Compare commits

..

1 Commits

Author SHA1 Message Date
Jedrzej Kosinski
7b77a0d305 Add workaround in validation.py for V3 Combo outputs not working as Combo inputs 2025-11-04 16:58:34 -08:00
316 changed files with 9105 additions and 40635 deletions

View File

@@ -53,16 +53,6 @@ try:
repo.stash(ident)
except KeyError:
print("nothing to stash") # noqa: T201
except:
print("Could not stash, cleaning index and trying again.") # noqa: T201
repo.state_cleanup()
repo.index.read_tree(repo.head.peel().tree)
repo.index.write()
try:
repo.stash(ident)
except KeyError:
print("nothing to stash.") # noqa: T201
backup_branch_name = 'backup_branch_{}'.format(datetime.today().strftime('%Y-%m-%d_%H_%M_%S'))
print("creating backup branch: {}".format(backup_branch_name)) # noqa: T201
try:
@@ -76,10 +66,8 @@ if branch is None:
try:
ref = repo.lookup_reference('refs/remotes/origin/master')
except:
print("fetching.") # noqa: T201
for remote in repo.remotes:
if remote.name == "origin":
remote.fetch()
print("pulling.") # noqa: T201
pull(repo)
ref = repo.lookup_reference('refs/remotes/origin/master')
repo.checkout(ref)
branch = repo.lookup_branch('master')
@@ -161,4 +149,3 @@ try:
shutil.copy(stable_update_script, stable_update_script_to)
except:
pass

View File

@@ -1,5 +1,5 @@
As of the time of writing this you need this driver for best results:
https://www.amd.com/en/resources/support-articles/release-notes/RN-AMDGPU-WINDOWS-PYTORCH-7-1-1.html
As of the time of writing this you need this preview driver for best results:
https://www.amd.com/en/resources/support-articles/release-notes/RN-AMDGPU-WINDOWS-PYTORCH-PREVIEW.html
HOW TO RUN:
@@ -25,4 +25,3 @@ In the ComfyUI directory you will find a file: extra_model_paths.yaml.example
Rename this file to: extra_model_paths.yaml and edit it with your favorite text editor.

View File

@@ -1,3 +1,3 @@
..\python_embeded\python.exe -s ..\ComfyUI\main.py --windows-standalone-build --disable-api-nodes
echo If you see this and ComfyUI did not start try updating your Nvidia Drivers to the latest. If you get a c10.dll error you need to install vc redist that you can find: https://aka.ms/vc14/vc_redist.x64.exe
echo If you see this and ComfyUI did not start try updating your Nvidia Drivers to the latest.
pause

View File

@@ -1,3 +1,3 @@
.\python_embeded\python.exe -s ComfyUI\main.py --windows-standalone-build
echo If you see this and ComfyUI did not start try updating your Nvidia Drivers to the latest. If you get a c10.dll error you need to install vc redist that you can find: https://aka.ms/vc14/vc_redist.x64.exe
echo If you see this and ComfyUI did not start try updating your Nvidia Drivers to the latest.
pause

View File

@@ -1,3 +1,3 @@
.\python_embeded\python.exe -s ComfyUI\main.py --windows-standalone-build --fast fp16_accumulation
echo If you see this and ComfyUI did not start try updating your Nvidia Drivers to the latest. If you get a c10.dll error you need to install vc redist that you can find: https://aka.ms/vc14/vc_redist.x64.exe
echo If you see this and ComfyUI did not start try updating your Nvidia Drivers to the latest.
pause

View File

@@ -8,15 +8,13 @@ body:
Before submitting a **Bug Report**, please ensure the following:
- **1:** You are running the latest version of ComfyUI.
- **2:** You have your ComfyUI logs and relevant workflow on hand and will post them in this bug report.
- **2:** You have looked at the existing bug reports and made sure this isn't already reported.
- **3:** You confirmed that the bug is not caused by a custom node. You can disable all custom nodes by passing
`--disable-all-custom-nodes` command line argument. If you have custom node try updating them to the latest version.
`--disable-all-custom-nodes` command line argument.
- **4:** This is an actual bug in ComfyUI, not just a support question. A bug is when you can specify exact
steps to replicate what went wrong and others will be able to repeat your steps and see the same issue happen.
## Very Important
Please make sure that you post ALL your ComfyUI logs in the bug report. A bug report without logs will likely be ignored.
If unsure, ask on the [ComfyUI Matrix Space](https://app.element.io/#/room/%23comfyui_space%3Amatrix.org) or the [Comfy Org Discord](https://discord.gg/comfyorg) first.
- type: checkboxes
id: custom-nodes-test
attributes:

View File

@@ -1,21 +0,0 @@
<!-- API_NODE_PR_CHECKLIST: do not remove -->
## API Node PR Checklist
### Scope
- [ ] **Is API Node Change**
### Pricing & Billing
- [ ] **Need pricing update**
- [ ] **No pricing update**
If **Need pricing update**:
- [ ] Metronome rate cards updated
- [ ] Autobilling tests updated and passing
### QA
- [ ] **QA done**
- [ ] **QA not required**
### Comms
- [ ] Informed **Kosinkadink**

View File

@@ -1,58 +0,0 @@
name: Append API Node PR template
on:
pull_request_target:
types: [opened, reopened, synchronize, ready_for_review]
paths:
- 'comfy_api_nodes/**' # only run if these files changed
permissions:
contents: read
pull-requests: write
jobs:
inject:
runs-on: ubuntu-latest
steps:
- name: Ensure template exists and append to PR body
uses: actions/github-script@v7
with:
script: |
const { owner, repo } = context.repo;
const number = context.payload.pull_request.number;
const templatePath = '.github/PULL_REQUEST_TEMPLATE/api-node.md';
const marker = '<!-- API_NODE_PR_CHECKLIST: do not remove -->';
const { data: pr } = await github.rest.pulls.get({ owner, repo, pull_number: number });
let templateText;
try {
const res = await github.rest.repos.getContent({
owner,
repo,
path: templatePath,
ref: pr.base.ref
});
const buf = Buffer.from(res.data.content, res.data.encoding || 'base64');
templateText = buf.toString('utf8');
} catch (e) {
core.setFailed(`Required PR template not found at "${templatePath}" on ${pr.base.ref}. Please add it to the repo.`);
return;
}
// Enforce the presence of the marker inside the template (for idempotence)
if (!templateText.includes(marker)) {
core.setFailed(`Template at "${templatePath}" does not contain the required marker:\n${marker}\nAdd it so we can detect duplicates safely.`);
return;
}
// If the PR already contains the marker, do not append again.
const body = pr.body || '';
if (body.includes(marker)) {
core.info('Template already present in PR body; nothing to inject.');
return;
}
const newBody = (body ? body + '\n\n' : '') + templateText + '\n';
await github.rest.pulls.update({ owner, repo, pull_number: number, body: newBody });
core.notice('API Node template appended to PR description.');

