Merge pull request #7 from Saganaki22/main

Add configurable attention modes with compatibility checks
This commit is contained in:
WildAi
2025-08-28 09:19:53 +03:00
committed by GitHub

View File

@@ -6,6 +6,7 @@ import random
from huggingface_hub import snapshot_download
import logging
import librosa
import gc
import folder_paths
import comfy.model_management as model_management
@@ -33,40 +34,94 @@ MODEL_CONFIGS = {
}
}
ATTENTION_MODES = ["eager", "sdpa", "flash_attention_2"]
def cleanup_old_models(keep_cache_key=None):
"""Clean up old models, optionally keeping one specific model loaded"""
global LOADED_MODELS, VIBEVOICE_PATCHER_CACHE
keys_to_remove = []
# Clear LOADED_MODELS
for key in list(LOADED_MODELS.keys()):
if key != keep_cache_key:
keys_to_remove.append(key)
del LOADED_MODELS[key]
# Clear VIBEVOICE_PATCHER_CACHE - but more carefully
for key in list(VIBEVOICE_PATCHER_CACHE.keys()):
if key != keep_cache_key:
# Set the model/processor to None but don't delete the patcher itself
# This lets ComfyUI's model management handle the patcher cleanup
try:
patcher = VIBEVOICE_PATCHER_CACHE[key]
if hasattr(patcher, 'model') and patcher.model:
patcher.model.model = None
patcher.model.processor = None
# Remove from our cache but let ComfyUI handle the rest
del VIBEVOICE_PATCHER_CACHE[key]
except Exception as e:
logger.warning(f"Error cleaning up patcher {key}: {e}")
if keys_to_remove:
logger.info(f"Cleaned up cached models: {keys_to_remove}")
gc.collect()
model_management.soft_empty_cache()
class VibeVoiceModelHandler(torch.nn.Module):
"""A torch.nn.Module wrapper to hold the VibeVoice model and processor."""
def __init__(self, model_pack_name):
def __init__(self, model_pack_name, attention_mode="eager"):
super().__init__()
self.model_pack_name = model_pack_name
self.attention_mode = attention_mode
self.cache_key = f"{model_pack_name}_attn_{attention_mode}"
self.model = None
self.processor = None
self.size = int(MODEL_CONFIGS[model_pack_name].get("size_gb", 4.0) * (1024**3))
def load_model(self, device):
self.model, self.processor = VibeVoiceLoader.load_model(self.model_pack_name)
def load_model(self, device, attention_mode="eager"):
self.model, self.processor = VibeVoiceLoader.load_model(self.model_pack_name, attention_mode)
self.model.to(device)
class VibeVoicePatcher(comfy.model_patcher.ModelPatcher):
"""Custom ModelPatcher for managing VibeVoice models in ComfyUI."""
def __init__(self, model, *args, **kwargs):
def __init__(self, model, attention_mode="eager", *args, **kwargs):
super().__init__(model, *args, **kwargs)
self.attention_mode = attention_mode
self.cache_key = model.cache_key
def patch_model(self, device_to=None, *args, **kwargs):
target_device = self.load_device
if self.model.model is None:
logger.info(f"Loading VibeVoice models for '{self.model.model_pack_name}' to {target_device}...")
self.model.load_model(target_device)
mode_names = {
"eager": "Eager (Most Compatible)",
"sdpa": "SDPA (Balanced Speed/Compatibility)",
"flash_attention_2": "Flash Attention 2 (Fastest)"
}
logger.info(f"Attention Mode: {mode_names.get(self.attention_mode, self.attention_mode)}")
self.model.load_model(target_device, self.attention_mode)
self.model.model.to(target_device)
return super().patch_model(device_to=target_device, *args, **kwargs)
def unpatch_model(self, device_to=None, unpatch_weights=True, *args, **kwargs):
if unpatch_weights:
logger.info(f"Offloading VibeVoice models for '{self.model.model_pack_name}' to {device_to}...")
logger.info(f"Offloading VibeVoice models for '{self.model.model_pack_name}' ({self.attention_mode}) to {device_to}...")
self.model.model = None
self.model.processor = None
if self.model.model_pack_name in LOADED_MODELS:
del LOADED_MODELS[self.model.model_pack_name]
# Clear using the correct cache key
if self.cache_key in LOADED_MODELS:
del LOADED_MODELS[self.cache_key]
logger.info(f"Cleared LOADED_MODELS cache for: {self.cache_key}")
# DON'T delete from VIBEVOICE_PATCHER_CACHE here - let ComfyUI handle it
# This prevents the IndexError in ComfyUI's model management
# Force garbage collection
gc.collect()
model_management.soft_empty_cache()
return super().unpatch_model(device_to, unpatch_weights, *args, **kwargs)
class VibeVoiceLoader:
@@ -86,9 +141,47 @@ class VibeVoiceLoader:
return model_path
@staticmethod
def load_model(model_name: str):
if model_name in LOADED_MODELS:
return LOADED_MODELS[model_name]
def _check_attention_compatibility(attention_mode: str, torch_dtype, device_name: str = ""):
"""Check if the requested attention mode is compatible with current setup."""
