mirror of
https://github.com/snicolast/ComfyUI-IndexTTS2.git
synced 2026-01-26 14:39:44 +00:00
Merge branch 'dev-fp32-gain-toggles'
This commit is contained in:
32
README.md
32
README.md
@@ -17,11 +17,27 @@ Original repo: https://github.com/index-tts/index-tts
|
||||
```
|
||||
|
||||
## Models
|
||||
- Create `checkpoints/` in the repo root and copy the IndexTTS-2 release there (https://huggingface.co/IndexTeam/IndexTTS-2/tree/main). Missing files will be cached from Hugging Face automatically.
|
||||
- Create `checkpoints/` in the repo root and copy the IndexTTS-2 release there (https://huggingface.co/IndexTeam/IndexTTS-2/tree/main). Missing files will be cached from Hugging Face automatically, but a full local copy keeps everything offline.
|
||||
- For full offline use download once and place the files below:
|
||||
- `facebook/w2v-bert-2.0` -> `checkpoints/w2v-bert-2.0/` (the loader checks this folder before contacting Hugging Face)
|
||||
- BigVGAN config and weights -> `checkpoints/bigvgan/`
|
||||
- MaskGCT semantic codec -> `checkpoints/semantic_codec/model.safetensors`
|
||||
- CAMPPlus model -> `checkpoints/campplus_cn_common.bin`
|
||||
- Optional: QwenEmotion (`qwen0.6bemo4-merge/`) for the text-to-emotion helper node
|
||||
- Typical layout:
|
||||
```
|
||||
checkpoints/
|
||||
config.yaml, gpt.pth, s2mel.pth, bpe.model, feat*.pt, wav2vec2bert_stats.pt
|
||||
bigvgan/{config.json,bigvgan_generator.pt}
|
||||
semantic_codec/model.safetensors
|
||||
campplus_cn_common.bin
|
||||
qwen0.6bemo4-merge/[model files]
|
||||
w2v-bert-2.0/[HF files]
|
||||
```
|
||||
|
||||
## Nodes
|
||||
- **IndexTTS2 Simple** – speaker audio, text, optional emotion audio/vector; outputs audio + status string. Auto-selects device, FP16 on CUDA.
|
||||
- **IndexTTS2 Advanced** – Simple inputs plus overrides for sampling, speech speed, pauses, CFG, seed.
|
||||
- **IndexTTS2 Simple** - speaker audio, text, optional emotion audio/vector; outputs audio + status string. Auto-selects device (FP32 by default; optional FP16 toggle) and includes an output gain scaler.
|
||||
- **IndexTTS2 Advanced** - Simple inputs plus overrides for sampling, speech speed, pauses, CFG, seed, FP16 toggle, and output gain.
|
||||
- **IndexTTS2 Emotion Vector** – eight sliders (0.0–1.4, sum <= 1.5) producing an emotion vector.
|
||||
- **IndexTTS2 Emotion From Text** – requires ModelScope and local QwenEmotion; turns short text into an emotion vector + summary.
|
||||
|
||||
@@ -36,4 +52,14 @@ Original repo: https://github.com/index-tts/index-tts
|
||||
## Troubleshooting
|
||||
- Windows only so far; DeepSpeed is disabled.
|
||||
- Install `wetext` if the module is missing on first launch.
|
||||
- If w2v-bert keeps downloading, confirm `checkpoints/w2v-bert-2.0/` exists (or set `W2V_BERT_LOCAL_DIR`).
|
||||
- 404 or load failures usually mean a missing file in `checkpoints/`; re-check the tree above.
|
||||
- Emotion vector sum must stay <= 1.5.
|
||||
- BigVGAN CUDA kernel warnings are expected; PyTorch fallback kicks in automatically.
|
||||
- Hearing metallic warble? Leave `use_fp16` off; enable it only if you really need more speed and accept the artifacts.
|
||||
- Need more level? Raise `output_gain` (values above 1.0 are clipped back into [-1,1]).
|
||||
|
||||
## Logs you should see
|
||||
- `Loading config.json from local directory`
|
||||
- `SeamlessM4TFeatureExtractor loaded from: checkpoints/w2v-bert-2.0/`
|
||||
- Model paths pointing at your `checkpoints/` tree.