View File

@@ -14,13 +14,13 @@ jobs:
contents: "write"
packages: "write"
pull-requests: "read"
name: "Release NVIDIA Default (cu130)"
name: "Release NVIDIA Default (cu129)"
uses: ./.github/workflows/stable-release.yml
with:
git_tag: ${{ inputs.git_tag }}
cache_tag: "cu130"
python_minor: "13"
python_patch: "11"
python_patch: "9"
rel_name: "nvidia"
rel_extra_name: ""
test_release: true
@@ -43,33 +43,16 @@ jobs:
test_release: true
secrets: inherit
release_nvidia_cu126:
permissions:
contents: "write"
packages: "write"
pull-requests: "read"
name: "Release NVIDIA cu126"
uses: ./.github/workflows/stable-release.yml
with:
git_tag: ${{ inputs.git_tag }}
cache_tag: "cu126"
python_minor: "12"
python_patch: "10"
rel_name: "nvidia"
rel_extra_name: "_cu126"
test_release: true
secrets: inherit
release_amd_rocm:
permissions:
contents: "write"
packages: "write"
pull-requests: "read"
name: "Release AMD ROCm 7.2"
name: "Release AMD ROCm 6.4.4"
uses: ./.github/workflows/stable-release.yml
with:
git_tag: ${{ inputs.git_tag }}
cache_tag: "rocm72"
cache_tag: "rocm644"
python_minor: "12"
python_patch: "10"
rel_name: "amd"

View File

@@ -117,7 +117,7 @@ jobs:
./python.exe get-pip.py
./python.exe -s -m pip install ../${{ inputs.cache_tag }}_python_deps/*
grep comfy ../ComfyUI/requirements.txt > ./requirements_comfyui.txt
grep comfyui ../ComfyUI/requirements.txt > ./requirements_comfyui.txt
./python.exe -s -m pip install -r requirements_comfyui.txt
rm requirements_comfyui.txt

View File

@@ -18,7 +18,7 @@ jobs:
strategy:
fail-fast: false
matrix:
python-version: ["3.10", "3.11", "3.12", "3.13", "3.14"]
python-version: ["3.9", "3.10", "3.11", "3.12", "3.13"]
steps:
- uses: actions/checkout@v4
- name: Set up Python ${{ matrix.python-version }}

View File

@@ -5,7 +5,6 @@ on:
push:
branches:
- master
- release/**
paths-ignore:
- 'app/**'
- 'input/**'
@@ -22,15 +21,14 @@ jobs:
fail-fast: false
matrix:
# os: [macos, linux, windows]
# os: [macos, linux]
os: [linux]
python_version: ["3.10", "3.11", "3.12"]
os: [macos, linux]
python_version: ["3.9", "3.10", "3.11", "3.12"]
cuda_version: ["12.1"]
torch_version: ["stable"]
include:
# - os: macos
# runner_label: [self-hosted, macOS]
# flags: "--use-pytorch-cross-attention"
- os: macos
runner_label: [self-hosted, macOS]
flags: "--use-pytorch-cross-attention"
- os: linux
runner_label: [self-hosted, Linux]
flags: ""
@@ -75,15 +73,14 @@ jobs:
strategy:
fail-fast: false
matrix:
# os: [macos, linux]
os: [linux]
os: [macos, linux]
python_version: ["3.11"]
cuda_version: ["12.1"]
torch_version: ["nightly"]
include:
# - os: macos
# runner_label: [self-hosted, macOS]
# flags: "--use-pytorch-cross-attention"
- os: macos
runner_label: [self-hosted, macOS]
flags: "--use-pytorch-cross-attention"
- os: linux
runner_label: [self-hosted, Linux]
flags: ""

View File

@@ -2,9 +2,9 @@ name: Execution Tests
on:
push:
branches: [ main, master, release/** ]
branches: [ main, master ]
pull_request:
branches: [ main, master, release/** ]
branches: [ main, master ]
jobs:
test:

View File

@@ -2,9 +2,9 @@ name: Test server launches without errors
on:
push:
branches: [ main, master, release/** ]
branches: [ main, master ]
pull_request:
branches: [ main, master, release/** ]
branches: [ main, master ]
jobs:
test:
@@ -13,7 +13,7 @@ jobs:
- name: Checkout ComfyUI
uses: actions/checkout@v4
with:
repository: "Comfy-Org/ComfyUI"
repository: "comfyanonymous/ComfyUI"
path: "ComfyUI"
- uses: actions/setup-python@v4
with:
@@ -32,9 +32,7 @@ jobs:
working-directory: ComfyUI
- name: Check for unhandled exceptions in server log
run: |
grep -v "Found comfy_kitchen backend triton: {'available': False, 'disabled': True, 'unavailable_reason': \"ImportError: No module named 'triton'\", 'capabilities': \[\]}" console_output.log | grep -v "Found comfy_kitchen backend triton: {'available': False, 'disabled': False, 'unavailable_reason': \"ImportError: No module named 'triton'\", 'capabilities': \[\]}" > console_output_filtered.log
cat console_output_filtered.log
if grep -qE "Exception|Error" console_output_filtered.log; then
if grep -qE "Exception|Error" console_output.log; then
echo "Unhandled exception/error found in server log."
exit 1
fi

View File

@@ -2,9 +2,9 @@ name: Unit Tests
on:
push:
branches: [ main, master, release/** ]
branches: [ main, master ]
pull_request:
branches: [ main, master, release/** ]
branches: [ main, master ]
jobs:
test:

View File

@@ -1,59 +0,0 @@
name: "CI: Update CI Container"
on:
release:
types: [published]
workflow_dispatch:
inputs:
version:
description: 'ComfyUI version (e.g., v0.7.0)'
required: true
type: string
jobs:
update-ci-container:
runs-on: ubuntu-latest
# Skip pre-releases unless manually triggered
if: github.event_name == 'workflow_dispatch' || !github.event.release.prerelease
steps:
- name: Get version
id: version
run: |
if [ "${{ github.event_name }}" = "release" ]; then
VERSION="${{ github.event.release.tag_name }}"
else
VERSION="${{ inputs.version }}"
fi
echo "version=$VERSION" >> $GITHUB_OUTPUT
- name: Checkout comfyui-ci-container
uses: actions/checkout@v4
with:
repository: comfy-org/comfyui-ci-container
token: ${{ secrets.CI_CONTAINER_PAT }}
- name: Check current version
id: current
run: |
CURRENT=$(grep -oP 'ARG COMFYUI_VERSION=\K.*' Dockerfile || echo "unknown")
echo "current_version=$CURRENT" >> $GITHUB_OUTPUT
- name: Update Dockerfile
run: |
VERSION="${{ steps.version.outputs.version }}"
sed -i "s/^ARG COMFYUI_VERSION=.*/ARG COMFYUI_VERSION=${VERSION}/" Dockerfile
- name: Create Pull Request
id: create-pr
uses: peter-evans/create-pull-request@v7
with:
token: ${{ secrets.CI_CONTAINER_PAT }}
branch: automation/comfyui-${{ steps.version.outputs.version }}
title: "chore: bump ComfyUI to ${{ steps.version.outputs.version }}"
body: |
Updates ComfyUI version from `${{ steps.current.outputs.current_version }}` to `${{ steps.version.outputs.version }}`
**Triggered by:** ${{ github.event_name == 'release' && format('[Release {0}]({1})', github.event.release.tag_name, github.event.release.html_url) || 'Manual workflow dispatch' }}
labels: automation
commit-message: "chore: bump ComfyUI to ${{ steps.version.outputs.version }}"

View File

@@ -6,7 +6,6 @@ on:
- "pyproject.toml"
branches:
- master
- release/**
jobs:
update-version:

View File

@@ -29,7 +29,7 @@ on:
description: 'python patch version'
required: true
type: string
default: "11"
default: "9"
# push:
# branches:
# - master

View File

@@ -1,2 +1,3 @@
# Admins
* @comfyanonymous @kosinkadink @guill
* @comfyanonymous
* @kosinkadink

