mirror of
https://github.com/ostris/ai-toolkit.git
synced 2026-02-07 22:19:57 +00:00
190 lines
7.2 KiB
Python
190 lines
7.2 KiB
Python
from .hidream_model import HidreamModel
|
|
from .src.pipelines.hidream_image.pipeline_hidream_image_editing import (
|
|
HiDreamImageEditingPipeline,
|
|
)
|
|
from .src.schedulers.fm_solvers_unipc import FlowUniPCMultistepScheduler
|
|
from toolkit.accelerator import unwrap_model
|
|
import torch
|
|
from toolkit.prompt_utils import PromptEmbeds
|
|
from toolkit.config_modules import GenerateImageConfig
|
|
from diffusers.models import HiDreamImageTransformer2DModel
|
|
|
|
import torch.nn.functional as F
|
|
from PIL import Image
|
|
from typing import TYPE_CHECKING
|
|
|
|
if TYPE_CHECKING:
|
|
from toolkit.data_transfer_object.data_loader import DataLoaderBatchDTO
|
|
|
|
|
|
class HidreamE1Model(HidreamModel):
|
|
arch = "hidream_e1"
|
|
hidream_transformer_class = HiDreamImageTransformer2DModel
|
|
hidream_pipeline_class = HiDreamImageEditingPipeline
|
|
|
|
def get_generation_pipeline(self):
|
|
scheduler = FlowUniPCMultistepScheduler(
|
|
num_train_timesteps=1000, shift=3.0, use_dynamic_shifting=False
|
|
)
|
|
|
|
pipeline: HiDreamImageEditingPipeline = HiDreamImageEditingPipeline(
|
|
scheduler=scheduler,
|
|
vae=self.vae,
|
|
text_encoder=self.text_encoder[0],
|
|
tokenizer=self.tokenizer[0],
|
|
text_encoder_2=self.text_encoder[1],
|
|
tokenizer_2=self.tokenizer[1],
|
|
text_encoder_3=self.text_encoder[2],
|
|
tokenizer_3=self.tokenizer[2],
|
|
text_encoder_4=self.text_encoder[3],
|
|
tokenizer_4=self.tokenizer[3],
|
|
transformer=unwrap_model(self.model),
|
|
aggressive_unloading=self.low_vram,
|
|
)
|
|
|
|
pipeline = pipeline.to(self.device_torch)
|
|
|
|
return pipeline
|
|
|
|
def generate_single_image(
|
|
self,
|
|
pipeline: HiDreamImageEditingPipeline,
|
|
gen_config: GenerateImageConfig,
|
|
conditional_embeds: PromptEmbeds,
|
|
unconditional_embeds: PromptEmbeds,
|
|
generator: torch.Generator,
|
|
extra: dict,
|
|
):
|
|
if gen_config.ctrl_img is None:
|
|
raise ValueError(
|
|
"Control image is required for Flux Kontext model generation."
|
|
)
|
|
else:
|
|
control_img = Image.open(gen_config.ctrl_img)
|
|
control_img = control_img.convert("RGB")
|
|
# resize to width and height
|
|
if control_img.size != (gen_config.width, gen_config.height):
|
|
control_img = control_img.resize(
|
|
(gen_config.width, gen_config.height), Image.BILINEAR
|
|
)
|
|
img = pipeline(
|
|
prompt_embeds_t5=conditional_embeds.text_embeds[0],
|
|
prompt_embeds_llama3=conditional_embeds.text_embeds[1],
|
|
pooled_prompt_embeds=conditional_embeds.pooled_embeds,
|
|
negative_prompt_embeds_t5=unconditional_embeds.text_embeds[0],
|
|
negative_prompt_embeds_llama3=unconditional_embeds.text_embeds[1],
|
|
negative_pooled_prompt_embeds=unconditional_embeds.pooled_embeds,
|
|
height=gen_config.height,
|
|
width=gen_config.width,
|
|
num_inference_steps=gen_config.num_inference_steps,
|
|
guidance_scale=gen_config.guidance_scale,
|
|
latents=gen_config.latents,
|
|
generator=generator,
|
|
image=control_img,
|
|
**extra,
|
|
).images[0]
|
|
return img
|
|
|
|
def get_prompt_embeds(self, prompt: str) -> PromptEmbeds:
|
|
