This commit is contained in:
WildAi
2025-08-27 16:23:01 +03:00
parent 7f85938083
commit 66710bbffc
2 changed files with 332 additions and 0 deletions

38
__init__.py Normal file
View File

@@ -0,0 +1,38 @@
import os
import sys
import logging
# allowing absolute imports like 'from vibevoice.modular...' to work.
current_dir = os.path.dirname(os.path.abspath(__file__))
if current_dir not in sys.path:
sys.path.append(current_dir)
import folder_paths
from .vibevoice_nodes import NODE_CLASS_MAPPINGS, NODE_DISPLAY_NAME_MAPPINGS
# logger
logger = logging.getLogger(__name__)
if not logger.hasHandlers():
handler = logging.StreamHandler(sys.stdout)
formatter = logging.Formatter(f"[ComfyUI-VibeVoice] %(message)s")
handler.setFormatter(formatter)
logger.addHandler(handler)
logger.setLevel(logging.INFO)
VIBEVOICE_MODEL_SUBDIR = os.path.join("tts", "VibeVoice")
vibevoice_models_full_path = os.path.join(folder_paths.models_dir, VIBEVOICE_MODEL_SUBDIR)
os.makedirs(vibevoice_models_full_path, exist_ok=True)
# Register the tts/VibeVoice path with ComfyUI
tts_path = os.path.join(folder_paths.models_dir, "tts")
if "tts" not in folder_paths.folder_names_and_paths:
supported_exts = folder_paths.supported_pt_extensions.union({".safetensors", ".json"})
folder_paths.folder_names_and_paths["tts"] = ([tts_path], supported_exts)
else:
if tts_path not in folder_paths.folder_names_and_paths["tts"][0]:
folder_paths.folder_names_and_paths["tts"][0].append(tts_path)
__all__ = ['NODE_CLASS_MAPPINGS', 'NODE_DISPLAY_NAME_MAPPINGS']

294
vibevoice_nodes.py Normal file
View File

@@ -0,0 +1,294 @@
import os
import re
import torch
import numpy as np
import random
from huggingface_hub import snapshot_download
import logging
import librosa
import folder_paths
import comfy.model_management as model_management
import comfy.model_patcher
from comfy.utils import ProgressBar
from transformers import set_seed
from .vibevoice.modular.modeling_vibevoice_inference import VibeVoiceForConditionalGenerationInference
from .vibevoice.processor.vibevoice_processor import VibeVoiceProcessor
logger = logging.getLogger("comfyui_vibevoice")
LOADED_MODELS = {}
VIBEVOICE_PATCHER_CACHE = {}
MODEL_CONFIGS = {
"VibeVoice-1.5B": {
"repo_id": "microsoft/VibeVoice-1.5B",
"size_gb": 3.0,
},
"VibeVoice-Large-pt": {
"repo_id": "WestZhang/VibeVoice-Large-pt",
"size_gb": 14.0,
}
}
class VibeVoiceModelHandler(torch.nn.Module):
"""A torch.nn.Module wrapper to hold the VibeVoice model and processor."""
def __init__(self, model_pack_name):
super().__init__()
self.model_pack_name = model_pack_name
self.model = None
self.processor = None
self.size = int(MODEL_CONFIGS[model_pack_name].get("size_gb", 4.0) * (1024**3))
def load_model(self, device):
self.model, self.processor = VibeVoiceLoader.load_model(self.model_pack_name)
self.model.to(device)
class VibeVoicePatcher(comfy.model_patcher.ModelPatcher):
"""Custom ModelPatcher for managing VibeVoice models in ComfyUI."""
def __init__(self, model, *args, **kwargs):
super().__init__(model, *args, **kwargs)
def patch_model(self, device_to=None, *args, **kwargs):
target_device = self.load_device
if self.model.model is None:
logger.info(f"Loading VibeVoice models for '{self.model.model_pack_name}' to {target_device}...")
self.model.load_model(target_device)
self.model.model.to(target_device)
return super().patch_model(device_to=target_device, *args, **kwargs)
def unpatch_model(self, device_to=None, unpatch_weights=True, *args, **kwargs):
if unpatch_weights:
logger.info(f"Offloading VibeVoice models for '{self.model.model_pack_name}' to {device_to}...")
self.model.model = None
self.model.processor = None
if self.model.model_pack_name in LOADED_MODELS:
del LOADED_MODELS[self.model.model_pack_name]
model_management.soft_empty_cache()
return super().unpatch_model(device_to, unpatch_weights, *args, **kwargs)
class VibeVoiceLoader:
@staticmethod
def get_model_path(model_name: str):
if model_name not in MODEL_CONFIGS:
raise ValueError(f"Unknown VibeVoice model: {model_name}")
vibevoice_path = os.path.join(folder_paths.get_folder_paths("tts")[0], "VibeVoice")
model_path = os.path.join(vibevoice_path, model_name)
index_file = os.path.join(model_path, "model.safetensors.index.json")
if not os.path.exists(index_file):
print(f"Downloading VibeVoice model: {model_name}...")