View File

@@ -1,168 +0,0 @@
# The Comfy guide to Quantization
## How does quantization work?
Quantization aims to map a high-precision value x_f to a lower precision format with minimal loss in accuracy. These smaller formats then serve to reduce the models memory footprint and increase throughput by using specialized hardware.
When simply converting a value from FP16 to FP8 using the round-nearest method we might hit two issues:
- The dynamic range of FP16 (-65,504, 65,504) far exceeds FP8 formats like E4M3 (-448, 448) or E5M2 (-57,344, 57,344), potentially resulting in clipped values
- The original values are concentrated in a small range (e.g. -1,1) leaving many FP8-bits "unused"
By using a scaling factor, we aim to map these values into the quantized-dtype range, making use of the full spectrum. One of the easiest approaches, and common, is using per-tensor absolute-maximum scaling.
```
absmax = max(abs(tensor))
scale = amax / max_dynamic_range_low_precision
# Quantization
tensor_q = (tensor / scale).to(low_precision_dtype)
# De-Quantization
tensor_dq = tensor_q.to(fp16) * scale
tensor_dq ~ tensor
```
Given that additional information (scaling factor) is needed to "interpret" the quantized values, we describe those as derived datatypes.
## Quantization in Comfy
```
QuantizedTensor (torch.Tensor subclass)
↓ __torch_dispatch__
Two-Level Registry (generic + layout handlers)
MixedPrecisionOps + Metadata Detection
```
### Representation
To represent these derived datatypes, ComfyUI uses a subclass of torch.Tensor to implements these using the `QuantizedTensor` class found in `comfy/quant_ops.py`
A `Layout` class defines how a specific quantization format behaves:
- Required parameters
- Quantize method
- De-Quantize method
```python
from comfy.quant_ops import QuantizedLayout
class MyLayout(QuantizedLayout):
@classmethod
def quantize(cls, tensor, **kwargs):
# Convert to quantized format
qdata = ...
params = {'scale': ..., 'orig_dtype': tensor.dtype}
return qdata, params
@staticmethod
def dequantize(qdata, scale, orig_dtype, **kwargs):
return qdata.to(orig_dtype) * scale
```
To then run operations using these QuantizedTensors we use two registry systems to define supported operations.
The first is a **generic registry** that handles operations common to all quantized formats (e.g., `.to()`, `.clone()`, `.reshape()`).
The second registry is layout-specific and allows to implement fast-paths like nn.Linear.
```python
from comfy.quant_ops import register_layout_op
@register_layout_op(torch.ops.aten.linear.default, MyLayout)
def my_linear(func, args, kwargs):
# Extract tensors, call optimized kernel
...
```
When `torch.nn.functional.linear()` is called with QuantizedTensor arguments, `__torch_dispatch__` automatically routes to the registered implementation.
For any unsupported operation, QuantizedTensor will fallback to call `dequantize` and dispatch using the high-precision implementation.
### Mixed Precision
The `MixedPrecisionOps` class (lines 542-648 in `comfy/ops.py`) enables per-layer quantization decisions, allowing different layers in a model to use different precisions. This is activated when a model config contains a `layer_quant_config` dictionary that specifies which layers should be quantized and how.
**Architecture:**
```python
class MixedPrecisionOps(disable_weight_init):
_layer_quant_config = {} # Maps layer names to quantization configs
_compute_dtype = torch.bfloat16 # Default compute / dequantize precision
```
**Key mechanism:**
The custom `Linear._load_from_state_dict()` method inspects each layer during model loading:
- If the layer name is **not** in `_layer_quant_config`: load weight as regular tensor in `_compute_dtype`
- If the layer name **is** in `_layer_quant_config`:
- Load weight as `QuantizedTensor` with the specified layout (e.g., `TensorCoreFP8Layout`)
- Load associated quantization parameters (scales, block_size, etc.)
**Why it's needed:**
Not all layers tolerate quantization equally. Sensitive operations like final projections can be kept in higher precision, while compute-heavy matmuls are quantized. This provides most of the performance benefits while maintaining quality.
The system is selected in `pick_operations()` when `model_config.layer_quant_config` is present, making it the highest-priority operation mode.
## Checkpoint Format
Quantized checkpoints are stored as standard safetensors files with quantized weight tensors and associated scaling parameters, plus a `_quantization_metadata` JSON entry describing the quantization scheme.
The quantized checkpoint will contain the same layers as the original checkpoint but:
- The weights are stored as quantized values, sometimes using a different storage datatype. E.g. uint8 container for fp8.
- For each quantized weight a number of additional scaling parameters are stored alongside depending on the recipe.
- We store a metadata.json in the metadata of the final safetensor containing the `_quantization_metadata` describing which layers are quantized and what layout has been used.
### Scaling Parameters details
We define 4 possible scaling parameters that should cover most recipes in the near-future:
- **weight_scale**: quantization scalers for the weights
- **weight_scale_2**: global scalers in the context of double scaling
- **pre_quant_scale**: scalers used for smoothing salient weights
- **input_scale**: quantization scalers for the activations
| Format | Storage dtype | weight_scale | weight_scale_2 | pre_quant_scale | input_scale |
|--------|---------------|--------------|----------------|-----------------|-------------|
| float8_e4m3fn | float32 | float32 (scalar) | - | - | float32 (scalar) |
You can find the defined formats in `comfy/quant_ops.py` (QUANT_ALGOS).
### Quantization Metadata
The metadata stored alongside the checkpoint contains:
- **format_version**: String to define a version of the standard
- **layers**: A dictionary mapping layer names to their quantization format. The format string maps to the definitions found in `QUANT_ALGOS`.
Example:
```json
{
"_quantization_metadata": {
"format_version": "1.0",
"layers": {
"model.layers.0.mlp.up_proj": "float8_e4m3fn",
"model.layers.0.mlp.down_proj": "float8_e4m3fn",
"model.layers.1.mlp.up_proj": "float8_e4m3fn"
}
}
}
```
## Creating Quantized Checkpoints
To create compatible checkpoints, use any quantization tool provided the output follows the checkpoint format described above and uses a layout defined in `QUANT_ALGOS`.
### Weight Quantization
Weight quantization is straightforward - compute the scaling factor directly from the weight tensor using the absolute maximum method described earlier. Each layer's weights are quantized independently and stored with their corresponding `weight_scale` parameter.
### Calibration (for Activation Quantization)
Activation quantization (e.g., for FP8 Tensor Core operations) requires `input_scale` parameters that cannot be determined from static weights alone. Since activation values depend on actual inputs, we use **post-training calibration (PTQ)**:
1. **Collect statistics**: Run inference on N representative samples
2. **Track activations**: Record the absolute maximum (`amax`) of inputs to each quantized layer
3. **Compute scales**: Derive `input_scale` from collected statistics
4. **Store in checkpoint**: Save `input_scale` parameters alongside weights
The calibration dataset should be representative of your target use case. For diffusion models, this typically means a diverse set of prompts and generation parameters.

