mirror of
https://github.com/salesforce/BLIP.git
synced 2026-02-04 03:18:55 +00:00
replicate demo
This commit is contained in:
@@ -21,6 +21,8 @@ The demo includes code for:
|
||||
3. Multimodal / unimodal feature extraction
|
||||
4. Image-text matching
|
||||
|
||||
Replicate web demo and Docker image is available at [](https://replicate.com/salesforce/blip)
|
||||
|
||||
Integrated into [Huggingface Spaces 🤗](https://huggingface.co/spaces) using [Gradio](https://github.com/gradio-app/gradio). Try out the Web Demo [](https://huggingface.co/spaces/akhaliq/BLIP)
|
||||
|
||||
### Pre-trained checkpoints:
|
||||
|
||||
17
cog.yaml
Normal file
17
cog.yaml
Normal file
@@ -0,0 +1,17 @@
|
||||
build:
|
||||
gpu: true
|
||||
cuda: "11.1"
|
||||
python_version: "3.8"
|
||||
system_packages:
|
||||
- "libgl1-mesa-glx"
|
||||
- "libglib2.0-0"
|
||||
python_packages:
|
||||
- "ipython==7.30.1"
|
||||
- "torchvision==0.11.1"
|
||||
- "torch==1.10.0"
|
||||
- "timm==0.4.12"
|
||||
- "transformers==4.15.0"
|
||||
- "fairscale==0.4.4"
|
||||
- "pycocoevalcap==1.2"
|
||||
|
||||
predict: "predict.py:Predictor"
|
||||
98
predict.py
Normal file
98
predict.py
Normal file
@@ -0,0 +1,98 @@
|
||||
"""
|
||||
Download the weights in ./checkpoints beforehand for fast inference
|
||||
wget https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model*_base_caption.pth
|
||||
wget https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model*_vqa.pth
|
||||
wget https://storage.googleapis.com/sfr-vision-language-research/BLIP/models/model_base_retrieval_coco.pth
|
||||
"""
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
from PIL import Image
|
||||
import torch
|
||||
from torchvision import transforms
|
||||
from torchvision.transforms.functional import InterpolationMode
|
||||
import cog
|
||||
|
||||
from models.blip import blip_decoder
|
||||
from models.blip_vqa import blip_vqa
|
||||
from models.blip_itm import blip_itm
|
||||
|
||||
|
||||
class Predictor(cog.Predictor):
|
||||
def setup(self):
|
||||
self.device = "cuda:0"
|
||||
|
||||
self.models = {
|
||||
'image_captioning': blip_decoder(pretrained='checkpoints/model*_base_caption.pth',
|
||||
image_size=384, vit='base'),
|
||||
'visual_question_answering': blip_vqa(pretrained='checkpoints/model*_vqa.pth',
|
||||
image_size=480, vit='base'),
|
||||
'image_text_matching': blip_itm(pretrained='checkpoints/model_base_retrieval_coco.pth',
|
||||
image_size=384, vit='base')
|
||||
}
|
||||
|
||||
@cog.input(
|
||||
"image",
|
||||
type=Path,
|
||||
help="input image",
|
||||
)
|
||||
@cog.input(
|
||||
"task",
|
||||
type=str,
|
||||
default='image_captioning',
|
||||
options=['image_captioning', 'visual_question_answering', 'image_text_matching'],
|
||||
help="Choose a task.",
|
||||
)
|
||||
@cog.input(
|
||||
"question",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Type question for the input image for visual question answering task.",
|
||||
)
|
||||
@cog.input(
|
||||
"caption",
|
||||
type=str,
|
||||
default=None,
|
||||
help="Type caption for the input image for image text matching task.",
|
||||
)
|
||||
def predict(self, image, task, question, caption):
|
||||
if task == 'visual_question_answering':
|
||||
assert question is not None, 'Please type a question for visual question answering task.'
|
||||
if task == 'image_text_matching':
|
||||
assert caption is not None, 'Please type a caption for mage text matching task.'
|
||||
|
||||
im = load_image(image, image_size=480 if task == 'visual_question_answering' else 384, device=self.device)
|
||||
model = self.models[task]
|
||||
model.eval()
|
||||
model = model.to(self.device)
|
||||
|
||||
if task == 'image_captioning':
|
||||
with torch.no_grad():
|
||||
caption = model.generate(im, sample=False, num_beams=3, max_length=20, min_length=5)
|
||||
return 'Caption: ' + caption[0]
|
||||
|
||||
if task == 'visual_question_answering':
|
||||
with torch.no_grad():
|
||||
answer = model(im, question, train=False, inference='generate')
|
||||
return 'Answer: ' + answer[0]
|
||||
|
||||
# image_text_matching
|
||||
itm_output = model(im, caption, match_head='itm')
|
||||
itm_score = torch.nn.functional.softmax(itm_output, dim=1)[:, 1]
|
||||
itc_score = model(im, caption, match_head='itc')
|
||||
return f'The image and text is matched with a probability of {itm_score.item():.4f}.\n' \
|
||||
f'The image feature and text feature has a cosine similarity of {itc_score.item():.4f}.'
|
||||
|
||||
|
||||
def load_image(image, image_size, device):
|
||||
raw_image = Image.open(str(image)).convert('RGB')
|
||||
|
||||
w, h = raw_image.size
|
||||
|
||||
transform = transforms.Compose([
|
||||
transforms.Resize((image_size, image_size), interpolation=InterpolationMode.BICUBIC),
|
||||
transforms.ToTensor(),
|
||||
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711))
|
||||
])
|
||||
image = transform(raw_image).unsqueeze(0).to(device)
|
||||
return image
|
||||
Reference in New Issue
Block a user