Files
ai-toolkit/jobs/process/TrainSDRescaleProcess.py

279 lines
10 KiB
Python

# ref:
# - https://github.com/p1atdev/LECO/blob/main/train_lora.py
import time
from collections import OrderedDict
import os
from typing import Optional
from safetensors.torch import load_file, save_file
from tqdm import tqdm
from toolkit.config_modules import SliderConfig
from toolkit.layers import ReductionKernel
from toolkit.paths import REPOS_ROOT
import sys
from toolkit.stable_diffusion_model import PromptEmbeds
sys.path.append(REPOS_ROOT)
sys.path.append(os.path.join(REPOS_ROOT, 'leco'))
from toolkit.train_tools import get_torch_dtype, apply_noise_offset
import gc
from toolkit import train_tools
import torch
from leco import train_util, model_util
from .BaseSDTrainProcess import BaseSDTrainProcess, StableDiffusion
def flush():
torch.cuda.empty_cache()
gc.collect()
class RescaleConfig:
def __init__(
self,
**kwargs
):
self.from_resolution = kwargs.get('from_resolution', 512)
self.scale = kwargs.get('scale', 0.5)
self.prompt_file = kwargs.get('prompt_file', None)
self.prompt_tensors = kwargs.get('prompt_tensors', None)
self.to_resolution = kwargs.get('to_resolution', int(self.from_resolution * self.scale))
if self.prompt_file is None:
raise ValueError("prompt_file is required")
class PromptEmbedsCache:
prompts: dict[str, PromptEmbeds] = {}
def __setitem__(self, __name: str, __value: PromptEmbeds) -> None:
self.prompts[__name] = __value
def __getitem__(self, __name: str) -> Optional[PromptEmbeds]:
if __name in self.prompts:
return self.prompts[__name]
else:
return None
class TrainSDRescaleProcess(BaseSDTrainProcess):
def __init__(self, process_id: int, job, config: OrderedDict):
super().__init__(process_id, job, config)
self.step_num = 0
self.start_step = 0
self.device = self.get_conf('device', self.job.device)
self.device_torch = torch.device(self.device)
self.prompt_cache = PromptEmbedsCache()
self.rescale_config = RescaleConfig(**self.get_conf('rescale', required=True))
self.reduce_size_fn = ReductionKernel(
in_channels=4,
kernel_size=int(self.rescale_config.from_resolution // self.rescale_config.to_resolution),
dtype=get_torch_dtype(self.train_config.dtype),
device=self.device_torch,
)
self.prompt_txt_list = []
def before_model_load(self):
pass
def hook_before_train_loop(self):
self.print(f"Loading prompt file from {self.rescale_config.prompt_file}")
# read line by line from file
with open(self.rescale_config.prompt_file, 'r') as f:
self.prompt_txt_list = f.readlines()
# clean empty lines
self.prompt_txt_list = [line.strip() for line in self.prompt_txt_list if len(line.strip()) > 0]
self.print(f"Loaded {len(self.prompt_txt_list)} prompts. Encoding them..")
cache = PromptEmbedsCache()
# get encoded latents for our prompts
with torch.no_grad():
if self.rescale_config.prompt_tensors is not None:
# check to see if it exists
if os.path.exists(self.rescale_config.prompt_tensors):
# load it.
self.print(f"Loading prompt tensors from {self.rescale_config.prompt_tensors}")
prompt_tensors = load_file(self.rescale_config.prompt_tensors, device='cpu')
# add them to the cache
for prompt_txt, prompt_tensor in prompt_tensors.items():
if prompt_txt.startswith("te:"):
prompt = prompt_txt[3:]
# text_embeds
text_embeds = prompt_tensor
pooled_embeds = None
# find pool embeds
if f"pe:{prompt}" in prompt_tensors:
pooled_embeds = prompt_tensors[f"pe:{prompt}"]
# make it
prompt_embeds = PromptEmbeds([text_embeds, pooled_embeds])
cache[prompt] = prompt_embeds.to(device='cpu', dtype=torch.float32)
if len(cache.prompts) == 0:
print("Prompt tensors not found. Encoding prompts..")
neutral = ""
# encode neutral
cache[neutral] = self.sd.encode_prompt(neutral)
for prompt in tqdm(self.prompt_txt_list, desc="Encoding prompts", leave=False):
# build the cache
if cache[prompt] is None:
cache[prompt] = self.sd.encode_prompt(prompt).to(device="cpu", dtype=torch.float32)
if self.rescale_config.prompt_tensors:
print(f"Saving prompt tensors to {self.rescale_config.prompt_tensors}")
state_dict = {}
for prompt_txt, prompt_embeds in cache.prompts.items():
state_dict[f"te:{prompt_txt}"] = prompt_embeds.text_embeds.to("cpu", dtype=get_torch_dtype('fp16'))
if prompt_embeds.pooled_embeds is not None:
state_dict[f"pe:{prompt_txt}"] = prompt_embeds.pooled_embeds.to("cpu", dtype=get_torch_dtype('fp16'))
save_file(state_dict, self.rescale_config.prompt_tensors)
self.print("Encoding complete.")
