Compare commits

..

5 Commits

Author SHA1 Message Date
comfyanonymous
ca0c349005 Fix 2026-02-12 22:23:21 -05:00
comfyanonymous
3f9800b33a Add process_unet_state_dict method to handle state dict 2026-02-12 22:02:33 -05:00
comfyanonymous
6828021606 Remove unused import in layers.py
Removed unused import of comfy.ops.
2026-02-12 18:01:44 -05:00
comfyanonymous
75e22eb72e Remove unused import in layers.py
Removed unused import of common_dit from layers.py
2026-02-12 17:59:18 -05:00
comfyanonymous
c61f69acf5 Use torch RMSNorm for flux models and refactor hunyuan video code. 2026-02-12 17:57:19 -05:00
10 changed files with 92 additions and 92 deletions

View File

@@ -3,7 +3,6 @@ from torch import Tensor, nn
from comfy.ldm.flux.layers import (
MLPEmbedder,
RMSNorm,
ModulationOut,
)
@@ -29,7 +28,7 @@ class Approximator(nn.Module):
super().__init__()
self.in_proj = operations.Linear(in_dim, hidden_dim, bias=True, dtype=dtype, device=device)
self.layers = nn.ModuleList([MLPEmbedder(hidden_dim, hidden_dim, dtype=dtype, device=device, operations=operations) for x in range( n_layers)])
self.norms = nn.ModuleList([RMSNorm(hidden_dim, dtype=dtype, device=device, operations=operations) for x in range( n_layers)])
self.norms = nn.ModuleList([operations.RMSNorm(hidden_dim, dtype=dtype, device=device) for x in range( n_layers)])
self.out_proj = operations.Linear(hidden_dim, out_dim, dtype=dtype, device=device)
@property

View File

@@ -4,8 +4,6 @@ from functools import lru_cache
import torch
from torch import nn
from comfy.ldm.flux.layers import RMSNorm
class NerfEmbedder(nn.Module):
"""
@@ -145,7 +143,7 @@ class NerfGLUBlock(nn.Module):
# We now need to generate parameters for 3 matrices.
total_params = 3 * hidden_size_x**2 * mlp_ratio
self.param_generator = operations.Linear(hidden_size_s, total_params, dtype=dtype, device=device)
self.norm = RMSNorm(hidden_size_x, dtype=dtype, device=device, operations=operations)
self.norm = operations.RMSNorm(hidden_size_x, dtype=dtype, device=device)
self.mlp_ratio = mlp_ratio
@@ -178,7 +176,7 @@ class NerfGLUBlock(nn.Module):
class NerfFinalLayer(nn.Module):
def __init__(self, hidden_size, out_channels, dtype=None, device=None, operations=None):
super().__init__()
self.norm = RMSNorm(hidden_size, dtype=dtype, device=device, operations=operations)
self.norm = operations.RMSNorm(hidden_size, dtype=dtype, device=device)
self.linear = operations.Linear(hidden_size, out_channels, dtype=dtype, device=device)
def forward(self, x: torch.Tensor) -> torch.Tensor:
@@ -190,7 +188,7 @@ class NerfFinalLayer(nn.Module):
class NerfFinalLayerConv(nn.Module):
def __init__(self, hidden_size: int, out_channels: int, dtype=None, device=None, operations=None):
super().__init__()
self.norm = RMSNorm(hidden_size, dtype=dtype, device=device, operations=operations)
self.norm = operations.RMSNorm(hidden_size, dtype=dtype, device=device)
self.conv = operations.Conv2d(
in_channels=hidden_size,
out_channels=out_channels,

