mirror of
https://github.com/power88/webui-fooocus-prompt-expansion.git
synced 2026-01-26 19:29:50 +00:00
Merge pull request #1 from w-e-w/master
fixes simplification improvements
This commit is contained in:
1
.gitignore
vendored
Normal file
1
.gitignore
vendored
Normal file
@@ -0,0 +1 @@
|
||||
__pycache__/
|
||||
23
install.py
23
install.py
@@ -1,23 +0,0 @@
|
||||
import os
|
||||
import pathlib
|
||||
import shutil
|
||||
from huggingface_hub import hf_hub_download
|
||||
from modules.scripts import basedir
|
||||
|
||||
ext_dir = basedir()
|
||||
fooocus_expansion_path = pathlib.Path(ext_dir) / "models" / "prompt_expansion"
|
||||
base_model_path = pathlib.Path(ext_dir) / "extensions" / "webui-fooocus-prompt-expansion" / "models"
|
||||
|
||||
|
||||
if not os.path.exists(os.path.join(fooocus_expansion_path, 'pytorch_model.bin')):
|
||||
try:
|
||||
print(f'### webui-fooocus-prompt-expansion: Downloading model...')
|
||||
shutil.copytree(os.path.join(base_model_path), fooocus_expansion_path)
|
||||
hf_hub_download(repo_id='lllyasviel/misc', filename='fooocus_expansion.bin', local_dir=os.path.join(fooocus_expansion_path), resume_download=True, local_dir_use_symlinks=False)
|
||||
os.rename(os.path.join(fooocus_expansion_path, 'fooocus_expansion.bin'), os.path.join(fooocus_expansion_path, 'pytorch_model.bin'))
|
||||
except Exception as e:
|
||||
print(f'### webui-fooocus-prompt-expansion: Failed to download model...')
|
||||
print(e)
|
||||
print(f'### webui-fooocus-prompt-expansion: To enable this custom node, please download the model manually from "https://huggingface.co/lllyasviel/misc/tree/main/fooocus_expansion.bin" and place it in {fooocus_expansion_path}.')
|
||||
else:
|
||||
pass
|
||||
@@ -7,121 +7,54 @@
|
||||
|
||||
|
||||
import os
|
||||
import re
|
||||
import torch
|
||||
import math
|
||||
import shutil
|
||||
import gradio as gr
|
||||
import psutil
|
||||
|
||||
from pathlib import Path
|
||||
from modules.scripts import basedir
|
||||
from huggingface_hub import hf_hub_download
|
||||
from transformers.generation.logits_process import LogitsProcessorList
|
||||
from transformers import AutoTokenizer, AutoModelForCausalLM, set_seed
|
||||
from modules import scripts, shared, script_callbacks
|
||||
from modules.ui_components import FormRow, FormColumn, FormGroup, ToolButton
|
||||
|
||||
|
||||
def text_encoder_device():
|
||||
if torch.cuda.is_available():
|
||||
return torch.device(torch.cuda.current_device())
|
||||
else:
|
||||
return torch.device("cpu")
|
||||
|
||||
def text_encoder_offload_device():
|
||||
if torch.cuda.is_available():
|
||||
return torch.device(torch.cuda.current_device())
|
||||
else:
|
||||
return torch.device("cpu")
|
||||
|
||||
def get_free_memory(dev=None, torch_free_too=False):
|
||||
global directml_enabled
|
||||
if dev is None:
|
||||
dev = text_encoder_device()
|
||||
|
||||
if hasattr(dev, 'type') and (dev.type == 'cpu' or dev.type == 'mps'):
|
||||
mem_free_total = psutil.virtual_memory().available
|
||||
mem_free_torch = mem_free_total
|
||||
else:
|
||||
if directml_enabled:
|
||||
mem_free_total = 1024 * 1024 * 1024 #TODO
|
||||
mem_free_torch = mem_free_total
|
||||
else:
|
||||
stats = torch.cuda.memory_stats(dev)
|
||||
mem_active = stats['active_bytes.all.current']
|
||||
mem_reserved = stats['reserved_bytes.all.current']
|
||||
mem_free_cuda, _ = torch.cuda.mem_get_info(dev)
|
||||
mem_free_torch = mem_reserved - mem_active
|
||||
mem_free_total = mem_free_cuda + mem_free_torch
|
||||
|
||||
from modules import scripts, paths_internal, errors, devices
|
||||
from modules.ui_components import InputAccordion
|
||||
from functools import lru_cache
|
||||
|
||||
|
||||
# limitation of np.random.seed(), called from transformers.set_seed()
|
||||
SEED_LIMIT_NUMPY = 2**32
|
||||
SEED_LIMIT_NUMPY = 2 ** 32
|
||||
neg_inf = - 8192.0
|
||||
ext_dir = basedir()
|
||||
path_fooocus_expansion = os.path.join('.', "models", "prompt_expansion")
|
||||
ext_dir = Path(basedir())
|
||||
fooocus_expansion_model_dir = Path(paths_internal.models_path) / "prompt_expansion"
|
||||
|
||||
|
||||
def download_model():
|
||||
fooocus_expansion_model = fooocus_expansion_model_dir / "pytorch_model.bin"
|
||||
if not fooocus_expansion_model.exists():
|
||||
try:
|
||||
print(f'### webui-fooocus-prompt-expansion: Downloading model...')