|
||||
|
||||
14
__init__.py
14
__init__.py
@@ -1,18 +1,22 @@
|
||||
from .nodes.indextts2_node import IndexTTS2Simple
|
||||
from .nodes.indextts2_node import IndexTTS2Simple
|
||||
from .nodes.indextts2_node_advanced import IndexTTS2Advanced
|
||||
from .nodes.indextts2_node_emovec import IndexTTS2EmotionVector
|
||||
from .nodes.indextts2_node_emotext import IndexTTS2EmotionFromText
|
||||
from .nodes.indextts2_save_audio import IndexTTS2SaveAudio
|
||||
|
||||
NODE_CLASS_MAPPINGS = {
|
||||
"IndexTTS2Simple": IndexTTS2Simple,
|
||||
"IndexTTS2Advanced": IndexTTS2Advanced,
|
||||
"IndexTTS2EmotionVector": IndexTTS2EmotionVector,
|
||||
"IndexTTS2EmotionFromText": IndexTTS2EmotionFromText,
|
||||
"IndexTTS2EmotionVector": IndexTTS2EmotionVector,
|
||||
"IndexTTS2SaveAudio": IndexTTS2SaveAudio,
|
||||
"IndexTTS2Simple": IndexTTS2Simple,
|
||||
}
|
||||
|
||||
NODE_DISPLAY_NAME_MAPPINGS = {
|
||||
"IndexTTS2Simple": "IndexTTS2 Simple",
|
||||
"IndexTTS2Advanced": "IndexTTS2 Advanced",
|
||||
"IndexTTS2EmotionVector": "IndexTTS2 Emotion Vector",
|
||||
"IndexTTS2EmotionFromText": "IndexTTS2 Emotion From Text",
|
||||
"IndexTTS2EmotionVector": "IndexTTS2 Emotion Vector",
|
||||
"IndexTTS2SaveAudio": "IndexTTS2 Save Audio",
|
||||
"IndexTTS2Simple": "IndexTTS2 Simple",
|
||||
}
|
||||
|
||||
|
||||
@@ -1,8 +1,9 @@
|
||||
import gc
|
||||
import gc
|
||||
import os
|
||||
import sys
|
||||
import tempfile
|
||||
import threading
|
||||
import math
|
||||
from functools import wraps
|
||||
from typing import Any, Dict, Tuple
|
||||
|
||||
@@ -340,6 +341,8 @@ class IndexTTS2Simple:
|
||||
"optional": {
|
||||
"emotion_audio": ("AUDIO",),
|
||||
"emotion_vector": ("EMOTION_VECTOR",),
|
||||
"use_fp16": ("BOOLEAN", {"default": False}),
|
||||
"output_gain": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 4.0, "step": 0.05}),
|
||||
},
|
||||
}
|
||||
|
||||
@@ -352,7 +355,7 @@ class IndexTTS2Simple:
|
||||
text: str,
|
||||
emotion_control_weight: float,
|
||||
emotion_audio=None,
|
||||
emotion_vector=None):
|
||||
emotion_vector=None, use_fp16=False, output_gain=1.0):
|
||||
|
||||
if not isinstance(text, str) or len(text.strip()) == 0:
|
||||
raise ValueError("Text is empty. Please provide text to synthesize.")