# move to cpu to save vram
# We don't need text encoder anymore, but keep it on cpu for sampling
# if text encoder is list
if isinstance(self.sd.text_encoder, list):
for encoder in self.sd.text_encoder:
encoder.to("cpu")
else:
self.sd.text_encoder.to("cpu")
self.prompt_cache = cache
flush()
# end hook_before_train_loop
def hook_train_loop(self):
dtype = get_torch_dtype(self.train_config.dtype)
# get random encoded prompt from cache
prompt_txt = self.prompt_txt_list[
torch.randint(0, len(self.prompt_txt_list), (1,)).item()
]
prompt = self.prompt_cache[prompt_txt].to(device=self.device_torch, dtype=dtype)
neutral = self.prompt_cache[""].to(device=self.device_torch, dtype=dtype)
if prompt is None:
raise ValueError(f"Prompt {prompt_txt} is not in cache")
prompt_batch = train_tools.concat_prompt_embeddings(
prompt,
neutral,
self.train_config.batch_size,
)
noise_scheduler = self.sd.noise_scheduler
optimizer = self.optimizer
lr_scheduler = self.lr_scheduler
loss_function = torch.nn.MSELoss()
def get_noise_pred(p, n, gs, cts, dn):
return self.predict_noise(
latents=dn,
text_embeddings=train_tools.concat_prompt_embeddings(
p, # unconditional
n, # positive
self.train_config.batch_size,
),
timestep=cts,
guidance_scale=gs,
)
with torch.no_grad():
self.sd.noise_scheduler.set_timesteps(
self.train_config.max_denoising_steps, device=self.device_torch
)
self.optimizer.zero_grad()
# # ger a random number of steps
timesteps_to = torch.randint(
1, self.train_config.max_denoising_steps, (1,)
).item()
# get noise
noise = self.get_latent_noise(
pixel_height=self.rescale_config.from_resolution,
pixel_width=self.rescale_config.from_resolution,
).to(self.device_torch, dtype=dtype)
# get latents
latents = noise * self.sd.noise_scheduler.init_noise_sigma
latents = latents.to(self.device_torch, dtype=dtype)
#
# # predict without network
# assert self.network.is_active is False
# denoised_latents = self.diffuse_some_steps(
# latents, # pass simple noise latents
# prompt_batch,
# start_timesteps=0,
# total_timesteps=timesteps_to,
# guidance_scale=3,
# )
# noise_scheduler.set_timesteps(1000)
#
# current_timestep = noise_scheduler.timesteps[
# int(timesteps_to * 1000 / self.train_config.max_denoising_steps)
# ]
current_timestep = 0
denoised_latents = latents
# get noise prediction at full scale
from_prediction = get_noise_pred(
prompt, neutral, 1, current_timestep, denoised_latents
)
reduced_from_prediction = self.reduce_size_fn(from_prediction).to("cpu", dtype=torch.float32)
# get noise prediction at reduced scale
to_denoised_latents = self.reduce_size_fn(denoised_latents)
# start gradient
optimizer.zero_grad()
self.network.multiplier = 1.0
with self.network:
assert self.network.is_active is True
to_prediction = get_noise_pred(
prompt, neutral, 1, current_timestep, to_denoised_latents
).to("cpu", dtype=torch.float32)
reduced_from_prediction.requires_grad = False
from_prediction.requires_grad = False
loss = loss_function(
reduced_from_prediction,
to_prediction,
)
loss_float = loss.item()
loss = loss.to(self.device_torch)
loss.backward()
optimizer.step()
lr_scheduler.step()
del (
reduced_from_prediction,
from_prediction,
to_denoised_latents,
to_prediction,
latents,
)
flush()
# reset network
self.network.multiplier = 1.0
loss_dict = OrderedDict(
{'loss': loss_float},
)
return loss_dict
# end hook_train_loop