchEulerDiscreteScheduler
|
||||
from toolkit.models.flux import add_model_gpu_splitter_to_flux, bypass_flux_guidance, restore_flux_guidance
|
||||
from toolkit.dequantize import patch_dequantization_on_save
|
||||
from toolkit.accelerator import get_accelerator, unwrap_model
|
||||
from optimum.quanto import freeze, QTensor
|
||||
from toolkit.util.mask import generate_random_mask, random_dialate_mask
|
||||
from toolkit.util.quantize import quantize, get_qtype
|
||||
from transformers import T5TokenizerFast, T5EncoderModel, CLIPTextModel, CLIPTokenizer, TorchAoConfig as TorchAoConfigTransformers
|
||||
from .src.pipelines.hidream_image.pipeline_hidream_image import HiDreamImagePipeline
|
||||
from .src.models.transformers.transformer_hidream_image import HiDreamImageTransformer2DModel
|
||||
from .src.schedulers.fm_solvers_unipc import FlowUniPCMultistepScheduler
|
||||
from transformers import LlamaForCausalLM, PreTrainedTokenizerFast
|
||||
from einops import rearrange, repeat
|
||||
import random
|
||||
import torch.nn.functional as F
|
||||
from tqdm import tqdm
|
||||
from transformers import (
|
||||
CLIPTextModelWithProjection,
|
||||
CLIPTokenizer,
|
||||
T5EncoderModel,
|
||||
T5Tokenizer,
|
||||
LlamaForCausalLM,
|
||||
PreTrainedTokenizerFast
|
||||
)
|
||||
|
||||
if TYPE_CHECKING:
|
||||
from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO
|
||||
|
||||
scheduler_config = {
|
||||
"num_train_timesteps": 1000,
|
||||
"shift": 3.0
|
||||
}
|
||||
|
||||
# LLAMA_MODEL_NAME = "meta-llama/Meta-Llama-3.1-8B-Instruct"
|
||||
LLAMA_MODEL_PATH = "unsloth/Meta-Llama-3.1-8B-Instruct"
|
||||
BASE_MODEL_PATH = "HiDream-ai/HiDream-I1-Full"
|
||||
|
||||
|
||||
class HidreamModel(BaseModel):
|
||||
arch = "hidream"
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
device,
|
||||
model_config: ModelConfig,
|
||||
dtype='bf16',
|
||||
custom_pipeline=None,
|
||||
noise_scheduler=None,
|
||||
**kwargs
|
||||
):
|
||||
super().__init__(
|
||||
device,
|
||||
model_config,
|
||||
dtype,
|
||||
custom_pipeline,
|
||||
noise_scheduler,
|
||||
**kwargs
|
||||
)
|
||||
self.is_flow_matching = True
|
||||
self.is_transformer = True
|
||||
self.target_lora_modules = ['HiDreamImageTransformer2DModel']
|
||||
|
||||
# static method to get the noise scheduler
|
||||
@staticmethod
|
||||
def get_train_scheduler():
|
||||
return CustomFlowMatchEulerDiscreteScheduler(**scheduler_config)
|
||||
|
||||
def get_bucket_divisibility(self):
|
||||
return 16
|
||||
|
||||
def load_model(self):
|
||||
dtype = self.torch_dtype
|
||||
# HiDream-ai/HiDream-I1-Full
|
||||
self.print_and_status_update("Loading HiDream model")
|
||||
# will be updated if we detect a existing checkpoint in training folder
|
||||
model_path = self.model_config.name_or_path
|
||||
extras_path = self.model_config.extras_name_or_path
|
||||
|
||||
llama_model_path = self.model_config.model_kwargs.get('llama_model_path', LLAMA_MODEL_PATH)
|
||||
|
||||
scheduler = HidreamModel.get_train_scheduler()
|
||||
|
||||
self.print_and_status_update("Loading llama 8b model")
|
||||
|
||||
tokenizer_4 = PreTrainedTokenizerFast.from_pretrained(
|
||||
llama_model_path,
|
||||
use_fast=False
|
||||
)
|
||||
|
||||
text_encoder_4 = LlamaForCausalLM.from_pretrained(
|
||||
llama_model_path,
|
||||
output_hidden_states=True,
|
||||
output_attentions=True,
|
||||
torch_dtype=torch.bfloat16,
|
||||
)
|
||||
text_encoder_4.to(self.device_torch, dtype=dtype)
|
||||
|
||||
if self.model_config.quantize_te:
|
||||
self.print_and_status_update("Quantizing llama 8b model")
|
||||
quantization_type = get_qtype(self.model_config.qtype_te)
|
||||
quantize(text_encoder_4, weights=quantization_type)
|
||||
freeze(text_encoder_4)
|
||||
|
||||
if self.low_vram:
|
||||
# unload it for now
|
||||
text_encoder_4.to('cpu')
|
||||
|
||||
flush()
|
||||
|
||||
self.print_and_status_update("Loading transformer")
|
||||
|
||||
transformer = HiDreamImageTransformer2DModel.from_pretrained(
|
||||
model_path,
|
||||
subfolder="transformer",
|
||||
torch_dtype=torch.bfloat16
|
||||
)
|
||||
|
||||
if not self.low_vram:
|
||||
transformer.to(self.device_torch, dtype=dtype)
|
||||
|
||||
if self.model_config.quantize:
|
||||
self.print_and_status_update("Quantizing transformer")
|
||||
quantization_type = get_qtype(self.model_config.qtype)
|
||||
if self.low_vram:
|
||||
# move and quantize only certain pieces at a time.
|
||||
all_blocks = list(transformer.double_stream_blocks) + list(transformer.single_stream_blocks)
|
||||
self.print_and_status_update(" - quantizing transformer blocks")
|
||||
for block in tqdm(all_blocks):
|
||||
block.to(self.device_torch, dtype=dtype)
|
||||
quantize(block, weights=quantization_type)
|
||||
freeze(block)
|
||||
block.to('cpu')
|
||||
# flush()
|
||||
|
||||
self.print_and_status_update(" - quantizing extras")
|
||||
transformer.to(self.device_torch, dtype=dtype)
|
||||
quantize(transformer, weights=quantization_type)
|
||||
freeze(transformer)
|
||||
else:
|
||||
quantize(transformer, weights=quantization_type)
|
||||
freeze(transformer)
|
||||
|
||||
if self.low_vram:
|
||||
# unload it for now
|
||||
transformer.to('cpu')
|
||||
|
||||
flush()
|
||||
|
||||
self.print_and_status_update("Loading vae")
|
||||
|
||||
vae = AutoencoderKL.from_pretrained(
|
||||
extras_path,
|
||||
subfolder="vae",
|
||||
torch_dtype=torch.bfloat16
|
||||
).to(self.device_torch, dtype=dtype)
|
||||
|
||||
|
||||
self.print_and_status_update("Loading clip encoders")
|
||||
|
||||
text_encoder = CLIPTextModelWithProjection.from_pretrained(
|
||||
extras_path,
|
||||
subfolder="text_encoder",
|
||||
torch_dtype=torch.bfloat16
|
||||
).to(self.device_torch, dtype=dtype)
|
||||
|
||||
tokenizer = CLIPTokenizer.from_pretrained(
|
||||
extras_path,
|
||||
subfolder="tokenizer"
|
||||
)
|
||||
|
||||
text_encoder_2 = CLIPTextModelWithProjection.from_pretrained(
|
||||
extras_path,
|
||||
subfolder="text_encoder_2",
|
||||
torch_dtype=torch.bfloat16
|
||||
).to(self.device_torch, dtype=dtype)
|
||||
|
||||
tokenizer_2 = CLIPTokenizer.from_pretrained(
|
||||
extras_path,
|
||||
subfolder="tokenizer_2"
|
||||
)
|
||||
|
||||
flush()
|
||||
self.print_and_status_update("Loading T5 encoders")
|
||||
|
||||
text_encoder_3 = T5EncoderModel.from_pretrained(
|
||||
extras_path,
|
||||
subfolder="text_encoder_3",
|
||||
torch_dtype=torch.bfloat16
|
||||
).to(self.device_torch, dtype=dtype)
|
||||
|
||||
if self.model_config.quantize_te:
|
||||
self.print_and_status_update("Quantizing T5")
|
||||
quantization_type = get_qtype(self.model_config.qtype_te)
|
||||
quantize(text_encoder_3, weights=quantization_type)
|
||||
freeze(text_encoder_3)
|
||||
flush()
|
||||
|
||||
tokenizer_3 = T5Tokenizer.from_pretrained(
|
||||
extras_path,
|
||||
subfolder="tokenizer_3"
|
||||
)
|
||||
flush()
|
||||
|
||||
if self.low_vram:
|
||||
self.print_and_status_update("Moving ecerything to device")
|
||||
# move it all back
|
||||
transformer.to(self.device_torch, dtype=dtype)
|
||||
vae.to(self.device_torch, dtype=dtype)
|
||||
text_encoder.to(self.device_torch, dtype=dtype)
|
||||
text_encoder_2.to(self.device_torch, dtype=dtype)
|
||||
text_encoder_4.to(self.device_torch, dtype=dtype)
|
||||
text_encoder_3.to(self.device_torch, dtype=dtype)
|
||||
|
||||
# set to eval mode
|
||||
# transformer.eval()
|
||||
vae.eval()
|
||||
text_encoder.eval()
|
||||
text_encoder_2.eval()
|
||||
text_encoder_4.eval()
|
||||
text_encoder_3.eval()
|
||||
|
||||
pipe = HiDreamImagePipeline(
|
||||
scheduler=scheduler,
|
||||
vae=vae,
|
||||
text_encoder=text_encoder,
|
||||
tokenizer=tokenizer,
|
||||
text_encoder_2=text_encoder_2,
|
||||
tokenizer_2=tokenizer_2,
|
||||
text_encoder_3=text_encoder_3,
|
||||
tokenizer_3=tokenizer_3,
|
||||
text_encoder_4=text_encoder_4,
|
||||
tokenizer_4=tokenizer_4,
|
||||
transformer=transformer,
|
||||
)
|
||||
|
||||
flush()
|
||||
|
||||
text_encoder_list = [text_encoder, text_encoder_2, text_encoder_3, text_encoder_4]
|
||||
tokenizer_list = [tokenizer, tokenizer_2, tokenizer_3, tokenizer_4]
|
||||
|
||||
for te in text_encoder_list:
|
||||
# set the dtype
|
||||
te.to(self.device_torch, dtype=dtype)
|
||||
# freeze the model
|
||||
freeze(te)
|
||||
# set to eval mode
|
||||
te.eval()
|
||||
# set the requires grad to false
|
||||
te.requires_grad_(False)
|
||||
|
||||
flush()
|
||||
|
||||
# save it to the model class
|
||||
self.vae = vae
|
||||
self.text_encoder = text_encoder_list # list of text encoders
|
||||
self.tokenizer = tokenizer_list # list of tokenizers
|
||||
self.model = pipe.transformer
|
||||
self.pipeline = pipe
|
||||
self.print_and_status_update("Model Loaded")
|
||||
|
||||
def get_generation_pipeline(self):
|
||||
scheduler = FlowUniPCMultistepScheduler(
|
||||
num_train_timesteps=1000,
|
||||
shift=3.0,
|
||||
use_dynamic_shifting=False
|
||||
)
|
||||
|
||||
pipeline: HiDreamImagePipeline = HiDreamImagePipeline(
|
||||
scheduler=scheduler,
|
||||
vae=self.vae,
|
||||
text_encoder=self.text_encoder[0],
|
||||
tokenizer=self.tokenizer[0],
|
||||
text_encoder_2=self.text_encoder[1],
|
||||
tokenizer_2=self.tokenizer[1],
|
||||
text_encoder_3=self.text_encoder[2],
|
||||
tokenizer_3=self.tokenizer[2],
|
||||
text_encoder_4=self.text_encoder[3],
|
||||
tokenizer_4=self.tokenizer[3],
|
||||
transformer=unwrap_model(self.model),
|
||||
aggressive_unloading=self.low_vram
|
||||
)
|
||||
|
||||
pipeline = pipeline.to(self.device_torch)
|
||||
|
||||
return pipeline
|
||||
|
||||
def generate_single_image(
|
||||
self,
|
||||
pipeline: HiDreamImagePipeline,
|
||||
gen_config: GenerateImageConfig,
|
||||
conditional_embeds: PromptEmbeds,
|
||||
unconditional_embeds: PromptEmbeds,
|
||||
generator: torch.Generator,
|
||||
extra: dict,
|
||||
):
|
||||
img = pipeline(
|
||||
prompt_embeds=conditional_embeds.text_embeds,
|
||||
pooled_prompt_embeds=conditional_embeds.pooled_embeds,
|
||||
negative_prompt_embeds=unconditional_embeds.text_embeds,
|
||||
negative_pooled_prompt_embeds=unconditional_embeds.pooled_embeds,
|
||||
height=gen_config.height,
|
||||
width=gen_config.width,
|
||||
num_inference_steps=gen_config.num_inference_steps,
|
||||
guidance_scale=gen_config.guidance_scale,
|
||||
latents=gen_config.latents,
|
||||
generator=generator,
|
||||
**extra
|
||||
).images[0]
|
||||
return img
|
||||
|
||||
def get_noise_prediction(
|
||||
self,
|
||||
latent_model_input: torch.Tensor,
|
||||
timestep: torch.Tensor, # 0 to 1000 scale
|
||||
text_embeddings: PromptEmbeds,
|
||||
**kwargs
|
||||
):
|
||||
with torch.no_grad():
|
||||
if latent_model_input.shape[-2] != latent_model_input.shape[-1]:
|
||||
B, C, H, W = latent_model_input.shape
|
||||
pH, pW = H // self.model.config.patch_size, W // self.model.config.patch_size
|
||||
|
||||
img_sizes = torch.tensor([pH, pW], dtype=torch.int64).reshape(-1)
|
||||
img_ids = torch.zeros(pH, pW, 3)
|
||||
img_ids[..., 1] = img_ids[..., 1] + torch.arange(pH)[:, None]
|
||||
img_ids[..., 2] = img_ids[..., 2] + torch.arange(pW)[None, :]
|
||||
img_ids = img_ids.reshape(pH * pW, -1)
|
||||
img_ids_pad = torch.zeros(self.transformer.max_seq, 3)
|
||||
img_ids_pad[:pH*pW, :] = img_ids
|
||||
|
||||
img_sizes = img_sizes.unsqueeze(0).to(latent_model_input.device)
|
||||
img_ids = img_ids_pad.unsqueeze(0).to(latent_model_input.device)
|
||||
else:
|
||||
img_sizes = img_ids = None
|
||||
|
||||
dtype = self.model.dtype
|
||||
device = self.device_torch
|
||||
|
||||
# Pack the latent
|
||||
if latent_model_input.shape[-2] != latent_model_input.shape[-1]:
|
||||
B, C, H, W = latent_model_input.shape
|
||||
patch_size = self.transformer.config.patch_size
|
||||
pH, pW = H // patch_size, W // patch_size
|
||||
out = torch.zeros(
|
||||
(B, C, self.transformer.max_seq, patch_size * patch_size),
|
||||
dtype=latent_model_input.dtype,
|
||||
device=latent_model_input.device
|
||||
)
|
||||
latent_model_input = einops.rearrange(latent_model_input, 'B C (H p1) (W p2) -> B C (H W) (p1 p2)', p1=patch_size, p2=patch_size)
|
||||
out[:, :, 0:pH*pW] = latent_model_input
|
||||
latent_model_input = out
|
||||
|
||||
text_embeds = text_embeddings.text_embeds
|
||||
# run the to for the list
|
||||
text_embeds = [te.to(device, dtype=dtype) for te in text_embeds]
|
||||
|
||||
noise_pred = self.transformer(
|
||||
hidden_states = latent_model_input,
|
||||
timesteps = timestep,
|
||||
encoder_hidden_states = text_embeds,
|
||||
pooled_embeds = text_embeddings.pooled_embeds.to(device, dtype=dtype),
|
||||
img_sizes = img_sizes,
|
||||
img_ids = img_ids,
|
||||
return_dict = False,
|
||||
)[0]
|
||||
noise_pred = -noise_pred
|
||||
|
||||
return noise_pred
|
||||
|
||||
def get_prompt_embeds(self, prompt: str) -> PromptEmbeds:
|
||||
self.text_encoder_to(self.device_torch, dtype=self.torch_dtype)
|
||||
max_sequence_length = 128
|
||||
prompt_embeds, pooled_prompt_embeds = self.pipeline._encode_prompt(
|
||||
prompt = prompt,
|
||||
prompt_2 = prompt,
|
||||
prompt_3 = prompt,
|
||||
prompt_4 = prompt,
|
||||
device = self.device_torch,
|
||||
dtype = self.torch_dtype,
|
||||
num_images_per_prompt = 1,
|
||||
max_sequence_length = max_sequence_length,
|
||||
)
|
||||
pe = PromptEmbeds(
|
||||
[prompt_embeds, pooled_prompt_embeds]
|
||||
)
|
||||
return pe
|
||||
|
||||
def get_model_has_grad(self):
|
||||
# return from a weight if it has grad
|
||||
return self.model.double_stream_blocks[0].block.attn1.to_q.weight.requires_grad
|
||||
|
||||
def get_te_has_grad(self):
|
||||
# assume no one wants to finetune 4 text encoders.
|
||||
return False
|
||||
|
||||
def save_model(self, output_path, meta, save_dtype):
|
||||
# only save the unet
|
||||
transformer: HiDreamImageTransformer2DModel = unwrap_model(self.model)
|
||||
transformer.save_pretrained(
|
||||
save_directory=os.path.join(output_path, 'transformer'),
|
||||
safe_serialization=True,
|
||||
)
|
||||
|
||||
meta_path = os.path.join(output_path, 'aitk_meta.yaml')
|
||||
with open(meta_path, 'w') as f:
|
||||
yaml.dump(meta, f)
|
||||
|
||||
def get_loss_target(self, *args, **kwargs):
|
||||
noise = kwargs.get('noise')
|
||||
batch = kwargs.get('batch')
|
||||
return (noise - batch.latents).detach()
|
||||
|
||||
def get_transformer_block_names(self) -> Optional[List[str]]:
|
||||
return ['double_stream_blocks', 'single_stream_blocks']
|
||||
|
||||
def convert_lora_weights_before_save(self, state_dict):
|
||||
# currently starte with transformer. but needs to start with diffusion_model. for comfyui
|
||||
new_sd = {}
|
||||
for key, value in state_dict.items():
|
||||
new_key = key.replace("transformer.", "diffusion_model.")
|
||||
new_sd[new_key] = value
|
||||
return new_sd
|
||||
|
||||
def convert_lora_weights_before_load(self, state_dict):
|
||||
# saved as diffusion_model. but needs to be transformer. for ai-toolkit
|
||||
new_sd = {}
|
||||
for key, value in state_dict.items():
|
||||
new_key = key.replace("diffusion_model.", "transformer.")