# Check for SDPA availability (PyTorch 2.0+)
if attention_mode == "sdpa":
if not hasattr(torch.nn.functional, 'scaled_dot_product_attention'):
logger.warning("SDPA not available (requires PyTorch 2.0+), falling back to eager")
return "eager"
# Check for Flash Attention availability
elif attention_mode == "flash_attention_2":
if not hasattr(torch.nn.functional, 'scaled_dot_product_attention'):
logger.warning("Flash Attention not available, falling back to eager")
return "eager"
elif torch_dtype == torch.float32:
logger.warning("Flash Attention not recommended with float32, falling back to SDPA")
return "sdpa" if hasattr(torch.nn.functional, 'scaled_dot_product_attention') else "eager"
# Just informational messages, no forced fallbacks
if device_name and torch.cuda.is_available():
if "RTX 50" in device_name or "Blackwell" in device_name:
if attention_mode == "flash_attention_2":
logger.info(f"Using Flash Attention on {device_name}")
elif attention_mode == "sdpa":
logger.info(f"Using SDPA on {device_name}")
return attention_mode
@staticmethod
def load_model(model_name: str, attention_mode: str = "eager"):
# Validate attention mode
if attention_mode not in ATTENTION_MODES:
logger.warning(f"Unknown attention mode '{attention_mode}', falling back to eager")
attention_mode = "eager"
# Create cache key that includes attention mode
cache_key = f"{model_name}_attn_{attention_mode}"
if cache_key in LOADED_MODELS:
logger.info(f"Using cached model with {attention_mode} attention")
return LOADED_MODELS[cache_key]
model_path = VibeVoiceLoader.get_model_path(model_name)
@@ -96,16 +189,74 @@ class VibeVoiceLoader:
processor = VibeVoiceProcessor.from_pretrained(model_path)
torch_dtype = model_management.text_encoder_dtype(model_management.get_torch_device())
model = VibeVoiceForConditionalGenerationInference.from_pretrained(
model_path,
torch_dtype=torch_dtype,
attn_implementation="flash_attention_2" if hasattr(torch.nn.functional, 'scaled_dot_product_attention') and torch_dtype != torch.float32 else "eager",
)
model.eval()
device_name = torch.cuda.get_device_name() if torch.cuda.is_available() else ""
LOADED_MODELS[model_name] = (model, processor)
return model, processor
# Check compatibility and potentially fall back to safer mode
final_attention_mode = VibeVoiceLoader._check_attention_compatibility(
attention_mode, torch_dtype, device_name
)
print(f"Requested attention mode: {attention_mode}")
if final_attention_mode != attention_mode:
print(f"Using attention mode: {final_attention_mode} (automatic fallback)")
# Update cache key to reflect actual mode used
cache_key = f"{model_name}_attn_{final_attention_mode}"
if cache_key in LOADED_MODELS:
return LOADED_MODELS[cache_key]
else:
print(f"Using attention mode: {final_attention_mode}")
logger.info(f"Final attention implementation: {final_attention_mode}")
# Modify config for non-flash attention modes
if final_attention_mode in ["eager", "sdpa"]:
import json
config_path = os.path.join(model_path, "config.json")
if os.path.exists(config_path):
try:
with open(config_path, 'r') as f:
config = json.load(f)
# Remove flash attention settings
removed_keys = []
for key in ['_attn_implementation', 'attn_implementation', 'use_flash_attention_2']:
if key in config:
config.pop(key)
removed_keys.append(key)
if removed_keys:
with open(config_path, 'w') as f:
json.dump(config, f, indent=2)
logger.info(f"Removed FlashAttention settings from config.json: {removed_keys}")
except Exception as e:
logger.warning(f"Could not modify config.json: {e}")
try:
model = VibeVoiceForConditionalGenerationInference.from_pretrained(
model_path,
torch_dtype=torch_dtype,
attn_implementation=final_attention_mode,
)
model.eval()
# Store with the actual attention mode used (not the requested one)
LOADED_MODELS[cache_key] = (model, processor)
logger.info(f"Successfully loaded model with {final_attention_mode} attention")
return model, processor
except Exception as e:
logger.error(f"Failed to load model with {final_attention_mode} attention: {e}")
# Progressive fallback: flash -> sdpa -> eager
if final_attention_mode == "flash_attention_2":
logger.info("Attempting fallback to SDPA...")
