mirror of
https://github.com/ostris/ai-toolkit.git
synced 2026-01-26 16:39:47 +00:00
169 lines
5.1 KiB
Python
169 lines
5.1 KiB
Python
import torch
|
|
import os
|
|
from torch import nn
|
|
from safetensors.torch import load_file
|
|
import torch.nn.functional as F
|
|
|
|
|
|
class ResBlock(nn.Module):
|
|
def __init__(self, in_channels, out_channels):
|
|
super().__init__()
|
|
self.conv1 = nn.Conv2d(in_channels, out_channels, 3, padding=1)
|
|
self.norm1 = nn.GroupNorm(8, out_channels)
|
|
self.conv2 = nn.Conv2d(out_channels, out_channels, 3, padding=1)
|
|
self.norm2 = nn.GroupNorm(8, out_channels)
|
|
self.skip = nn.Conv2d(in_channels, out_channels,
|
|
1) if in_channels != out_channels else nn.Identity()
|
|
|
|
def forward(self, x):
|
|
identity = self.skip(x)
|
|
x = self.conv1(x)
|
|
x = self.norm1(x)
|
|
x = F.silu(x)
|
|
x = self.conv2(x)
|
|
x = self.norm2(x)
|
|
x = F.silu(x + identity)
|
|
return x
|
|
|
|
|
|
class DiffusionFeatureExtractor2(nn.Module):
|
|
def __init__(self, in_channels=32):
|
|
super().__init__()
|
|
self.version = 2
|
|
|
|
# Path 1: Upsample to 512x512 (1, 64, 512, 512)
|
|
self.up_path = nn.ModuleList([
|
|
nn.Conv2d(in_channels, 64, 3, padding=1),
|
|
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True),
|
|
ResBlock(64, 64),
|
|
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True),
|
|
ResBlock(64, 64),
|
|
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True),
|
|
ResBlock(64, 64),
|
|
nn.Conv2d(64, 64, 3, padding=1),
|
|
])
|
|
|
|
# Path 2: Upsample to 256x256 (1, 128, 256, 256)
|
|
self.path2 = nn.ModuleList([
|
|
nn.Conv2d(in_channels, 128, 3, padding=1),
|
|
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True),
|
|
ResBlock(128, 128),
|
|
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True),
|
|
ResBlock(128, 128),
|
|
nn.Conv2d(128, 128, 3, padding=1),
|
|
])
|
|
|
|
# Path 3: Upsample to 128x128 (1, 256, 128, 128)
|
|
self.path3 = nn.ModuleList([
|
|
nn.Conv2d(in_channels, 256, 3, padding=1),
|
|
nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True),
|
|
ResBlock(256, 256),
|
|
nn.Conv2d(256, 256, 3, padding=1)
|
|
])
|
|
|
|
# Path 4: Original size (1, 512, 64, 64)
|
|
self.path4 = nn.ModuleList([
|
|
nn.Conv2d(in_channels, 512, 3, padding=1),
|
|
ResBlock(512, 512),
|
|
ResBlock(512, 512),
|
|
nn.Conv2d(512, 512, 3, padding=1)
|
|
])
|
|
|
|
# Path 5: Downsample to 32x32 (1, 512, 32, 32)
|
|
self.path5 = nn.ModuleList([
|
|
nn.Conv2d(in_channels, 512, 3, padding=1),
|
|
ResBlock(512, 512),
|
|
nn.AvgPool2d(2),
|
|
ResBlock(512, 512),
|
|
nn.Conv2d(512, 512, 3, padding=1)
|
|
])
|
|
|
|
def forward(self, x):
|
|
outputs = []
|
|
|
|
# Path 1: 512x512
|
|
x1 = x
|
|
for layer in self.up_path:
|
|
x1 = layer(x1)
|
|
outputs.append(x1) # [1, 64, 512, 512]
|
|
|
|
# Path 2: 256x256
|
|
x2 = x
|
|
for layer in self.path2:
|
|
x2 = layer(x2)
|
|
outputs.append(x2) # [1, 128, 256, 256]
|
|
|
|
# Path 3: 128x128
|
|
x3 = x
|
|
for layer in self.path3:
|
|
x3 = layer(x3)
|
|
outputs.append(x3) # [1, 256, 128, 128]
|
|
|
|
# Path 4: 64x64
|
|
x4 = x
|
|
for layer in self.path4:
|
|
x4 = layer(x4)
|
|
outputs.append(x4) # [1, 512, 64, 64]
|
|
|
|
# Path 5: 32x32
|
|
x5 = x
|
|
for layer in self.path5:
|
|
x5 = layer(x5)
|
|
outputs.append(x5) # [1, 512, 32, 32]
|
|
|
|
return outputs
|
|
|
|
|
|
class DFEBlock(nn.Module):
|
|
def __init__(self, channels):
|
|
super().__init__()
|
|
self.conv1 = nn.Conv2d(channels, channels, 3, padding=1)
|
|
self.conv2 = nn.Conv2d(channels, channels, 3, padding=1)
|
|
self.act = nn.GELU()
|
|
|
|
def forward(self, x):
|
|
x_in = x
|
|
x = self.conv1(x)
|
|
x = self.conv2(x)
|
|
x = self.act(x)
|
|
x = x + x_in
|
|
return x
|
|
|
|
|
|
class DiffusionFeatureExtractor(nn.Module):
|
|
def __init__(self, in_channels=32):
|
|
super().__init__()
|
|
self.version = 1
|
|
num_blocks = 6
|
|
self.conv_in = nn.Conv2d(in_channels, 512, 1)
|
|
self.blocks = nn.ModuleList([DFEBlock(512) for _ in range(num_blocks)])
|
|
self.conv_out = nn.Conv2d(512, 512, 1)
|
|
|
|
def forward(self, x):
|
|
x = self.conv_in(x)
|
|
for block in self.blocks:
|
|
x = block(x)
|
|
x = self.conv_out(x)
|
|
return x
|
|
|
|
|
|
def load_dfe(model_path) -> DiffusionFeatureExtractor:
|
|
if not os.path.exists(model_path):
|
|
raise FileNotFoundError(f"Model file not found: {model_path}")
|
|
# if it ende with safetensors
|
|
if model_path.endswith('.safetensors'):
|
|
state_dict = load_file(model_path)
|
|
else:
|
|
state_dict = torch.load(model_path, weights_only=True)
|
|
if 'model_state_dict' in state_dict:
|
|
state_dict = state_dict['model_state_dict']
|
|
|
|
if 'conv_in.weight' in state_dict:
|
|
dfe = DiffusionFeatureExtractor()
|
|
else:
|
|
dfe = DiffusionFeatureExtractor2()
|
|
|
|
dfe.load_state_dict(state_dict)
|
|
dfe.eval()
|
|
return dfe
|