|
||||
new_sd[new_key] = value
|
||||
return new_sd
|
||||
|
||||
@@ -0,0 +1,2 @@
|
||||
from .models.transformers.transformer_hidream_image import HiDreamImageTransformer2DModel
|
||||
from .pipelines.hidream_image.pipeline_hidream_image import HiDreamImagePipeline
|
||||
@@ -0,0 +1,106 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
from typing import Optional
|
||||
from diffusers.models.attention_processor import Attention
|
||||
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
||||
|
||||
@maybe_allow_in_graph
|
||||
class HiDreamAttention(Attention):
|
||||
def __init__(
|
||||
self,
|
||||
query_dim: int,
|
||||
heads: int = 8,
|
||||
dim_head: int = 64,
|
||||
upcast_attention: bool = False,
|
||||
upcast_softmax: bool = False,
|
||||
scale_qk: bool = True,
|
||||
eps: float = 1e-5,
|
||||
processor = None,
|
||||
out_dim: int = None,
|
||||
single: bool = False
|
||||
):
|
||||
super(Attention, self).__init__()
|
||||
self.inner_dim = out_dim if out_dim is not None else dim_head * heads
|
||||
self.query_dim = query_dim
|
||||
self.upcast_attention = upcast_attention
|
||||
self.upcast_softmax = upcast_softmax
|
||||
self.out_dim = out_dim if out_dim is not None else query_dim
|
||||
|
||||
self.scale_qk = scale_qk
|
||||
self.scale = dim_head**-0.5 if self.scale_qk else 1.0
|
||||
|
||||
self.heads = out_dim // dim_head if out_dim is not None else heads
|
||||
self.sliceable_head_dim = heads
|
||||
self.single = single
|
||||
|
||||
linear_cls = nn.Linear
|
||||
self.linear_cls = linear_cls
|
||||
self.to_q = linear_cls(query_dim, self.inner_dim)
|
||||
self.to_k = linear_cls(self.inner_dim, self.inner_dim)
|
||||
self.to_v = linear_cls(self.inner_dim, self.inner_dim)
|
||||
self.to_out = linear_cls(self.inner_dim, self.out_dim)
|
||||
self.q_rms_norm = nn.RMSNorm(self.inner_dim, eps)
|
||||
self.k_rms_norm = nn.RMSNorm(self.inner_dim, eps)
|
||||
|
||||
if not single:
|
||||
self.to_q_t = linear_cls(query_dim, self.inner_dim)
|
||||
self.to_k_t = linear_cls(self.inner_dim, self.inner_dim)
|
||||
self.to_v_t = linear_cls(self.inner_dim, self.inner_dim)
|
||||
self.to_out_t = linear_cls(self.inner_dim, self.out_dim)
|
||||
self.q_rms_norm_t = nn.RMSNorm(self.inner_dim, eps)
|
||||
self.k_rms_norm_t = nn.RMSNorm(self.inner_dim, eps)
|
||||
|
||||
self.set_processor(processor)
|
||||
self.apply(self._init_weights)
|
||||
|
||||
def _init_weights(self, m):
|
||||
if isinstance(m, nn.Linear):
|
||||
nn.init.xavier_uniform_(m.weight)
|
||||
if m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
norm_image_tokens: torch.FloatTensor,
|
||||
image_tokens_masks: torch.FloatTensor = None,
|
||||
norm_text_tokens: torch.FloatTensor = None,
|
||||
rope: torch.FloatTensor = None,
|
||||
) -> torch.Tensor:
|
||||
return self.processor(
|
||||
self,
|
||||
image_tokens = norm_image_tokens,
|
||||
image_tokens_masks = image_tokens_masks,
|
||||
text_tokens = norm_text_tokens,
|
||||
rope = rope,
|
||||
)
|
||||
|
||||
class FeedForwardSwiGLU(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
hidden_dim: int,
|
||||
multiple_of: int = 256,
|
||||
ffn_dim_multiplier: Optional[float] = None,
|
||||
):
|
||||
super().__init__()
|
||||
hidden_dim = int(2 * hidden_dim / 3)
|
||||
# custom dim factor multiplier
|
||||
if ffn_dim_multiplier is not None:
|
||||
hidden_dim = int(ffn_dim_multiplier * hidden_dim)
|
||||
hidden_dim = multiple_of * (
|
||||
(hidden_dim + multiple_of - 1) // multiple_of
|
||||
)
|
||||
|
||||
self.w1 = nn.Linear(dim, hidden_dim, bias=False)
|
||||
self.w2 = nn.Linear(hidden_dim, dim, bias=False)
|
||||
self.w3 = nn.Linear(dim, hidden_dim, bias=False)
|
||||
self.apply(self._init_weights)
|
||||
|
||||
def _init_weights(self, m):
|
||||
if isinstance(m, nn.Linear):
|
||||
nn.init.xavier_uniform_(m.weight)
|
||||
if m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
|
||||
def forward(self, x):
|
||||
return self.w2(torch.nn.functional.silu(self.w1(x)) * self.w3(x))
|
||||
@@ -0,0 +1,121 @@
|
||||
from typing import Optional
|
||||
import torch
|
||||
from .attention import HiDreamAttention
|
||||
|
||||
# Try to import Flash Attention first
|
||||
flash_attn_available = False
|
||||
try:
|
||||
from flash_attn_interface import flash_attn_func
|
||||
USE_FLASH_ATTN3 = True
|
||||
flash_attn_available = True
|
||||
except ImportError:
|
||||
try:
|
||||
from flash_attn import flash_attn_func
|
||||
USE_FLASH_ATTN3 = False
|
||||
flash_attn_available = True
|
||||
except ImportError:
|
||||
USE_FLASH_ATTN3 = False
|
||||
flash_attn_available = False
|
||||
|
||||
# Copied from https://github.com/black-forest-labs/flux/blob/main/src/flux/math.py
|
||||
def apply_rope(xq: torch.Tensor, xk: torch.Tensor, freqs_cis: torch.Tensor) -> tuple[torch.Tensor, torch.Tensor]:
|
||||
xq_ = xq.float().reshape(*xq.shape[:-1], -1, 1, 2)
|
||||
xk_ = xk.float().reshape(*xk.shape[:-1], -1, 1, 2)
|
||||
xq_out = freqs_cis[..., 0] * xq_[..., 0] + freqs_cis[..., 1] * xq_[..., 1]
|
||||
xk_out = freqs_cis[..., 0] * xk_[..., 0] + freqs_cis[..., 1] * xk_[..., 1]
|
||||
return xq_out.reshape(*xq.shape).type_as(xq), xk_out.reshape(*xk.shape).type_as(xk)
|
||||
|
||||
def attention(query: torch.Tensor, key: torch.Tensor, value: torch.Tensor):
|
||||
if flash_attn_available:
|
||||
if USE_FLASH_ATTN3:
|
||||
hidden_states = flash_attn_func(query, key, value, causal=False, deterministic=False)[0]
|
||||
else:
|
||||
hidden_states = flash_attn_func(query, key, value, dropout_p=0., causal=False)
|
||||
else:
|
||||
# Use torch's scaled dot-product attention as fallback
|
||||
# Reshape for torch.nn.functional.scaled_dot_product_attention which expects [batch, heads, seq_len, head_dim]
|
||||
query = query.transpose(1, 2) # [batch, heads, seq_len, head_dim]
|
||||
key = key.transpose(1, 2)
|
||||
value = value.transpose(1, 2)
|
||||
|
||||
hidden_states = torch.nn.functional.scaled_dot_product_attention(
|
||||
query, key, value,
|
||||
attn_mask=None,
|
||||
dropout_p=0.0,
|
||||
is_causal=False
|
||||
)
|
||||
|
||||
# Restore original shape
|
||||
hidden_states = hidden_states.transpose(1, 2) # [batch, seq_len, heads, head_dim]
|
||||
|
||||
hidden_states = hidden_states.flatten(-2)
|
||||
hidden_states = hidden_states.to(query.dtype)
|
||||
return hidden_states
|
||||
|
||||
class HiDreamAttnProcessor_flashattn:
|
||||
"""Attention processor used typically in processing the SD3-like self-attention projections."""
|
||||
|
||||
def __call__(
|
||||
self,
|
||||
attn: HiDreamAttention,
|
||||
image_tokens: torch.FloatTensor,
|
||||
image_tokens_masks: Optional[torch.FloatTensor] = None,
|
||||
text_tokens: Optional[torch.FloatTensor] = None,
|
||||
rope: torch.FloatTensor = None,
|
||||
*args,
|
||||
**kwargs,
|
||||
) -> torch.FloatTensor:
|
||||
dtype = image_tokens.dtype
|
||||
batch_size = image_tokens.shape[0]
|
||||
|
||||
query_i = attn.q_rms_norm(attn.to_q(image_tokens)).to(dtype=dtype)
|
||||
key_i = attn.k_rms_norm(attn.to_k(image_tokens)).to(dtype=dtype)
|
||||
value_i = attn.to_v(image_tokens)
|
||||
|
||||
inner_dim = key_i.shape[-1]
|
||||
head_dim = inner_dim // attn.heads
|
||||
|
||||
query_i = query_i.view(batch_size, -1, attn.heads, head_dim)
|
||||
key_i = key_i.view(batch_size, -1, attn.heads, head_dim)
|
||||
value_i = value_i.view(batch_size, -1, attn.heads, head_dim)
|
||||
if image_tokens_masks is not None:
|
||||
key_i = key_i * image_tokens_masks.view(batch_size, -1, 1, 1)
|
||||
|
||||
if not attn.single:
|
||||
query_t = attn.q_rms_norm_t(attn.to_q_t(text_tokens)).to(dtype=dtype)
|
||||
key_t = attn.k_rms_norm_t(attn.to_k_t(text_tokens)).to(dtype=dtype)
|
||||
value_t = attn.to_v_t(text_tokens)
|
||||
|
||||
query_t = query_t.view(batch_size, -1, attn.heads, head_dim)
|
||||
key_t = key_t.view(batch_size, -1, attn.heads, head_dim)
|
||||
value_t = value_t.view(batch_size, -1, attn.heads, head_dim)
|
||||
|
||||
num_image_tokens = query_i.shape[1]
|
||||
num_text_tokens = query_t.shape[1]
|
||||
query = torch.cat([query_i, query_t], dim=1)
|
||||
key = torch.cat([key_i, key_t], dim=1)
|
||||
value = torch.cat([value_i, value_t], dim=1)
|
||||
else:
|
||||
query = query_i
|
||||
key = key_i
|
||||
value = value_i
|
||||
|
||||
if query.shape[-1] == rope.shape[-3] * 2:
|
||||
query, key = apply_rope(query, key, rope)
|
||||
else:
|
||||
query_1, query_2 = query.chunk(2, dim=-1)
|
||||
key_1, key_2 = key.chunk(2, dim=-1)
|
||||
query_1, key_1 = apply_rope(query_1, key_1, rope)
|
||||
query = torch.cat([query_1, query_2], dim=-1)
|
||||
key = torch.cat([key_1, key_2], dim=-1)
|
||||
|
||||
hidden_states = attention(query, key, value)
|
||||
|
||||
if not attn.single:
|
||||
hidden_states_i, hidden_states_t = torch.split(hidden_states, [num_image_tokens, num_text_tokens], dim=1)
|
||||
hidden_states_i = attn.to_out(hidden_states_i)
|
||||
hidden_states_t = attn.to_out_t(hidden_states_t)
|
||||
return hidden_states_i, hidden_states_t
|
||||
else:
|
||||
hidden_states = attn.to_out(hidden_states)
|
||||
return hidden_states
|
||||
@@ -0,0 +1,114 @@
|
||||
import torch
|
||||
from torch import nn
|
||||
from typing import List
|
||||
from diffusers.models.embeddings import Timesteps, TimestepEmbedding
|
||||
|
||||
# Copied from https://github.com/black-forest-labs/flux/blob/main/src/flux/math.py
|
||||
def rope(pos: torch.Tensor, dim: int, theta: int) -> torch.Tensor:
|
||||
assert dim % 2 == 0, "The dimension must be even."
|
||||
|
||||
scale = torch.arange(0, dim, 2, dtype=torch.float64, device=pos.device) / dim
|
||||
omega = 1.0 / (theta**scale)
|
||||
|
||||
batch_size, seq_length = pos.shape
|
||||
out = torch.einsum("...n,d->...nd", pos, omega)
|
||||
cos_out = torch.cos(out)
|
||||
sin_out = torch.sin(out)
|
||||
|
||||
stacked_out = torch.stack([cos_out, -sin_out, sin_out, cos_out], dim=-1)
|
||||
out = stacked_out.view(batch_size, -1, dim // 2, 2, 2)
|
||||
return out.float()
|
||||
|
||||
# Copied from https://github.com/black-forest-labs/flux/blob/main/src/flux/modules/layers.py
|
||||
class EmbedND(nn.Module):
|
||||
def __init__(self, theta: int, axes_dim: List[int]):
|
||||
super().__init__()
|
||||
self.theta = theta
|
||||
self.axes_dim = axes_dim
|
||||
|
||||
def forward(self, ids: torch.Tensor) -> torch.Tensor:
|
||||
n_axes = ids.shape[-1]
|
||||
emb = torch.cat(
|
||||
[rope(ids[..., i], self.axes_dim[i], self.theta) for i in range(n_axes)],
|
||||
dim=-3,
|
||||
)
|
||||
return emb.unsqueeze(2)
|
||||
|
||||
class PatchEmbed(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
patch_size=2,
|
||||
in_channels=4,
|
||||
out_channels=1024,
|
||||
):
|
||||
super().__init__()
|
||||
self.patch_size = patch_size
|
||||
self.out_channels = out_channels
|
||||
self.proj = nn.Linear(in_channels * patch_size * patch_size, out_channels, bias=True)
|
||||
self.apply(self._init_weights)
|
||||
|
||||
def _init_weights(self, m):
|
||||
if isinstance(m, nn.Linear):
|
||||
nn.init.xavier_uniform_(m.weight)
|
||||
if m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
|
||||
def forward(self, latent):
|
||||
latent = self.proj(latent)
|
||||
return latent
|
||||
|
||||
class PooledEmbed(nn.Module):
|
||||
def __init__(self, text_emb_dim, hidden_size):
|
||||
super().__init__()
|
||||
self.pooled_embedder = TimestepEmbedding(in_channels=text_emb_dim, time_embed_dim=hidden_size)
|
||||
self.apply(self._init_weights)
|
||||
|
||||
def _init_weights(self, m):
|
||||
if isinstance(m, nn.Linear):
|
||||
nn.init.normal_(m.weight, std=0.02)
|
||||
if m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
|
||||
def forward(self, pooled_embed):
|
||||
return self.pooled_embedder(pooled_embed)
|
||||
|
||||
class TimestepEmbed(nn.Module):
|
||||
def __init__(self, hidden_size, frequency_embedding_size=256):
|
||||
super().__init__()
|
||||
self.time_proj = Timesteps(num_channels=frequency_embedding_size, flip_sin_to_cos=True, downscale_freq_shift=0)
|
||||
self.timestep_embedder = TimestepEmbedding(in_channels=frequency_embedding_size, time_embed_dim=hidden_size)
|
||||
self.apply(self._init_weights)
|
||||
|
||||
def _init_weights(self, m):
|
||||
if isinstance(m, nn.Linear):
|
||||
nn.init.normal_(m.weight, std=0.02)
|
||||
if m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
|
||||
def forward(self, timesteps, wdtype):
|
||||
t_emb = self.time_proj(timesteps).to(dtype=wdtype)
|
||||
t_emb = self.timestep_embedder(t_emb)
|
||||
return t_emb
|
||||
|
||||
class OutEmbed(nn.Module):
|
||||
def __init__(self, hidden_size, patch_size, out_channels):
|
||||
super().__init__()
|
||||
self.norm_final = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
|
||||
self.linear = nn.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True)
|
||||
self.adaLN_modulation = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
nn.Linear(hidden_size, 2 * hidden_size, bias=True)
|
||||
)
|
||||
self.apply(self._init_weights)
|
||||
|
||||
def _init_weights(self, m):
|
||||
if isinstance(m, nn.Linear):
|
||||
nn.init.zeros_(m.weight)
|
||||
if m.bias is not None:
|
||||
nn.init.constant_(m.bias, 0)
|
||||
|
||||
def forward(self, x, adaln_input):
|
||||
shift, scale = self.adaLN_modulation(adaln_input).chunk(2, dim=1)
|
||||
x = self.norm_final(x) * (1 + scale.unsqueeze(1)) + shift.unsqueeze(1)
|
||||
x = self.linear(x)
|
||||
return x
|
||||
157
extensions_built_in/diffusion_models/hidream/src/models/moe.py
Normal file
157
extensions_built_in/diffusion_models/hidream/src/models/moe.py
Normal file
@@ -0,0 +1,157 @@
|
||||
import math
|
||||
import torch
|
||||
from torch import nn
|
||||
import torch.nn.functional as F
|
||||
from .attention import FeedForwardSwiGLU
|
||||
from torch.distributed.nn.functional import all_gather
|
||||
|
||||
_LOAD_BALANCING_LOSS = []
|
||||
def save_load_balancing_loss(loss):
|
||||
global _LOAD_BALANCING_LOSS
|
||||
_LOAD_BALANCING_LOSS.append(loss)
|
||||
|
||||
def clear_load_balancing_loss():
|
||||
global _LOAD_BALANCING_LOSS
|
||||
_LOAD_BALANCING_LOSS.clear()
|
||||
|
||||
def get_load_balancing_loss():
|
||||
global _LOAD_BALANCING_LOSS
|
||||
return _LOAD_BALANCING_LOSS
|
||||
|
||||
def batched_load_balancing_loss():
|
||||
aux_losses_arr = get_load_balancing_loss()
|
||||
alpha = aux_losses_arr[0][-1]
|
||||
Pi = torch.stack([ent[1] for ent in aux_losses_arr], dim=0)
|
||||
fi = torch.stack([ent[2] for ent in aux_losses_arr], dim=0)
|
||||
|
||||
fi_list = all_gather(fi)
|
||||
fi = torch.stack(fi_list, 0).mean(0)
|
||||
|
||||
aux_loss = (Pi * fi).sum(-1).mean() * alpha
|
||||
return aux_loss
|
||||
|
||||
# Modified from https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py
|
||||
class MoEGate(nn.Module):
|
||||
def __init__(self, embed_dim, num_routed_experts=4, num_activated_experts=2, aux_loss_alpha=0.01):
|
||||
super().__init__()
|
||||
self.top_k = num_activated_experts
|
||||
self.n_routed_experts = num_routed_experts
|
||||
|
||||
self.scoring_func = 'softmax'
|
||||
self.alpha = aux_loss_alpha
|
||||
self.seq_aux = False
|
||||
|
||||
# topk selection algorithm
|
||||
self.norm_topk_prob = False
|
||||
self.gating_dim = embed_dim
|
||||
self.weight = nn.Parameter(torch.empty((self.n_routed_experts, self.gating_dim)))
|
||||
self.reset_parameters()
|
||||
|
||||
def reset_parameters(self) -> None:
|
||||
import torch.nn.init as init
|
||||
init.kaiming_uniform_(self.weight, a=math.sqrt(5))
|
||||
|
||||
def forward(self, hidden_states):
|
||||
bsz, seq_len, h = hidden_states.shape
|
||||
# print(bsz, seq_len, h)
|
||||
### compute gating score
|
||||
hidden_states = hidden_states.view(-1, h)
|
||||
logits = F.linear(hidden_states, self.weight, None)
|
||||
if self.scoring_func == 'softmax':
|
||||
scores = logits.softmax(dim=-1)
|
||||
else:
|
||||
raise NotImplementedError(f'insupportable scoring function for MoE gating: {self.scoring_func}')
|
||||
|
||||
### select top-k experts
|
||||
topk_weight, topk_idx = torch.topk(scores, k=self.top_k, dim=-1, sorted=False)
|
||||
|
||||
### norm gate to sum 1
|
||||
if self.top_k > 1 and self.norm_topk_prob:
|
||||