|
||||
@@ -377,17 +380,28 @@ class IndexTTS2Simple:
|
||||
raise FileNotFoundError(f"Model directory not found: {resolved_model_dir}")
|
||||
|
||||
resolved_device = _resolve_device("auto")
|
||||
use_fp16_flag = bool(use_fp16)
|
||||
tts2 = _get_tts2_model(
|
||||
config_path=resolved_config,
|
||||
model_dir=resolved_model_dir,
|
||||
device=resolved_device,
|
||||
use_cuda_kernel=False,
|
||||
use_fp16=True,
|
||||
use_fp16=use_fp16_flag,
|
||||
)
|
||||
|
||||
emo_alpha = max(0.0, min(1.0, float(emotion_control_weight)))
|
||||
emo_vector = None
|
||||
ui_msgs = []
|
||||
ui_msgs.append(f"Model precision: {'FP16' if use_fp16_flag else 'FP32'}")
|
||||
|
||||
try:
|
||||
gain_value = float(output_gain)
|
||||
except (TypeError, ValueError):
|
||||
gain_value = 1.0
|
||||
if not math.isfinite(gain_value):
|
||||
gain_value = 1.0
|
||||
gain_value = max(0.0, min(4.0, gain_value))
|
||||
|
||||
emo_vector = None
|
||||
if emotion_vector is not None:
|
||||
try:
|
||||
vec = list(emotion_vector)
|
||||
@@ -461,6 +475,13 @@ class IndexTTS2Simple:
|
||||
if mono.ndim != 1:
|
||||
mono = mono.flatten()
|
||||
|
||||
if gain_value != 1.0:
|
||||
mono = np.clip(mono * gain_value, -1.0, 1.0)
|
||||
ui_msgs.append(f"Output gain applied: {gain_value:.2f}x")
|
||||
|
||||
waveform = torch.from_numpy(mono[None, None, :].astype(np.float32)) #(B=1, C=1, N)
|
||||
info_text = "\n".join(ui_msgs) if ui_msgs else ""
|
||||
return ({"sample_rate": int(sr), "waveform": waveform}, info_text)
|
||||
|
||||
|
||||
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
import os
|
||||
import os
|
||||
import random
|
||||
import numpy as np
|
||||
|
||||
@@ -123,6 +123,8 @@ class IndexTTS2Advanced:
|
||||
"typical_sampling": ("BOOLEAN", {"default": False}),
|
||||
"typical_mass": ("FLOAT", {"default": 0.9, "min": 0.0, "max": 2000.0, "step": 0.01}),
|
||||
"speech_speed": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 4.0, "step": 0.05}),
|
||||
"use_fp16": ("BOOLEAN", {"default": False}),
|
||||
"output_gain": ("FLOAT", {"default": 1.0, "min": 0.0, "max": 4.0, "step": 0.05}),
|
||||
},
|
||||
}
|
||||
|
||||
@@ -150,7 +152,9 @@ class IndexTTS2Advanced:
|
||||
max_mel_tokens: int = 1500,
|
||||
typical_sampling: bool = False,
|
||||
typical_mass: float = 0.9,
|
||||
speech_speed: float = 1.0):
|
||||
speech_speed: float = 1.0,
|
||||
use_fp16: bool = False,
|
||||
output_gain: float = 1.0):
|
||||
|
||||
if not isinstance(text, str) or len(text.strip()) == 0:
|
||||
raise ValueError("Text is empty. Please provide text to synthesize.")
|
||||
@@ -181,12 +185,13 @@ class IndexTTS2Advanced:
|
||||
raise FileNotFoundError(f"Model directory not found: {resolved_model_dir}")
|
||||
|
||||
resolved_device = _resolve_device("auto")
|
||||
use_fp16_flag = _coerce_bool(use_fp16, False)
|
||||
tts2 = _get_tts2_model(
|
||||
config_path=resolved_config,
|
||||
model_dir=resolved_model_dir,
|
||||
device=resolved_device,
|
||||
use_cuda_kernel=False,
|
||||
use_fp16=True,
|
||||
use_fp16=use_fp16_flag,
|
||||
)
|
||||
|
||||
torch_mod = None
|
||||
@@ -219,6 +224,9 @@ class IndexTTS2Advanced:
|
||||
emo_alpha = max(0.0, min(1.0, float(emotion_control_weight)))
|
||||
emo_audio_prompt = emo_path if emo_path else prompt_path
|
||||
ui_msgs = []
|
||||
ui_msgs.append(f"Model precision: {'FP16' if use_fp16_flag else 'FP32'}")