return VibeVoiceLoader.load_model(model_name, "sdpa")
elif final_attention_mode == "sdpa":
logger.info("Attempting fallback to eager...")
return VibeVoiceLoader.load_model(model_name, "eager")
else:
# If eager fails, something is seriously wrong
raise RuntimeError(f"Failed to load model even with eager attention: {e}")
def set_vibevoice_seed(seed: int):
@@ -162,9 +313,29 @@ def preprocess_comfy_audio(audio_dict: dict, target_sr: int = 24000) -> np.ndarr
if waveform.ndim > 1:
waveform = np.mean(waveform, axis=0)
# Check for invalid values
if np.any(np.isnan(waveform)) or np.any(np.isinf(waveform)):
logger.error("Audio contains NaN or Inf values, replacing with zeros")
waveform = np.nan_to_num(waveform, nan=0.0, posinf=0.0, neginf=0.0)
# Ensure audio is not completely silent or has extreme values
if np.all(waveform == 0):
logger.warning("Audio waveform is completely silent")
# Normalize extreme values
max_val = np.abs(waveform).max()
if max_val > 10.0:
logger.warning(f"Audio values are very large (max: {max_val}), normalizing")
waveform = waveform / max_val
if original_sr != target_sr:
logger.warning(f"Resampling reference audio from {original_sr}Hz to {target_sr}Hz.")
waveform = librosa.resample(y=waveform, orig_sr=original_sr, target_sr=target_sr)
# Final check after resampling
if np.any(np.isnan(waveform)) or np.any(np.isinf(waveform)):
logger.error("Audio contains NaN or Inf after resampling, replacing with zeros")
waveform = np.nan_to_num(waveform, nan=0.0, posinf=0.0, neginf=0.0)
return waveform.astype(np.float32)
@@ -182,6 +353,10 @@ class VibeVoiceTTSNode:
"default": "Speaker 1: Hello from ComfyUI!\nSpeaker 2: VibeVoice sounds amazing.",
"tooltip": "The script for the conversation. Use 'Speaker 1:', 'Speaker 2:', etc. to assign lines to different voices. Each speaker line should be on a new line."
}),
"attention_mode": (["eager", "sdpa", "flash_attention_2"], {
"default": "sdpa",
"tooltip": "Attention implementation: Eager (safest), SDPA (balanced), Flash Attention 2 (fastest but may cause issues on some GPUs like RTX 5090)"
}),
"cfg_scale": ("FLOAT", {
"default": 1.3, "min": 1.0, "max": 2.0, "step": 0.05,
"tooltip": "Classifier-Free Guidance scale. Higher values increase adherence to the voice prompt but may reduce naturalness. Recommended: 1.3"
@@ -223,16 +398,23 @@ class VibeVoiceTTSNode:
FUNCTION = "generate_audio"
CATEGORY = "audio/tts"
def generate_audio(self, model_name, text, cfg_scale, inference_steps, seed, do_sample, temperature, top_p, top_k, **kwargs):
def generate_audio(self, model_name, text, attention_mode, cfg_scale, inference_steps, seed, do_sample, temperature, top_p, top_k, **kwargs):
if not text.strip():
logger.warning("VibeVoiceTTS: Empty text provided, returning silent audio.")