self.text_encoder_to(self.device_torch, dtype=self.torch_dtype)
|
|
max_sequence_length = 128
|
|
(
|
|
prompt_embeds_t5,
|
|
negative_prompt_embeds_t5,
|
|
prompt_embeds_llama3,
|
|
negative_prompt_embeds_llama3,
|
|
pooled_prompt_embeds,
|
|
negative_pooled_prompt_embeds,
|
|
) = self.pipeline.encode_prompt(
|
|
prompt=prompt,
|
|
prompt_2=prompt,
|
|
prompt_3=prompt,
|
|
prompt_4=prompt,
|
|
device=self.device_torch,
|
|
dtype=self.torch_dtype,
|
|
num_images_per_prompt=1,
|
|
max_sequence_length=max_sequence_length,
|
|
do_classifier_free_guidance=False,
|
|
)
|
|
prompt_embeds = [prompt_embeds_t5, prompt_embeds_llama3]
|
|
pe = PromptEmbeds([prompt_embeds, pooled_prompt_embeds])
|
|
return pe
|
|
|
|
def condition_noisy_latents(
|
|
self, latents: torch.Tensor, batch: "DataLoaderBatchDTO"
|
|
):
|
|
with torch.no_grad():
|
|
control_tensor = batch.control_tensor
|
|
if control_tensor is not None:
|
|
self.vae.to(self.device_torch)
|
|
# we are not packed here, so we just need to pass them so we can pack them later
|
|
control_tensor = control_tensor * 2 - 1
|
|
control_tensor = control_tensor.to(
|
|
self.vae_device_torch, dtype=self.torch_dtype
|
|
)
|
|
|
|
# if it is not the size of batch.tensor, (bs,ch,h,w) then we need to resize it
|
|
if batch.tensor is not None:
|
|
target_h, target_w = batch.tensor.shape[2], batch.tensor.shape[3]
|
|
else:
|
|
# When caching latents, batch.tensor is None. We get the size from the file_items instead.
|
|
target_h = batch.file_items[0].crop_height
|
|
target_w = batch.file_items[0].crop_width
|
|
|
|
if (
|
|
control_tensor.shape[2] != target_h
|
|
or control_tensor.shape[3] != target_w
|
|
):
|
|
control_tensor = F.interpolate(
|
|
control_tensor, size=(target_h, target_w), mode="bilinear"
|
|
)
|
|
|
|
control_latent = self.encode_images(control_tensor).to(
|
|
latents.device, latents.dtype
|
|
)
|
|
latents = torch.cat((latents, control_latent), dim=1)
|
|
|
|
return latents.detach()
|
|
|
|
def get_noise_prediction(
|
|
self,
|
|
latent_model_input: torch.Tensor,
|
|
timestep: torch.Tensor, # 0 to 1000 scale
|
|
text_embeddings: PromptEmbeds,
|
|
**kwargs,
|
|
):
|
|
with torch.no_grad():
|
|
# make sure config is set
|
|
self.model.config.force_inference_output = True
|
|
has_control = False
|
|
lat_size = latent_model_input.shape[-1]
|
|
if latent_model_input.shape[1] == 32:
|
|
# chunk it and stack it on batch dimension
|
|
# dont update batch size for img_its
|
|
lat, control = torch.chunk(latent_model_input, 2, dim=1)
|
|
latent_model_input = torch.cat([lat, control], dim=-1)
|
|
has_control = True
|
|
|
|
dtype = self.model.dtype
|
|
device = self.device_torch
|
|
|
|
text_embeds = text_embeddings.text_embeds
|
|
# run the to for the list
|
|
text_embeds = [te.to(device, dtype=dtype) for te in text_embeds]
|
|
|
|
noise_pred = self.transformer(
|
|
hidden_states=latent_model_input,
|
|
timesteps=timestep,
|
|
encoder_hidden_states_t5=text_embeds[0],
|
|
encoder_hidden_states_llama3=text_embeds[1],
|
|
pooled_embeds=text_embeddings.pooled_embeds.to(device, dtype=dtype),
|
|
return_dict=False,
|
|
)[0]
|
|
|
|
if has_control:
|
|
noise_pred = -1.0 * noise_pred[..., :lat_size]
|
|
else:
|
|
noise_pred = -1.0 * noise_pred
|
|
|
|
return noise_pred
|