mirror of
https://github.com/salesforce/BLIP.git
synced 2026-02-04 19:29:55 +00:00
Update README.md
This commit is contained in:
22
README.md
22
README.md
@@ -1,14 +1,32 @@
|
||||
## BLIP: Bootstrapping Language-Image Pre-training for Unified Vision-Language Understanding and Generation
|
||||
|
||||
This is the PyTorch implementation of the <a href="https://arxiv.org/abs/2107.07651">BLIP paper</a>.
|
||||
This is the PyTorch implementation of the <a href="https://arxiv.org/abs/2107.07651">BLIP paper</a>. The code has been tested on PyTorch 1.9 and 1.10.
|
||||
|
||||
Catalog:
|
||||
- [x] Inference demo
|
||||
- [x] Pre-trained and finetuned checkpoints
|
||||
- [x] Pre-training code
|
||||
- [x] Finetuning code for Image-Text Retrieval, Image Captioning, VQA, and NLVR2
|
||||
- [x] Pre-training code
|
||||
- [x] Download of bootstrapped image-text dataset
|
||||
|
||||
|
||||
### Inference demo (Image Captioning and VQA):
|
||||
Run our interactive demo using Colab notebook (no GPU needed):
|
||||
|
||||
### Pre-trained checkpoints:
|
||||
Num. pre-train images | BLIP w/ ViT-B | BLIP w/ ViT-B and CapFilt-L | BLIP w/ ViT-L
|
||||
--- | --- | --- | ---
|
||||
14M | <a href="https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_14M.pth">Download</a>| - | -
|
||||
129M | <a href="https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base.pth">Download</a>| <a href="https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model*_base.pth">Download</a> | <a href="https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_large.pth">Download</a>
|
||||
|
||||
### Image-Text Retrieval:
|
||||
1. Download COCO or Flickr30k datasets from the original websites, and set 'image_root' in configs/retrieval_{dataset}.yaml accordingly.
|
||||
2. To evaluate the finetuned BLIP model on COCO, run:
|
||||
<pre>python -m torch.distributed.run --nproc_per_node=8 --use_env train_retrieval.py \
|
||||
--config ./configs/retrieval_coco.yaml \
|
||||
--output_dir output/retrieval_coco \
|
||||
--evaluate</pre>
|
||||
3. To finetune the pre-trained checkpoint using 8 A100 GPUs, first set 'pretrained' in configs/retrieval_coco.yaml as . Then run:
|
||||
<pre>python -m torch.distributed.run --nproc_per_node=8 --use_env train_retrieval.py \
|
||||
--config ./configs/retrieval_coco.yaml \
|
||||
--output_dir output/retrieval_coco </pre>
|
||||
|
||||
Reference in New Issue
Block a user