return ({"waveform": torch.zeros((1, 1, 24000), dtype=torch.float32), "sample_rate": 24000},)
cache_key = model_name
# Create cache key that includes attention mode
cache_key = f"{model_name}_attn_{attention_mode}"
# Clean up old models when switching to a different model
if cache_key not in VIBEVOICE_PATCHER_CACHE:
model_handler = VibeVoiceModelHandler(model_name)
# Only keep models that are currently being requested
cleanup_old_models(keep_cache_key=cache_key)
model_handler = VibeVoiceModelHandler(model_name, attention_mode)
patcher = VibeVoicePatcher(
model_handler,
model_handler,
attention_mode=attention_mode,
load_device=model_management.get_torch_device(),
offload_device=model_management.unet_offload_device(),
size=model_handler.size
@@ -262,27 +444,100 @@ class VibeVoiceTTSNode:
set_vibevoice_seed(seed)
inputs = processor(
text=[full_script], voice_samples=[voice_samples_np], padding=True,
return_tensors="pt", return_attention_mask=True
)
inputs = {k: v.to(model.device) if isinstance(v, torch.Tensor) else v for k, v in inputs.items()}
model.set_ddpm_inference_steps(num_steps=inference_steps)
generation_config = {'do_sample': do_sample}
if do_sample:
generation_config['temperature'] = temperature
generation_config['top_p'] = top_p
if top_k > 0:
generation_config['top_k'] = top_k
with torch.no_grad():
outputs = model.generate(
**inputs, max_new_tokens=None, cfg_scale=cfg_scale,
tokenizer=processor.tokenizer, generation_config=generation_config,
verbose=False
try:
inputs = processor(
text=[full_script], voice_samples=[voice_samples_np], padding=True,
return_tensors="pt", return_attention_mask=True
)
# Validate inputs before moving to GPU
for key, value in inputs.items():
if isinstance(value, torch.Tensor):
if torch.any(torch.isnan(value)) or torch.any(torch.isinf(value)):
logger.error(f"Input tensor '{key}' contains NaN or Inf values")
raise ValueError(f"Invalid values in input tensor: {key}")
inputs = {k: v.to(model.device) if isinstance(v, torch.Tensor) else v for k, v in inputs.items()}
model.set_ddpm_inference_steps(num_steps=inference_steps)
generation_config = {'do_sample': do_sample}
if do_sample:
generation_config['temperature'] = temperature
generation_config['top_p'] = top_p
if top_k > 0:
generation_config['top_k'] = top_k
# Hardware-specific optimizations - only for eager mode
if attention_mode == "eager":
# Apply RTX 5090 / Blackwell compatibility fixes only for eager
torch.backends.cuda.matmul.allow_tf32 = False
torch.backends.cudnn.allow_tf32 = False
torch.cuda.empty_cache()
# Apply additional tensor fixes for eager mode
model = model.float()
processed_inputs = {}
for k, v in inputs.items():
if isinstance(v, torch.Tensor):
# Keep integer/boolean tensors as-is (token IDs, attention masks, etc.)
if v.dtype in [torch.int, torch.long, torch.int32, torch.int64, torch.bool, torch.uint8]:
processed_inputs[k] = v
# Keep tensors with "mask" in their name as boolean
elif "mask" in k.lower():
processed_inputs[k] = v.bool() if v.dtype != torch.bool else v
else:
# Convert float/bfloat16 tensors to float32
processed_inputs[k] = v.float()
else:
processed_inputs[k] = v
inputs = processed_inputs
with torch.no_grad():
# Create progress bar for inference steps
pbar = ProgressBar(inference_steps)
def progress_callback(step, total_steps):
pbar.update(1)
# Check for interruption from ComfyUI
if model_management.interrupt_current_processing:
raise comfy.model_management.InterruptProcessingException()
# Custom generation loop with interruption support
try:
outputs = model.generate(
**inputs, max_new_tokens=None, cfg_scale=cfg_scale,
tokenizer=processor.tokenizer, generation_config=generation_config,
verbose=False
)
# Note: The model.generate method doesn't support progress callbacks in the current VibeVoice implementation
# But we check for interruption at the start and end of generation
pbar.update(inference_steps - pbar.current)
except RuntimeError as e:
error_msg = str(e).lower()
if "assertion" in error_msg or "cuda" in error_msg:
logger.error(f"CUDA assertion failed with {attention_mode} attention: {e}")
logger.error("This might be due to invalid input data, GPU memory issues, or incompatible attention mode.")
logger.error("Try restarting ComfyUI, using different audio files, or switching to 'eager' attention mode.")
raise e
except comfy.model_management.InterruptProcessingException:
logger.info("VibeVoice generation interrupted by user")
raise
finally:
pbar.update_absolute(inference_steps)
except comfy.model_management.InterruptProcessingException:
logger.info("VibeVoice TTS generation was cancelled")
# Return silent audio on cancellation
return ({"waveform": torch.zeros((1, 1, 24000), dtype=torch.float32), "sample_rate": 24000},)
except Exception as e:
logger.error(f"Error during VibeVoice generation with {attention_mode} attention: {e}")
if "interrupt" in str(e).lower() or "cancel" in str(e).lower():
logger.info("Generation was interrupted")
return ({"waveform": torch.zeros((1, 1, 24000), dtype=torch.float32), "sample_rate": 24000},)
raise
output_waveform = outputs.speech_outputs[0]
if output_waveform.ndim == 1: output_waveform = output_waveform.unsqueeze(0)
@@ -291,4 +546,4 @@ class VibeVoiceTTSNode:
return ({"waveform": output_waveform.detach().cpu(), "sample_rate": 24000},)
NODE_CLASS_MAPPINGS = {"VibeVoiceTTS": VibeVoiceTTSNode}
NODE_DISPLAY_NAME_MAPPINGS = {"VibeVoiceTTS": "VibeVoice TTS"}
NODE_DISPLAY_NAME_MAPPINGS = {"VibeVoiceTTS": "VibeVoice TTS"}