Different outputs modes for Batch tab

Save to individual text files, all in single text file, or csv file.
This commit is contained in:
pharmapsychotic
2023-03-03 20:53:19 -06:00
parent e2f7b7f22f
commit d99548fc83

View File

@@ -1,3 +1,4 @@
import csv
import gradio as gr
import open_clip
import os
@@ -10,10 +11,44 @@ from clip_interrogator import Config, Interrogator
from modules import devices, lowvram, script_callbacks, shared
__version__ = '0.0.6'
__version__ = '0.0.7'
ci = None
BATCH_OUTPUT_MODES = [
'Text file for each image',
'Single text file with all prompts',
'csv file with columns for filenames and prompts',
]
class BatchWriter:
def __init__(self, folder, mode):
self.folder = folder
self.mode = mode
self.csv, self.file = None, None
if mode == BATCH_OUTPUT_MODES[1]:
self.file = open(os.path.join(folder, 'batch.txt'), 'w', encoding='utf-8')
elif mode == BATCH_OUTPUT_MODES[2]:
self.file = open(os.path.join(folder, 'batch.csv'), 'w', encoding='utf-8', newline='')
self.csv = csv.writer(self.file, quoting=csv.QUOTE_MINIMAL)
self.csv.writerow(['filename', 'prompt'])
def add(self, file, prompt):
if self.mode == BATCH_OUTPUT_MODES[0]:
txt_file = os.path.splitext(file)[0] + ".txt"
with open(os.path.join(self.folder, txt_file), 'w', encoding='utf-8') as f:
f.write(prompt)
elif self.mode == BATCH_OUTPUT_MODES[1]:
self.file.write(f"{prompt}\n")
elif self.mode == BATCH_OUTPUT_MODES[2]:
self.file.write(f"{file},{prompt}\n")
self.csv.writerow([file, prompt])
def close(self):
if self.file is not None:
self.file.close()
def load(clip_model_name):
global ci
if ci is None:
@@ -69,15 +104,15 @@ def image_analysis(image, clip_model_name):
return medium_ranks, artist_ranks, movement_ranks, trending_ranks, flavor_ranks
def interrogate(image, mode):
def interrogate(image, mode, caption=None):
if mode == 'best':
prompt = ci.interrogate(image)
prompt = ci.interrogate(image, caption=caption)
elif mode == 'caption':
prompt = ci.generate_caption(image)
prompt = ci.generate_caption(image) if caption is None else caption
elif mode == 'classic':
prompt = ci.interrogate_classic(image)
prompt = ci.interrogate_classic(image, caption=caption)
elif mode == 'fast':
prompt = ci.interrogate_fast(image)
prompt = ci.interrogate_fast(image, caption=caption)
elif mode == 'negative':
prompt = ci.interrogate_negative(image)
else:
@@ -140,7 +175,7 @@ def analyze_tab():
button.click(image_analysis, inputs=[image, model], outputs=[medium, artist, movement, trending, flavor])
def batch_tab():
def batch_process(folder, model, mode):
def batch_process(folder, model, mode, output_mode):
if not os.path.exists(folder):
return f"Folder {folder} does not exist"
if not os.path.isdir(folder):
@@ -163,17 +198,28 @@ def batch_tab():
shared.total_tqdm.updateTotal(len(files))
ci.config.quiet = True
# generate captions in first pass
captions = []
for file in files:
image = Image.open(os.path.join(folder, file))
prompt = interrogate(image, mode)
txt_file = os.path.splitext(file)[0] + ".txt"
with open(os.path.join(folder, txt_file), 'w', encoding='utf-8') as f:
f.write(prompt)
shared.total_tqdm.update()
if shared.state.interrupted:
break
image = Image.open(os.path.join(folder, file))
captions.append(ci.generate_caption(image))
shared.total_tqdm.update()
# interrogate in second pass
writer = BatchWriter(folder, output_mode)
shared.total_tqdm.clear()
shared.total_tqdm.updateTotal(len(files))
for idx, file in enumerate(files):
if shared.state.interrupted:
break
image = Image.open(os.path.join(folder, file))
prompt = interrogate(image, mode, caption=captions[idx])
writer.add(file, prompt)
shared.total_tqdm.update()
writer.close()
ci.config.quiet = False
unload()
except torch.cuda.OutOfMemoryError as e:
@@ -189,13 +235,14 @@ def batch_tab():
folder = gr.Text(label="Images folder", value="", interactive=True)
with gr.Row():
model = gr.Dropdown(get_models(), value='ViT-L-14/openai', label='CLIP Model')
mode = gr.Radio(['caption', 'best', 'fast', 'classic', 'negative'], label='Mode', value='fast')
mode = gr.Radio(['caption', 'best', 'fast', 'classic', 'negative'], label='Prompt Mode', value='fast')
output_mode = gr.Dropdown(BATCH_OUTPUT_MODES, value=BATCH_OUTPUT_MODES[0], label='Output Mode')
with gr.Row():
button = gr.Button("Go!", variant='primary')
interrupt = gr.Button('Interrupt', visible=True)
interrupt.click(fn=lambda: shared.state.interrupt(), inputs=[], outputs=[])
button.click(batch_process, inputs=[folder, model, mode], outputs=[])
button.click(batch_process, inputs=[folder, model, mode, output_mode], outputs=[])
def prompt_tab():
with gr.Column():