View File

@@ -5,8 +5,6 @@ import torch
from torch import Tensor, nn
from .math import attention, rope
import comfy.ops
import comfy.ldm.common_dit
class EmbedND(nn.Module):
@@ -87,20 +85,12 @@ def build_mlp(hidden_size, mlp_hidden_dim, mlp_silu_act=False, yak_mlp=False, dt
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
)
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int, dtype=None, device=None, operations=None):
super().__init__()
self.scale = nn.Parameter(torch.empty((dim), dtype=dtype, device=device))
def forward(self, x: Tensor):
return comfy.ldm.common_dit.rms_norm(x, self.scale, 1e-6)
class QKNorm(torch.nn.Module):
def __init__(self, dim: int, dtype=None, device=None, operations=None):
super().__init__()
self.query_norm = RMSNorm(dim, dtype=dtype, device=device, operations=operations)
self.key_norm = RMSNorm(dim, dtype=dtype, device=device, operations=operations)
self.query_norm = operations.RMSNorm(dim, dtype=dtype, device=device)
self.key_norm = operations.RMSNorm(dim, dtype=dtype, device=device)
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple:
q = self.query_norm(q)
@@ -169,7 +159,7 @@ class SiLUActivation(nn.Module):
class DoubleStreamBlock(nn.Module):
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, flipped_img_txt=False, modulation=True, mlp_silu_act=False, proj_bias=True, yak_mlp=False, dtype=None, device=None, operations=None):
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, modulation=True, mlp_silu_act=False, proj_bias=True, yak_mlp=False, dtype=None, device=None, operations=None):
super().__init__()
mlp_hidden_dim = int(hidden_size * mlp_ratio)
@@ -197,8 +187,6 @@ class DoubleStreamBlock(nn.Module):
self.txt_mlp = build_mlp(hidden_size, mlp_hidden_dim, mlp_silu_act=mlp_silu_act, yak_mlp=yak_mlp, dtype=dtype, device=device, operations=operations)
self.flipped_img_txt = flipped_img_txt
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims_img=None, modulation_dims_txt=None, transformer_options={}):
if self.modulation:
img_mod1, img_mod2 = self.img_mod(vec)
@@ -224,32 +212,17 @@ class DoubleStreamBlock(nn.Module):
del txt_qkv
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
if self.flipped_img_txt:
q = torch.cat((img_q, txt_q), dim=2)
del img_q, txt_q
k = torch.cat((img_k, txt_k), dim=2)
del img_k, txt_k
v = torch.cat((img_v, txt_v), dim=2)
del img_v, txt_v
# run actual attention
attn = attention(q, k, v,
pe=pe, mask=attn_mask, transformer_options=transformer_options)
del q, k, v
q = torch.cat((txt_q, img_q), dim=2)
del txt_q, img_q
k = torch.cat((txt_k, img_k), dim=2)
del txt_k, img_k
v = torch.cat((txt_v, img_v), dim=2)
del txt_v, img_v
# run actual attention
attn = attention(q, k, v, pe=pe, mask=attn_mask, transformer_options=transformer_options)
del q, k, v
img_attn, txt_attn = attn[:, : img.shape[1]], attn[:, img.shape[1]:]
else:
q = torch.cat((txt_q, img_q), dim=2)
del txt_q, img_q
k = torch.cat((txt_k, img_k), dim=2)
del txt_k, img_k
v = torch.cat((txt_v, img_v), dim=2)
del txt_v, img_v
# run actual attention
attn = attention(q, k, v,
pe=pe, mask=attn_mask, transformer_options=transformer_options)
del q, k, v
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1]:]
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1]:]
# calculate the img bloks
img += apply_mod(self.img_attn.proj(img_attn), img_mod1.gate, None, modulation_dims_img)

View File

@@ -16,7 +16,6 @@ from .layers import (
SingleStreamBlock,
timestep_embedding,
Modulation,
RMSNorm
)
@dataclass
@@ -81,7 +80,7 @@ class Flux(nn.Module):
self.txt_in = operations.Linear(params.context_in_dim, self.hidden_size, bias=params.ops_bias, dtype=dtype, device=device)
if params.txt_norm:
self.txt_norm = RMSNorm(params.context_in_dim, dtype=dtype, device=device, operations=operations)
self.txt_norm = operations.RMSNorm(params.context_in_dim, dtype=dtype, device=device)
else:
self.txt_norm = None

View File

@@ -241,7 +241,6 @@ class HunyuanVideo(nn.Module):
self.num_heads,
mlp_ratio=params.mlp_ratio,
qkv_bias=params.qkv_bias,
flipped_img_txt=True,
dtype=dtype, device=device, operations=operations
)
for _ in range(params.depth)
@@ -378,14 +377,14 @@ class HunyuanVideo(nn.Module):
extra_txt_ids = torch.zeros((txt_ids.shape[0], txt_vision_states.shape[1], txt_ids.shape[-1]), device=txt_ids.device, dtype=txt_ids.dtype)
txt_ids = torch.cat((txt_ids, extra_txt_ids), dim=1)
ids = torch.cat((img_ids, txt_ids), dim=1)
ids = torch.cat((txt_ids, img_ids), dim=1)
pe = self.pe_embedder(ids)
img_len = img.shape[1]
if txt_mask is not None:
attn_mask_len = img_len + txt.shape[1]
attn_mask = torch.zeros((1, 1, attn_mask_len), dtype=img.dtype, device=img.device)
attn_mask[:, 0, img_len:] = txt_mask
attn_mask[:, 0, :txt.shape[1]] = txt_mask
else:
attn_mask = None
@@ -413,7 +412,7 @@ class HunyuanVideo(nn.Module):
if add is not None:
img += add
img = torch.cat((img, txt), 1)
img = torch.cat((txt, img), 1)
transformer_options["total_blocks"] = len(self.single_blocks)
transformer_options["block_type"] = "single"
@@ -435,9 +434,9 @@ class HunyuanVideo(nn.Module):
if i < len(control_o):
add = control_o[i]
if add is not None:
img[:, : img_len] += add
img[:, txt.shape[1]: img_len + txt.shape[1]] += add
img = img[:, : img_len]
img = img[:, txt.shape[1]: img_len + txt.shape[1]]
if ref_latent is not None:
img = img[:, ref_latent.shape[1]:]