|
||||
|
||||
gain_value = _coerce_float(output_gain, 1.0, clamp=(0.0, 4.0))
|
||||
|
||||
emo_vector_arg = None
|
||||
if emotion_vector is not None:
|
||||
@@ -330,11 +338,16 @@ class IndexTTS2Advanced:
|
||||
if mono.ndim != 1:
|
||||
mono = mono.flatten()
|
||||
|
||||
waveform = torch_lib.from_numpy(mono[None, None, :].astype(np.float32))
|
||||
|
||||
info_lines = []
|
||||
if ui_msgs:
|
||||
info_lines.extend(ui_msgs)
|
||||
|
||||
if gain_value != 1.0:
|
||||
mono = np.clip(mono * gain_value, -1.0, 1.0)
|
||||
info_lines.append(f"Output gain applied: {gain_value:.2f}x")
|
||||
|
||||
waveform = torch_lib.from_numpy(mono[None, None, :].astype(np.float32))
|
||||
|
||||
info_lines.append(f"Seed: {seed_info}")
|
||||
if do_sample:
|
||||
info_lines.append(f"Sampling: temp={temperature:.2f}, top_p={top_p:.2f}, top_k={top_k}")
|
||||
@@ -348,3 +361,5 @@ class IndexTTS2Advanced:
|
||||
info_text = "\n".join(info_lines)
|
||||
return ({"sample_rate": int(sr), "waveform": waveform}, info_text)
|
||||
|
||||
|
||||
|
||||
|
||||
148
nodes/indextts2_save_audio.py
Normal file
148
nodes/indextts2_save_audio.py
Normal file
@@ -0,0 +1,148 @@
|
||||
import os
|
||||
from typing import List
|
||||
import numpy as np
|
||||
import folder_paths
|
||||
|
||||
class IndexTTS2SaveAudio:
|
||||
@classmethod
|
||||
def INPUT_TYPES(cls):
|
||||
return {
|
||||
"required": {
|
||||
"audio": ("AUDIO",),
|
||||
"name": ("STRING", {"default": "tts2", "placeholder": "file name prefix"}),
|
||||
"format": ("COMBO", {"options": ["wav", "mp3"], "default": "wav"}),
|
||||
},
|
||||
"optional": {
|
||||
"normalize_peak": ("BOOLEAN", {"default": False, "tooltip": "Normalize peak to ~0.98 before saving."}),
|
||||
# WAV
|
||||
"wav_pcm": ("COMBO", {"options": ["pcm16", "pcm24", "f32"], "default": "pcm16"}),
|
||||
# MP3
|
||||
"mp3_bitrate": ("COMBO", {"options": ["128k", "192k", "256k", "320k"], "default": "320k"}),
|
||||
},
|
||||
}
|
||||
|
||||
RETURN_TYPES = ("AUDIO", "STRING")
|
||||
RETURN_NAMES = ("audio", "saved_path")
|
||||
FUNCTION = "save"
|
||||
CATEGORY = "Audio/IndexTTS"
|
||||
|
||||
def _normalize(self, mono: np.ndarray):
|
||||
peak = float(np.max(np.abs(mono))) if mono.size else 0.0
|
||||
if peak > 1e-6:
|
||||
mono = np.clip(mono * (0.98 / peak), -1.0, 1.0)
|
||||
return mono
|
||||
|
||||
def _save_wav(self, path: str, data: np.ndarray, sr: int, pcm: str):
|
||||
try:
|
||||
import soundfile as sf # type: ignore
|
||||
subtype = {
|
||||
"pcm16": "PCM_16",
|
||||
"pcm24": "PCM_24",
|
||||
"f32": "FLOAT",
|
||||
}.get(pcm, "PCM_16")
|
||||
sf.write(path, data.T, sr, subtype=subtype, format="WAV")
|
||||
return True
|
||||
except Exception:
|
||||
# Fallback to wave for PCM16 only
|
||||
if pcm != "pcm16":
|
||||
raise
|
||||
import wave, contextlib
|
||||
pcm16 = (np.clip(data, -1.0, 1.0) * 32767.0).astype(np.int16)
|
||||
with contextlib.closing(wave.open(path, "wb")) as wf:
|
||||
wf.setnchannels(int(data.shape[0]))
|
||||
wf.setsampwidth(2)
|
||||
wf.setframerate(int(sr))
|
||||
wf.writeframes(pcm16.T.tobytes())
|
||||
return True
|
||||
|
||||
def _compose_paths(self, name_prefix: str, batch_count: int) -> List[str]:
|
||||
output_dir = folder_paths.get_output_directory()
|
||||
# Use Comfy's helper to build prefix and a counter
|
||||