|
||||
shutil.copytree(ext_dir / "models", fooocus_expansion_model_dir)
|
||||
hf_hub_download(repo_id='lllyasviel/misc', filename='fooocus_expansion.bin', local_dir=fooocus_expansion_model_dir)
|
||||
os.rename(fooocus_expansion_model_dir / 'fooocus_expansion.bin', fooocus_expansion_model)
|
||||
except Exception:
|
||||
errors.report('### webui-fooocus-prompt-expansion: Failed to download model', exc_info=True)
|
||||
print(f'Download the model manually from "https://huggingface.co/lllyasviel/misc/tree/main/fooocus_expansion.bin" and place it in {fooocus_expansion_model_dir}.')
|
||||
|
||||
|
||||
def safe_str(x):
|
||||
x = str(x)
|
||||
for _ in range(16):
|
||||
x = x.replace(' ', ' ')
|
||||
return x.strip(",. \r\n")
|
||||
return re.sub(r' +', r' ', x).strip(",. \r\n")
|
||||
|
||||
|
||||
def remove_pattern(x, pattern):
|
||||
for p in pattern:
|
||||
x = x.replace(p, '')
|
||||
return x
|
||||
|
||||
def should_use_fp16(device=None, model_params=0, prioritize_performance=True):
|
||||
if device is not None:
|
||||
if hasattr(device, 'type'):
|
||||
if device.type == 'cpu':
|
||||
return False
|
||||
return False
|
||||
if torch.cuda.is_bf16_supported():
|
||||
return True
|
||||
props = torch.cuda.get_device_properties("cuda")
|
||||
if props.major < 6:
|
||||
return False
|
||||
|
||||
fp16_works = False
|
||||
#FP16 is confirmed working on a 1080 (GP104) but it's a bit slower than FP32 so it should only be enabled
|
||||
#when the model doesn't actually fit on the card
|
||||
#TODO: actually test if GP106 and others have the same type of behavior
|
||||
nvidia_10_series = ["1080", "1070", "titan x", "p3000", "p3200", "p4000", "p4200", "p5000", "p5200", "p6000", "1060", "1050"]
|
||||
for x in nvidia_10_series:
|
||||
if x in props.name.lower():
|
||||
fp16_works = True
|
||||
|
||||
if fp16_works:
|
||||
free_model_memory = (get_free_memory() * 0.9 - (1024 * 1024 * 1024))
|
||||
if (not prioritize_performance) or model_params * 4 > free_model_memory:
|
||||
return True
|
||||
|
||||
if props.major < 7:
|
||||
return False
|
||||
|
||||
#FP16 is just broken on these cards
|
||||
nvidia_16_series = ["1660", "1650", "1630", "T500", "T550", "T600", "MX550", "MX450", "CMP 30HX", "T2000", "T1000", "T1200"]
|
||||
for x in nvidia_16_series:
|
||||
if x in props.name:
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
def is_device_mps(device):
|
||||
if hasattr(device, 'type'):
|
||||
if (device.type == 'mps'):
|
||||
return True
|
||||
return False
|
||||
|
||||
class FooocusExpansion:
|
||||
def __init__(self):
|
||||
global load_model_device
|
||||
print(f'Loading models from {path_fooocus_expansion}')
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(path_fooocus_expansion)
|
||||
|
||||
positive_words = open(os.path.join(path_fooocus_expansion, 'positive.txt'),
|
||||
download_model()
|
||||
print(f'Loading models from {fooocus_expansion_model_dir}')
|
||||
self.tokenizer = AutoTokenizer.from_pretrained(fooocus_expansion_model_dir)
|
||||
|
||||
positive_words = open(os.path.join(fooocus_expansion_model_dir, 'positive.txt'),
|
||||
encoding='utf-8').read().splitlines()
|
||||
positive_words = ['Ġ' + x.lower() for x in positive_words if x != '']
|
||||
|
||||
@@ -135,25 +68,17 @@ class FooocusExpansion:
|
||||
|
||||
print(f'Fooocus V2 Expansion: Vocab with {len(debug_list)} words.')