View File

@@ -67,8 +67,6 @@ See what ComfyUI can do with the [example workflows](https://comfyanonymous.gith
- [HiDream](https://comfyanonymous.github.io/ComfyUI_examples/hidream/)
- [Qwen Image](https://comfyanonymous.github.io/ComfyUI_examples/qwen_image/)
- [Hunyuan Image 2.1](https://comfyanonymous.github.io/ComfyUI_examples/hunyuan_image/)
- [Flux 2](https://comfyanonymous.github.io/ComfyUI_examples/flux2/)
- [Z Image](https://comfyanonymous.github.io/ComfyUI_examples/z_image/)
- Image Editing Models
- [Omnigen 2](https://comfyanonymous.github.io/ComfyUI_examples/omnigen/)
- [Flux Kontext](https://comfyanonymous.github.io/ComfyUI_examples/flux/#flux-kontext-image-editing-model)
@@ -81,7 +79,6 @@ See what ComfyUI can do with the [example workflows](https://comfyanonymous.gith
- [Hunyuan Video](https://comfyanonymous.github.io/ComfyUI_examples/hunyuan_video/)
- [Wan 2.1](https://comfyanonymous.github.io/ComfyUI_examples/wan/)
- [Wan 2.2](https://comfyanonymous.github.io/ComfyUI_examples/wan22/)
- [Hunyuan Video 1.5](https://docs.comfy.org/tutorials/video/hunyuan/hunyuan-video-1-5)
- Audio Models
- [Stable Audio](https://comfyanonymous.github.io/ComfyUI_examples/audio/)
- [ACE Step](https://comfyanonymous.github.io/ComfyUI_examples/audio/)
@@ -108,21 +105,17 @@ See what ComfyUI can do with the [example workflows](https://comfyanonymous.gith
- [LCM models and Loras](https://comfyanonymous.github.io/ComfyUI_examples/lcm/)
- Latent previews with [TAESD](#how-to-show-high-quality-previews)
- Works fully offline: core will never download anything unless you want to.
- Optional API nodes to use paid models from external providers through the online [Comfy API](https://docs.comfy.org/tutorials/api-nodes/overview) disable with: `--disable-api-nodes`
- Optional API nodes to use paid models from external providers through the online [Comfy API](https://docs.comfy.org/tutorials/api-nodes/overview).
- [Config file](extra_model_paths.yaml.example) to set the search paths for models.
Workflow examples can be found on the [Examples page](https://comfyanonymous.github.io/ComfyUI_examples/)
## Release Process
ComfyUI follows a weekly release cycle targeting Monday but this regularly changes because of model releases or large changes to the codebase. There are three interconnected repositories:
ComfyUI follows a weekly release cycle targeting Friday but this regularly changes because of model releases or large changes to the codebase. There are three interconnected repositories:
1. **[ComfyUI Core](https://github.com/comfyanonymous/ComfyUI)**
- Releases a new stable version (e.g., v0.7.0) roughly every week.
- Starting from v0.4.0 patch versions will be used for fixes backported onto the current stable release.
- Minor versions will be used for releases off the master branch.
- Patch versions may still be used for releases on the master branch in cases where a backport would not make sense.
- Commits outside of the stable release tags may be very unstable and break many custom nodes.
- Releases a new stable version (e.g., v0.7.0)
- Serves as the foundation for the desktop release
2. **[ComfyUI Desktop](https://github.com/Comfy-Org/desktop)**
@@ -179,19 +172,17 @@ There is a portable standalone build for Windows that should work for running on
### [Direct link to download](https://github.com/comfyanonymous/ComfyUI/releases/latest/download/ComfyUI_windows_portable_nvidia.7z)
Simply download, extract with [7-Zip](https://7-zip.org) or with the windows explorer on recent windows versions and run. For smaller models you normally only need to put the checkpoints (the huge ckpt/safetensors files) in: ComfyUI\models\checkpoints but many of the larger models have multiple files. Make sure to follow the instructions to know which subfolder to put them in ComfyUI\models\
Simply download, extract with [7-Zip](https://7-zip.org) and run. Make sure you put your Stable Diffusion checkpoints/models (the huge ckpt/safetensors files) in: ComfyUI\models\checkpoints
If you have trouble extracting it, right click the file -> properties -> unblock
The portable above currently comes with python 3.13 and pytorch cuda 13.0. Update your Nvidia drivers if it doesn't start.
Update your Nvidia drivers if it doesn't start.
#### Alternative Downloads:
[Experimental portable for AMD GPUs](https://github.com/comfyanonymous/ComfyUI/releases/latest/download/ComfyUI_windows_portable_amd.7z)
[Portable with pytorch cuda 12.8 and python 3.12](https://github.com/comfyanonymous/ComfyUI/releases/latest/download/ComfyUI_windows_portable_nvidia_cu128.7z).
[Portable with pytorch cuda 12.6 and python 3.12](https://github.com/comfyanonymous/ComfyUI/releases/latest/download/ComfyUI_windows_portable_nvidia_cu126.7z) (Supports Nvidia 10 series and older GPUs).
[Portable with pytorch cuda 12.8 and python 3.12](https://github.com/comfyanonymous/ComfyUI/releases/latest/download/ComfyUI_windows_portable_nvidia_cu128.7z) (Supports Nvidia 10 series and older GPUs).
#### How do I share models between another UI and ComfyUI?
@@ -208,12 +199,10 @@ comfy install
## Manual Install (Windows, Linux)
Python 3.14 works but some custom nodes may have issues. The free threaded variant works but some dependencies will enable the GIL so it's not fully supported.
Python 3.14 will work if you comment out the `kornia` dependency in the requirements.txt file (breaks the canny node) but it is not recommended.
Python 3.13 is very well supported. If you have trouble with some custom node dependencies on 3.13 you can try 3.12
torch 2.4 and above is supported but some features and optimizations might only work on newer versions. We generally recommend using the latest major version of pytorch with the latest cuda version unless it is less than 2 weeks old.
### Instructions:
Git clone this repo.
@@ -229,9 +218,9 @@ AMD users can install rocm and pytorch with pip if you don't have it already ins
```pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm6.4```
This is the command to install the nightly with ROCm 7.1 which might have some performance improvements:
This is the command to install the nightly with ROCm 7.0 which might have some performance improvements:
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/rocm7.1```
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/rocm7.0```
### AMD GPUs (Experimental: Windows and Linux), RDNA 3, 3.5 and 4 only.
@@ -240,7 +229,7 @@ These have less hardware support than the builds above but they work on windows.
RDNA 3 (RX 7000 series):
```pip install --pre torch torchvision torchaudio --index-url https://rocm.nightlies.amd.com/v2/gfx110X-all/```
```pip install --pre torch torchvision torchaudio --index-url https://rocm.nightlies.amd.com/v2/gfx110X-dgpu/```
RDNA 3.5 (Strix halo/Ryzen AI Max+ 365):
@@ -252,7 +241,7 @@ RDNA 4 (RX 9000 series):
### Intel GPUs (Windows and Linux)
Intel Arc GPU users can install native PyTorch with torch.xpu support using pip. More information can be found [here](https://pytorch.org/docs/main/notes/get_start_xpu.html)