denominator = topk_weight.sum(dim=-1, keepdim=True) + 1e-20
|
||||
topk_weight = topk_weight / denominator
|
||||
# this was in original and memory leaks, not needed
|
||||
|
||||
# ### expert-level computation auxiliary loss
|
||||
# if self.training and self.alpha > 0.0:
|
||||
# scores_for_aux = scores
|
||||
# aux_topk = self.top_k
|
||||
# # always compute aux loss based on the naive greedy topk method
|
||||
# topk_idx_for_aux_loss = topk_idx.view(bsz, -1)
|
||||
# if self.seq_aux:
|
||||
# scores_for_seq_aux = scores_for_aux.view(bsz, seq_len, -1)
|
||||
# ce = torch.zeros(bsz, self.n_routed_experts, device=hidden_states.device)
|
||||
# ce.scatter_add_(1, topk_idx_for_aux_loss, torch.ones(bsz, seq_len * aux_topk, device=hidden_states.device)).div_(seq_len * aux_topk / self.n_routed_experts)
|
||||
# aux_loss = (ce * scores_for_seq_aux.mean(dim = 1)).sum(dim = 1).mean() * self.alpha
|
||||
# else:
|
||||
# mask_ce = F.one_hot(topk_idx_for_aux_loss.view(-1), num_classes=self.n_routed_experts)
|
||||
# ce = mask_ce.float().mean(0)
|
||||
|
||||
# Pi = scores_for_aux.mean(0)
|
||||
# fi = ce * self.n_routed_experts
|
||||
# aux_loss = (Pi * fi).sum() * self.alpha
|
||||
# save_load_balancing_loss((aux_loss, Pi, fi, self.alpha))
|
||||
# else:
|
||||
aux_loss = None
|
||||
return topk_idx, topk_weight, aux_loss
|
||||
|
||||
# Modified from https://github.com/deepseek-ai/DeepSeek-V3/blob/main/inference/model.py
|
||||
class MOEFeedForwardSwiGLU(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
hidden_dim: int,
|
||||
num_routed_experts: int,
|
||||
num_activated_experts: int,
|
||||
):
|
||||
super().__init__()
|
||||
self.shared_experts = FeedForwardSwiGLU(dim, hidden_dim // 2)
|
||||
self.experts = nn.ModuleList([FeedForwardSwiGLU(dim, hidden_dim) for i in range(num_routed_experts)])
|
||||
self.gate = MoEGate(
|
||||
embed_dim = dim,
|
||||
num_routed_experts = num_routed_experts,
|
||||
num_activated_experts = num_activated_experts
|
||||
)
|
||||
self.num_activated_experts = num_activated_experts
|
||||
|
||||
def forward(self, x):
|
||||
wtype = x.dtype
|
||||
identity = x
|
||||
orig_shape = x.shape
|
||||
topk_idx, topk_weight, aux_loss = self.gate(x)
|
||||
x = x.view(-1, x.shape[-1])
|
||||
flat_topk_idx = topk_idx.view(-1)
|
||||
y = self.moe_infer(x, flat_topk_idx, topk_weight.view(-1, 1)).view(*orig_shape)
|
||||
# this was in original and memory leaks, not needed
|
||||
# if self.training:
|
||||
# x = x.repeat_interleave(self.num_activated_experts, dim=0)
|
||||
# y = torch.empty_like(x, dtype=wtype)
|
||||
# for i, expert in enumerate(self.experts):
|
||||
# y[flat_topk_idx == i] = expert(x[flat_topk_idx == i]).to(dtype=wtype)
|
||||
# y = (y.view(*topk_weight.shape, -1) * topk_weight.unsqueeze(-1)).sum(dim=1)
|
||||
# y = y.view(*orig_shape).to(dtype=wtype)
|
||||
# #y = AddAuxiliaryLoss.apply(y, aux_loss)
|
||||
# else:
|
||||
# y = self.moe_infer(x, flat_topk_idx, topk_weight.view(-1, 1)).view(*orig_shape)
|
||||
y = y + self.shared_experts(identity)
|
||||
return y
|
||||
|
||||
# @torch.no_grad()
|
||||
def moe_infer(self, x, flat_expert_indices, flat_expert_weights):
|
||||
expert_cache = torch.zeros_like(x)
|
||||
idxs = flat_expert_indices.argsort()
|
||||
tokens_per_expert = flat_expert_indices.bincount().cpu().numpy().cumsum(0)
|
||||
token_idxs = idxs // self.num_activated_experts
|
||||
for i, end_idx in enumerate(tokens_per_expert):
|
||||
start_idx = 0 if i == 0 else tokens_per_expert[i-1]
|
||||
if start_idx == end_idx:
|
||||
continue
|
||||
expert = self.experts[i]
|
||||
exp_token_idx = token_idxs[start_idx:end_idx]
|
||||
expert_tokens = x[exp_token_idx]
|
||||
expert_out = expert(expert_tokens)
|
||||
expert_out.mul_(flat_expert_weights[idxs[start_idx:end_idx]])
|
||||
|
||||
# for fp16 and other dtype
|
||||
expert_cache = expert_cache.to(expert_out.dtype)
|
||||
expert_cache.scatter_reduce_(0, exp_token_idx.view(-1, 1).repeat(1, x.shape[-1]), expert_out, reduce='sum')
|
||||
return expert_cache
|
||||
@@ -0,0 +1,506 @@
|
||||
from typing import Any, Callable, Dict, Optional, Tuple, List
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import einops
|
||||
from einops import repeat
|
||||
|
||||
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
||||
from diffusers.loaders import FromOriginalModelMixin, PeftAdapterMixin
|
||||
from diffusers.models.modeling_utils import ModelMixin
|
||||
from diffusers.utils import USE_PEFT_BACKEND, is_torch_version, logging, scale_lora_layers, unscale_lora_layers
|
||||
from diffusers.utils.torch_utils import maybe_allow_in_graph
|
||||
from diffusers.models.modeling_outputs import Transformer2DModelOutput
|
||||
from ..embeddings import PatchEmbed, PooledEmbed, TimestepEmbed, EmbedND, OutEmbed
|
||||
from ..attention import HiDreamAttention, FeedForwardSwiGLU
|
||||
from ..attention_processor import HiDreamAttnProcessor_flashattn
|
||||
from ..moe import MOEFeedForwardSwiGLU
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
class TextProjection(nn.Module):
|
||||
def __init__(self, in_features, hidden_size):
|
||||
super().__init__()
|
||||
self.linear = nn.Linear(in_features=in_features, out_features=hidden_size, bias=False)
|
||||
|
||||
def forward(self, caption):
|
||||
hidden_states = self.linear(caption)
|
||||
return hidden_states
|
||||
|
||||
class BlockType:
|
||||
TransformerBlock = 1
|
||||
SingleTransformerBlock = 2
|
||||
|
||||
@maybe_allow_in_graph
|
||||
class HiDreamImageSingleTransformerBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
num_attention_heads: int,
|
||||
attention_head_dim: int,
|
||||
num_routed_experts: int = 4,
|
||||
num_activated_experts: int = 2
|
||||
):
|
||||
super().__init__()
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.adaLN_modulation = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
nn.Linear(dim, 6 * dim, bias=True)
|
||||
)
|
||||
nn.init.zeros_(self.adaLN_modulation[1].weight)
|
||||
nn.init.zeros_(self.adaLN_modulation[1].bias)
|
||||
|
||||
# 1. Attention
|
||||
self.norm1_i = nn.LayerNorm(dim, eps = 1e-06, elementwise_affine = False)
|
||||
self.attn1 = HiDreamAttention(
|
||||
query_dim=dim,
|
||||
heads=num_attention_heads,
|
||||
dim_head=attention_head_dim,
|
||||
processor = HiDreamAttnProcessor_flashattn(),
|
||||
single = True
|
||||
)
|
||||
|
||||
# 3. Feed-forward
|
||||
self.norm3_i = nn.LayerNorm(dim, eps = 1e-06, elementwise_affine = False)
|
||||
if num_routed_experts > 0:
|
||||
self.ff_i = MOEFeedForwardSwiGLU(
|
||||
dim = dim,
|
||||
hidden_dim = 4 * dim,
|
||||
num_routed_experts = num_routed_experts,
|
||||
num_activated_experts = num_activated_experts,
|
||||
)
|
||||
else:
|
||||
self.ff_i = FeedForwardSwiGLU(dim = dim, hidden_dim = 4 * dim)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
image_tokens: torch.FloatTensor,
|
||||
image_tokens_masks: Optional[torch.FloatTensor] = None,
|
||||
text_tokens: Optional[torch.FloatTensor] = None,
|
||||
adaln_input: Optional[torch.FloatTensor] = None,
|
||||
rope: torch.FloatTensor = None,
|
||||
|
||||
) -> torch.FloatTensor:
|
||||
wtype = image_tokens.dtype
|
||||
shift_msa_i, scale_msa_i, gate_msa_i, shift_mlp_i, scale_mlp_i, gate_mlp_i = \
|
||||
self.adaLN_modulation(adaln_input)[:,None].chunk(6, dim=-1)
|
||||
|
||||
# 1. MM-Attention
|
||||
norm_image_tokens = self.norm1_i(image_tokens).to(dtype=wtype)
|
||||
norm_image_tokens = norm_image_tokens * (1 + scale_msa_i) + shift_msa_i
|
||||
attn_output_i = self.attn1(
|
||||
norm_image_tokens,
|
||||
image_tokens_masks,
|
||||
rope = rope,
|
||||
)
|
||||
image_tokens = gate_msa_i * attn_output_i + image_tokens
|
||||
|
||||
# 2. Feed-forward
|
||||
norm_image_tokens = self.norm3_i(image_tokens).to(dtype=wtype)
|
||||
norm_image_tokens = norm_image_tokens * (1 + scale_mlp_i) + shift_mlp_i
|
||||
ff_output_i = gate_mlp_i * self.ff_i(norm_image_tokens.to(dtype=wtype))
|
||||
image_tokens = ff_output_i + image_tokens
|
||||
return image_tokens
|
||||
|
||||
@maybe_allow_in_graph
|
||||
class HiDreamImageTransformerBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
num_attention_heads: int,
|
||||
attention_head_dim: int,
|
||||
num_routed_experts: int = 4,
|
||||
num_activated_experts: int = 2
|
||||
):
|
||||
super().__init__()
|
||||
self.num_attention_heads = num_attention_heads
|
||||
self.adaLN_modulation = nn.Sequential(
|
||||
nn.SiLU(),
|
||||
nn.Linear(dim, 12 * dim, bias=True)
|
||||
)
|
||||
nn.init.zeros_(self.adaLN_modulation[1].weight)
|
||||
nn.init.zeros_(self.adaLN_modulation[1].bias)
|
||||
|
||||
# 1. Attention
|
||||
self.norm1_i = nn.LayerNorm(dim, eps = 1e-06, elementwise_affine = False)
|
||||
self.norm1_t = nn.LayerNorm(dim, eps = 1e-06, elementwise_affine = False)
|
||||
self.attn1 = HiDreamAttention(
|
||||
query_dim=dim,
|
||||
heads=num_attention_heads,
|
||||
dim_head=attention_head_dim,
|
||||
processor = HiDreamAttnProcessor_flashattn(),
|
||||
single = False
|
||||
)
|
||||
|
||||
# 3. Feed-forward
|
||||
self.norm3_i = nn.LayerNorm(dim, eps = 1e-06, elementwise_affine = False)
|
||||
if num_routed_experts > 0:
|
||||
self.ff_i = MOEFeedForwardSwiGLU(
|
||||
dim = dim,
|
||||
hidden_dim = 4 * dim,
|
||||
num_routed_experts = num_routed_experts,
|
||||
num_activated_experts = num_activated_experts,
|
||||
)
|
||||
else:
|
||||
self.ff_i = FeedForwardSwiGLU(dim = dim, hidden_dim = 4 * dim)
|
||||
self.norm3_t = nn.LayerNorm(dim, eps = 1e-06, elementwise_affine = False)
|
||||
self.ff_t = FeedForwardSwiGLU(dim = dim, hidden_dim = 4 * dim)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
image_tokens: torch.FloatTensor,
|
||||
image_tokens_masks: Optional[torch.FloatTensor] = None,
|
||||
text_tokens: Optional[torch.FloatTensor] = None,
|
||||
adaln_input: Optional[torch.FloatTensor] = None,
|
||||
rope: torch.FloatTensor = None,
|
||||
) -> torch.FloatTensor:
|
||||
wtype = image_tokens.dtype
|
||||
shift_msa_i, scale_msa_i, gate_msa_i, shift_mlp_i, scale_mlp_i, gate_mlp_i, \
|
||||
shift_msa_t, scale_msa_t, gate_msa_t, shift_mlp_t, scale_mlp_t, gate_mlp_t = \
|
||||
self.adaLN_modulation(adaln_input)[:,None].chunk(12, dim=-1)
|
||||
|
||||
# 1. MM-Attention
|
||||
norm_image_tokens = self.norm1_i(image_tokens).to(dtype=wtype)
|
||||
norm_image_tokens = norm_image_tokens * (1 + scale_msa_i) + shift_msa_i
|
||||
norm_text_tokens = self.norm1_t(text_tokens).to(dtype=wtype)
|
||||
norm_text_tokens = norm_text_tokens * (1 + scale_msa_t) + shift_msa_t
|
||||
|
||||
attn_output_i, attn_output_t = self.attn1(
|
||||
norm_image_tokens,
|
||||
image_tokens_masks,
|
||||
norm_text_tokens,
|
||||
rope = rope,
|
||||
)
|
||||
|
||||
image_tokens = gate_msa_i * attn_output_i + image_tokens
|
||||
text_tokens = gate_msa_t * attn_output_t + text_tokens
|
||||
|
||||
# 2. Feed-forward
|
||||
norm_image_tokens = self.norm3_i(image_tokens).to(dtype=wtype)
|
||||
norm_image_tokens = norm_image_tokens * (1 + scale_mlp_i) + shift_mlp_i
|
||||
norm_text_tokens = self.norm3_t(text_tokens).to(dtype=wtype)
|
||||
norm_text_tokens = norm_text_tokens * (1 + scale_mlp_t) + shift_mlp_t
|
||||
|
||||
ff_output_i = gate_mlp_i * self.ff_i(norm_image_tokens)
|
||||
ff_output_t = gate_mlp_t * self.ff_t(norm_text_tokens)
|
||||
image_tokens = ff_output_i + image_tokens
|
||||
text_tokens = ff_output_t + text_tokens
|
||||
return image_tokens, text_tokens
|
||||
|
||||
@maybe_allow_in_graph
|
||||
class HiDreamImageBlock(nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
dim: int,
|
||||
num_attention_heads: int,
|
||||
attention_head_dim: int,
|
||||
num_routed_experts: int = 4,
|
||||
num_activated_experts: int = 2,
|
||||
block_type: BlockType = BlockType.TransformerBlock,
|
||||
):
|
||||
super().__init__()
|
||||
block_classes = {
|
||||
BlockType.TransformerBlock: HiDreamImageTransformerBlock,
|
||||
BlockType.SingleTransformerBlock: HiDreamImageSingleTransformerBlock,
|
||||
}
|
||||
self.block = block_classes[block_type](
|
||||
dim,
|
||||
num_attention_heads,
|
||||
attention_head_dim,
|
||||
num_routed_experts,
|
||||
num_activated_experts
|
||||
)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
image_tokens: torch.FloatTensor,
|
||||
image_tokens_masks: Optional[torch.FloatTensor] = None,
|
||||
text_tokens: Optional[torch.FloatTensor] = None,
|
||||
adaln_input: torch.FloatTensor = None,
|
||||
rope: torch.FloatTensor = None,
|
||||
) -> torch.FloatTensor:
|
||||
return self.block(
|
||||
image_tokens,
|
||||
image_tokens_masks,
|
||||
text_tokens,
|
||||
adaln_input,
|
||||
rope,
|
||||
)
|
||||
|
||||
class HiDreamImageTransformer2DModel(
|
||||
ModelMixin, ConfigMixin, PeftAdapterMixin, FromOriginalModelMixin
|
||||
):
|
||||
_supports_gradient_checkpointing = True
|
||||
_no_split_modules = ["HiDreamImageBlock"]
|
||||
|
||||
@register_to_config
|
||||
def __init__(
|
||||
self,
|
||||
patch_size: Optional[int] = None,
|
||||
in_channels: int = 64,
|
||||
out_channels: Optional[int] = None,
|
||||
num_layers: int = 16,
|
||||
num_single_layers: int = 32,
|
||||
attention_head_dim: int = 128,
|
||||
num_attention_heads: int = 20,
|
||||
caption_channels: List[int] = None,
|
||||
text_emb_dim: int = 2048,
|
||||
num_routed_experts: int = 4,
|
||||
num_activated_experts: int = 2,
|
||||
axes_dims_rope: Tuple[int, int] = (32, 32),
|
||||
max_resolution: Tuple[int, int] = (128, 128),
|
||||
llama_layers: List[int] = None,
|
||||
):
|
||||
super().__init__()
|
||||
self.out_channels = out_channels or in_channels
|
||||
self.inner_dim = self.config.num_attention_heads * self.config.attention_head_dim
|
||||
self.llama_layers = llama_layers
|
||||
|
||||
self.t_embedder = TimestepEmbed(self.inner_dim)
|
||||
self.p_embedder = PooledEmbed(text_emb_dim, self.inner_dim)
|
||||
self.x_embedder = PatchEmbed(
|
||||
patch_size = patch_size,
|
||||
in_channels = in_channels,
|
||||
out_channels = self.inner_dim,
|
||||
)
|
||||
self.pe_embedder = EmbedND(theta=10000, axes_dim=axes_dims_rope)
|
||||
|
||||
self.double_stream_blocks = nn.ModuleList(
|
||||
[
|
||||
HiDreamImageBlock(
|
||||
dim = self.inner_dim,
|
||||
num_attention_heads = self.config.num_attention_heads,
|
||||
attention_head_dim = self.config.attention_head_dim,
|
||||
num_routed_experts = num_routed_experts,
|
||||
num_activated_experts = num_activated_experts,
|
||||
block_type = BlockType.TransformerBlock
|
||||
)
|
||||
for i in range(self.config.num_layers)
|
||||
]
|
||||
)
|
||||
|
||||
self.single_stream_blocks = nn.ModuleList(
|
||||
[
|
||||
HiDreamImageBlock(
|
||||
dim = self.inner_dim,
|
||||
num_attention_heads = self.config.num_attention_heads,
|
||||
attention_head_dim = self.config.attention_head_dim,
|
||||
num_routed_experts = num_routed_experts,
|
||||
num_activated_experts = num_activated_experts,
|
||||
block_type = BlockType.SingleTransformerBlock
|
||||
)
|
||||
for i in range(self.config.num_single_layers)
|
||||
]
|
||||
)
|
||||
|
||||
self.final_layer = OutEmbed(self.inner_dim, patch_size, self.out_channels)
|
||||
|
||||
caption_channels = [caption_channels[1], ] * (num_layers + num_single_layers) + [caption_channels[0], ]
|
||||
caption_projection = []
|
||||
for caption_channel in caption_channels:
|
||||
caption_projection.append(TextProjection(in_features = caption_channel, hidden_size = self.inner_dim))
|
||||
self.caption_projection = nn.ModuleList(caption_projection)
|
||||
self.max_seq = max_resolution[0] * max_resolution[1] // (patch_size * patch_size)
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
|
||||
def expand_timesteps(self, timesteps, batch_size, device):
|
||||
if not torch.is_tensor(timesteps):
|
||||
is_mps = device.type == "mps"
|
||||
if isinstance(timesteps, float):
|
||||
dtype = torch.float32 if is_mps else torch.float64
|
||||
else:
|
||||
dtype = torch.int32 if is_mps else torch.int64
|
||||
timesteps = torch.tensor([timesteps], dtype=dtype, device=device)
|
||||
elif len(timesteps.shape) == 0:
|
||||
timesteps = timesteps[None].to(device)
|
||||
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
||||
timesteps = timesteps.expand(batch_size)