|
||||
|
||||
self.model = AutoModelForCausalLM.from_pretrained(path_fooocus_expansion)
|
||||
self.model = AutoModelForCausalLM.from_pretrained(fooocus_expansion_model_dir)
|
||||
self.model.eval()
|
||||
|
||||
load_model_device = text_encoder_device()
|
||||
offload_device = text_encoder_offload_device()
|
||||
|
||||
# MPS hack
|
||||
if is_device_mps(load_model_device):
|
||||
load_model_device = torch.device('cpu')
|
||||
offload_device = torch.device('cpu')
|
||||
|
||||
use_fp16 = should_use_fp16(device=load_model_device)
|
||||
|
||||
self.load_model_device = devices.get_optimal_device_name()
|
||||
use_fp16 = devices.dtype == torch.float16
|
||||
if use_fp16:
|
||||
self.model.half()
|
||||
|
||||
self.model.to(load_model_device) # Ensure model is on the correct device
|
||||
self.model.to(self.load_model_device) # Ensure the model is on the correct device
|
||||
|
||||
print(f'Fooocus Expansion engine loaded for {load_model_device}, use_fp16 = {use_fp16}.')
|
||||
print(f'Fooocus Expansion engine loaded for {self.load_model_device}, use_fp16 = {use_fp16}.')
|
||||
|
||||
def unload_model(self):
|
||||
"""Unload the model to free up memory."""
|
||||
@@ -165,10 +90,10 @@ class FooocusExpansion:
|
||||
@torch.inference_mode()
|
||||
def logits_processor(self, input_ids, scores):
|
||||
assert scores.ndim == 2 and scores.shape[0] == 1
|
||||
self.logits_bias = self.logits_bias.to(load_model_device)
|
||||
self.logits_bias = self.logits_bias.to(self.load_model_device)
|
||||
|
||||
bias = self.logits_bias.clone().to(load_model_device) # Ensure bias is on the correct device
|
||||
bias[0, input_ids[0].to(load_model_device).long()] = neg_inf # Ensure input_ids are on the correct device
|
||||
bias = self.logits_bias.clone().to(self.load_model_device) # Ensure bias is on the correct device
|
||||
bias[0, input_ids[0].to(self.load_model_device).long()] = neg_inf # Ensure input_ids are on the correct device
|
||||
bias[0, 11] = 0
|
||||
|
||||
return scores + bias.to(scores.device) # Ensure bias is on the same device as scores
|
||||
@@ -176,15 +101,15 @@ class FooocusExpansion:
|
||||
@torch.no_grad()
|
||||
@torch.inference_mode()
|
||||
def __call__(self, prompt, seed):
|
||||
if prompt == '':
|
||||
if not prompt:
|
||||
return ''
|
||||
|
||||
seed = int(seed) % SEED_LIMIT_NUMPY
|
||||
set_seed(seed)
|
||||
prompt = safe_str(prompt) + ','
|
||||
tokenized_kwargs = self.tokenizer(prompt, return_tensors="pt")
|
||||
tokenized_kwargs.data['input_ids'] = tokenized_kwargs.data['input_ids'].to(load_model_device)
|
||||
tokenized_kwargs.data['attention_mask'] = tokenized_kwargs.data['attention_mask'].to(load_model_device)
|
||||
tokenized_kwargs.data['input_ids'] = tokenized_kwargs.data['input_ids'].to(self.load_model_device)
|
||||
tokenized_kwargs.data['attention_mask'] = tokenized_kwargs.data['attention_mask'].to(self.load_model_device)
|
||||
|
||||
current_token_length = int(tokenized_kwargs.data['input_ids'].shape[1])
|
||||
max_token_length = 75 * int(math.ceil(float(current_token_length) / 75.0))
|
||||
@@ -201,49 +126,66 @@ class FooocusExpansion:
|
||||
|
||||
return result
|
||||
|
||||
def createPositive(positive, seed):
|
||||
try:
|
||||
expansion = FooocusExpansion()