(Option 1) Intel Arc GPU users can install native PyTorch with torch.xpu support using pip. More information can be found [here](https://pytorch.org/docs/main/notes/get_start_xpu.html)
1. To install PyTorch xpu, use the following command:
@@ -262,6 +251,10 @@ This is the command to install the Pytorch xpu nightly which might have some per
```pip install --pre torch torchvision torchaudio --index-url https://download.pytorch.org/whl/nightly/xpu```
(Option 2) Alternatively, Intel GPUs supported by Intel Extension for PyTorch (IPEX) can leverage IPEX for improved performance.
1. visit [Installation](https://intel.github.io/intel-extension-for-pytorch/index.html#installation?platform=gpu) for more information.
### NVIDIA
Nvidia users should install stable pytorch using this command:
@@ -325,32 +318,6 @@ For models compatible with Iluvatar Extension for PyTorch. Here's a step-by-step
1. Install the Iluvatar Corex Toolkit by adhering to the platform-specific instructions on the [Installation](https://support.iluvatar.com/#/DocumentCentre?id=1&nameCenter=2&productId=520117912052801536)
2. Launch ComfyUI by running `python main.py`
## [ComfyUI-Manager](https://github.com/Comfy-Org/ComfyUI-Manager/tree/manager-v4)
**ComfyUI-Manager** is an extension that allows you to easily install, update, and manage custom nodes for ComfyUI.
### Setup
1. Install the manager dependencies:
```bash
pip install -r manager_requirements.txt
```
2. Enable the manager with the `--enable-manager` flag when running ComfyUI:
```bash
python main.py --enable-manager
```
### Command Line Options
| Flag | Description |
|------|-------------|
| `--enable-manager` | Enable ComfyUI-Manager |
| `--enable-manager-legacy-ui` | Use the legacy manager UI instead of the new UI (requires `--enable-manager`) |
| `--disable-manager-ui` | Disable the manager UI and endpoints while keeping background features like security checks and scheduled installation completion (requires `--enable-manager`) |
# Running
```python main.py```

View File

@@ -1,174 +0,0 @@
"""
Initial assets schema
Revision ID: 0001_assets
Revises: None
Create Date: 2025-12-10 00:00:00
"""
from alembic import op
import sqlalchemy as sa
revision = "0001_assets"
down_revision = None
branch_labels = None
depends_on = None
def upgrade() -> None:
# ASSETS: content identity
op.create_table(
"assets",
sa.Column("id", sa.String(length=36), primary_key=True),
sa.Column("hash", sa.String(length=256), nullable=True),
sa.Column("size_bytes", sa.BigInteger(), nullable=False, server_default="0"),
sa.Column("mime_type", sa.String(length=255), nullable=True),
sa.Column("created_at", sa.DateTime(timezone=False), nullable=False),
sa.CheckConstraint("size_bytes >= 0", name="ck_assets_size_nonneg"),
)
op.create_index("uq_assets_hash", "assets", ["hash"], unique=True)
op.create_index("ix_assets_mime_type", "assets", ["mime_type"])
# ASSETS_INFO: user-visible references
op.create_table(
"assets_info",
sa.Column("id", sa.String(length=36), primary_key=True),
sa.Column("owner_id", sa.String(length=128), nullable=False, server_default=""),
sa.Column("name", sa.String(length=512), nullable=False),
sa.Column("asset_id", sa.String(length=36), sa.ForeignKey("assets.id", ondelete="RESTRICT"), nullable=False),
sa.Column("preview_id", sa.String(length=36), sa.ForeignKey("assets.id", ondelete="SET NULL"), nullable=True),
sa.Column("user_metadata", sa.JSON(), nullable=True),
sa.Column("created_at", sa.DateTime(timezone=False), nullable=False),
sa.Column("updated_at", sa.DateTime(timezone=False), nullable=False),
sa.Column("last_access_time", sa.DateTime(timezone=False), nullable=False),
sa.UniqueConstraint("asset_id", "owner_id", "name", name="uq_assets_info_asset_owner_name"),
)
op.create_index("ix_assets_info_owner_id", "assets_info", ["owner_id"])
op.create_index("ix_assets_info_asset_id", "assets_info", ["asset_id"])
op.create_index("ix_assets_info_name", "assets_info", ["name"])
op.create_index("ix_assets_info_created_at", "assets_info", ["created_at"])
op.create_index("ix_assets_info_last_access_time", "assets_info", ["last_access_time"])
op.create_index("ix_assets_info_owner_name", "assets_info", ["owner_id", "name"])
# TAGS: normalized tag vocabulary
op.create_table(
"tags",
sa.Column("name", sa.String(length=512), primary_key=True),
sa.Column("tag_type", sa.String(length=32), nullable=False, server_default="user"),
sa.CheckConstraint("name = lower(name)", name="ck_tags_lowercase"),
)
op.create_index("ix_tags_tag_type", "tags", ["tag_type"])
# ASSET_INFO_TAGS: many-to-many for tags on AssetInfo
op.create_table(
"asset_info_tags",
sa.Column("asset_info_id", sa.String(length=36), sa.ForeignKey("assets_info.id", ondelete="CASCADE"), nullable=False),
sa.Column("tag_name", sa.String(length=512), sa.ForeignKey("tags.name", ondelete="RESTRICT"), nullable=False),
sa.Column("origin", sa.String(length=32), nullable=False, server_default="manual"),
sa.Column("added_at", sa.DateTime(timezone=False), nullable=False),
sa.PrimaryKeyConstraint("asset_info_id", "tag_name", name="pk_asset_info_tags"),
)
op.create_index("ix_asset_info_tags_tag_name", "asset_info_tags", ["tag_name"])
op.create_index("ix_asset_info_tags_asset_info_id", "asset_info_tags", ["asset_info_id"])
# ASSET_CACHE_STATE: N:1 local cache rows per Asset
op.create_table(
"asset_cache_state",
sa.Column("id", sa.Integer(), primary_key=True, autoincrement=True),
sa.Column("asset_id", sa.String(length=36), sa.ForeignKey("assets.id", ondelete="CASCADE"), nullable=False),
sa.Column("file_path", sa.Text(), nullable=False), # absolute local path to cached file
sa.Column("mtime_ns", sa.BigInteger(), nullable=True),
sa.Column("needs_verify", sa.Boolean(), nullable=False, server_default=sa.text("false")),
sa.CheckConstraint("(mtime_ns IS NULL) OR (mtime_ns >= 0)", name="ck_acs_mtime_nonneg"),
sa.UniqueConstraint("file_path", name="uq_asset_cache_state_file_path"),
)
op.create_index("ix_asset_cache_state_file_path", "asset_cache_state", ["file_path"])
op.create_index("ix_asset_cache_state_asset_id", "asset_cache_state", ["asset_id"])
# ASSET_INFO_META: typed KV projection of user_metadata for filtering/sorting
op.create_table(
"asset_info_meta",
sa.Column("asset_info_id", sa.String(length=36), sa.ForeignKey("assets_info.id", ondelete="CASCADE"), nullable=False),
sa.Column("key", sa.String(length=256), nullable=False),
sa.Column("ordinal", sa.Integer(), nullable=False, server_default="0"),
sa.Column("val_str", sa.String(length=2048), nullable=True),
sa.Column("val_num", sa.Numeric(38, 10), nullable=True),
sa.Column("val_bool", sa.Boolean(), nullable=True),
sa.Column("val_json", sa.JSON(), nullable=True),
sa.PrimaryKeyConstraint("asset_info_id", "key", "ordinal", name="pk_asset_info_meta"),
)
op.create_index("ix_asset_info_meta_key", "asset_info_meta", ["key"])
op.create_index("ix_asset_info_meta_key_val_str", "asset_info_meta", ["key", "val_str"])