|
||||
return timesteps
|
||||
|
||||
# the implementation on hidream during train was wrong, just use the inference one.
|
||||
def unpatchify(self, x: torch.Tensor, img_sizes: List[Tuple[int, int]], is_training: bool) -> List[torch.Tensor]:
|
||||
# Process all images in the batch according to their specific dimensions
|
||||
x_arr = []
|
||||
for i, img_size in enumerate(img_sizes):
|
||||
pH, pW = img_size
|
||||
x_arr.append(
|
||||
einops.rearrange(
|
||||
x[i, :pH*pW].reshape(1, pH, pW, -1),
|
||||
'B H W (p1 p2 C) -> B C (H p1) (W p2)',
|
||||
p1=self.config.patch_size, p2=self.config.patch_size
|
||||
)
|
||||
)
|
||||
x = torch.cat(x_arr, dim=0)
|
||||
return x
|
||||
|
||||
def patchify(self, x, max_seq, img_sizes=None):
|
||||
pz2 = self.config.patch_size * self.config.patch_size
|
||||
if isinstance(x, torch.Tensor):
|
||||
B, C = x.shape[0], x.shape[1]
|
||||
device = x.device
|
||||
dtype = x.dtype
|
||||
else:
|
||||
B, C = len(x), x[0].shape[0]
|
||||
device = x[0].device
|
||||
dtype = x[0].dtype
|
||||
x_masks = torch.zeros((B, max_seq), dtype=dtype, device=device)
|
||||
|
||||
if img_sizes is not None:
|
||||
for i, img_size in enumerate(img_sizes):
|
||||
x_masks[i, 0:img_size[0] * img_size[1]] = 1
|
||||
x = einops.rearrange(x, 'B C S p -> B S (p C)', p=pz2)
|
||||
elif isinstance(x, torch.Tensor):
|
||||
pH, pW = x.shape[-2] // self.config.patch_size, x.shape[-1] // self.config.patch_size
|
||||
x = einops.rearrange(x, 'B C (H p1) (W p2) -> B (H W) (p1 p2 C)', p1=self.config.patch_size, p2=self.config.patch_size)
|
||||
img_sizes = [[pH, pW]] * B
|
||||
x_masks = None
|
||||
else:
|
||||
raise NotImplementedError
|
||||
return x, x_masks, img_sizes
|
||||
|
||||
def forward(
|
||||
self,
|
||||
hidden_states: torch.Tensor,
|
||||
timesteps: torch.LongTensor = None,
|
||||
encoder_hidden_states: torch.Tensor = None,
|
||||
pooled_embeds: torch.Tensor = None,
|
||||
img_sizes: Optional[List[Tuple[int, int]]] = None,
|
||||
img_ids: Optional[torch.Tensor] = None,
|
||||
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||
return_dict: bool = True,
|
||||
):
|
||||
if joint_attention_kwargs is not None:
|
||||
joint_attention_kwargs = joint_attention_kwargs.copy()
|
||||
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
||||
else:
|
||||
lora_scale = 1.0
|
||||
|
||||
if USE_PEFT_BACKEND:
|
||||
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
||||
scale_lora_layers(self, lora_scale)
|
||||
else:
|
||||
if joint_attention_kwargs is not None and joint_attention_kwargs.get("scale", None) is not None:
|
||||
logger.warning(
|
||||
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
||||
)
|
||||
|
||||
# spatial forward
|
||||
batch_size = hidden_states.shape[0]
|
||||
hidden_states_type = hidden_states.dtype
|
||||
|
||||
# 0. time
|
||||
timesteps = self.expand_timesteps(timesteps, batch_size, hidden_states.device)
|
||||
timesteps = self.t_embedder(timesteps, hidden_states_type)
|
||||
p_embedder = self.p_embedder(pooled_embeds)
|
||||
adaln_input = timesteps + p_embedder
|
||||
|
||||
hidden_states, image_tokens_masks, img_sizes = self.patchify(hidden_states, self.max_seq, img_sizes)
|
||||
if image_tokens_masks is None:
|
||||
pH, pW = img_sizes[0]
|
||||
img_ids = torch.zeros(pH, pW, 3, device=hidden_states.device)
|
||||
img_ids[..., 1] = img_ids[..., 1] + torch.arange(pH, device=hidden_states.device)[:, None]
|
||||
img_ids[..., 2] = img_ids[..., 2] + torch.arange(pW, device=hidden_states.device)[None, :]
|
||||
img_ids = repeat(img_ids, "h w c -> b (h w) c", b=batch_size)
|
||||
hidden_states = self.x_embedder(hidden_states)
|
||||
|
||||
T5_encoder_hidden_states = encoder_hidden_states[0]
|
||||
encoder_hidden_states = encoder_hidden_states[-1]
|
||||
encoder_hidden_states = [encoder_hidden_states[k] for k in self.llama_layers]
|
||||
|
||||
if self.caption_projection is not None:
|
||||
new_encoder_hidden_states = []
|
||||
for i, enc_hidden_state in enumerate(encoder_hidden_states):
|
||||
enc_hidden_state = self.caption_projection[i](enc_hidden_state)
|
||||
enc_hidden_state = enc_hidden_state.view(batch_size, -1, hidden_states.shape[-1])
|
||||
new_encoder_hidden_states.append(enc_hidden_state)
|
||||
encoder_hidden_states = new_encoder_hidden_states
|
||||
T5_encoder_hidden_states = self.caption_projection[-1](T5_encoder_hidden_states)
|
||||
T5_encoder_hidden_states = T5_encoder_hidden_states.view(batch_size, -1, hidden_states.shape[-1])
|
||||
encoder_hidden_states.append(T5_encoder_hidden_states)
|
||||
|
||||
txt_ids = torch.zeros(
|
||||
batch_size,
|
||||
encoder_hidden_states[-1].shape[1] + encoder_hidden_states[-2].shape[1] + encoder_hidden_states[0].shape[1],
|
||||
3,
|
||||
device=img_ids.device, dtype=img_ids.dtype
|
||||
)
|
||||
ids = torch.cat((img_ids, txt_ids), dim=1)
|
||||
rope = self.pe_embedder(ids)
|
||||
|
||||
# 2. Blocks
|
||||
block_id = 0
|
||||
initial_encoder_hidden_states = torch.cat([encoder_hidden_states[-1], encoder_hidden_states[-2]], dim=1)
|
||||
initial_encoder_hidden_states_seq_len = initial_encoder_hidden_states.shape[1]
|
||||
for bid, block in enumerate(self.double_stream_blocks):
|
||||
cur_llama31_encoder_hidden_states = encoder_hidden_states[block_id].detach()
|
||||
cur_encoder_hidden_states = torch.cat([initial_encoder_hidden_states, cur_llama31_encoder_hidden_states], dim=1)
|
||||
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
||||
hidden_states, initial_encoder_hidden_states = self._gradient_checkpointing_func(
|
||||
block,
|
||||
hidden_states,
|
||||
image_tokens_masks,
|
||||
cur_encoder_hidden_states,
|
||||
adaln_input.clone(),
|
||||
rope.clone(),
|
||||
)
|
||||
|
||||
else:
|
||||
hidden_states, initial_encoder_hidden_states = block(
|
||||
image_tokens = hidden_states,
|
||||
image_tokens_masks = image_tokens_masks,
|
||||
text_tokens = cur_encoder_hidden_states,
|
||||
adaln_input = adaln_input,
|
||||
rope = rope,
|
||||
)
|
||||
initial_encoder_hidden_states = initial_encoder_hidden_states[:, :initial_encoder_hidden_states_seq_len]
|
||||
block_id += 1
|
||||
|
||||
image_tokens_seq_len = hidden_states.shape[1]
|
||||
hidden_states = torch.cat([hidden_states, initial_encoder_hidden_states], dim=1)
|
||||
hidden_states_seq_len = hidden_states.shape[1]
|
||||
if image_tokens_masks is not None:
|
||||
encoder_attention_mask_ones = torch.ones(
|
||||
(batch_size, initial_encoder_hidden_states.shape[1] + cur_llama31_encoder_hidden_states.shape[1]),
|
||||
device=image_tokens_masks.device, dtype=image_tokens_masks.dtype
|
||||
)
|
||||
image_tokens_masks = torch.cat([image_tokens_masks, encoder_attention_mask_ones], dim=1)
|
||||
|
||||
for bid, block in enumerate(self.single_stream_blocks):
|
||||
cur_llama31_encoder_hidden_states = encoder_hidden_states[block_id].detach()
|
||||
hidden_states = torch.cat([hidden_states, cur_llama31_encoder_hidden_states], dim=1)
|
||||
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
||||
hidden_states = self._gradient_checkpointing_func(
|
||||
block,
|
||||
hidden_states,
|
||||
image_tokens_masks,
|
||||
None,
|
||||
adaln_input.clone(),
|
||||
rope.clone(),
|
||||
)
|
||||
else:
|
||||
hidden_states = block(
|
||||
image_tokens = hidden_states,
|
||||
image_tokens_masks = image_tokens_masks,
|
||||
text_tokens = None,
|
||||
adaln_input = adaln_input,
|
||||
rope = rope,
|
||||
)
|
||||
hidden_states = hidden_states[:, :hidden_states_seq_len]
|
||||
block_id += 1
|
||||
|
||||
hidden_states = hidden_states[:, :image_tokens_seq_len, ...]
|
||||
output = self.final_layer(hidden_states, adaln_input)
|
||||
output = self.unpatchify(output, img_sizes, self.training)
|
||||
if image_tokens_masks is not None:
|
||||
image_tokens_masks = image_tokens_masks[:, :image_tokens_seq_len]
|
||||
|
||||
if USE_PEFT_BACKEND:
|
||||
# remove `lora_scale` from each PEFT layer
|
||||
unscale_lora_layers(self, lora_scale)
|
||||
|
||||
if not return_dict:
|
||||
return (output, image_tokens_masks)
|
||||
return Transformer2DModelOutput(sample=output, mask=image_tokens_masks)
|
||||
|
||||
@@ -0,0 +1,737 @@
|
||||
import inspect
|
||||
from typing import Any, Callable, Dict, List, Optional, Union
|
||||
import math
|
||||
import einops
|
||||
import torch
|
||||
from transformers import (
|
||||
CLIPTextModelWithProjection,
|
||||
CLIPTokenizer,
|
||||
T5EncoderModel,
|
||||
T5Tokenizer,
|
||||
LlamaForCausalLM,
|
||||
PreTrainedTokenizerFast
|
||||
)
|
||||
|
||||
from diffusers.image_processor import VaeImageProcessor
|
||||
from diffusers.loaders import FromSingleFileMixin
|
||||
from diffusers.models.autoencoders import AutoencoderKL
|
||||
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
|
||||
from diffusers.utils import (
|
||||
USE_PEFT_BACKEND,
|
||||
is_torch_xla_available,
|
||||
logging,
|
||||
)
|
||||
from diffusers.utils.torch_utils import randn_tensor
|
||||
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
||||
from .pipeline_output import HiDreamImagePipelineOutput
|
||||
from ...models.transformers.transformer_hidream_image import HiDreamImageTransformer2DModel
|
||||
from ...schedulers.fm_solvers_unipc import FlowUniPCMultistepScheduler
|
||||
|
||||
if is_torch_xla_available():
|
||||
import torch_xla.core.xla_model as xm
|
||||
|
||||
XLA_AVAILABLE = True
|
||||
else:
|
||||
XLA_AVAILABLE = False
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
# Copied from diffusers.pipelines.flux.pipeline_flux.calculate_shift
|
||||
def calculate_shift(
|
||||
image_seq_len,
|
||||
base_seq_len: int = 256,
|
||||
max_seq_len: int = 4096,
|
||||
base_shift: float = 0.5,
|
||||
max_shift: float = 1.15,
|
||||
):
|
||||
m = (max_shift - base_shift) / (max_seq_len - base_seq_len)
|
||||
b = base_shift - m * base_seq_len
|
||||
mu = image_seq_len * m + b
|
||||
return mu
|
||||
|
||||
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
||||
def retrieve_timesteps(
|
||||
scheduler,
|
||||
num_inference_steps: Optional[int] = None,
|
||||
device: Optional[Union[str, torch.device]] = None,
|
||||
timesteps: Optional[List[int]] = None,
|
||||
sigmas: Optional[List[float]] = None,
|
||||
**kwargs,
|
||||
):
|
||||
r"""
|
||||
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
||||
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
||||
|
||||
Args:
|
||||
scheduler (`SchedulerMixin`):
|
||||
The scheduler to get timesteps from.
|
||||
num_inference_steps (`int`):
|
||||
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
||||
must be `None`.
|
||||
device (`str` or `torch.device`, *optional*):
|
||||
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
||||
timesteps (`List[int]`, *optional*):
|
||||
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
||||
`num_inference_steps` and `sigmas` must be `None`.
|
||||
sigmas (`List[float]`, *optional*):
|
||||
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
||||
`num_inference_steps` and `timesteps` must be `None`.
|
||||
|
||||
Returns:
|
||||
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
||||
second element is the number of inference steps.
|
||||
"""
|
||||
if timesteps is not None and sigmas is not None:
|
||||
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
||||
if timesteps is not None:
|
||||
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
||||
if not accepts_timesteps:
|
||||
raise ValueError(
|
||||
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
||||
f" timestep schedules. Please check whether you are using the correct scheduler."
|
||||
)
|
||||
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
||||
timesteps = scheduler.timesteps
|
||||
num_inference_steps = len(timesteps)
|
||||
elif sigmas is not None:
|
||||
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
||||
if not accept_sigmas:
|
||||
raise ValueError(
|
||||
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
||||
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
||||
)
|
||||
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
||||
timesteps = scheduler.timesteps
|
||||
num_inference_steps = len(timesteps)
|
||||
else:
|
||||
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
||||
timesteps = scheduler.timesteps
|
||||
return timesteps, num_inference_steps
|
||||
|
||||
class HiDreamImagePipeline(DiffusionPipeline, FromSingleFileMixin):
|
||||
model_cpu_offload_seq = "text_encoder->text_encoder_2->text_encoder_3->text_encoder_4->image_encoder->transformer->vae"
|
||||
_optional_components = ["image_encoder", "feature_extractor"]
|
||||
_callback_tensor_inputs = ["latents", "prompt_embeds"]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
scheduler: FlowMatchEulerDiscreteScheduler,
|
||||
vae: AutoencoderKL,
|
||||
text_encoder: CLIPTextModelWithProjection,
|
||||
tokenizer: CLIPTokenizer,
|
||||
text_encoder_2: CLIPTextModelWithProjection,
|
||||
tokenizer_2: CLIPTokenizer,
|
||||
text_encoder_3: T5EncoderModel,
|
||||
tokenizer_3: T5Tokenizer,
|
||||
text_encoder_4: LlamaForCausalLM,
|
||||
tokenizer_4: PreTrainedTokenizerFast,
|
||||
transformer: HiDreamImageTransformer2DModel,
|
||||
aggressive_unloading: bool = False,
|
||||
):
|
||||
super().__init__()
|
||||
|
||||
self.register_modules(
|
||||
vae=vae,
|
||||
text_encoder=text_encoder,
|
||||
text_encoder_2=text_encoder_2,
|
||||
text_encoder_3=text_encoder_3,
|
||||
text_encoder_4=text_encoder_4,
|
||||
tokenizer=tokenizer,
|
||||
tokenizer_2=tokenizer_2,
|
||||
tokenizer_3=tokenizer_3,
|
||||
tokenizer_4=tokenizer_4,
|
||||
scheduler=scheduler,
|
||||
transformer=transformer,
|
||||
)
|
||||
self.vae_scale_factor = (
|
||||
2 ** (len(self.vae.config.block_out_channels) - 1) if hasattr(self, "vae") and self.vae is not None else 8
|
||||
)
|
||||
# HiDreamImage latents are turned into 2x2 patches and packed. This means the latent width and height has to be divisible
|
||||
# by the patch size. So the vae scale factor is multiplied by the patch size to account for this
|
||||
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor * 2)
|
||||
self.default_sample_size = 128
|
||||
self.tokenizer_4.pad_token = self.tokenizer_4.eos_token
|
||||
self.aggressive_unloading = aggressive_unloading
|
||||
|
||||
def _get_t5_prompt_embeds(
|
||||
self,
|
||||
prompt: Union[str, List[str]] = None,
|
||||
num_images_per_prompt: int = 1,
|
||||
max_sequence_length: int = 128,
|
||||
device: Optional[torch.device] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
):
|
||||
device = device or self._execution_device
|
||||
dtype = dtype or self.text_encoder_3.dtype
|
||||
|
||||
prompt = [prompt] if isinstance(prompt, str) else prompt
|
||||
batch_size = len(prompt)
|
||||
|
||||
text_inputs = self.tokenizer_3(
|
||||
prompt,
|
||||
padding="max_length",
|
||||
max_length=min(max_sequence_length, self.tokenizer_3.model_max_length),
|
||||
truncation=True,
|
||||
add_special_tokens=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
text_input_ids = text_inputs.input_ids
|
||||
attention_mask = text_inputs.attention_mask
|
||||
untruncated_ids = self.tokenizer_3(prompt, padding="longest", return_tensors="pt").input_ids
|
||||
|
||||
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
||||
removed_text = self.tokenizer_3.batch_decode(untruncated_ids[:, min(max_sequence_length, self.tokenizer_3.model_max_length) - 1 : -1])
|
||||
logger.warning(
|
||||
"The following part of your input was truncated because `max_sequence_length` is set to "
|
||||
f" {min(max_sequence_length, self.tokenizer_3.model_max_length)} tokens: {removed_text}"
|
||||
)
|
||||
|
||||
prompt_embeds = self.text_encoder_3(text_input_ids.to(device), attention_mask=attention_mask.to(device))[0]
|
||||
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
||||
_, seq_len, _ = prompt_embeds.shape
|
||||
|
||||
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
||||
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
||||
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
||||
return prompt_embeds
|
||||
|
||||
def _get_clip_prompt_embeds(
|
||||
self,
|
||||
tokenizer,
|
||||
text_encoder,
|
||||
prompt: Union[str, List[str]],
|
||||
num_images_per_prompt: int = 1,
|
||||
max_sequence_length: int = 128,
|
||||
device: Optional[torch.device] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
):
|
||||
device = device or self._execution_device
|
||||
dtype = dtype or text_encoder.dtype
|
||||
|
||||
prompt = [prompt] if isinstance(prompt, str) else prompt
|
||||
batch_size = len(prompt)
|
||||
|
||||
text_inputs = tokenizer(
|
||||
prompt,
|
||||
padding="max_length",
|
||||
max_length=min(max_sequence_length, 218),
|
||||
truncation=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
|
||||
text_input_ids = text_inputs.input_ids
|
||||
untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
||||
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
||||
removed_text = tokenizer.batch_decode(untruncated_ids[:, 218 - 1 : -1])
|
||||
logger.warning(
|
||||
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
||||
f" {218} tokens: {removed_text}"
|
||||
)
|
||||
prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True)
|
||||
|
||||
# Use pooled output of CLIPTextModel
|
||||
prompt_embeds = prompt_embeds[0]
|
||||
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
|
||||
|
||||
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
||||
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt)
|
||||
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
|
||||
|
||||
return prompt_embeds
|
||||
|
||||
def _get_llama3_prompt_embeds(
|
||||
self,
|
||||
prompt: Union[str, List[str]] = None,
|
||||
num_images_per_prompt: int = 1,
|
||||
max_sequence_length: int = 128,
|
||||
device: Optional[torch.device] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
):
|
||||
device = device or self._execution_device
|
||||
dtype = dtype or self.text_encoder_4.dtype
|
||||
|
||||
prompt = [prompt] if isinstance(prompt, str) else prompt
|
||||
batch_size = len(prompt)
|
||||
|
||||
text_inputs = self.tokenizer_4(
|
||||
prompt,
|
||||
padding="max_length",
|
||||
max_length=min(max_sequence_length, self.tokenizer_4.model_max_length),
|
||||
truncation=True,
|
||||
add_special_tokens=True,
|
||||
return_tensors="pt",
|
||||
)
|
||||
text_input_ids = text_inputs.input_ids
|
||||
attention_mask = text_inputs.attention_mask
|
||||
untruncated_ids = self.tokenizer_4(prompt, padding="longest", return_tensors="pt").input_ids
|
||||
|
||||
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
|
||||
removed_text = self.tokenizer_4.batch_decode(untruncated_ids[:, min(max_sequence_length, self.tokenizer_4.model_max_length) - 1 : -1])
|
||||
logger.warning(
|
||||
"The following part of your input was truncated because `max_sequence_length` is set to "
|
||||
f" {min(max_sequence_length, self.tokenizer_4.model_max_length)} tokens: {removed_text}"
|
||||
)
|
||||
|
||||
outputs = self.text_encoder_4(
|
||||
text_input_ids.to(device),
|
||||
attention_mask=attention_mask.to(device),
|
||||
output_hidden_states=True,
|
||||
output_attentions=True
|
||||
)
|
||||
|
||||
prompt_embeds = outputs.hidden_states[1:]
|
||||
prompt_embeds = torch.stack(prompt_embeds, dim=0)
|
||||
_, _, seq_len, dim = prompt_embeds.shape
|
||||
|
||||
# duplicate text embeddings and attention mask for each generation per prompt, using mps friendly method
|
||||
prompt_embeds = prompt_embeds.repeat(1, 1, num_images_per_prompt, 1)
|
||||
prompt_embeds = prompt_embeds.view(-1, batch_size * num_images_per_prompt, seq_len, dim)
|
||||
return prompt_embeds
|
||||
|
||||
def encode_prompt(
|
||||
self,
|
||||
prompt: Union[str, List[str]],
|
||||
prompt_2: Union[str, List[str]],
|
||||
prompt_3: Union[str, List[str]],
|
||||
prompt_4: Union[str, List[str]],
|
||||
device: Optional[torch.device] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
num_images_per_prompt: int = 1,
|
||||
do_classifier_free_guidance: bool = True,
|
||||
negative_prompt: Optional[Union[str, List[str]]] = None,
|
||||
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
||||
negative_prompt_3: Optional[Union[str, List[str]]] = None,
|
||||
negative_prompt_4: Optional[Union[str, List[str]]] = None,
|
||||
prompt_embeds: Optional[List[torch.FloatTensor]] = None,
|
||||
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
max_sequence_length: int = 128,
|
||||
lora_scale: Optional[float] = None,
|
||||
):
|
||||
prompt = [prompt] if isinstance(prompt, str) else prompt
|
||||
if prompt is not None:
|
||||
batch_size = len(prompt)
|
||||
else:
|
||||
batch_size = prompt_embeds[0].shape[0]
|
||||
|
||||
prompt_embeds, pooled_prompt_embeds = self._encode_prompt(
|
||||
prompt = prompt,
|
||||
prompt_2 = prompt_2,
|
||||
prompt_3 = prompt_3,
|
||||
prompt_4 = prompt_4,
|
||||
device = device,
|
||||
dtype = dtype,
|
||||
num_images_per_prompt = num_images_per_prompt,
|
||||
prompt_embeds = prompt_embeds,
|
||||
pooled_prompt_embeds = pooled_prompt_embeds,
|
||||
max_sequence_length = max_sequence_length,
|
||||
)
|
||||
|
||||
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
||||
negative_prompt = negative_prompt or ""
|
||||
negative_prompt_2 = negative_prompt_2 or negative_prompt
|
||||
negative_prompt_3 = negative_prompt_3 or negative_prompt
|
||||
negative_prompt_4 = negative_prompt_4 or negative_prompt
|
||||
|
||||
# normalize str to list
|
||||
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
|
||||
negative_prompt_2 = (
|
||||
batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2
|
||||
)
|
||||
negative_prompt_3 = (
|
||||
batch_size * [negative_prompt_3] if isinstance(negative_prompt_3, str) else negative_prompt_3
|
||||
)
|
||||
negative_prompt_4 = (
|
||||
batch_size * [negative_prompt_4] if isinstance(negative_prompt_4, str) else negative_prompt_4
|
||||
)
|
||||
|
||||
if prompt is not None and type(prompt) is not type(negative_prompt):
|
||||
raise TypeError(
|
||||
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
||||
f" {type(prompt)}."