full_output_folder, filename, counter, subfolder, filename_prefix = folder_paths.get_save_image_path(
|
||||
f"audio/{name_prefix}", output_dir
|
||||
)
|
||||
paths = []
|
||||
for b in range(batch_count):
|
||||
filename_with_batch = filename.replace("%batch_num%", str(b))
|
||||
file = f"{filename_with_batch}_{counter:05}_"
|
||||
paths.append(os.path.join(full_output_folder, file))
|
||||
counter += 1
|
||||
return paths
|
||||
|
||||
def _save_with_av(self, fmt: str, audio, filename_prefix: str, quality: str = "320k") -> List[str]:
|
||||
try:
|
||||
from comfy_extras import nodes_audio as ce_audio # type: ignore
|
||||
except Exception as e:
|
||||
raise RuntimeError(f"PyAV save requires comfy_extras.nodes_audio: {e}")
|
||||
|
||||
if fmt == "mp3":
|
||||
saver = ce_audio.SaveAudioMP3()
|
||||
ui = saver.save_mp3(audio, filename_prefix=filename_prefix, format="mp3", quality=quality)
|
||||
else:
|
||||
raise ValueError(f"Unsupported format for AV saver (mp3 only): {fmt}")
|
||||
|
||||
results = ui.get("ui", {}).get("audio", [])
|
||||
base = folder_paths.get_output_directory()
|
||||
out: List[str] = []
|
||||
for item in results:
|
||||
sub = item.get("subfolder") or ""
|
||||
out.append(os.path.join(base, sub, item.get("filename", "")))
|
||||
return out
|
||||
|
||||
def save(self, audio, name: str, format: str,
|
||||
normalize_peak: bool = False,
|
||||
wav_pcm: str = "pcm16",
|
||||
mp3_bitrate: str = "320k"):
|
||||
# Extract waveform
|
||||
import torch
|
||||
wav = audio["waveform"]
|
||||
sr = int(audio["sample_rate"]) if isinstance(audio.get("sample_rate"), (int, float)) else 22050
|
||||
if hasattr(wav, "cpu"):
|
||||
wav = wav.cpu().numpy()
|
||||
wav = np.asarray(wav)
|
||||
# Shape: (B, C, N)
|
||||
if wav.ndim != 3:
|
||||
raise ValueError("AUDIO input must be shaped (B, C, N)")
|
||||
|
||||
# Prepare per-batch data as float32 in [-1,1]
|
||||
batch = []
|
||||
for b in range(wav.shape[0]):
|
||||
np_w = wav[b]
|
||||
if np_w.dtype == np.int16:
|
||||
np_w = np_w.astype(np.float32) / 32767.0
|
||||
elif np_w.dtype != np.float32:
|
||||
np_w = np_w.astype(np.float32)
|
||||
# Keep original channels; expect 1 or 2 generally
|
||||
if normalize_peak:
|
||||
if np_w.shape[0] == 1:
|
||||
np_w[0] = self._normalize(np_w[0])
|
||||
else:
|
||||
# Normalize jointly to keep relative balance
|
||||
peak = float(np.max(np.abs(np_w))) if np_w.size else 0.0
|
||||
if peak > 1e-6:
|
||||
np_w = np.clip(np_w * (0.98 / peak), -1.0, 1.0)
|
||||
batch.append(np_w)
|
||||
|
||||
name_prefix = (name or "tts2").strip() or "tts2"
|
||||
paths: List[str] = []
|
||||
|
||||
if format == "wav":
|
||||
base_paths = self._compose_paths(name_prefix, len(batch))
|
||||
for np_w, base in zip(batch, base_paths):
|
||||
out_path = base + ".wav"
|
||||
os.makedirs(os.path.dirname(out_path), exist_ok=True)
|
||||
self._save_wav(out_path, np_w, sr, wav_pcm)
|
||||
paths.append(out_path)
|
||||
elif format == "mp3":
|
||||
paths = self._save_with_av("mp3", audio, filename_prefix=f"audio/{name_prefix}", quality=mp3_bitrate)
|
||||
else:
|
||||
raise ValueError(f"Unsupported format: {format}")
|
||||
|
||||
saved = "\n".join(paths)
|
||||
# passthrough audio so the graph can continue if needed
|
||||
return (audio, saved)
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user