op.create_index("ix_asset_info_meta_key_val_num", "asset_info_meta", ["key", "val_num"])
op.create_index("ix_asset_info_meta_key_val_bool", "asset_info_meta", ["key", "val_bool"])
# Tags vocabulary
tags_table = sa.table(
"tags",
sa.column("name", sa.String(length=512)),
sa.column("tag_type", sa.String()),
)
op.bulk_insert(
tags_table,
[
{"name": "models", "tag_type": "system"},
{"name": "input", "tag_type": "system"},
{"name": "output", "tag_type": "system"},
{"name": "configs", "tag_type": "system"},
{"name": "checkpoints", "tag_type": "system"},
{"name": "loras", "tag_type": "system"},
{"name": "vae", "tag_type": "system"},
{"name": "text_encoders", "tag_type": "system"},
{"name": "diffusion_models", "tag_type": "system"},
{"name": "clip_vision", "tag_type": "system"},
{"name": "style_models", "tag_type": "system"},
{"name": "embeddings", "tag_type": "system"},
{"name": "diffusers", "tag_type": "system"},
{"name": "vae_approx", "tag_type": "system"},
{"name": "controlnet", "tag_type": "system"},
{"name": "gligen", "tag_type": "system"},
{"name": "upscale_models", "tag_type": "system"},
{"name": "hypernetworks", "tag_type": "system"},
{"name": "photomaker", "tag_type": "system"},
{"name": "classifiers", "tag_type": "system"},
{"name": "encoder", "tag_type": "system"},
{"name": "decoder", "tag_type": "system"},
{"name": "missing", "tag_type": "system"},
{"name": "rescan", "tag_type": "system"},
],
)
def downgrade() -> None:
op.drop_index("ix_asset_info_meta_key_val_bool", table_name="asset_info_meta")
op.drop_index("ix_asset_info_meta_key_val_num", table_name="asset_info_meta")
op.drop_index("ix_asset_info_meta_key_val_str", table_name="asset_info_meta")
op.drop_index("ix_asset_info_meta_key", table_name="asset_info_meta")
op.drop_table("asset_info_meta")
op.drop_index("ix_asset_cache_state_asset_id", table_name="asset_cache_state")
op.drop_index("ix_asset_cache_state_file_path", table_name="asset_cache_state")
op.drop_constraint("uq_asset_cache_state_file_path", table_name="asset_cache_state")
op.drop_table("asset_cache_state")
op.drop_index("ix_asset_info_tags_asset_info_id", table_name="asset_info_tags")
op.drop_index("ix_asset_info_tags_tag_name", table_name="asset_info_tags")
op.drop_table("asset_info_tags")
op.drop_index("ix_tags_tag_type", table_name="tags")
op.drop_table("tags")
op.drop_constraint("uq_assets_info_asset_owner_name", table_name="assets_info")
op.drop_index("ix_assets_info_owner_name", table_name="assets_info")
op.drop_index("ix_assets_info_last_access_time", table_name="assets_info")
op.drop_index("ix_assets_info_created_at", table_name="assets_info")
op.drop_index("ix_assets_info_name", table_name="assets_info")
op.drop_index("ix_assets_info_asset_id", table_name="assets_info")
op.drop_index("ix_assets_info_owner_id", table_name="assets_info")
op.drop_table("assets_info")
op.drop_index("uq_assets_hash", table_name="assets")
op.drop_index("ix_assets_mime_type", table_name="assets")
op.drop_table("assets")

View File

@@ -58,13 +58,8 @@ class InternalRoutes:
return web.json_response({"error": "Invalid directory type"}, status=400)
directory = get_directory_by_type(directory_type)
def is_visible_file(entry: os.DirEntry) -> bool:
"""Filter out hidden files (e.g., .DS_Store on macOS)."""
return entry.is_file() and not entry.name.startswith('.')
sorted_files = sorted(
(entry for entry in os.scandir(directory) if is_visible_file(entry)),
(entry for entry in os.scandir(directory) if entry.is_file()),
key=lambda entry: -entry.stat().st_mtime
)
return web.json_response([entry.name for entry in sorted_files], status=200)

View File

@@ -1,514 +0,0 @@
import logging
import uuid
import urllib.parse
import os
import contextlib
from aiohttp import web
from pydantic import ValidationError
import app.assets.manager as manager
from app import user_manager
from app.assets.api import schemas_in
from app.assets.helpers import get_query_dict
from app.assets.scanner import seed_assets
import folder_paths
ROUTES = web.RouteTableDef()
USER_MANAGER: user_manager.UserManager | None = None
# UUID regex (canonical hyphenated form, case-insensitive)
UUID_RE = r"[0-9a-fA-F]{8}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{12}"
# Note to any custom node developers reading this code:
# The assets system is not yet fully implemented, do not rely on the code in /app/assets remaining the same.
def register_assets_system(app: web.Application, user_manager_instance: user_manager.UserManager) -> None:
global USER_MANAGER
USER_MANAGER = user_manager_instance
app.add_routes(ROUTES)
def _error_response(status: int, code: str, message: str, details: dict | None = None) -> web.Response:
return web.json_response({"error": {"code": code, "message": message, "details": details or {}}}, status=status)
def _validation_error_response(code: str, ve: ValidationError) -> web.Response:
return _error_response(400, code, "Validation failed.", {"errors": ve.json()})
@ROUTES.head("/api/assets/hash/{hash}")
async def head_asset_by_hash(request: web.Request) -> web.Response:
hash_str = request.match_info.get("hash", "").strip().lower()
if not hash_str or ":" not in hash_str:
return _error_response(400, "INVALID_HASH", "hash must be like 'blake3:<hex>'")
algo, digest = hash_str.split(":", 1)
if algo != "blake3" or not digest or any(c for c in digest if c not in "0123456789abcdef"):
return _error_response(400, "INVALID_HASH", "hash must be like 'blake3:<hex>'")
exists = manager.asset_exists(asset_hash=hash_str)
return web.Response(status=200 if exists else 404)
@ROUTES.get("/api/assets")
async def list_assets(request: web.Request) -> web.Response:
"""
GET request to list assets.
"""
query_dict = get_query_dict(request)
try:
q = schemas_in.ListAssetsQuery.model_validate(query_dict)
except ValidationError as ve:
return _validation_error_response("INVALID_QUERY", ve)
payload = manager.list_assets(
include_tags=q.include_tags,
exclude_tags=q.exclude_tags,
name_contains=q.name_contains,
metadata_filter=q.metadata_filter,
limit=q.limit,
offset=q.offset,
sort=q.sort,
order=q.order,
owner_id=USER_MANAGER.get_request_user_id(request),
)
return web.json_response(payload.model_dump(mode="json", exclude_none=True))
@ROUTES.get(f"/api/assets/{{id:{UUID_RE}}}")
async def get_asset(request: web.Request) -> web.Response:
"""
GET request to get an asset's info as JSON.
"""
asset_info_id = str(uuid.UUID(request.match_info["id"]))
try:
result = manager.get_asset(
asset_info_id=asset_info_id,
owner_id=USER_MANAGER.get_request_user_id(request),
)
except ValueError as e:
return _error_response(404, "ASSET_NOT_FOUND", str(e), {"id": asset_info_id})
except Exception:
logging.exception(
"get_asset failed for asset_info_id=%s, owner_id=%s",
asset_info_id,
USER_MANAGER.get_request_user_id(request),
)
return _error_response(500, "INTERNAL", "Unexpected server error.")
return web.json_response(result.model_dump(mode="json"), status=200)
@ROUTES.get(f"/api/assets/{{id:{UUID_RE}}}/content")