|
||||
)
|
||||
elif batch_size != len(negative_prompt):
|
||||
raise ValueError(
|
||||
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
||||
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
||||
" the batch size of `prompt`."
|
||||
)
|
||||
|
||||
negative_prompt_embeds, negative_pooled_prompt_embeds = self._encode_prompt(
|
||||
prompt = negative_prompt,
|
||||
prompt_2 = negative_prompt_2,
|
||||
prompt_3 = negative_prompt_3,
|
||||
prompt_4 = negative_prompt_4,
|
||||
device = device,
|
||||
dtype = dtype,
|
||||
num_images_per_prompt = num_images_per_prompt,
|
||||
prompt_embeds = negative_prompt_embeds,
|
||||
pooled_prompt_embeds = negative_pooled_prompt_embeds,
|
||||
max_sequence_length = max_sequence_length,
|
||||
)
|
||||
return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds
|
||||
|
||||
def _encode_prompt(
|
||||
self,
|
||||
prompt: Union[str, List[str]],
|
||||
prompt_2: Union[str, List[str]],
|
||||
prompt_3: Union[str, List[str]],
|
||||
prompt_4: Union[str, List[str]],
|
||||
device: Optional[torch.device] = None,
|
||||
dtype: Optional[torch.dtype] = None,
|
||||
num_images_per_prompt: int = 1,
|
||||
prompt_embeds: Optional[List[torch.FloatTensor]] = None,
|
||||
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
max_sequence_length: int = 128,
|
||||
):
|
||||
device = device or self._execution_device
|
||||
|
||||
if prompt_embeds is None:
|
||||
prompt_2 = prompt_2 or prompt
|
||||
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
||||
|
||||
prompt_3 = prompt_3 or prompt
|
||||
prompt_3 = [prompt_3] if isinstance(prompt_3, str) else prompt_3
|
||||
|
||||
prompt_4 = prompt_4 or prompt
|
||||
prompt_4 = [prompt_4] if isinstance(prompt_4, str) else prompt_4
|
||||
|
||||
pooled_prompt_embeds_1 = self._get_clip_prompt_embeds(
|
||||
self.tokenizer,
|
||||
self.text_encoder,
|
||||
prompt = prompt,
|
||||
num_images_per_prompt = num_images_per_prompt,
|
||||
max_sequence_length = max_sequence_length,
|
||||
device = device,
|
||||
dtype = dtype,
|
||||
)
|
||||
|
||||
pooled_prompt_embeds_2 = self._get_clip_prompt_embeds(
|
||||
self.tokenizer_2,
|
||||
self.text_encoder_2,
|
||||
prompt = prompt_2,
|
||||
num_images_per_prompt = num_images_per_prompt,
|
||||
max_sequence_length = max_sequence_length,
|
||||
device = device,
|
||||
dtype = dtype,
|
||||
)
|
||||
|
||||
pooled_prompt_embeds = torch.cat([pooled_prompt_embeds_1, pooled_prompt_embeds_2], dim=-1)
|
||||
|
||||
t5_prompt_embeds = self._get_t5_prompt_embeds(
|
||||
prompt = prompt_3,
|
||||
num_images_per_prompt = num_images_per_prompt,
|
||||
max_sequence_length = max_sequence_length,
|
||||
device = device,
|
||||
dtype = dtype
|
||||
)
|
||||
llama3_prompt_embeds = self._get_llama3_prompt_embeds(
|
||||
prompt = prompt_4,
|
||||
num_images_per_prompt = num_images_per_prompt,
|
||||
max_sequence_length = max_sequence_length,
|
||||
device = device,
|
||||
dtype = dtype
|
||||
)
|
||||
prompt_embeds = [t5_prompt_embeds, llama3_prompt_embeds]
|
||||
|
||||
return prompt_embeds, pooled_prompt_embeds
|
||||
|
||||
def enable_vae_slicing(self):
|
||||
r"""
|
||||
Enable sliced VAE decoding. When this option is enabled, the VAE will split the input tensor in slices to
|
||||
compute decoding in several steps. This is useful to save some memory and allow larger batch sizes.
|
||||
"""
|
||||
self.vae.enable_slicing()
|
||||
|
||||
def disable_vae_slicing(self):
|
||||
r"""
|
||||
Disable sliced VAE decoding. If `enable_vae_slicing` was previously enabled, this method will go back to
|
||||
computing decoding in one step.
|
||||
"""
|
||||
self.vae.disable_slicing()
|
||||
|
||||
def enable_vae_tiling(self):
|
||||
r"""
|
||||
Enable tiled VAE decoding. When this option is enabled, the VAE will split the input tensor into tiles to
|
||||
compute decoding and encoding in several steps. This is useful for saving a large amount of memory and to allow
|
||||
processing larger images.
|
||||
"""
|
||||
self.vae.enable_tiling()
|
||||
|
||||
def disable_vae_tiling(self):
|
||||
r"""
|
||||
Disable tiled VAE decoding. If `enable_vae_tiling` was previously enabled, this method will go back to
|
||||
computing decoding in one step.
|
||||
"""
|
||||
self.vae.disable_tiling()
|
||||
|
||||
def prepare_latents(
|
||||
self,
|
||||
batch_size,
|
||||
num_channels_latents,
|
||||
height,
|
||||
width,
|
||||
dtype,
|
||||
device,
|
||||
generator,
|
||||
latents=None,
|
||||
):
|
||||
# VAE applies 8x compression on images but we must also account for packing which requires
|
||||
# latent height and width to be divisible by 2.
|
||||
height = 2 * (int(height) // (self.vae_scale_factor * 2))
|
||||
width = 2 * (int(width) // (self.vae_scale_factor * 2))
|
||||
|
||||
shape = (batch_size, num_channels_latents, height, width)
|
||||
|
||||
if latents is None:
|
||||
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
||||
else:
|
||||
if latents.shape != shape:
|
||||
raise ValueError(f"Unexpected latents shape, got {latents.shape}, expected {shape}")
|
||||
latents = latents.to(device)
|
||||
return latents
|
||||
|
||||
@property
|
||||
def guidance_scale(self):
|
||||
return self._guidance_scale
|
||||
|
||||
@property
|
||||
def do_classifier_free_guidance(self):
|
||||
return self._guidance_scale > 1
|
||||
|
||||
@property
|
||||
def joint_attention_kwargs(self):
|
||||
return self._joint_attention_kwargs
|
||||
|
||||
@property
|
||||
def num_timesteps(self):
|
||||
return self._num_timesteps
|
||||
|
||||
@property
|
||||
def interrupt(self):
|
||||
return self._interrupt
|
||||
|
||||
@torch.no_grad()
|
||||
def __call__(
|
||||
self,
|
||||
prompt: Union[str, List[str]] = None,
|
||||
prompt_2: Optional[Union[str, List[str]]] = None,
|
||||
prompt_3: Optional[Union[str, List[str]]] = None,
|
||||
prompt_4: Optional[Union[str, List[str]]] = None,
|
||||
height: Optional[int] = None,
|
||||
width: Optional[int] = None,
|
||||
num_inference_steps: int = 50,
|
||||
sigmas: Optional[List[float]] = None,
|
||||
guidance_scale: float = 5.0,
|
||||
negative_prompt: Optional[Union[str, List[str]]] = None,
|
||||
negative_prompt_2: Optional[Union[str, List[str]]] = None,
|
||||
negative_prompt_3: Optional[Union[str, List[str]]] = None,
|
||||
negative_prompt_4: Optional[Union[str, List[str]]] = None,
|
||||
num_images_per_prompt: Optional[int] = 1,
|
||||
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
||||
latents: Optional[torch.FloatTensor] = None,
|
||||
prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
output_type: Optional[str] = "pil",
|
||||
return_dict: bool = True,
|
||||
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
||||
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
||||
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
||||
max_sequence_length: int = 128,
|
||||
):
|
||||
height = height or self.default_sample_size * self.vae_scale_factor
|
||||
width = width or self.default_sample_size * self.vae_scale_factor
|
||||
|
||||
division = self.vae_scale_factor * 2
|
||||
S_max = (self.default_sample_size * self.vae_scale_factor) ** 2
|
||||
scale = S_max / (width * height)
|
||||
scale = math.sqrt(scale)
|
||||
width, height = int(width * scale // division * division), int(height * scale // division * division)
|
||||
|
||||
self._guidance_scale = guidance_scale
|
||||
self._joint_attention_kwargs = joint_attention_kwargs
|
||||
self._interrupt = False
|
||||
|
||||
# 2. Define call parameters
|
||||
if prompt is not None and isinstance(prompt, str):
|
||||
batch_size = 1
|
||||
elif prompt is not None and isinstance(prompt, list):
|
||||
batch_size = len(prompt)
|
||||
else:
|
||||
batch_size = prompt_embeds[0].shape[0]
|
||||
|
||||
device = self._execution_device
|
||||
|
||||
lora_scale = (
|
||||
self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None
|
||||
)
|
||||
(
|
||||
prompt_embeds,
|
||||
negative_prompt_embeds,
|
||||
pooled_prompt_embeds,
|
||||
negative_pooled_prompt_embeds,
|
||||
) = self.encode_prompt(
|
||||
prompt=prompt,
|
||||
prompt_2=prompt_2,
|
||||
prompt_3=prompt_3,
|
||||
prompt_4=prompt_4,
|
||||
negative_prompt=negative_prompt,
|
||||
negative_prompt_2=negative_prompt_2,
|
||||
negative_prompt_3=negative_prompt_3,
|
||||
negative_prompt_4=negative_prompt_4,
|
||||
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
||||
prompt_embeds=prompt_embeds,
|
||||
negative_prompt_embeds=negative_prompt_embeds,
|
||||
pooled_prompt_embeds=pooled_prompt_embeds,
|
||||
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds,
|
||||
device=device,
|
||||
num_images_per_prompt=num_images_per_prompt,
|
||||
max_sequence_length=max_sequence_length,
|
||||
lora_scale=lora_scale,
|
||||
)
|
||||
|
||||
if self.do_classifier_free_guidance:
|
||||
prompt_embeds_arr = []
|
||||
for n, p in zip(negative_prompt_embeds, prompt_embeds):
|
||||
if len(n.shape) == 3:
|
||||
prompt_embeds_arr.append(torch.cat([n, p], dim=0))
|
||||
else:
|
||||
prompt_embeds_arr.append(torch.cat([n, p], dim=1))
|
||||
prompt_embeds = prompt_embeds_arr
|
||||
pooled_prompt_embeds = torch.cat([negative_pooled_prompt_embeds, pooled_prompt_embeds], dim=0)
|
||||
|
||||
# 4. Prepare latent variables
|
||||
num_channels_latents = self.transformer.config.in_channels
|
||||
latents = self.prepare_latents(
|
||||
batch_size * num_images_per_prompt,
|
||||
num_channels_latents,
|
||||
height,
|
||||
width,
|
||||
pooled_prompt_embeds.dtype,
|
||||
device,
|
||||
generator,
|
||||
latents,
|
||||
)
|
||||
|
||||
if latents.shape[-2] != latents.shape[-1]:
|
||||
B, C, H, W = latents.shape
|
||||
pH, pW = H // self.transformer.config.patch_size, W // self.transformer.config.patch_size
|
||||
|
||||
img_sizes = torch.tensor([pH, pW], dtype=torch.int64).reshape(-1)
|
||||
img_ids = torch.zeros(pH, pW, 3)
|
||||
img_ids[..., 1] = img_ids[..., 1] + torch.arange(pH)[:, None]
|
||||
img_ids[..., 2] = img_ids[..., 2] + torch.arange(pW)[None, :]
|
||||
img_ids = img_ids.reshape(pH * pW, -1)
|
||||
img_ids_pad = torch.zeros(self.transformer.max_seq, 3)
|
||||
img_ids_pad[:pH*pW, :] = img_ids
|
||||
|
||||
img_sizes = img_sizes.unsqueeze(0).to(latents.device)
|
||||
img_ids = img_ids_pad.unsqueeze(0).to(latents.device)
|
||||
if self.do_classifier_free_guidance:
|
||||
img_sizes = img_sizes.repeat(2 * B, 1)
|
||||
img_ids = img_ids.repeat(2 * B, 1, 1)
|
||||
else:
|
||||
img_sizes = img_ids = None
|
||||
|
||||
# 5. Prepare timesteps
|
||||
mu = calculate_shift(self.transformer.max_seq)
|
||||
scheduler_kwargs = {"mu": mu}
|
||||
if isinstance(self.scheduler, FlowUniPCMultistepScheduler):
|
||||
self.scheduler.set_timesteps(num_inference_steps, device=device, shift=math.exp(mu))
|
||||
timesteps = self.scheduler.timesteps
|
||||
else:
|
||||
timesteps, num_inference_steps = retrieve_timesteps(
|
||||
self.scheduler,
|
||||
num_inference_steps,
|
||||
device,
|
||||
sigmas=sigmas,
|
||||
**scheduler_kwargs,
|
||||
)
|
||||
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
||||
self._num_timesteps = len(timesteps)
|
||||
|
||||
# 6. Denoising loop
|
||||
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
||||
for i, t in enumerate(timesteps):
|
||||
if self.interrupt:
|
||||
continue
|
||||
|
||||
# expand the latents if we are doing classifier free guidance
|
||||
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
||||
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
||||
timestep = t.expand(latent_model_input.shape[0])
|
||||
|
||||
if latent_model_input.shape[-2] != latent_model_input.shape[-1]:
|
||||
B, C, H, W = latent_model_input.shape
|
||||
patch_size = self.transformer.config.patch_size
|
||||
pH, pW = H // patch_size, W // patch_size
|
||||
out = torch.zeros(
|
||||
(B, C, self.transformer.max_seq, patch_size * patch_size),
|
||||
dtype=latent_model_input.dtype,
|
||||
device=latent_model_input.device
|
||||
)
|
||||
latent_model_input = einops.rearrange(latent_model_input, 'B C (H p1) (W p2) -> B C (H W) (p1 p2)', p1=patch_size, p2=patch_size)
|
||||
out[:, :, 0:pH*pW] = latent_model_input
|
||||
latent_model_input = out
|
||||
|
||||
noise_pred = self.transformer(
|
||||
hidden_states = latent_model_input,
|
||||
timesteps = timestep,
|
||||
encoder_hidden_states = prompt_embeds,
|
||||
pooled_embeds = pooled_prompt_embeds,
|
||||
img_sizes = img_sizes,
|
||||
img_ids = img_ids,
|
||||
return_dict = False,
|
||||
)[0]
|
||||
noise_pred = -noise_pred
|
||||
|
||||
# perform guidance
|
||||
if self.do_classifier_free_guidance:
|
||||
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
||||
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
||||
|
||||
# compute the previous noisy sample x_t -> x_t-1
|
||||
latents_dtype = latents.dtype
|
||||
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
||||
|
||||
if latents.dtype != latents_dtype:
|
||||
if torch.backends.mps.is_available():
|
||||
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
||||
latents = latents.to(latents_dtype)
|
||||
|
||||
if callback_on_step_end is not None:
|
||||
callback_kwargs = {}
|
||||
for k in callback_on_step_end_tensor_inputs:
|
||||
callback_kwargs[k] = locals()[k]
|
||||
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
||||
|
||||
latents = callback_outputs.pop("latents", latents)
|
||||
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
||||
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
||||
|
||||
# call the callback, if provided
|
||||
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
||||
progress_bar.update()
|
||||
|
||||
if XLA_AVAILABLE:
|
||||
xm.mark_step()
|
||||
|
||||
if output_type == "latent":
|
||||
image = latents
|
||||
|
||||
else:
|
||||
latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor
|
||||
|
||||
image = self.vae.decode(latents, return_dict=False)[0]
|
||||
image = self.image_processor.postprocess(image, output_type=output_type)
|
||||
|
||||
# Offload all models
|
||||
self.maybe_free_model_hooks()
|
||||
|
||||
if not return_dict:
|
||||
return (image,)
|
||||
|
||||
return HiDreamImagePipelineOutput(images=image)
|
||||
@@ -0,0 +1,21 @@
|
||||
from dataclasses import dataclass
|
||||
from typing import List, Union
|
||||
|
||||
import numpy as np
|
||||
import PIL.Image
|
||||
|
||||
from diffusers.utils import BaseOutput
|
||||
|
||||
|
||||
@dataclass
|
||||
class HiDreamImagePipelineOutput(BaseOutput):
|
||||
"""
|
||||
Output class for HiDreamImage pipelines.
|
||||
|
||||
Args:
|
||||
images (`List[PIL.Image.Image]` or `np.ndarray`)
|
||||
List of denoised PIL images of length `batch_size` or numpy array of shape `(batch_size, height, width,
|
||||
num_channels)`. PIL images or numpy array present the denoised images of the diffusion pipeline.
|
||||
"""
|
||||
|
||||
images: Union[List[PIL.Image.Image], np.ndarray]
|
||||
@@ -0,0 +1,428 @@
|
||||
# Copyright 2024 Stability AI, Katherine Crowson and The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import math
|
||||
from dataclasses import dataclass
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
||||
from diffusers.schedulers.scheduling_utils import SchedulerMixin
|
||||
from diffusers.utils import BaseOutput, is_scipy_available, logging
|
||||
from diffusers.utils.torch_utils import randn_tensor
|
||||
|
||||
if is_scipy_available():
|
||||
import scipy.stats
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
|
||||
@dataclass
|
||||
class FlashFlowMatchEulerDiscreteSchedulerOutput(BaseOutput):
|
||||
"""
|
||||
Output class for the scheduler's `step` function output.
|
||||
|
||||
Args:
|
||||
prev_sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` for images):
|
||||
Computed sample `(x_{t-1})` of previous timestep. `prev_sample` should be used as next model input in the
|
||||
denoising loop.
|
||||
"""
|
||||
|
||||
prev_sample: torch.FloatTensor
|
||||
|
||||
|
||||
class FlashFlowMatchEulerDiscreteScheduler(SchedulerMixin, ConfigMixin):
|
||||
"""
|
||||
Euler scheduler.
|
||||
|
||||
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
|
||||
methods the library implements for all schedulers such as loading and saving.
|
||||
|
||||
Args:
|
||||
num_train_timesteps (`int`, defaults to 1000):
|
||||
The number of diffusion steps to train the model.
|
||||
timestep_spacing (`str`, defaults to `"linspace"`):
|
||||
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
|
||||
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
|
||||
shift (`float`, defaults to 1.0):
|
||||
The shift value for the timestep schedule.
|
||||
"""
|
||||
|
||||
_compatibles = []
|
||||
order = 1
|
||||
|
||||
@register_to_config
|
||||
def __init__(
|
||||
self,
|
||||
num_train_timesteps: int = 1000,
|
||||
shift: float = 1.0,
|
||||
use_dynamic_shifting=False,
|
||||
base_shift: Optional[float] = 0.5,
|
||||
max_shift: Optional[float] = 1.15,
|
||||
base_image_seq_len: Optional[int] = 256,
|
||||
max_image_seq_len: Optional[int] = 4096,
|
||||
invert_sigmas: bool = False,
|
||||
use_karras_sigmas: Optional[bool] = False,
|
||||
use_exponential_sigmas: Optional[bool] = False,
|
||||
use_beta_sigmas: Optional[bool] = False,
|
||||
):
|
||||
if self.config.use_beta_sigmas and not is_scipy_available():
|
||||
raise ImportError("Make sure to install scipy if you want to use beta sigmas.")
|
||||
if sum([self.config.use_beta_sigmas, self.config.use_exponential_sigmas, self.config.use_karras_sigmas]) > 1:
|
||||
raise ValueError(
|
||||
"Only one of `config.use_beta_sigmas`, `config.use_exponential_sigmas`, `config.use_karras_sigmas` can be used."
