mirror of
https://github.com/ostris/ai-toolkit.git
synced 2026-01-26 16:39:47 +00:00
163 lines
6.3 KiB
Python
163 lines
6.3 KiB
Python
import math
|
|
import torch
|
|
from torch.optim import Optimizer
|
|
from toolkit.optimizers.optimizer_utils import copy_stochastic, Auto8bitTensor, stochastic_grad_accummulation
|
|
|
|
class Adam8bit(Optimizer):
|
|
"""
|
|
Implements Adam optimizer with 8-bit state storage and stochastic rounding.
|
|
|
|
Arguments:
|
|
params (iterable): Iterable of parameters to optimize or dicts defining parameter groups
|
|
lr (float): Learning rate (default: 1e-3)
|
|
betas (tuple): Coefficients for computing running averages of gradient and its square (default: (0.9, 0.999))
|
|
eps (float): Term added to denominator to improve numerical stability (default: 1e-8)
|
|
weight_decay (float): Weight decay coefficient (default: 0)
|
|
decouple (bool): Use AdamW style decoupled weight decay (default: True)
|
|
"""
|
|
def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8,
|
|
weight_decay=0, decouple=True):
|
|
if not 0.0 <= lr:
|
|
raise ValueError(f"Invalid learning rate: {lr}")
|
|
if not 0.0 <= eps:
|
|
raise ValueError(f"Invalid epsilon value: {eps}")
|
|
if not 0.0 <= betas[0] < 1.0:
|
|
raise ValueError(f"Invalid beta parameter at index 0: {betas[0]}")
|
|
if not 0.0 <= betas[1] < 1.0:
|
|
raise ValueError(f"Invalid beta parameter at index 1: {betas[1]}")
|
|
|
|
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay,
|
|
decouple=decouple)
|
|
super(Adam8bit, self).__init__(params, defaults)
|
|
|
|
self.is_stochastic_rounding_accumulation = False
|
|
|
|
# Setup stochastic grad accumulation hooks
|
|
for group in self.param_groups:
|
|
for param in group['params']:
|
|
if param.requires_grad and param.dtype != torch.float32:
|
|
self.is_stochastic_rounding_accumulation = True
|
|
param.register_post_accumulate_grad_hook(
|
|
stochastic_grad_accummulation
|
|
)
|
|
|
|
@property
|
|
def supports_memory_efficient_fp16(self):
|
|
return False
|
|
|
|
@property
|
|
def supports_flat_params(self):
|
|
return True
|
|
|
|
def step_hook(self):
|
|
if not self.is_stochastic_rounding_accumulation:
|
|
return
|
|
# Copy over stochastically rounded grads
|
|
for group in self.param_groups:
|
|
for param in group['params']:
|
|
if param.requires_grad and hasattr(param, "_accum_grad"):
|
|
param.grad = param._accum_grad
|
|
del param._accum_grad
|
|
|
|
@torch.no_grad()
|
|
def step(self, closure=None):
|
|
"""Performs a single optimization step.
|
|
|
|
Arguments:
|
|
closure (callable, optional): A closure that reevaluates the model and returns the loss.
|
|
"""
|
|
# Call pre step
|
|
self.step_hook()
|
|
|
|
loss = None
|
|
if closure is not None:
|
|
loss = closure()
|
|
|
|
for group in self.param_groups:
|
|
beta1, beta2 = group['betas']
|
|
eps = group['eps']
|
|
lr = group['lr']
|
|
decay = group['weight_decay']
|
|
decouple = group['decouple']
|
|
|
|
for p in group['params']:
|
|
if p.grad is None:
|
|
continue
|
|
|
|
grad = p.grad.data.to(torch.float32)
|
|
p_fp32 = p.clone().to(torch.float32)
|
|
|
|
# Apply weight decay (coupled variant)
|
|
if decay != 0 and not decouple:
|
|
grad.add_(p_fp32.data, alpha=decay)
|
|
|
|
state = self.state[p]
|
|
|
|
# State initialization
|
|
if len(state) == 0:
|
|
state['step'] = 0
|
|
# Exponential moving average of gradient values
|
|
state['exp_avg'] = Auto8bitTensor(
|
|
torch.zeros_like(p_fp32.data).detach())
|
|
# Exponential moving average of squared gradient values
|
|
state['exp_avg_sq'] = Auto8bitTensor(
|
|
torch.zeros_like(p_fp32.data).detach())
|
|
|
|
exp_avg = state['exp_avg'].to(torch.float32)
|
|
exp_avg_sq = state['exp_avg_sq'].to(torch.float32)
|
|
|
|
state['step'] += 1
|
|
bias_correction1 = 1 - beta1 ** state['step']
|
|
bias_correction2 = 1 - beta2 ** state['step']
|
|
|
|
# Adam EMA updates
|
|
exp_avg.mul_(beta1).add_(grad, alpha=1-beta1)
|
|
exp_avg_sq.mul_(beta2).addcmul_(grad, grad, value=1-beta2)
|
|
|
|
# Apply weight decay (decoupled variant)
|
|
if decay != 0 and decouple:
|
|
p_fp32.data.mul_(1 - lr * decay)
|
|
|
|
# Bias correction
|
|
step_size = lr / bias_correction1
|
|
denom = (exp_avg_sq.sqrt() / math.sqrt(bias_correction2)).add_(eps)
|
|
|
|
# Take step
|
|
p_fp32.data.addcdiv_(exp_avg, denom, value=-step_size)
|
|
|
|
# Update state with stochastic rounding
|
|
state['exp_avg'] = Auto8bitTensor(exp_avg)
|
|
state['exp_avg_sq'] = Auto8bitTensor(exp_avg_sq)
|
|
|
|
# Apply stochastic rounding to parameters
|
|
copy_stochastic(p.data, p_fp32.data)
|
|
|
|
return loss
|
|
|
|
def state_dict(self):
|
|
"""Returns the state of the optimizer as a dict."""
|
|
state_dict = super().state_dict()
|
|
|
|
# Convert Auto8bitTensor objects to regular state dicts
|
|
for param_id, param_state in state_dict['state'].items():
|
|
for key, value in param_state.items():
|
|
if isinstance(value, Auto8bitTensor):
|
|
param_state[key] = {
|
|
'_type': 'Auto8bitTensor',
|
|
'state': value.state_dict()
|
|
}
|
|
|
|
return state_dict
|
|
|
|
def load_state_dict(self, state_dict):
|
|
"""Loads the optimizer state."""
|
|
# First, load the basic state
|
|
super().load_state_dict(state_dict)
|
|
|
|
# Then convert any Auto8bitTensor states back to objects
|
|
for param_id, param_state in self.state.items():
|
|
for key, value in param_state.items():
|
|
if isinstance(value, dict) and value.get('_type') == 'Auto8bitTensor':
|
|
param_state[key] = Auto8bitTensor(value['state'])
|
|
|