async def download_asset_content(request: web.Request) -> web.Response:
# question: do we need disposition? could we just stick with one of these?
disposition = request.query.get("disposition", "attachment").lower().strip()
if disposition not in {"inline", "attachment"}:
disposition = "attachment"
try:
abs_path, content_type, filename = manager.resolve_asset_content_for_download(
asset_info_id=str(uuid.UUID(request.match_info["id"])),
owner_id=USER_MANAGER.get_request_user_id(request),
)
except ValueError as ve:
return _error_response(404, "ASSET_NOT_FOUND", str(ve))
except NotImplementedError as nie:
return _error_response(501, "BACKEND_UNSUPPORTED", str(nie))
except FileNotFoundError:
return _error_response(404, "FILE_NOT_FOUND", "Underlying file not found on disk.")
quoted = (filename or "").replace("\r", "").replace("\n", "").replace('"', "'")
cd = f'{disposition}; filename="{quoted}"; filename*=UTF-8\'\'{urllib.parse.quote(filename)}'
file_size = os.path.getsize(abs_path)
logging.info(
"download_asset_content: path=%s, size=%d bytes (%.2f MB), content_type=%s, filename=%s",
abs_path,
file_size,
file_size / (1024 * 1024),
content_type,
filename,
)
async def file_sender():
chunk_size = 64 * 1024
with open(abs_path, "rb") as f:
while True:
chunk = f.read(chunk_size)
if not chunk:
break
yield chunk
return web.Response(
body=file_sender(),
content_type=content_type,
headers={
"Content-Disposition": cd,
"Content-Length": str(file_size),
},
)
@ROUTES.post("/api/assets/from-hash")
async def create_asset_from_hash(request: web.Request) -> web.Response:
try:
payload = await request.json()
body = schemas_in.CreateFromHashBody.model_validate(payload)
except ValidationError as ve:
return _validation_error_response("INVALID_BODY", ve)
except Exception:
return _error_response(400, "INVALID_JSON", "Request body must be valid JSON.")
result = manager.create_asset_from_hash(
hash_str=body.hash,
name=body.name,
tags=body.tags,
user_metadata=body.user_metadata,
owner_id=USER_MANAGER.get_request_user_id(request),
)
if result is None:
return _error_response(404, "ASSET_NOT_FOUND", f"Asset content {body.hash} does not exist")
return web.json_response(result.model_dump(mode="json"), status=201)
@ROUTES.post("/api/assets")
async def upload_asset(request: web.Request) -> web.Response:
"""Multipart/form-data endpoint for Asset uploads."""
if not (request.content_type or "").lower().startswith("multipart/"):
return _error_response(415, "UNSUPPORTED_MEDIA_TYPE", "Use multipart/form-data for uploads.")
reader = await request.multipart()
file_present = False
file_client_name: str | None = None
tags_raw: list[str] = []
provided_name: str | None = None
user_metadata_raw: str | None = None
provided_hash: str | None = None
provided_hash_exists: bool | None = None
file_written = 0
tmp_path: str | None = None
while True:
field = await reader.next()
if field is None:
break
fname = getattr(field, "name", "") or ""
if fname == "hash":
try:
s = ((await field.text()) or "").strip().lower()
except Exception:
return _error_response(400, "INVALID_HASH", "hash must be like 'blake3:<hex>'")
if s:
if ":" not in s:
return _error_response(400, "INVALID_HASH", "hash must be like 'blake3:<hex>'")
algo, digest = s.split(":", 1)
if algo != "blake3" or not digest or any(c for c in digest if c not in "0123456789abcdef"):
return _error_response(400, "INVALID_HASH", "hash must be like 'blake3:<hex>'")
provided_hash = f"{algo}:{digest}"
try:
provided_hash_exists = manager.asset_exists(asset_hash=provided_hash)
except Exception:
provided_hash_exists = None # do not fail the whole request here
elif fname == "file":
file_present = True
file_client_name = (field.filename or "").strip()
if provided_hash and provided_hash_exists is True:
# If client supplied a hash that we know exists, drain but do not write to disk
try:
while True:
chunk = await field.read_chunk(8 * 1024 * 1024)
if not chunk:
break
file_written += len(chunk)
except Exception:
return _error_response(500, "UPLOAD_IO_ERROR", "Failed to receive uploaded file.")
continue # Do not create temp file; we will create AssetInfo from the existing content
# Otherwise, store to temp for hashing/ingest
uploads_root = os.path.join(folder_paths.get_temp_directory(), "uploads")
unique_dir = os.path.join(uploads_root, uuid.uuid4().hex)
os.makedirs(unique_dir, exist_ok=True)
tmp_path = os.path.join(unique_dir, ".upload.part")
try:
with open(tmp_path, "wb") as f:
while True:
chunk = await field.read_chunk(8 * 1024 * 1024)
if not chunk:
break
f.write(chunk)
file_written += len(chunk)
except Exception:
try:
if os.path.exists(tmp_path or ""):
os.remove(tmp_path)
finally:
return _error_response(500, "UPLOAD_IO_ERROR", "Failed to receive and store uploaded file.")
elif fname == "tags":
tags_raw.append((await field.text()) or "")
elif fname == "name":
provided_name = (await field.text()) or None
elif fname == "user_metadata":
user_metadata_raw = (await field.text()) or None
# If client did not send file, and we are not doing a from-hash fast path -> error
if not file_present and not (provided_hash and provided_hash_exists):
return _error_response(400, "MISSING_FILE", "Form must include a 'file' part or a known 'hash'.")
if file_present and file_written == 0 and not (provided_hash and provided_hash_exists):
# Empty upload is only acceptable if we are fast-pathing from existing hash
try:
if tmp_path and os.path.exists(tmp_path):
os.remove(tmp_path)
finally:
return _error_response(400, "EMPTY_UPLOAD", "Uploaded file is empty.")
try:
spec = schemas_in.UploadAssetSpec.model_validate({
"tags": tags_raw,
"name": provided_name,
"user_metadata": user_metadata_raw,
"hash": provided_hash,
})
except ValidationError as ve:
try:
if tmp_path and os.path.exists(tmp_path):
os.remove(tmp_path)
finally:
return _validation_error_response("INVALID_BODY", ve)
# Validate models category against configured folders (consistent with previous behavior)
if spec.tags and spec.tags[0] == "models":
if len(spec.tags) < 2 or spec.tags[1] not in folder_paths.folder_names_and_paths:
if tmp_path and os.path.exists(tmp_path):
os.remove(tmp_path)
return _error_response(
400, "INVALID_BODY", f"unknown models category '{spec.tags[1] if len(spec.tags) >= 2 else ''}'"
)
owner_id = USER_MANAGER.get_request_user_id(request)
# Fast path: if a valid provided hash exists, create AssetInfo without writing anything
if spec.hash and provided_hash_exists is True:
try:
result = manager.create_asset_from_hash(
hash_str=spec.hash,
name=spec.name or (spec.hash.split(":", 1)[1]),
tags=spec.tags,
user_metadata=spec.user_metadata or {},
owner_id=owner_id,
)
except Exception:
logging.exception("create_asset_from_hash failed for hash=%s, owner_id=%s", spec.hash, owner_id)
return _error_response(500, "INTERNAL", "Unexpected server error.")
if result is None:
return _error_response(404, "ASSET_NOT_FOUND", f"Asset content {spec.hash} does not exist")
# Drain temp if we accidentally saved (e.g., hash field came after file)
if tmp_path and os.path.exists(tmp_path):