|
||||
)
|
||||
timesteps = np.linspace(1, num_train_timesteps, num_train_timesteps, dtype=np.float32)[::-1].copy()
|
||||
timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32)
|
||||
|
||||
sigmas = timesteps / num_train_timesteps
|
||||
if not use_dynamic_shifting:
|
||||
# when use_dynamic_shifting is True, we apply the timestep shifting on the fly based on the image resolution
|
||||
sigmas = shift * sigmas / (1 + (shift - 1) * sigmas)
|
||||
|
||||
self.timesteps = sigmas * num_train_timesteps
|
||||
|
||||
self._step_index = None
|
||||
self._begin_index = None
|
||||
|
||||
self.sigmas = sigmas.to("cpu") # to avoid too much CPU/GPU communication
|
||||
self.sigma_min = self.sigmas[-1].item()
|
||||
self.sigma_max = self.sigmas[0].item()
|
||||
|
||||
@property
|
||||
def step_index(self):
|
||||
"""
|
||||
The index counter for current timestep. It will increase 1 after each scheduler step.
|
||||
"""
|
||||
return self._step_index
|
||||
|
||||
@property
|
||||
def begin_index(self):
|
||||
"""
|
||||
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
|
||||
"""
|
||||
return self._begin_index
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
|
||||
def set_begin_index(self, begin_index: int = 0):
|
||||
"""
|
||||
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
|
||||
|
||||
Args:
|
||||
begin_index (`int`):
|
||||
The begin index for the scheduler.
|
||||
"""
|
||||
self._begin_index = begin_index
|
||||
|
||||
def scale_noise(
|
||||
self,
|
||||
sample: torch.FloatTensor,
|
||||
timestep: Union[float, torch.FloatTensor],
|
||||
noise: Optional[torch.FloatTensor] = None,
|
||||
) -> torch.FloatTensor:
|
||||
"""
|
||||
Forward process in flow-matching
|
||||
|
||||
Args:
|
||||
sample (`torch.FloatTensor`):
|
||||
The input sample.
|
||||
timestep (`int`, *optional*):
|
||||
The current timestep in the diffusion chain.
|
||||
|
||||
Returns:
|
||||
`torch.FloatTensor`:
|
||||
A scaled input sample.
|
||||
"""
|
||||
# Make sure sigmas and timesteps have the same device and dtype as original_samples
|
||||
sigmas = self.sigmas.to(device=sample.device, dtype=sample.dtype)
|
||||
|
||||
if sample.device.type == "mps" and torch.is_floating_point(timestep):
|
||||
# mps does not support float64
|
||||
schedule_timesteps = self.timesteps.to(sample.device, dtype=torch.float32)
|
||||
timestep = timestep.to(sample.device, dtype=torch.float32)
|
||||
else:
|
||||
schedule_timesteps = self.timesteps.to(sample.device)
|
||||
timestep = timestep.to(sample.device)
|
||||
|
||||
# self.begin_index is None when scheduler is used for training, or pipeline does not implement set_begin_index
|
||||
if self.begin_index is None:
|
||||
step_indices = [self.index_for_timestep(t, schedule_timesteps) for t in timestep]
|
||||
elif self.step_index is not None:
|
||||
# add_noise is called after first denoising step (for inpainting)
|
||||
step_indices = [self.step_index] * timestep.shape[0]
|
||||
else:
|
||||
# add noise is called before first denoising step to create initial latent(img2img)
|
||||
step_indices = [self.begin_index] * timestep.shape[0]
|
||||
|
||||
sigma = sigmas[step_indices].flatten()
|
||||
while len(sigma.shape) < len(sample.shape):
|
||||
sigma = sigma.unsqueeze(-1)
|
||||
|
||||
sample = sigma * noise + (1.0 - sigma) * sample
|
||||
|
||||
return sample
|
||||
|
||||
def _sigma_to_t(self, sigma):
|
||||
return sigma * self.config.num_train_timesteps
|
||||
|
||||
def time_shift(self, mu: float, sigma: float, t: torch.Tensor):
|
||||
return math.exp(mu) / (math.exp(mu) + (1 / t - 1) ** sigma)
|
||||
|
||||
def set_timesteps(
|
||||
self,
|
||||
num_inference_steps: int = None,
|
||||
device: Union[str, torch.device] = None,
|
||||
sigmas: Optional[List[float]] = None,
|
||||
mu: Optional[float] = None,
|
||||
):
|
||||
"""
|
||||
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
||||
|
||||
Args:
|
||||
num_inference_steps (`int`):
|
||||
The number of diffusion steps used when generating samples with a pre-trained model.
|
||||
device (`str` or `torch.device`, *optional*):
|
||||
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
||||
"""
|
||||
if self.config.use_dynamic_shifting and mu is None:
|
||||
raise ValueError(" you have a pass a value for `mu` when `use_dynamic_shifting` is set to be `True`")
|
||||
|
||||
if sigmas is None:
|
||||
timesteps = np.linspace(
|
||||
self._sigma_to_t(self.sigma_max), self._sigma_to_t(self.sigma_min), num_inference_steps
|
||||
)
|
||||
|
||||
sigmas = timesteps / self.config.num_train_timesteps
|
||||
else:
|
||||
sigmas = np.array(sigmas).astype(np.float32)
|
||||
num_inference_steps = len(sigmas)
|
||||
self.num_inference_steps = num_inference_steps
|
||||
|
||||
if self.config.use_dynamic_shifting:
|
||||
sigmas = self.time_shift(mu, 1.0, sigmas)
|
||||
else:
|
||||
sigmas = self.config.shift * sigmas / (1 + (self.config.shift - 1) * sigmas)
|
||||
|
||||
if self.config.use_karras_sigmas:
|
||||
sigmas = self._convert_to_karras(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
|
||||
|
||||
elif self.config.use_exponential_sigmas:
|
||||
sigmas = self._convert_to_exponential(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
|
||||
|
||||
elif self.config.use_beta_sigmas:
|
||||
sigmas = self._convert_to_beta(in_sigmas=sigmas, num_inference_steps=num_inference_steps)
|
||||
|
||||
sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32, device=device)
|
||||
timesteps = sigmas * self.config.num_train_timesteps
|
||||
|
||||
if self.config.invert_sigmas:
|
||||
sigmas = 1.0 - sigmas
|
||||
timesteps = sigmas * self.config.num_train_timesteps
|
||||
sigmas = torch.cat([sigmas, torch.ones(1, device=sigmas.device)])
|
||||
else:
|
||||
sigmas = torch.cat([sigmas, torch.zeros(1, device=sigmas.device)])
|
||||
|
||||
self.timesteps = timesteps.to(device=device)
|
||||
self.sigmas = sigmas
|
||||
self._step_index = None
|
||||
self._begin_index = None
|
||||
|
||||
def index_for_timestep(self, timestep, schedule_timesteps=None):
|
||||
if schedule_timesteps is None:
|
||||
schedule_timesteps = self.timesteps
|
||||
|
||||
indices = (schedule_timesteps == timestep).nonzero()
|
||||
|
||||
# The sigma index that is taken for the **very** first `step`
|
||||
# is always the second index (or the last index if there is only 1)
|
||||
# This way we can ensure we don't accidentally skip a sigma in
|
||||
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
|
||||
pos = 1 if len(indices) > 1 else 0
|
||||
|
||||
return indices[pos].item()
|
||||
|
||||
def _init_step_index(self, timestep):
|
||||
if self.begin_index is None:
|
||||
if isinstance(timestep, torch.Tensor):
|
||||
timestep = timestep.to(self.timesteps.device)
|
||||
self._step_index = self.index_for_timestep(timestep)
|
||||
else:
|
||||
self._step_index = self._begin_index
|
||||
|
||||
def step(
|
||||
self,
|
||||
model_output: torch.FloatTensor,
|
||||
timestep: Union[float, torch.FloatTensor],
|
||||
sample: torch.FloatTensor,
|
||||
s_churn: float = 0.0,
|
||||
s_tmin: float = 0.0,
|
||||
s_tmax: float = float("inf"),
|
||||
s_noise: float = 1.0,
|
||||
generator: Optional[torch.Generator] = None,
|
||||
return_dict: bool = True,
|
||||
) -> Union[FlashFlowMatchEulerDiscreteSchedulerOutput, Tuple]:
|
||||
"""
|
||||
Predict the sample from the previous timestep by reversing the SDE. This function propagates the diffusion
|
||||
process from the learned model outputs (most often the predicted noise).
|
||||
|
||||
Args:
|
||||
model_output (`torch.FloatTensor`):
|
||||
The direct output from learned diffusion model.
|
||||
timestep (`float`):
|
||||
The current discrete timestep in the diffusion chain.
|
||||
sample (`torch.FloatTensor`):
|
||||
A current instance of a sample created by the diffusion process.
|
||||
s_churn (`float`):
|
||||
s_tmin (`float`):
|
||||
s_tmax (`float`):
|
||||
s_noise (`float`, defaults to 1.0):
|
||||
Scaling factor for noise added to the sample.
|
||||
generator (`torch.Generator`, *optional*):
|
||||
A random number generator.
|
||||
return_dict (`bool`):
|
||||
Whether or not to return a [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or
|
||||
tuple.
|
||||
|
||||
Returns:
|
||||
[`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] or `tuple`:
|
||||
If return_dict is `True`, [`~schedulers.scheduling_euler_discrete.EulerDiscreteSchedulerOutput`] is
|
||||
returned, otherwise a tuple is returned where the first element is the sample tensor.
|
||||
"""
|
||||
|
||||
if (
|
||||
isinstance(timestep, int)
|
||||
or isinstance(timestep, torch.IntTensor)
|
||||
or isinstance(timestep, torch.LongTensor)
|
||||
):
|
||||
raise ValueError(
|
||||
(
|
||||
"Passing integer indices (e.g. from `enumerate(timesteps)`) as timesteps to"
|
||||
" `EulerDiscreteScheduler.step()` is not supported. Make sure to pass"
|
||||
" one of the `scheduler.timesteps` as a timestep."
|
||||
),
|
||||
)
|
||||
|
||||
if self.step_index is None:
|
||||
self._init_step_index(timestep)
|
||||
|
||||
# Upcast to avoid precision issues when computing prev_sample
|
||||
|
||||
sigma = self.sigmas[self.step_index]
|
||||
|
||||
# Upcast to avoid precision issues when computing prev_sample
|
||||
sample = sample.to(torch.float32)
|
||||
|
||||
denoised = sample - model_output * sigma
|
||||
|
||||
if self.step_index < self.num_inference_steps - 1:
|
||||
sigma_next = self.sigmas[self.step_index + 1]
|
||||
noise = randn_tensor(
|
||||
model_output.shape,
|
||||
generator=generator,
|
||||
device=model_output.device,
|
||||
dtype=denoised.dtype,
|
||||
)
|
||||
sample = sigma_next * noise + (1.0 - sigma_next) * denoised
|
||||
|
||||
self._step_index += 1
|
||||
sample = sample.to(model_output.dtype)
|
||||
|
||||
if not return_dict:
|
||||
return (sample,)
|
||||
|
||||
return FlashFlowMatchEulerDiscreteSchedulerOutput(prev_sample=sample)
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_karras
|
||||
def _convert_to_karras(self, in_sigmas: torch.Tensor, num_inference_steps) -> torch.Tensor:
|
||||
"""Constructs the noise schedule of Karras et al. (2022)."""
|
||||
|
||||
# Hack to make sure that other schedulers which copy this function don't break
|
||||
# TODO: Add this logic to the other schedulers
|
||||
if hasattr(self.config, "sigma_min"):
|
||||
sigma_min = self.config.sigma_min
|
||||
else:
|
||||
sigma_min = None
|
||||
|
||||
if hasattr(self.config, "sigma_max"):
|
||||
sigma_max = self.config.sigma_max
|
||||
else:
|
||||
sigma_max = None
|
||||
|
||||
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
|
||||
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
|
||||
|
||||
rho = 7.0 # 7.0 is the value used in the paper
|
||||
ramp = np.linspace(0, 1, num_inference_steps)
|
||||
min_inv_rho = sigma_min ** (1 / rho)
|
||||
max_inv_rho = sigma_max ** (1 / rho)
|
||||
sigmas = (max_inv_rho + ramp * (min_inv_rho - max_inv_rho)) ** rho
|
||||
return sigmas
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_exponential
|
||||
def _convert_to_exponential(self, in_sigmas: torch.Tensor, num_inference_steps: int) -> torch.Tensor:
|
||||
"""Constructs an exponential noise schedule."""
|
||||
|
||||
# Hack to make sure that other schedulers which copy this function don't break
|
||||
# TODO: Add this logic to the other schedulers
|
||||
if hasattr(self.config, "sigma_min"):
|
||||
sigma_min = self.config.sigma_min
|
||||
else:
|
||||
sigma_min = None
|
||||
|
||||
if hasattr(self.config, "sigma_max"):
|
||||
sigma_max = self.config.sigma_max
|
||||
else:
|
||||
sigma_max = None
|
||||
|
||||
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
|
||||
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
|
||||
|
||||
sigmas = np.exp(np.linspace(math.log(sigma_max), math.log(sigma_min), num_inference_steps))
|
||||
return sigmas
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_euler_discrete.EulerDiscreteScheduler._convert_to_beta
|
||||
def _convert_to_beta(
|
||||
self, in_sigmas: torch.Tensor, num_inference_steps: int, alpha: float = 0.6, beta: float = 0.6
|
||||
) -> torch.Tensor:
|
||||
"""From "Beta Sampling is All You Need" [arXiv:2407.12173] (Lee et. al, 2024)"""
|
||||
|
||||
# Hack to make sure that other schedulers which copy this function don't break
|
||||
# TODO: Add this logic to the other schedulers
|
||||
if hasattr(self.config, "sigma_min"):
|
||||
sigma_min = self.config.sigma_min
|
||||
else:
|
||||
sigma_min = None
|
||||
|
||||
if hasattr(self.config, "sigma_max"):
|
||||
sigma_max = self.config.sigma_max
|
||||
else:
|
||||
sigma_max = None
|
||||
|
||||
sigma_min = sigma_min if sigma_min is not None else in_sigmas[-1].item()
|
||||
sigma_max = sigma_max if sigma_max is not None else in_sigmas[0].item()
|
||||
|
||||
sigmas = np.array(
|
||||
[
|
||||
sigma_min + (ppf * (sigma_max - sigma_min))
|
||||
for ppf in [
|
||||
scipy.stats.beta.ppf(timestep, alpha, beta)
|
||||
for timestep in 1 - np.linspace(0, 1, num_inference_steps)
|
||||
]
|
||||
]
|
||||
)
|
||||
return sigmas
|
||||
|
||||
def __len__(self):
|
||||
return self.config.num_train_timesteps
|
||||
@@ -0,0 +1,800 @@
|
||||
# Copied from https://github.com/huggingface/diffusers/blob/v0.31.0/src/diffusers/schedulers/scheduling_unipc_multistep.py
|
||||
# Convert unipc for flow matching
|
||||
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
|
||||
|
||||
import math
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
||||
from diffusers.schedulers.scheduling_utils import (KarrasDiffusionSchedulers,
|
||||
SchedulerMixin,
|
||||
SchedulerOutput)
|
||||
from diffusers.utils import deprecate, is_scipy_available
|
||||
|
||||
if is_scipy_available():
|
||||
import scipy.stats
|
||||
|
||||
|
||||
class FlowUniPCMultistepScheduler(SchedulerMixin, ConfigMixin):
|
||||
"""
|
||||
`UniPCMultistepScheduler` is a training-free framework designed for the fast sampling of diffusion models.
|
||||
|
||||
This model inherits from [`SchedulerMixin`] and [`ConfigMixin`]. Check the superclass documentation for the generic
|
||||
methods the library implements for all schedulers such as loading and saving.
|
||||
|
||||
Args:
|
||||
num_train_timesteps (`int`, defaults to 1000):
|
||||
The number of diffusion steps to train the model.
|
||||
solver_order (`int`, default `2`):
|
||||
The UniPC order which can be any positive integer. The effective order of accuracy is `solver_order + 1`
|
||||
due to the UniC. It is recommended to use `solver_order=2` for guided sampling, and `solver_order=3` for
|
||||
unconditional sampling.
|
||||
prediction_type (`str`, defaults to "flow_prediction"):
|
||||
Prediction type of the scheduler function; must be `flow_prediction` for this scheduler, which predicts
|
||||
the flow of the diffusion process.
|
||||
thresholding (`bool`, defaults to `False`):
|
||||
Whether to use the "dynamic thresholding" method. This is unsuitable for latent-space diffusion models such
|
||||
as Stable Diffusion.
|
||||
dynamic_thresholding_ratio (`float`, defaults to 0.995):
|
||||
The ratio for the dynamic thresholding method. Valid only when `thresholding=True`.
|
||||
sample_max_value (`float`, defaults to 1.0):
|
||||
The threshold value for dynamic thresholding. Valid only when `thresholding=True` and `predict_x0=True`.
|
||||
predict_x0 (`bool`, defaults to `True`):
|
||||
Whether to use the updating algorithm on the predicted x0.
|
||||
solver_type (`str`, default `bh2`):
|
||||
Solver type for UniPC. It is recommended to use `bh1` for unconditional sampling when steps < 10, and `bh2`
|
||||
otherwise.
|
||||
lower_order_final (`bool`, default `True`):
|
||||
Whether to use lower-order solvers in the final steps. Only valid for < 15 inference steps. This can
|
||||
stabilize the sampling of DPMSolver for steps < 15, especially for steps <= 10.
|
||||
disable_corrector (`list`, default `[]`):
|
||||
Decides which step to disable the corrector to mitigate the misalignment between `epsilon_theta(x_t, c)`
|
||||
and `epsilon_theta(x_t^c, c)` which can influence convergence for a large guidance scale. Corrector is
|
||||
usually disabled during the first few steps.
|
||||
solver_p (`SchedulerMixin`, default `None`):
|
||||
Any other scheduler that if specified, the algorithm becomes `solver_p + UniC`.
|
||||
use_karras_sigmas (`bool`, *optional*, defaults to `False`):
|
||||
Whether to use Karras sigmas for step sizes in the noise schedule during the sampling process. If `True`,
|
||||
the sigmas are determined according to a sequence of noise levels {σi}.
|
||||
use_exponential_sigmas (`bool`, *optional*, defaults to `False`):
|
||||
Whether to use exponential sigmas for step sizes in the noise schedule during the sampling process.
|
||||
timestep_spacing (`str`, defaults to `"linspace"`):
|
||||
The way the timesteps should be scaled. Refer to Table 2 of the [Common Diffusion Noise Schedules and
|
||||
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891) for more information.
|
||||
steps_offset (`int`, defaults to 0):
|
||||
An offset added to the inference steps, as required by some model families.
|
||||
final_sigmas_type (`str`, defaults to `"zero"`):
|
||||
The final `sigma` value for the noise schedule during the sampling process. If `"sigma_min"`, the final
|
||||
sigma is the same as the last sigma in the training schedule. If `zero`, the final sigma is set to 0.