View File

@@ -19,6 +19,12 @@ def count_blocks(state_dict_keys, prefix_string):
count += 1
return count
def any_suffix_in(keys, prefix, main, suffix_list=[]):
for x in suffix_list:
if "{}{}{}".format(prefix, main, x) in keys:
return True
return False
def calculate_transformer_depth(prefix, state_dict_keys, state_dict):
context_dim = None
use_linear_in_transformer = False
@@ -186,7 +192,7 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
dit_config["meanflow_sum"] = False
return dit_config
if '{}double_blocks.0.img_attn.norm.key_norm.scale'.format(key_prefix) in state_dict_keys and ('{}img_in.weight'.format(key_prefix) in state_dict_keys or f"{key_prefix}distilled_guidance_layer.norms.0.scale" in state_dict_keys): #Flux, Chroma or Chroma Radiance (has no img_in.weight)
if any_suffix_in(state_dict_keys, key_prefix, 'double_blocks.0.img_attn.norm.key_norm.', ["weight", "scale"]) and ('{}img_in.weight'.format(key_prefix) in state_dict_keys or any_suffix_in(state_dict_keys, key_prefix, 'distilled_guidance_layer.norms.0.', ["weight", "scale"])): #Flux, Chroma or Chroma Radiance (has no img_in.weight)
dit_config = {}
if '{}double_stream_modulation_img.lin.weight'.format(key_prefix) in state_dict_keys:
dit_config["image_model"] = "flux2"
@@ -241,7 +247,8 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
dit_config["depth"] = count_blocks(state_dict_keys, '{}double_blocks.'.format(key_prefix) + '{}.')
dit_config["depth_single_blocks"] = count_blocks(state_dict_keys, '{}single_blocks.'.format(key_prefix) + '{}.')
if '{}distilled_guidance_layer.0.norms.0.scale'.format(key_prefix) in state_dict_keys or '{}distilled_guidance_layer.norms.0.scale'.format(key_prefix) in state_dict_keys: #Chroma
if any_suffix_in(state_dict_keys, key_prefix, 'distilled_guidance_layer.0.norms.0.', ["weight", "scale"]) or any_suffix_in(state_dict_keys, key_prefix, 'distilled_guidance_layer.norms.0.', ["weight", "scale"]): #Chroma
dit_config["image_model"] = "chroma"
dit_config["in_channels"] = 64
dit_config["out_channels"] = 64
@@ -249,7 +256,8 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
dit_config["out_dim"] = 3072
dit_config["hidden_dim"] = 5120
dit_config["n_layers"] = 5
if f"{key_prefix}nerf_blocks.0.norm.scale" in state_dict_keys: #Chroma Radiance
if any_suffix_in(state_dict_keys, key_prefix, 'nerf_blocks.0.norm.', ["weight", "scale"]): #Chroma Radiance
dit_config["image_model"] = "chroma_radiance"
dit_config["in_channels"] = 3
dit_config["out_channels"] = 3
@@ -259,7 +267,7 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
dit_config["nerf_depth"] = 4
dit_config["nerf_max_freqs"] = 8
dit_config["nerf_tile_size"] = 512
dit_config["nerf_final_head_type"] = "conv" if f"{key_prefix}nerf_final_layer_conv.norm.scale" in state_dict_keys else "linear"
dit_config["nerf_final_head_type"] = "conv" if any_suffix_in(state_dict_keys, key_prefix, 'nerf_final_layer_conv.norm.', ["weight", "scale"]) else "linear"
dit_config["nerf_embedder_dtype"] = torch.float32
if "{}__x0__".format(key_prefix) in state_dict_keys: # x0 pred
dit_config["use_x0"] = True
@@ -268,7 +276,7 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
else:
dit_config["guidance_embed"] = "{}guidance_in.in_layer.weight".format(key_prefix) in state_dict_keys
dit_config["yak_mlp"] = '{}double_blocks.0.img_mlp.gate_proj.weight'.format(key_prefix) in state_dict_keys
dit_config["txt_norm"] = "{}txt_norm.scale".format(key_prefix) in state_dict_keys
dit_config["txt_norm"] = any_suffix_in(state_dict_keys, key_prefix, 'txt_norm.', ["weight", "scale"])
if dit_config["yak_mlp"] and dit_config["txt_norm"]: # Ovis model
dit_config["txt_ids_dims"] = [1, 2]

