mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-02-18 22:20:03 +00:00
MPDynamic: force load flux img_in weight (Fixes flux1 canny+depth lora crash) (#12446)
* lora: add weight shape calculations. This lets the loader know if a lora will change the shape of a weight so it can take appropriate action. * MPDynamic: force load flux img_in weight This weight is a bit special, in that the lora changes its geometry. This is rather unique, not handled by existing estimate and doesn't work for either offloading or dynamic_vram. Fix for dynamic_vram as a special case. Ideally we can fully precalculate these lora geometry changes at load time, but just get these models working first.
This commit is contained in:
@@ -374,6 +374,31 @@ def pad_tensor_to_shape(tensor: torch.Tensor, new_shape: list[int]) -> torch.Ten
|
||||
|
||||
return padded_tensor
|
||||
|
||||
def calculate_shape(patches, weight, key, original_weights=None):
|
||||
current_shape = weight.shape
|
||||
|
||||
for p in patches:
|
||||
v = p[1]
|
||||
offset = p[3]
|
||||
|
||||
# Offsets restore the old shape; lists force a diff without metadata
|
||||
if offset is not None or isinstance(v, list):
|
||||
continue
|
||||
|
||||
if isinstance(v, weight_adapter.WeightAdapterBase):
|
||||
adapter_shape = v.calculate_shape(key)
|
||||
if adapter_shape is not None:
|
||||
current_shape = adapter_shape
|
||||
continue
|
||||
|
||||
# Standard diff logic with padding
|
||||
if len(v) == 2:
|
||||
patch_type, patch_data = v[0], v[1]
|
||||
if patch_type == "diff" and len(patch_data) > 1 and patch_data[1]['pad_weight']:
|
||||
current_shape = patch_data[0].shape
|
||||
|
||||
return current_shape
|
||||
|
||||
def calculate_weight(patches, weight, key, intermediate_dtype=torch.float32, original_weights=None):
|
||||
for p in patches:
|
||||
strength = p[0]
|
||||
|
||||
@@ -1514,8 +1514,10 @@ class ModelPatcherDynamic(ModelPatcher):
|
||||
|
||||
weight, _, _ = get_key_weight(self.model, key)
|
||||
if weight is None:
|
||||
return 0
|
||||
return (False, 0)
|
||||
if key in self.patches:
|
||||
if comfy.lora.calculate_shape(self.patches[key], weight, key) != weight.shape:
|
||||
return (True, 0)
|
||||
setattr(m, param_key + "_lowvram_function", LowVramPatch(key, self.patches))
|
||||
num_patches += 1
|
||||
else:
|
||||
@@ -1529,7 +1531,13 @@ class ModelPatcherDynamic(ModelPatcher):
|
||||
model_dtype = getattr(m, param_key + "_comfy_model_dtype", None) or weight.dtype
|
||||
weight._model_dtype = model_dtype
|
||||
geometry = comfy.memory_management.TensorGeometry(shape=weight.shape, dtype=model_dtype)
|
||||
return comfy.memory_management.vram_aligned_size(geometry)
|
||||
return (False, comfy.memory_management.vram_aligned_size(geometry))
|
||||
|
||||
def force_load_param(self, param_key, device_to):
|
||||
key = key_param_name_to_key(n, param_key)
|
||||
if key in self.backup:
|
||||
comfy.utils.set_attr_param(self.model, key, self.backup[key].weight)
|
||||
self.patch_weight_to_device(key, device_to=device_to)
|
||||
|
||||
if hasattr(m, "comfy_cast_weights"):
|
||||
m.comfy_cast_weights = True
|
||||
@@ -1537,13 +1545,19 @@ class ModelPatcherDynamic(ModelPatcher):
|
||||
m.seed_key = n
|
||||
set_dirty(m, dirty)
|
||||
|
||||
v_weight_size = 0
|
||||
v_weight_size += setup_param(self, m, n, "weight")
|
||||
v_weight_size += setup_param(self, m, n, "bias")
|
||||
force_load, v_weight_size = setup_param(self, m, n, "weight")
|
||||
force_load_bias, v_weight_bias = setup_param(self, m, n, "bias")
|
||||
force_load = force_load or force_load_bias
|
||||
v_weight_size += v_weight_bias
|
||||
|
||||
if vbar is not None and not hasattr(m, "_v"):
|
||||
m._v = vbar.alloc(v_weight_size)
|
||||
allocated_size += v_weight_size
|
||||
if force_load:
|
||||
logging.info(f"Module {n} has resizing Lora - force loading")
|
||||
force_load_param(self, "weight", device_to)
|
||||
force_load_param(self, "bias", device_to)
|
||||
else:
|
||||
if vbar is not None and not hasattr(m, "_v"):
|
||||
m._v = vbar.alloc(v_weight_size)
|
||||
allocated_size += v_weight_size
|
||||
|
||||
else:
|
||||
for param in params:
|
||||
@@ -1606,6 +1620,11 @@ class ModelPatcherDynamic(ModelPatcher):
|
||||
for m in self.model.modules():
|
||||
move_weight_functions(m, device_to)
|
||||
|
||||
keys = list(self.backup.keys())
|
||||
for k in keys:
|
||||
bk = self.backup[k]
|
||||
comfy.utils.set_attr_param(self.model, k, bk.weight)
|
||||
|
||||
def partially_load(self, device_to, extra_memory=0, force_patch_weights=False):
|
||||
assert not force_patch_weights #See above
|
||||
with self.use_ejected(skip_and_inject_on_exit_only=True):
|
||||
|
||||
@@ -49,6 +49,12 @@ class WeightAdapterBase:
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
def calculate_shape(
|
||||
self,
|
||||
key
|
||||
):
|
||||
return None
|
||||
|
||||
def calculate_weight(
|
||||
self,
|
||||
weight,
|
||||
|
||||
@@ -214,6 +214,13 @@ class LoRAAdapter(WeightAdapterBase):
|
||||
else:
|
||||
return None
|
||||
|
||||
def calculate_shape(
|
||||
self,
|
||||
key
|
||||
):
|
||||
reshape = self.weights[5]
|
||||
return tuple(reshape) if reshape is not None else None
|
||||
|
||||
def calculate_weight(
|
||||
self,
|
||||
weight,
|
||||
|
||||
Reference in New Issue
Block a user