|
||||
"""
|
||||
|
||||
_compatibles = [e.name for e in KarrasDiffusionSchedulers]
|
||||
order = 1
|
||||
|
||||
@register_to_config
|
||||
def __init__(
|
||||
self,
|
||||
num_train_timesteps: int = 1000,
|
||||
solver_order: int = 2,
|
||||
prediction_type: str = "flow_prediction",
|
||||
shift: Optional[float] = 1.0,
|
||||
use_dynamic_shifting=False,
|
||||
thresholding: bool = False,
|
||||
dynamic_thresholding_ratio: float = 0.995,
|
||||
sample_max_value: float = 1.0,
|
||||
predict_x0: bool = True,
|
||||
solver_type: str = "bh2",
|
||||
lower_order_final: bool = True,
|
||||
disable_corrector: List[int] = [],
|
||||
solver_p: SchedulerMixin = None,
|
||||
timestep_spacing: str = "linspace",
|
||||
steps_offset: int = 0,
|
||||
final_sigmas_type: Optional[str] = "zero", # "zero", "sigma_min"
|
||||
):
|
||||
|
||||
if solver_type not in ["bh1", "bh2"]:
|
||||
if solver_type in ["midpoint", "heun", "logrho"]:
|
||||
self.register_to_config(solver_type="bh2")
|
||||
else:
|
||||
raise NotImplementedError(
|
||||
f"{solver_type} is not implemented for {self.__class__}")
|
||||
|
||||
self.predict_x0 = predict_x0
|
||||
# setable values
|
||||
self.num_inference_steps = None
|
||||
alphas = np.linspace(1, 1 / num_train_timesteps,
|
||||
num_train_timesteps)[::-1].copy()
|
||||
sigmas = 1.0 - alphas
|
||||
sigmas = torch.from_numpy(sigmas).to(dtype=torch.float32)
|
||||
|
||||
if not use_dynamic_shifting:
|
||||
# when use_dynamic_shifting is True, we apply the timestep shifting on the fly based on the image resolution
|
||||
sigmas = shift * sigmas / (1 +
|
||||
(shift - 1) * sigmas) # pyright: ignore
|
||||
|
||||
self.sigmas = sigmas
|
||||
self.timesteps = sigmas * num_train_timesteps
|
||||
|
||||
self.model_outputs = [None] * solver_order
|
||||
self.timestep_list = [None] * solver_order
|
||||
self.lower_order_nums = 0
|
||||
self.disable_corrector = disable_corrector
|
||||
self.solver_p = solver_p
|
||||
self.last_sample = None
|
||||
self._step_index = None
|
||||
self._begin_index = None
|
||||
|
||||
self.sigmas = self.sigmas.to(
|
||||
"cpu") # to avoid too much CPU/GPU communication
|
||||
self.sigma_min = self.sigmas[-1].item()
|
||||
self.sigma_max = self.sigmas[0].item()
|
||||
|
||||
@property
|
||||
def step_index(self):
|
||||
"""
|
||||
The index counter for current timestep. It will increase 1 after each scheduler step.
|
||||
"""
|
||||
return self._step_index
|
||||
|
||||
@property
|
||||
def begin_index(self):
|
||||
"""
|
||||
The index for the first timestep. It should be set from pipeline with `set_begin_index` method.
|
||||
"""
|
||||
return self._begin_index
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.set_begin_index
|
||||
def set_begin_index(self, begin_index: int = 0):
|
||||
"""
|
||||
Sets the begin index for the scheduler. This function should be run from pipeline before the inference.
|
||||
|
||||
Args:
|
||||
begin_index (`int`):
|
||||
The begin index for the scheduler.
|
||||
"""
|
||||
self._begin_index = begin_index
|
||||
|
||||
# Modified from diffusers.schedulers.scheduling_flow_match_euler_discrete.FlowMatchEulerDiscreteScheduler.set_timesteps
|
||||
def set_timesteps(
|
||||
self,
|
||||
num_inference_steps: Union[int, None] = None,
|
||||
device: Union[str, torch.device] = None,
|
||||
sigmas: Optional[List[float]] = None,
|
||||
mu: Optional[Union[float, None]] = None,
|
||||
shift: Optional[Union[float, None]] = None,
|
||||
):
|
||||
"""
|
||||
Sets the discrete timesteps used for the diffusion chain (to be run before inference).
|
||||
Args:
|
||||
num_inference_steps (`int`):
|
||||
Total number of the spacing of the time steps.
|
||||
device (`str` or `torch.device`, *optional*):
|
||||
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
||||
"""
|
||||
|
||||
if self.config.use_dynamic_shifting and mu is None:
|
||||
raise ValueError(
|
||||
" you have to pass a value for `mu` when `use_dynamic_shifting` is set to be `True`"
|
||||
)
|
||||
|
||||
if sigmas is None:
|
||||
sigmas = np.linspace(self.sigma_max, self.sigma_min,
|
||||
num_inference_steps +
|
||||
1).copy()[:-1] # pyright: ignore
|
||||
|
||||
if self.config.use_dynamic_shifting:
|
||||
sigmas = self.time_shift(mu, 1.0, sigmas) # pyright: ignore
|
||||
else:
|
||||
if shift is None:
|
||||
shift = self.config.shift
|
||||
sigmas = shift * sigmas / (1 +
|
||||
(shift - 1) * sigmas) # pyright: ignore
|
||||
|
||||
if self.config.final_sigmas_type == "sigma_min":
|
||||
sigma_last = ((1 - self.alphas_cumprod[0]) /
|
||||
self.alphas_cumprod[0])**0.5
|
||||
elif self.config.final_sigmas_type == "zero":
|
||||
sigma_last = 0
|
||||
else:
|
||||
raise ValueError(
|
||||
f"`final_sigmas_type` must be one of 'zero', or 'sigma_min', but got {self.config.final_sigmas_type}"
|
||||
)
|
||||
|
||||
timesteps = sigmas * self.config.num_train_timesteps
|
||||
sigmas = np.concatenate([sigmas, [sigma_last]
|
||||
]).astype(np.float32) # pyright: ignore
|
||||
|
||||
self.sigmas = torch.from_numpy(sigmas)
|
||||
self.timesteps = torch.from_numpy(timesteps).to(
|
||||
device=device, dtype=torch.int64)
|
||||
|
||||
self.num_inference_steps = len(timesteps)
|
||||
|
||||
self.model_outputs = [
|
||||
None,
|
||||
] * self.config.solver_order
|
||||
self.lower_order_nums = 0
|
||||
self.last_sample = None
|
||||
if self.solver_p:
|
||||
self.solver_p.set_timesteps(self.num_inference_steps, device=device)
|
||||
|
||||
# add an index counter for schedulers that allow duplicated timesteps
|
||||
self._step_index = None
|
||||
self._begin_index = None
|
||||
self.sigmas = self.sigmas.to(
|
||||
"cpu") # to avoid too much CPU/GPU communication
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_ddpm.DDPMScheduler._threshold_sample
|
||||
def _threshold_sample(self, sample: torch.Tensor) -> torch.Tensor:
|
||||
"""
|
||||
"Dynamic thresholding: At each sampling step we set s to a certain percentile absolute pixel value in xt0 (the
|
||||
prediction of x_0 at timestep t), and if s > 1, then we threshold xt0 to the range [-s, s] and then divide by
|
||||
s. Dynamic thresholding pushes saturated pixels (those near -1 and 1) inwards, thereby actively preventing
|
||||
pixels from saturation at each step. We find that dynamic thresholding results in significantly better
|
||||
photorealism as well as better image-text alignment, especially when using very large guidance weights."
|
||||
|
||||
https://arxiv.org/abs/2205.11487
|
||||
"""
|
||||
dtype = sample.dtype
|
||||
batch_size, channels, *remaining_dims = sample.shape
|
||||
|
||||
if dtype not in (torch.float32, torch.float64):
|
||||
sample = sample.float(
|
||||
) # upcast for quantile calculation, and clamp not implemented for cpu half
|
||||
|
||||
# Flatten sample for doing quantile calculation along each image
|
||||
sample = sample.reshape(batch_size, channels * np.prod(remaining_dims))
|
||||
|
||||
abs_sample = sample.abs() # "a certain percentile absolute pixel value"
|
||||
|
||||
s = torch.quantile(
|
||||
abs_sample, self.config.dynamic_thresholding_ratio, dim=1)
|
||||
s = torch.clamp(
|
||||
s, min=1, max=self.config.sample_max_value
|
||||
) # When clamped to min=1, equivalent to standard clipping to [-1, 1]
|
||||
s = s.unsqueeze(
|
||||
1) # (batch_size, 1) because clamp will broadcast along dim=0
|
||||
sample = torch.clamp(
|
||||
sample, -s, s
|
||||
) / s # "we threshold xt0 to the range [-s, s] and then divide by s"
|
||||
|
||||
sample = sample.reshape(batch_size, channels, *remaining_dims)
|
||||
sample = sample.to(dtype)
|
||||
|
||||
return sample
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_flow_match_euler_discrete.FlowMatchEulerDiscreteScheduler._sigma_to_t
|
||||
def _sigma_to_t(self, sigma):
|
||||
return sigma * self.config.num_train_timesteps
|
||||
|
||||
def _sigma_to_alpha_sigma_t(self, sigma):
|
||||
return 1 - sigma, sigma
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_flow_match_euler_discrete.set_timesteps
|
||||
def time_shift(self, mu: float, sigma: float, t: torch.Tensor):
|
||||
return math.exp(mu) / (math.exp(mu) + (1 / t - 1)**sigma)
|
||||
|
||||
def convert_model_output(
|
||||
self,
|
||||
model_output: torch.Tensor,
|
||||
*args,
|
||||
sample: torch.Tensor = None,
|
||||
**kwargs,
|
||||
) -> torch.Tensor:
|
||||
r"""
|
||||
Convert the model output to the corresponding type the UniPC algorithm needs.
|
||||
|
||||
Args:
|
||||
model_output (`torch.Tensor`):
|
||||
The direct output from the learned diffusion model.
|
||||
timestep (`int`):
|
||||
The current discrete timestep in the diffusion chain.
|
||||
sample (`torch.Tensor`):
|
||||
A current instance of a sample created by the diffusion process.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
The converted model output.
|
||||
"""
|
||||
timestep = args[0] if len(args) > 0 else kwargs.pop("timestep", None)
|
||||
if sample is None:
|
||||
if len(args) > 1:
|
||||
sample = args[1]
|
||||
else:
|
||||
raise ValueError(
|
||||
"missing `sample` as a required keyward argument")
|
||||
if timestep is not None:
|
||||
deprecate(
|
||||
"timesteps",
|
||||
"1.0.0",
|
||||
"Passing `timesteps` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
|
||||
)
|
||||
|
||||
sigma = self.sigmas[self.step_index]
|
||||
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
|
||||
|
||||
if self.predict_x0:
|
||||
if self.config.prediction_type == "flow_prediction":
|
||||
sigma_t = self.sigmas[self.step_index]
|
||||
x0_pred = sample - sigma_t * model_output
|
||||
else:
|
||||
raise ValueError(
|
||||
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`,"
|
||||
" `v_prediction` or `flow_prediction` for the UniPCMultistepScheduler."
|
||||
)
|
||||
|
||||
if self.config.thresholding:
|
||||
x0_pred = self._threshold_sample(x0_pred)
|
||||
|
||||
return x0_pred
|
||||
else:
|
||||
if self.config.prediction_type == "flow_prediction":
|
||||
sigma_t = self.sigmas[self.step_index]
|
||||
epsilon = sample - (1 - sigma_t) * model_output
|
||||
else:
|
||||
raise ValueError(
|
||||
f"prediction_type given as {self.config.prediction_type} must be one of `epsilon`, `sample`,"
|
||||
" `v_prediction` or `flow_prediction` for the UniPCMultistepScheduler."
|
||||
)
|
||||
|
||||
if self.config.thresholding:
|
||||
sigma_t = self.sigmas[self.step_index]
|
||||
x0_pred = sample - sigma_t * model_output
|
||||
x0_pred = self._threshold_sample(x0_pred)
|
||||
epsilon = model_output + x0_pred
|
||||
|
||||
return epsilon
|
||||
|
||||
def multistep_uni_p_bh_update(
|
||||
self,
|
||||
model_output: torch.Tensor,
|
||||
*args,
|
||||
sample: torch.Tensor = None,
|
||||
order: int = None, # pyright: ignore
|
||||
**kwargs,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
One step for the UniP (B(h) version). Alternatively, `self.solver_p` is used if is specified.
|
||||
|
||||
Args:
|
||||
model_output (`torch.Tensor`):
|
||||
The direct output from the learned diffusion model at the current timestep.
|
||||
prev_timestep (`int`):
|
||||
The previous discrete timestep in the diffusion chain.
|
||||
sample (`torch.Tensor`):
|
||||
A current instance of a sample created by the diffusion process.
|
||||
order (`int`):
|
||||
The order of UniP at this timestep (corresponds to the *p* in UniPC-p).
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
The sample tensor at the previous timestep.
|
||||
"""
|
||||
prev_timestep = args[0] if len(args) > 0 else kwargs.pop(
|
||||
"prev_timestep", None)
|
||||
if sample is None:
|
||||
if len(args) > 1:
|
||||
sample = args[1]
|
||||
else:
|
||||
raise ValueError(
|
||||
" missing `sample` as a required keyward argument")
|
||||
if order is None:
|
||||
if len(args) > 2:
|
||||
order = args[2]
|
||||
else:
|
||||
raise ValueError(
|
||||
" missing `order` as a required keyward argument")
|
||||
if prev_timestep is not None:
|
||||
deprecate(
|
||||
"prev_timestep",
|
||||
"1.0.0",
|
||||
"Passing `prev_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
|
||||
)
|
||||
model_output_list = self.model_outputs
|
||||
|
||||
s0 = self.timestep_list[-1]
|
||||
m0 = model_output_list[-1]
|
||||
x = sample
|
||||
|
||||
if self.solver_p:
|
||||
x_t = self.solver_p.step(model_output, s0, x).prev_sample
|
||||
return x_t
|
||||
|
||||
sigma_t, sigma_s0 = self.sigmas[self.step_index + 1], self.sigmas[
|
||||
self.step_index] # pyright: ignore
|
||||
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
|
||||
alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
|
||||
|
||||
lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
|
||||
lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
|
||||
|
||||
h = lambda_t - lambda_s0
|
||||
device = sample.device
|
||||
|
||||
rks = []
|
||||
D1s = []
|
||||
for i in range(1, order):
|
||||
si = self.step_index - i # pyright: ignore
|
||||
mi = model_output_list[-(i + 1)]
|
||||
alpha_si, sigma_si = self._sigma_to_alpha_sigma_t(self.sigmas[si])
|
||||
lambda_si = torch.log(alpha_si) - torch.log(sigma_si)
|
||||
rk = (lambda_si - lambda_s0) / h
|
||||
rks.append(rk)
|
||||
D1s.append((mi - m0) / rk) # pyright: ignore
|
||||
|
||||
rks.append(1.0)
|
||||
rks = torch.tensor(rks, device=device)
|
||||
|
||||
R = []
|
||||
b = []
|
||||
|
||||
hh = -h if self.predict_x0 else h
|
||||
h_phi_1 = torch.expm1(hh) # h\phi_1(h) = e^h - 1
|
||||
h_phi_k = h_phi_1 / hh - 1
|
||||
|
||||
factorial_i = 1
|
||||
|
||||
if self.config.solver_type == "bh1":
|
||||
B_h = hh
|
||||
elif self.config.solver_type == "bh2":
|
||||
B_h = torch.expm1(hh)
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
|
||||
for i in range(1, order + 1):
|
||||
R.append(torch.pow(rks, i - 1))
|
||||
b.append(h_phi_k * factorial_i / B_h)
|
||||
factorial_i *= i + 1
|
||||
h_phi_k = h_phi_k / hh - 1 / factorial_i
|
||||
|
||||
R = torch.stack(R)
|
||||
b = torch.tensor(b, device=device)
|
||||
|
||||
if len(D1s) > 0:
|
||||
D1s = torch.stack(D1s, dim=1) # (B, K)
|
||||
# for order 2, we use a simplified version
|
||||
if order == 2:
|
||||
rhos_p = torch.tensor([0.5], dtype=x.dtype, device=device)
|
||||
else:
|
||||
rhos_p = torch.linalg.solve(R[:-1, :-1],
|
||||
b[:-1]).to(device).to(x.dtype)
|
||||
else:
|
||||
D1s = None
|
||||
|
||||
if self.predict_x0:
|
||||
x_t_ = sigma_t / sigma_s0 * x - alpha_t * h_phi_1 * m0
|
||||
if D1s is not None:
|
||||
pred_res = torch.einsum("k,bkc...->bc...", rhos_p,
|
||||
D1s) # pyright: ignore
|
||||
else:
|
||||
pred_res = 0
|
||||
x_t = x_t_ - alpha_t * B_h * pred_res
|
||||
else:
|
||||
x_t_ = alpha_t / alpha_s0 * x - sigma_t * h_phi_1 * m0
|
||||
if D1s is not None:
|
||||
pred_res = torch.einsum("k,bkc...->bc...", rhos_p,
|
||||
D1s) # pyright: ignore
|
||||
else:
|
||||
pred_res = 0
|
||||
x_t = x_t_ - sigma_t * B_h * pred_res
|
||||
|
||||
x_t = x_t.to(x.dtype)
|
||||
return x_t
|
||||
|
||||
def multistep_uni_c_bh_update(
|
||||
self,
|
||||
this_model_output: torch.Tensor,
|
||||
*args,
|
||||
last_sample: torch.Tensor = None,
|
||||
this_sample: torch.Tensor = None,
|
||||
order: int = None, # pyright: ignore
|
||||
**kwargs,
|
||||
) -> torch.Tensor:
|
||||
"""
|
||||
One step for the UniC (B(h) version).
|
||||
|
||||
Args:
|
||||
this_model_output (`torch.Tensor`):
|
||||
The model outputs at `x_t`.
|
||||
this_timestep (`int`):
|
||||
The current timestep `t`.
|
||||
last_sample (`torch.Tensor`):
|
||||
The generated sample before the last predictor `x_{t-1}`.
|
||||
this_sample (`torch.Tensor`):
|
||||
The generated sample after the last predictor `x_{t}`.
|
||||
order (`int`):
|
||||
The `p` of UniC-p at this step. The effective order of accuracy should be `order + 1`.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
The corrected sample tensor at the current timestep.
|
||||
"""
|
||||
this_timestep = args[0] if len(args) > 0 else kwargs.pop(
|
||||
"this_timestep", None)
|
||||
if last_sample is None:
|
||||
if len(args) > 1:
|
||||
last_sample = args[1]
|
||||
else:
|
||||
raise ValueError(
|
||||
" missing`last_sample` as a required keyward argument")
|
||||
if this_sample is None:
|
||||
if len(args) > 2:
|
||||
this_sample = args[2]
|
||||
else:
|
||||
raise ValueError(
|
||||
" missing`this_sample` as a required keyward argument")
|
||||
if order is None:
|
||||
if len(args) > 3:
|
||||
order = args[3]
|
||||
else:
|
||||
raise ValueError(
|
||||
" missing`order` as a required keyward argument")
|
||||
if this_timestep is not None:
|
||||
deprecate(
|
||||
"this_timestep",
|
||||
"1.0.0",
|
||||
"Passing `this_timestep` is deprecated and has no effect as model output conversion is now handled via an internal counter `self.step_index`",
|
||||
)
|
||||
|
||||
model_output_list = self.model_outputs
|
||||
|
||||
m0 = model_output_list[-1]
|
||||
x = last_sample
|
||||
x_t = this_sample
|
||||
model_t = this_model_output
|
||||
|
||||
sigma_t, sigma_s0 = self.sigmas[self.step_index], self.sigmas[
|
||||
self.step_index - 1] # pyright: ignore
|
||||
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma_t)
|
||||
alpha_s0, sigma_s0 = self._sigma_to_alpha_sigma_t(sigma_s0)
|
||||
|
||||
lambda_t = torch.log(alpha_t) - torch.log(sigma_t)
|
||||
lambda_s0 = torch.log(alpha_s0) - torch.log(sigma_s0)
|
||||
|
||||
h = lambda_t - lambda_s0
|
||||
device = this_sample.device
|
||||
|
||||
rks = []
|
||||
D1s = []
|
||||
for i in range(1, order):
|
||||
si = self.step_index - (i + 1) # pyright: ignore
|
||||
mi = model_output_list[-(i + 1)]
|
||||
alpha_si, sigma_si = self._sigma_to_alpha_sigma_t(self.sigmas[si])
|
||||
lambda_si = torch.log(alpha_si) - torch.log(sigma_si)
|
||||
rk = (lambda_si - lambda_s0) / h
|
||||
rks.append(rk)
|
||||
D1s.append((mi - m0) / rk) # pyright: ignore
|
||||
|
||||
rks.append(1.0)
|
||||
rks = torch.tensor(rks, device=device)
|
||||
|
||||
R = []
|
||||
b = []
|
||||
|
||||
hh = -h if self.predict_x0 else h
|
||||
h_phi_1 = torch.expm1(hh) # h\phi_1(h) = e^h - 1
|
||||
h_phi_k = h_phi_1 / hh - 1
|
||||
|
||||
factorial_i = 1
|
||||
|
||||
if self.config.solver_type == "bh1":
|
||||
B_h = hh
|
||||
elif self.config.solver_type == "bh2":
|
||||
B_h = torch.expm1(hh)
|
||||
else:
|
||||
raise NotImplementedError()
|
||||
|
||||
for i in range(1, order + 1):
|
||||
R.append(torch.pow(rks, i - 1))
|
||||
b.append(h_phi_k * factorial_i / B_h)
|
||||
factorial_i *= i + 1
|
||||
h_phi_k = h_phi_k / hh - 1 / factorial_i
|
||||
|
||||
R = torch.stack(R)
|
||||
b = torch.tensor(b, device=device)
|
||||
|
||||
if len(D1s) > 0:
|
||||
D1s = torch.stack(D1s, dim=1)
|
||||
else:
|
||||
D1s = None
|
||||
|
||||
# for order 1, we use a simplified version
|
||||
if order == 1:
|
||||
rhos_c = torch.tensor([0.5], dtype=x.dtype, device=device)
|
||||
else:
|
||||
rhos_c = torch.linalg.solve(R, b).to(device).to(x.dtype)
|
||||
|
||||
if self.predict_x0:
|
||||
x_t_ = sigma_t / sigma_s0 * x - alpha_t * h_phi_1 * m0
|
||||
if D1s is not None:
|
||||
corr_res = torch.einsum("k,bkc...->bc...", rhos_c[:-1], D1s)
|
||||
else:
|
||||
corr_res = 0
|
||||
D1_t = model_t - m0
|
||||
x_t = x_t_ - alpha_t * B_h * (corr_res + rhos_c[-1] * D1_t)
|
||||
else:
|
||||
x_t_ = alpha_t / alpha_s0 * x - sigma_t * h_phi_1 * m0
|
||||
if D1s is not None:
|
||||
corr_res = torch.einsum("k,bkc...->bc...", rhos_c[:-1], D1s)
|
||||
else:
|
||||
corr_res = 0
|
||||
D1_t = model_t - m0
|
||||
x_t = x_t_ - sigma_t * B_h * (corr_res + rhos_c[-1] * D1_t)
|
||||
x_t = x_t.to(x.dtype)
|
||||
return x_t
|
||||
|
||||
def index_for_timestep(self, timestep, schedule_timesteps=None):
|
||||
if schedule_timesteps is None:
|
||||
schedule_timesteps = self.timesteps
|
||||
|
||||
indices = (schedule_timesteps == timestep).nonzero()
|
||||
|
||||
# The sigma index that is taken for the **very** first `step`
|
||||
# is always the second index (or the last index if there is only 1)
|
||||
# This way we can ensure we don't accidentally skip a sigma in
|
||||
# case we start in the middle of the denoising schedule (e.g. for image-to-image)
|
||||
pos = 1 if len(indices) > 1 else 0
|
||||
|
||||
return indices[pos].item()
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler._init_step_index
|
||||
def _init_step_index(self, timestep):
|
||||
"""
|
||||
Initialize the step_index counter for the scheduler.