View File

@@ -679,19 +679,18 @@ class ModelPatcher:
for key in list(self.pinned):
self.unpin_weight(key)
def _load_list(self, prio_comfy_cast_weights=False, default_device=None):
def _load_list(self, prio_comfy_cast_weights=False):
loading = []
for n, m in self.model.named_modules():
default = False
params = { name: param for name, param in m.named_parameters(recurse=False) }
params = []
skip = False
for name, param in m.named_parameters(recurse=False):
params.append(name)
for name, param in m.named_parameters(recurse=True):
if name not in params:
default = True # default random weights in non leaf modules
skip = True # skip random weights in non leaf modules
break
if default and default_device is not None:
for param in params.values():
param.data = param.data.to(device=default_device)
if not default and (hasattr(m, "comfy_cast_weights") or len(params) > 0):
if not skip and (hasattr(m, "comfy_cast_weights") or len(params) > 0):
module_mem = comfy.model_management.module_size(m)
module_offload_mem = module_mem
if hasattr(m, "comfy_cast_weights"):
@@ -1496,7 +1495,7 @@ class ModelPatcherDynamic(ModelPatcher):
#with pin and unpin syncrhonization which can be expensive for small weights
#with a high layer rate (e.g. autoregressive LLMs).
#prioritize the non-comfy weights (note the order reverse).
loading = self._load_list(prio_comfy_cast_weights=True, default_device=device_to)
loading = self._load_list(prio_comfy_cast_weights=True)
loading.sort(reverse=True)
for x in loading:
@@ -1580,7 +1579,7 @@ class ModelPatcherDynamic(ModelPatcher):
return 0 if vbar is None else vbar.free_memory(memory_to_free)
def partially_unload_ram(self, ram_to_unload):
loading = self._load_list(prio_comfy_cast_weights=True, default_device=self.offload_device)
loading = self._load_list(prio_comfy_cast_weights=True)
for x in loading:
_, _, _, _, m, _ = x
ram_to_unload -= comfy.pinned_memory.unpin_memory(m)

View File

@@ -710,6 +710,15 @@ class Flux(supported_models_base.BASE):
supported_inference_dtypes = [torch.bfloat16, torch.float16, torch.float32]
def process_unet_state_dict(self, state_dict):
out_sd = {}
for k in list(state_dict.keys()):
key_out = k
if key_out.endswith("_norm.scale"):
key_out = "{}.weight".format(key_out[:-len(".scale")])
out_sd[key_out] = state_dict[k]
return out_sd
vae_key_prefix = ["vae."]
text_encoder_key_prefix = ["text_encoders."]
@@ -898,11 +907,13 @@ class HunyuanVideo(supported_models_base.BASE):
key_out = key_out.replace("txt_in.c_embedder.linear_1.", "txt_in.c_embedder.in_layer.").replace("txt_in.c_embedder.linear_2.", "txt_in.c_embedder.out_layer.")
key_out = key_out.replace("_mod.linear.", "_mod.lin.").replace("_attn_qkv.", "_attn.qkv.")
key_out = key_out.replace("mlp.fc1.", "mlp.0.").replace("mlp.fc2.", "mlp.2.")
key_out = key_out.replace("_attn_q_norm.weight", "_attn.norm.query_norm.scale").replace("_attn_k_norm.weight", "_attn.norm.key_norm.scale")
key_out = key_out.replace(".q_norm.weight", ".norm.query_norm.scale").replace(".k_norm.weight", ".norm.key_norm.scale")
key_out = key_out.replace("_attn_q_norm.weight", "_attn.norm.query_norm.weight").replace("_attn_k_norm.weight", "_attn.norm.key_norm.weight")
key_out = key_out.replace(".q_norm.weight", ".norm.query_norm.weight").replace(".k_norm.weight", ".norm.key_norm.weight")
key_out = key_out.replace("_attn_proj.", "_attn.proj.")
key_out = key_out.replace(".modulation.linear.", ".modulation.lin.")
key_out = key_out.replace("_in.mlp.2.", "_in.out_layer.").replace("_in.mlp.0.", "_in.in_layer.")
if key_out.endswith(".scale"):
key_out = "{}.weight".format(key_out[:-len(".scale")])
out_sd[key_out] = state_dict[k]
return out_sd
@@ -1264,6 +1275,15 @@ class Hunyuan3Dv2(supported_models_base.BASE):
latent_format = latent_formats.Hunyuan3Dv2
def process_unet_state_dict(self, state_dict):
out_sd = {}
for k in list(state_dict.keys()):
key_out = k
if key_out.endswith(".scale"):
key_out = "{}.weight".format(key_out[:-len(".scale")])
out_sd[key_out] = state_dict[k]
return out_sd
def process_unet_state_dict_for_saving(self, state_dict):
replace_prefix = {"": "model."}
return utils.state_dict_prefix_replace(state_dict, replace_prefix)
@@ -1341,6 +1361,14 @@ class Chroma(supported_models_base.BASE):
supported_inference_dtypes = [torch.bfloat16, torch.float16, torch.float32]
def process_unet_state_dict(self, state_dict):
out_sd = {}
for k in list(state_dict.keys()):
key_out = k
if key_out.endswith(".scale"):
key_out = "{}.weight".format(key_out[:-len(".scale")])
out_sd[key_out] = state_dict[k]
return out_sd
def get_model(self, state_dict, prefix="", device=None):
out = model_base.Chroma(self, device=device)