repo_id = MODEL_CONFIGS[model_name]["repo_id"]
snapshot_download(repo_id=repo_id, local_dir=model_path)
return model_path
@staticmethod
def load_model(model_name: str):
if model_name in LOADED_MODELS:
return LOADED_MODELS[model_name]
model_path = VibeVoiceLoader.get_model_path(model_name)
print(f"Loading VibeVoice model components from: {model_path}")
processor = VibeVoiceProcessor.from_pretrained(model_path)
torch_dtype = model_management.text_encoder_dtype(model_management.get_torch_device())
model = VibeVoiceForConditionalGenerationInference.from_pretrained(
model_path,
torch_dtype=torch_dtype,
attn_implementation="flash_attention_2" if hasattr(torch.nn.functional, 'scaled_dot_product_attention') and torch_dtype != torch.float32 else "eager",
)
model.eval()
LOADED_MODELS[model_name] = (model, processor)
return model, processor
def set_vibevoice_seed(seed: int):
"""Sets the seed for torch, numpy, and random, handling large seeds for numpy."""
if seed == 0:
seed = random.randint(1, 0xffffffffffffffff)
MAX_NUMPY_SEED = 2**32 - 1
numpy_seed = seed % MAX_NUMPY_SEED
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
np.random.seed(numpy_seed)
random.seed(seed)
def parse_script_1_based(script: str) -> tuple[list[tuple[int, str]], list[int]]:
"""
Parses a 1-based speaker script into a list of (speaker_id, text) tuples
and a list of unique speaker IDs in the order of their first appearance.
Internally, it converts speaker IDs to 0-based for the model.
"""
parsed_lines = []
speaker_ids_in_script = [] # This will store the 1-based IDs from the script
for line in script.strip().split("\n"):
if not (line := line.strip()): continue
match = re.match(r'^Speaker\s+(\d+)\s*:\s*(.*)$', line, re.IGNORECASE)
if match:
speaker_id = int(match.group(1))
if speaker_id < 1:
logger.warning(f"Speaker ID must be 1 or greater. Skipping line: '{line}'")
continue
text = ' ' + match.group(2).strip()
# Internally, the model expects 0-based indexing for speakers
internal_speaker_id = speaker_id - 1
parsed_lines.append((internal_speaker_id, text))
if speaker_id not in speaker_ids_in_script:
speaker_ids_in_script.append(speaker_id)
else:
logger.warning(f"Could not parse line, skipping: '{line}'")
return parsed_lines, sorted(list(set(speaker_ids_in_script)))
def preprocess_comfy_audio(audio_dict: dict, target_sr: int = 24000) -> np.ndarray:
"""
Converts a ComfyUI AUDIO dict to a mono NumPy array, resampling if necessary.
"""
if not audio_dict: return None
waveform_tensor = audio_dict.get('waveform')
if waveform_tensor is None or waveform_tensor.numel() == 0: return None
waveform = waveform_tensor[0].cpu().numpy()
original_sr = audio_dict['sample_rate']
if waveform.ndim > 1:
waveform = np.mean(waveform, axis=0)
if original_sr != target_sr:
logger.warning(f"Resampling reference audio from {original_sr}Hz to {target_sr}Hz.")
waveform = librosa.resample(y=waveform, orig_sr=original_sr, target_sr=target_sr)
return waveform.astype(np.float32)
class VibeVoiceTTSNode:
@classmethod
def INPUT_TYPES(cls):
return {
"required": {
"model_name": (list(MODEL_CONFIGS.keys()), {
"tooltip": "Select the VibeVoice model to use. Models will be downloaded automatically if not present."
}),
"text": ("STRING", {
"multiline": True,
"default": "Speaker 1: Hello from ComfyUI!\nSpeaker 2: VibeVoice sounds amazing.",
"tooltip": "The script for the conversation. Use 'Speaker 1:', 'Speaker 2:', etc. to assign lines to different voices. Each speaker line should be on a new line."
}),
"cfg_scale": ("FLOAT", {
"default": 1.3, "min": 1.0, "max": 2.0, "step": 0.05,
"tooltip": "Classifier-Free Guidance scale. Higher values increase adherence to the voice prompt but may reduce naturalness. Recommended: 1.3"
}),
"inference_steps": ("INT", {
"default": 10, "min": 1, "max": 50,
"tooltip": "Number of diffusion steps for audio generation. More steps can improve quality but take longer. Recommended: 10"
}),
"seed": ("INT", {
"default": 42, "min": 0, "max": 0xFFFFFFFFFFFFFFFF, "control_after_generate": True,
"tooltip": "Seed for reproducibility. Set to 0 for a random seed on each run."