|
||||
"""
|
||||
|
||||
if self.begin_index is None:
|
||||
if isinstance(timestep, torch.Tensor):
|
||||
timestep = timestep.to(self.timesteps.device)
|
||||
self._step_index = self.index_for_timestep(timestep)
|
||||
else:
|
||||
self._step_index = self._begin_index
|
||||
|
||||
def step(self,
|
||||
model_output: torch.Tensor,
|
||||
timestep: Union[int, torch.Tensor],
|
||||
sample: torch.Tensor,
|
||||
return_dict: bool = True,
|
||||
generator=None) -> Union[SchedulerOutput, Tuple]:
|
||||
"""
|
||||
Predict the sample from the previous timestep by reversing the SDE. This function propagates the sample with
|
||||
the multistep UniPC.
|
||||
|
||||
Args:
|
||||
model_output (`torch.Tensor`):
|
||||
The direct output from learned diffusion model.
|
||||
timestep (`int`):
|
||||
The current discrete timestep in the diffusion chain.
|
||||
sample (`torch.Tensor`):
|
||||
A current instance of a sample created by the diffusion process.
|
||||
return_dict (`bool`):
|
||||
Whether or not to return a [`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`.
|
||||
|
||||
Returns:
|
||||
[`~schedulers.scheduling_utils.SchedulerOutput`] or `tuple`:
|
||||
If return_dict is `True`, [`~schedulers.scheduling_utils.SchedulerOutput`] is returned, otherwise a
|
||||
tuple is returned where the first element is the sample tensor.
|
||||
|
||||
"""
|
||||
if self.num_inference_steps is None:
|
||||
raise ValueError(
|
||||
"Number of inference steps is 'None', you need to run 'set_timesteps' after creating the scheduler"
|
||||
)
|
||||
|
||||
if self.step_index is None:
|
||||
self._init_step_index(timestep)
|
||||
|
||||
use_corrector = (
|
||||
self.step_index > 0 and
|
||||
self.step_index - 1 not in self.disable_corrector and
|
||||
self.last_sample is not None # pyright: ignore
|
||||
)
|
||||
|
||||
model_output_convert = self.convert_model_output(
|
||||
model_output, sample=sample)
|
||||
if use_corrector:
|
||||
sample = self.multistep_uni_c_bh_update(
|
||||
this_model_output=model_output_convert,
|
||||
last_sample=self.last_sample,
|
||||
this_sample=sample,
|
||||
order=self.this_order,
|
||||
)
|
||||
|
||||
for i in range(self.config.solver_order - 1):
|
||||
self.model_outputs[i] = self.model_outputs[i + 1]
|
||||
self.timestep_list[i] = self.timestep_list[i + 1]
|
||||
|
||||
self.model_outputs[-1] = model_output_convert
|
||||
self.timestep_list[-1] = timestep # pyright: ignore
|
||||
|
||||
if self.config.lower_order_final:
|
||||
this_order = min(self.config.solver_order,
|
||||
len(self.timesteps) -
|
||||
self.step_index) # pyright: ignore
|
||||
else:
|
||||
this_order = self.config.solver_order
|
||||
|
||||
self.this_order = min(this_order,
|
||||
self.lower_order_nums + 1) # warmup for multistep
|
||||
assert self.this_order > 0
|
||||
|
||||
self.last_sample = sample
|
||||
prev_sample = self.multistep_uni_p_bh_update(
|
||||
model_output=model_output, # pass the original non-converted model output, in case solver-p is used
|
||||
sample=sample,
|
||||
order=self.this_order,
|
||||
)
|
||||
|
||||
if self.lower_order_nums < self.config.solver_order:
|
||||
self.lower_order_nums += 1
|
||||
|
||||
# upon completion increase step index by one
|
||||
self._step_index += 1 # pyright: ignore
|
||||
|
||||
if not return_dict:
|
||||
return (prev_sample,)
|
||||
|
||||
return SchedulerOutput(prev_sample=prev_sample)
|
||||
|
||||
def scale_model_input(self, sample: torch.Tensor, *args,
|
||||
**kwargs) -> torch.Tensor:
|
||||
"""
|
||||
Ensures interchangeability with schedulers that need to scale the denoising model input depending on the
|
||||
current timestep.
|
||||
|
||||
Args:
|
||||
sample (`torch.Tensor`):
|
||||
The input sample.
|
||||
|
||||
Returns:
|
||||
`torch.Tensor`:
|
||||
A scaled input sample.
|
||||
"""
|
||||
return sample
|
||||
|
||||
# Copied from diffusers.schedulers.scheduling_dpmsolver_multistep.DPMSolverMultistepScheduler.add_noise
|
||||
def add_noise(
|
||||
self,
|
||||
original_samples: torch.Tensor,
|
||||
noise: torch.Tensor,
|
||||
timesteps: torch.IntTensor,
|
||||
) -> torch.Tensor:
|
||||
# Make sure sigmas and timesteps have the same device and dtype as original_samples
|
||||
sigmas = self.sigmas.to(
|
||||
device=original_samples.device, dtype=original_samples.dtype)
|
||||
if original_samples.device.type == "mps" and torch.is_floating_point(
|
||||
timesteps):
|
||||
# mps does not support float64
|
||||
schedule_timesteps = self.timesteps.to(
|
||||
original_samples.device, dtype=torch.float32)
|
||||
timesteps = timesteps.to(
|
||||
original_samples.device, dtype=torch.float32)
|
||||
else:
|
||||
schedule_timesteps = self.timesteps.to(original_samples.device)
|
||||
timesteps = timesteps.to(original_samples.device)
|
||||
|
||||
# begin_index is None when the scheduler is used for training or pipeline does not implement set_begin_index
|
||||
if self.begin_index is None:
|
||||
step_indices = [
|
||||
self.index_for_timestep(t, schedule_timesteps)
|
||||
for t in timesteps
|
||||
]
|
||||
elif self.step_index is not None:
|
||||
# add_noise is called after first denoising step (for inpainting)
|
||||
step_indices = [self.step_index] * timesteps.shape[0]
|
||||
else:
|
||||
# add noise is called before first denoising step to create initial latent(img2img)
|
||||
step_indices = [self.begin_index] * timesteps.shape[0]
|
||||
|
||||
sigma = sigmas[step_indices].flatten()
|
||||
while len(sigma.shape) < len(original_samples.shape):
|
||||
sigma = sigma.unsqueeze(-1)
|
||||
|
||||
alpha_t, sigma_t = self._sigma_to_alpha_sigma_t(sigma)
|
||||
noisy_samples = alpha_t * original_samples + sigma_t * noise
|
||||
return noisy_samples
|
||||
|
||||
def __len__(self):
|
||||
return self.config.num_train_timesteps
|
||||
@@ -649,11 +649,13 @@ def targeted_flow_guidance(
|
||||
noise,
|
||||
timesteps
|
||||
).detach()
|
||||
unconditional_noisy_latents = sd.condition_noisy_latents(unconditional_noisy_latents, batch)
|
||||
conditional_noisy_latents = sd.add_noise(
|
||||
conditional_latents,
|
||||
noise,
|
||||
timesteps
|
||||
).detach()
|
||||
conditional_noisy_latents = sd.condition_noisy_latents(conditional_noisy_latents, batch)
|
||||
|
||||
# disable the lora to get a baseline prediction
|
||||
sd.network.is_active = False
|
||||
|
||||
@@ -725,9 +725,13 @@ class BaseModel:
|
||||
do_classifier_free_guidance = True
|
||||
|
||||
# check if batch size of embeddings matches batch size of latents
|
||||
if latents.shape[0] == text_embeddings.text_embeds.shape[0]:
|
||||
if isinstance(text_embeddings.text_embeds, list):
|
||||
te_batch_size = text_embeddings.text_embeds[0].shape[0]
|
||||
else:
|
||||
te_batch_size = text_embeddings.text_embeds.shape[0]
|
||||
if latents.shape[0] == te_batch_size:
|
||||
do_classifier_free_guidance = False
|
||||
elif latents.shape[0] * 2 != text_embeddings.text_embeds.shape[0]:
|
||||
elif latents.shape[0] * 2 != te_batch_size:
|
||||
raise ValueError(
|
||||
"Batch size of latents must be the same or half the batch size of text embeddings")
|
||||
latents = latents.to(self.device_torch)
|
||||
|
||||
@@ -36,7 +36,10 @@ class PromptEmbeds:
|
||||
self.attention_mask = attention_mask
|
||||
|
||||
def to(self, *args, **kwargs):
|
||||
self.text_embeds = self.text_embeds.to(*args, **kwargs)
|
||||
if isinstance(self.text_embeds, list) or isinstance(self.text_embeds, tuple):
|
||||
self.text_embeds = [t.to(*args, **kwargs) for t in self.text_embeds]
|
||||
else:
|
||||
self.text_embeds = self.text_embeds.to(*args, **kwargs)
|
||||
if self.pooled_embeds is not None:
|
||||
self.pooled_embeds = self.pooled_embeds.to(*args, **kwargs)
|
||||
if self.attention_mask is not None:
|
||||
@@ -45,7 +48,10 @@ class PromptEmbeds:
|
||||
|
||||
def detach(self):
|
||||
new_embeds = self.clone()
|
||||
new_embeds.text_embeds = new_embeds.text_embeds.detach()
|
||||
if isinstance(new_embeds.text_embeds, list) or isinstance(new_embeds.text_embeds, tuple):
|
||||
new_embeds.text_embeds = [t.detach() for t in new_embeds.text_embeds]
|
||||
else:
|
||||
new_embeds.text_embeds = new_embeds.text_embeds.detach()
|
||||
if new_embeds.pooled_embeds is not None:
|
||||
new_embeds.pooled_embeds = new_embeds.pooled_embeds.detach()
|
||||
if new_embeds.attention_mask is not None:
|
||||
@@ -53,10 +59,14 @@ class PromptEmbeds:
|
||||
return new_embeds
|
||||
|
||||
def clone(self):
|
||||
if self.pooled_embeds is not None:
|
||||
prompt_embeds = PromptEmbeds([self.text_embeds.clone(), self.pooled_embeds.clone()])
|
||||
if isinstance(self.text_embeds, list) or isinstance(self.text_embeds, tuple):
|
||||
cloned_text_embeds = [t.clone() for t in self.text_embeds]
|
||||
else:
|
||||
prompt_embeds = PromptEmbeds(self.text_embeds.clone())
|
||||
cloned_text_embeds = self.text_embeds.clone()
|
||||
if self.pooled_embeds is not None:
|
||||
prompt_embeds = PromptEmbeds([cloned_text_embeds, self.pooled_embeds.clone()])
|
||||
else:
|
||||
prompt_embeds = PromptEmbeds(cloned_text_embeds)
|
||||
|
||||
if self.attention_mask is not None:
|
||||
prompt_embeds.attention_mask = self.attention_mask.clone()
|
||||
@@ -64,12 +74,18 @@ class PromptEmbeds:
|
||||
|
||||
def expand_to_batch(self, batch_size):
|
||||
pe = self.clone()
|
||||
current_batch_size = pe.text_embeds.shape[0]
|
||||
if isinstance(pe.text_embeds, list) or isinstance(pe.text_embeds, tuple):
|
||||
current_batch_size = pe.text_embeds[0].shape[0]
|
||||
else:
|
||||
current_batch_size = pe.text_embeds.shape[0]
|
||||
if current_batch_size == batch_size:
|
||||
return pe
|
||||
if current_batch_size != 1:
|
||||
raise Exception("Can only expand batch size for batch size 1")
|
||||
pe.text_embeds = pe.text_embeds.expand(batch_size, -1)
|
||||
if isinstance(pe.text_embeds, list) or isinstance(pe.text_embeds, tuple):
|
||||
pe.text_embeds = [t.expand(batch_size, -1) for t in pe.text_embeds]
|
||||
else:
|
||||
pe.text_embeds = pe.text_embeds.expand(batch_size, -1)
|
||||
if pe.pooled_embeds is not None:
|
||||
pe.pooled_embeds = pe.pooled_embeds.expand(batch_size, -1)
|
||||
if pe.attention_mask is not None:
|
||||
@@ -145,7 +161,13 @@ class EncodedPromptPair:
|
||||
|
||||
|
||||
def concat_prompt_embeds(prompt_embeds: list[PromptEmbeds]):
|
||||
text_embeds = torch.cat([p.text_embeds for p in prompt_embeds], dim=0)
|
||||
if isinstance(prompt_embeds[0].text_embeds, list) or isinstance(prompt_embeds[0].text_embeds, tuple):
|
||||
embed_list = []
|
||||
for i in range(len(prompt_embeds[0].text_embeds)):
|
||||
embed_list.append(torch.cat([p.text_embeds[i] for p in prompt_embeds], dim=0))
|
||||
text_embeds = embed_list
|
||||
else:
|
||||
text_embeds = torch.cat([p.text_embeds for p in prompt_embeds], dim=0)
|
||||
pooled_embeds = None
|
||||
if prompt_embeds[0].pooled_embeds is not None:
|
||||
pooled_embeds = torch.cat([p.pooled_embeds for p in prompt_embeds], dim=0)
|
||||
@@ -196,7 +218,16 @@ def split_prompt_embeds(concatenated: PromptEmbeds, num_parts=None) -> List[Prom
|
||||
if num_parts is None:
|
||||
# use batch size
|
||||
num_parts = concatenated.text_embeds.shape[0]
|
||||
text_embeds_splits = torch.chunk(concatenated.text_embeds, num_parts, dim=0)
|
||||
|
||||
if isinstance(concatenated.text_embeds, list) or isinstance(concatenated.text_embeds, tuple):
|
||||
# split each part
|
||||
text_embeds_splits = [
|
||||
torch.chunk(text, num_parts, dim=0)
|
||||
for text in concatenated.text_embeds
|
||||
]
|
||||
text_embeds_splits = list(zip(*text_embeds_splits))
|
||||
else:
|
||||
text_embeds_splits = torch.chunk(concatenated.text_embeds, num_parts, dim=0)
|
||||
|
||||
if concatenated.pooled_embeds is not None:
|
||||
pooled_embeds_splits = torch.chunk(concatenated.pooled_embeds, num_parts, dim=0)
|
||||
|
||||
@@ -283,7 +283,7 @@ export default function SimpleJob({
|
||||
options={[
|
||||
{ value: 'sigmoid', label: 'Sigmoid' },
|
||||
{ value: 'linear', label: 'Linear' },
|
||||
{ value: 'flux_shift', label: 'Flux Shift' },
|
||||
{ value: 'shift', label: 'Shift' },
|
||||
]}
|
||||
/>
|
||||
<SelectInput
|
||||
|
||||
@@ -16,7 +16,7 @@ export const defaultDatasetConfig: DatasetConfig = {
|
||||
export const defaultJobConfig: JobConfig = {
|
||||
job: 'extension',
|
||||
config: {
|
||||
name: 'my_first_flex_lora_v1',
|
||||
name: 'my_first_lora_v1',
|
||||
process: [
|
||||
{
|
||||
type: 'ui_trainer',
|
||||
@@ -31,6 +31,9 @@ export const defaultJobConfig: JobConfig = {
|
||||
linear_alpha: 32,
|
||||
lokr_full_rank: true,
|
||||
lokr_factor: -1,
|
||||
network_kwargs: {
|
||||
ignore_if_contains: [],
|
||||
},
|
||||
},
|
||||
save: {
|
||||
dtype: 'bf16',
|
||||
@@ -43,7 +46,7 @@ export const defaultJobConfig: JobConfig = {
|
||||
train: {
|
||||
batch_size: 1,
|
||||
bypass_guidance_embedding: true,
|
||||
steps: 2000,
|
||||
steps: 3000,
|
||||
gradient_accumulation: 1,
|
||||
train_unet: true,
|
||||
train_text_encoder: false,
|
||||
@@ -58,7 +61,7 @@ export const defaultJobConfig: JobConfig = {
|
||||
unload_text_encoder: false,
|
||||
lr: 0.0001,
|
||||
ema_config: {
|
||||
use_ema: true,
|
||||
use_ema: false,
|
||||
ema_decay: 0.99,
|
||||
},
|
||||
dtype: 'bf16',
|
||||
|
||||
@@ -12,6 +12,7 @@ export const modelArchs = [
|
||||
{ name: 'flux', label: 'Flux.1' },
|
||||
{ name: 'wan21', label: 'Wan 2.1' },
|
||||
{ name: 'lumina2', label: 'Lumina2' },
|
||||
{ name: 'hidream', label: 'HiDream' },
|
||||
];
|
||||
|
||||
export const isVideoModelFromArch = (arch: string) => {
|
||||
@@ -83,6 +84,20 @@ export const options = {
|
||||
'config.process[0].train.noise_scheduler': ['flowmatch', 'flowmatch'],
|
||||
},
|
||||
},
|
||||
{
|
||||
name_or_path: 'HiDream-ai/HiDream-I1-Full',
|
||||
defaults: {
|
||||
// default updates when [selected, unselected] in the UI
|
||||
'config.process[0].model.quantize': [true, false],
|
||||
'config.process[0].model.quantize_te': [true, false],
|
||||
'config.process[0].model.arch': ['hidream', defaultModelArch],
|
||||
'config.process[0].sample.sampler': ['flowmatch', 'flowmatch'],
|
||||
'config.process[0].train.noise_scheduler': ['flowmatch', 'flowmatch'],
|
||||
'config.process[0].train.lr': [0.0002, 0.0001],
|
||||
'config.process[0].train.timestep_type': ['shift', 'sigmoid'],
|
||||
'config.process[0].network.network_kwargs.ignore_if_contains': [['ff_i.experts', 'ff_i.gate'], []],
|
||||
},
|
||||
},
|
||||
{
|
||||
name_or_path: 'ostris/objective-reality',
|
||||
dev_only: true,
|
||||
|
||||
@@ -55,6 +55,9 @@ export interface NetworkConfig {
|
||||
linear_alpha: number;
|
||||
lokr_full_rank: boolean;
|
||||
lokr_factor: number;
|
||||
network_kwargs: {
|
||||
ignore_if_contains: string[];
|
||||
}
|
||||
}
|
||||
|
||||
export interface SaveConfig {
|
||||
|
||||
@@ -1 +1 @@
|
||||
VERSION = "0.2.5"
|
||||
VERSION = "0.2.6"
|
||||
Reference in New Issue
Block a user