View File

@@ -355,6 +355,13 @@ class RMSNorm(nn.Module):
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def precompute_freqs_cis(head_dim, position_ids, theta, rope_scale=None, rope_dims=None, device=None):
if not isinstance(theta, list):
theta = [theta]
@@ -383,30 +390,20 @@ def precompute_freqs_cis(head_dim, position_ids, theta, rope_scale=None, rope_di
else:
cos = cos.unsqueeze(1)
sin = sin.unsqueeze(1)
sin_split = sin.shape[-1] // 2
out.append((cos, sin[..., : sin_split], -sin[..., sin_split :]))
out.append((cos, sin))
if len(out) == 1:
return out[0]
return out
def apply_rope(xq, xk, freqs_cis):
org_dtype = xq.dtype
cos = freqs_cis[0]
sin = freqs_cis[1]
nsin = freqs_cis[2]
q_embed = (xq * cos)
q_split = q_embed.shape[-1] // 2
q_embed[..., : q_split].addcmul_(xq[..., q_split :], nsin)
q_embed[..., q_split :].addcmul_(xq[..., : q_split], sin)
k_embed = (xk * cos)
k_split = k_embed.shape[-1] // 2
k_embed[..., : k_split].addcmul_(xk[..., k_split :], nsin)
k_embed[..., k_split :].addcmul_(xk[..., : k_split], sin)
q_embed = (xq * cos) + (rotate_half(xq) * sin)
k_embed = (xk * cos) + (rotate_half(xk) * sin)
return q_embed.to(org_dtype), k_embed.to(org_dtype)

View File

@@ -675,10 +675,10 @@ def flux_to_diffusers(mmdit_config, output_prefix=""):
"ff_context.linear_in.bias": "txt_mlp.0.bias",
"ff_context.linear_out.weight": "txt_mlp.2.weight",
"ff_context.linear_out.bias": "txt_mlp.2.bias",
"attn.norm_q.weight": "img_attn.norm.query_norm.scale",
"attn.norm_k.weight": "img_attn.norm.key_norm.scale",
"attn.norm_added_q.weight": "txt_attn.norm.query_norm.scale",
"attn.norm_added_k.weight": "txt_attn.norm.key_norm.scale",
"attn.norm_q.weight": "img_attn.norm.query_norm.weight",
"attn.norm_k.weight": "img_attn.norm.key_norm.weight",
"attn.norm_added_q.weight": "txt_attn.norm.query_norm.weight",
"attn.norm_added_k.weight": "txt_attn.norm.key_norm.weight",
}
for k in block_map:
@@ -701,8 +701,8 @@ def flux_to_diffusers(mmdit_config, output_prefix=""):
"norm.linear.bias": "modulation.lin.bias",
"proj_out.weight": "linear2.weight",
"proj_out.bias": "linear2.bias",
"attn.norm_q.weight": "norm.query_norm.scale",
"attn.norm_k.weight": "norm.key_norm.scale",
"attn.norm_q.weight": "norm.query_norm.weight",
"attn.norm_k.weight": "norm.key_norm.weight",
"attn.to_qkv_mlp_proj.weight": "linear1.weight", # Flux 2
"attn.to_out.weight": "linear2.weight", # Flux 2
}