|
||||
positive = expansion(positive, seed=seed)
|
||||
expansion.unload_model() # Unload the model after use
|
||||
return positive
|
||||
except Exception as e:
|
||||
print(f"An error occurred: {str(e)}")
|
||||
|
||||
@lru_cache(maxsize=1024)
|
||||
def create_positive(positive, seed):
|
||||
if not positive:
|
||||
return ''
|
||||
expansion = FooocusExpansion()
|
||||
positive = expansion(positive, seed=seed)
|
||||
expansion.unload_model() # Unload the model after use
|
||||
return positive
|
||||
|
||||
|
||||
class FooocusPromptExpansion(scripts.Script):
|
||||
def __init__(self) -> None:
|
||||
infotext_fields = []
|
||||
prompt_elm = None
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
self.on_after_component_elem_id = [
|
||||
('txt2img_prompt', self.save_prompt_box),
|
||||
('img2img_prompt', self.save_prompt_box),
|
||||
]
|
||||
|
||||
def title(self):
|
||||
return 'Fooocus Prompt Expansion'
|
||||
|
||||
|
||||
def show(self, is_img2img):
|
||||
return scripts.AlwaysVisible
|
||||
|
||||
|
||||
def ui(self, is_img2img):
|
||||
with gr.Group():
|
||||
with gr.Accordion("Fooocus Expansion", open=True):
|
||||
is_enabled = gr.Checkbox(
|
||||
value=True, label="Enable Expansion", info="Enable Or Disable Expansion ")
|
||||
seed = gr.Number(
|
||||
value=0, maximum=63, label="Seed", info="Seed for random number generator")
|
||||
with InputAccordion(False, label="Fooocus Expansion") as is_enabled:
|
||||
seed = gr.Number(value=0, label="Seed", info="Seed for random number generator")
|
||||
if self.prompt_elm is not None:
|
||||
with gr.Row():
|
||||
generate = gr.Button('Generate expansion prompts')
|
||||
apply = gr.Button('Apply expansion to prompts')
|
||||
preview = gr.Textbox('', label="Expansion preview", interactive=False)
|
||||
|
||||
for x in [preview, generate, apply]:
|
||||
x.save_to_config = False
|
||||
|
||||
generate.click(
|
||||
fn=create_positive,
|
||||
inputs=[self.prompt_elm, seed],
|
||||
outputs=[preview],
|
||||
)
|
||||
apply.click(
|
||||
fn=lambda *args: (False, create_positive(*args)),
|
||||
inputs=[self.prompt_elm, seed],
|
||||
outputs=[is_enabled, self.prompt_elm],
|
||||
)
|
||||
self.infotext_fields.append((is_enabled, lambda d: False))
|
||||
|
||||
return [is_enabled, seed]
|
||||
|
||||
|
||||
def process(self, p, is_enabled, seed):
|
||||
if not is_enabled:
|
||||
return
|
||||
|
||||
for i, prompt in enumerate(p.all_prompts):
|
||||
positivePrompt = createPositive(prompt, seed)
|
||||
p.all_prompts[i] = positivePrompt
|
||||
p.all_prompts[i] = create_positive(prompt, seed)
|
||||
|
||||
|
||||
|
||||
def after_component(self, component, **kwargs):
|
||||
# https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/7456#issuecomment-1414465888 helpfull link
|
||||
# Find the text2img textbox component
|
||||
if kwargs.get("elem_id") == "txt2img_prompt": # postive prompt textbox
|
||||
self.boxx = component
|
||||
# Find the img2img textbox component
|
||||
if kwargs.get("elem_id") == "img2img_prompt": # postive prompt textbox
|
||||
self.boxxIMG = component
|
||||
def save_prompt_box(self, on_component):
|
||||
self.prompt_elm = on_component.component
|
||||
|
||||
Reference in New Issue
Block a user