}),
"do_sample": ("BOOLEAN", {
"default": True, "label_on": "Enabled (Sampling)", "label_off": "Disabled (Greedy)",
"tooltip": "Enable to use sampling methods (like temperature and top_p) for more varied output. Disable for deterministic (greedy) decoding."
}),
"temperature": ("FLOAT", {
"default": 0.95, "min": 0.0, "max": 2.0, "step": 0.01,
"tooltip": "Controls randomness. Higher values make the output more random and creative, while lower values make it more focused and deterministic. Active only if 'do_sample' is enabled."
}),
"top_p": ("FLOAT", {
"default": 0.95, "min": 0.0, "max": 1.0, "step": 0.01,
"tooltip": "Nucleus sampling (Top-P). The model samples from the smallest set of tokens whose cumulative probability exceeds this value. Active only if 'do_sample' is enabled."
}),
"top_k": ("INT", {
"default": 0, "min": 0, "max": 500, "step": 1,
"tooltip": "Top-K sampling. Restricts sampling to the K most likely next tokens. Set to 0 to disable. Active only if 'do_sample' is enabled."
}),
},
"optional": {
"speaker_1_voice": ("AUDIO", {"tooltip": "Reference audio for 'Speaker 1' in the script."}),
"speaker_2_voice": ("AUDIO", {"tooltip": "Reference audio for 'Speaker 2' in the script."}),
"speaker_3_voice": ("AUDIO", {"tooltip": "Reference audio for 'Speaker 3' in the script."}),
"speaker_4_voice": ("AUDIO", {"tooltip": "Reference audio for 'Speaker 4' in the script."}),
}
}
RETURN_TYPES = ("AUDIO",)
FUNCTION = "generate_audio"
CATEGORY = "audio/tts"
def generate_audio(self, model_name, text, cfg_scale, inference_steps, seed, do_sample, temperature, top_p, top_k, **kwargs):
if not text.strip():
logger.warning("VibeVoiceTTS: Empty text provided, returning silent audio.")
return ({"waveform": torch.zeros((1, 1, 24000), dtype=torch.float32), "sample_rate": 24000},)
cache_key = model_name
if cache_key not in VIBEVOICE_PATCHER_CACHE:
model_handler = VibeVoiceModelHandler(model_name)
patcher = VibeVoicePatcher(
model_handler,
load_device=model_management.get_torch_device(),
offload_device=model_management.unet_offload_device(),
size=model_handler.size
)
VIBEVOICE_PATCHER_CACHE[cache_key] = patcher
patcher = VIBEVOICE_PATCHER_CACHE[cache_key]
model_management.load_model_gpu(patcher)
model = patcher.model.model
processor = patcher.model.processor
if model is None or processor is None:
raise RuntimeError("VibeVoice model and processor could not be loaded. Check logs for errors.")
parsed_lines_0_based, speaker_ids_1_based = parse_script_1_based(text)
if not parsed_lines_0_based:
raise ValueError("Script is empty or invalid. Use 'Speaker 1:', 'Speaker 2:', etc. format.")
full_script = "\n".join([f"Speaker {spk}: {txt}" for spk, txt in parsed_lines_0_based])
speaker_inputs = {i: kwargs.get(f"speaker_{i}_voice") for i in range(1, 5)}
voice_samples_np = [preprocess_comfy_audio(speaker_inputs[sid]) for sid in speaker_ids_1_based]
if any(v is None for v in voice_samples_np):
missing_ids = [sid for sid, v in zip(speaker_ids_1_based, voice_samples_np) if v is None]
raise ValueError(f"Script requires voices for Speakers {missing_ids}, but they were not provided.")
set_vibevoice_seed(seed)
inputs = processor(
text=[full_script], voice_samples=[voice_samples_np], padding=True,
return_tensors="pt", return_attention_mask=True
)
inputs = {k: v.to(model.device) if isinstance(v, torch.Tensor) else v for k, v in inputs.items()}
model.set_ddpm_inference_steps(num_steps=inference_steps)
generation_config = {'do_sample': do_sample}
if do_sample:
generation_config['temperature'] = temperature
generation_config['top_p'] = top_p
if top_k > 0:
generation_config['top_k'] = top_k
with torch.no_grad():
outputs = model.generate(
**inputs, max_new_tokens=None, cfg_scale=cfg_scale,
tokenizer=processor.tokenizer, generation_config=generation_config,
verbose=False
)
output_waveform = outputs.speech_outputs[0]
if output_waveform.ndim == 1: output_waveform = output_waveform.unsqueeze(0)
if output_waveform.ndim == 2: output_waveform = output_waveform.unsqueeze(0)
return ({"waveform": output_waveform.detach().cpu(), "sample_rate": 24000},)
NODE_CLASS_MAPPINGS = {"VibeVoiceTTS": VibeVoiceTTSNode}
NODE_DISPLAY_NAME_MAPPINGS = {"VibeVoiceTTS": "VibeVoice TTS"}