with contextlib.suppress(Exception):
os.remove(tmp_path)
status = 200 if (not result.created_new) else 201
return web.json_response(result.model_dump(mode="json"), status=status)
# Otherwise, we must have a temp file path to ingest
if not tmp_path or not os.path.exists(tmp_path):
# The only case we reach here without a temp file is: client sent a hash that does not exist and no file
return _error_response(404, "ASSET_NOT_FOUND", "Provided hash not found and no file uploaded.")
try:
created = manager.upload_asset_from_temp_path(
spec,
temp_path=tmp_path,
client_filename=file_client_name,
owner_id=owner_id,
expected_asset_hash=spec.hash,
)
status = 201 if created.created_new else 200
return web.json_response(created.model_dump(mode="json"), status=status)
except ValueError as e:
if tmp_path and os.path.exists(tmp_path):
os.remove(tmp_path)
msg = str(e)
if "HASH_MISMATCH" in msg or msg.strip().upper() == "HASH_MISMATCH":
return _error_response(
400,
"HASH_MISMATCH",
"Uploaded file hash does not match provided hash.",
)
return _error_response(400, "BAD_REQUEST", "Invalid inputs.")
except Exception:
if tmp_path and os.path.exists(tmp_path):
os.remove(tmp_path)
logging.exception("upload_asset_from_temp_path failed for tmp_path=%s, owner_id=%s", tmp_path, owner_id)
return _error_response(500, "INTERNAL", "Unexpected server error.")
@ROUTES.put(f"/api/assets/{{id:{UUID_RE}}}")
async def update_asset(request: web.Request) -> web.Response:
asset_info_id = str(uuid.UUID(request.match_info["id"]))
try:
body = schemas_in.UpdateAssetBody.model_validate(await request.json())
except ValidationError as ve:
return _validation_error_response("INVALID_BODY", ve)
except Exception:
return _error_response(400, "INVALID_JSON", "Request body must be valid JSON.")
try:
result = manager.update_asset(
asset_info_id=asset_info_id,
name=body.name,
user_metadata=body.user_metadata,
owner_id=USER_MANAGER.get_request_user_id(request),
)
except (ValueError, PermissionError) as ve:
return _error_response(404, "ASSET_NOT_FOUND", str(ve), {"id": asset_info_id})
except Exception:
logging.exception(
"update_asset failed for asset_info_id=%s, owner_id=%s",
asset_info_id,
USER_MANAGER.get_request_user_id(request),
)
return _error_response(500, "INTERNAL", "Unexpected server error.")
return web.json_response(result.model_dump(mode="json"), status=200)
@ROUTES.delete(f"/api/assets/{{id:{UUID_RE}}}")
async def delete_asset(request: web.Request) -> web.Response:
asset_info_id = str(uuid.UUID(request.match_info["id"]))
delete_content = request.query.get("delete_content")
delete_content = True if delete_content is None else delete_content.lower() not in {"0", "false", "no"}
try:
deleted = manager.delete_asset_reference(
asset_info_id=asset_info_id,
owner_id=USER_MANAGER.get_request_user_id(request),
delete_content_if_orphan=delete_content,
)
except Exception:
logging.exception(
"delete_asset_reference failed for asset_info_id=%s, owner_id=%s",
asset_info_id,
USER_MANAGER.get_request_user_id(request),
)
return _error_response(500, "INTERNAL", "Unexpected server error.")
if not deleted:
return _error_response(404, "ASSET_NOT_FOUND", f"AssetInfo {asset_info_id} not found.")
return web.Response(status=204)
@ROUTES.get("/api/tags")
async def get_tags(request: web.Request) -> web.Response:
"""
GET request to list all tags based on query parameters.
"""
query_map = dict(request.rel_url.query)
try:
query = schemas_in.TagsListQuery.model_validate(query_map)
except ValidationError as e:
return web.json_response(
{"error": {"code": "INVALID_QUERY", "message": "Invalid query parameters", "details": e.errors()}},
status=400,
)
result = manager.list_tags(
prefix=query.prefix,
limit=query.limit,
offset=query.offset,
order=query.order,
include_zero=query.include_zero,
owner_id=USER_MANAGER.get_request_user_id(request),
)
return web.json_response(result.model_dump(mode="json"))
@ROUTES.post(f"/api/assets/{{id:{UUID_RE}}}/tags")
async def add_asset_tags(request: web.Request) -> web.Response:
asset_info_id = str(uuid.UUID(request.match_info["id"]))
try:
payload = await request.json()
data = schemas_in.TagsAdd.model_validate(payload)
except ValidationError as ve:
return _error_response(400, "INVALID_BODY", "Invalid JSON body for tags add.", {"errors": ve.errors()})
except Exception:
return _error_response(400, "INVALID_JSON", "Request body must be valid JSON.")
try:
result = manager.add_tags_to_asset(
asset_info_id=asset_info_id,
tags=data.tags,
origin="manual",
owner_id=USER_MANAGER.get_request_user_id(request),
)
except (ValueError, PermissionError) as ve:
return _error_response(404, "ASSET_NOT_FOUND", str(ve), {"id": asset_info_id})
except Exception:
logging.exception(
"add_tags_to_asset failed for asset_info_id=%s, owner_id=%s",
asset_info_id,
USER_MANAGER.get_request_user_id(request),
)
return _error_response(500, "INTERNAL", "Unexpected server error.")
return web.json_response(result.model_dump(mode="json"), status=200)
@ROUTES.delete(f"/api/assets/{{id:{UUID_RE}}}/tags")
async def delete_asset_tags(request: web.Request) -> web.Response:
asset_info_id = str(uuid.UUID(request.match_info["id"]))
try:
payload = await request.json()
data = schemas_in.TagsRemove.model_validate(payload)
except ValidationError as ve:
return _error_response(400, "INVALID_BODY", "Invalid JSON body for tags remove.", {"errors": ve.errors()})
except Exception:
return _error_response(400, "INVALID_JSON", "Request body must be valid JSON.")
try:
result = manager.remove_tags_from_asset(
asset_info_id=asset_info_id,
tags=data.tags,
owner_id=USER_MANAGER.get_request_user_id(request),
)
except ValueError as ve:
return _error_response(404, "ASSET_NOT_FOUND", str(ve), {"id": asset_info_id})
except Exception:
logging.exception(
"remove_tags_from_asset failed for asset_info_id=%s, owner_id=%s",
asset_info_id,
USER_MANAGER.get_request_user_id(request),
)
return _error_response(500, "INTERNAL", "Unexpected server error.")
return web.json_response(result.model_dump(mode="json"), status=200)
@ROUTES.post("/api/assets/seed")
async def seed_assets_endpoint(request: web.Request) -> web.Response:
"""Trigger asset seeding for specified roots (models, input, output)."""
try:
payload = await request.json()
roots = payload.get("roots", ["models", "input", "output"])
except Exception:
roots = ["models", "input", "output"]
valid_roots = [r for r in roots if r in ("models", "input", "output")]
if not valid_roots:
return _error_response(400, "INVALID_BODY", "No valid roots specified")
try:
seed_assets(tuple(valid_roots))
except Exception:
logging.exception("seed_assets failed for roots=%s", valid_roots)
return _error_response(500, "INTERNAL", "Seed operation failed")
return web.json_response({"seeded": valid_roots}, status=200)

View File

@@ -1,264 +0,0 @@
import json
from typing import Any, Literal
from pydantic import (
BaseModel,
ConfigDict,
Field,
conint,
field_validator,
model_validator,
)
class ListAssetsQuery(BaseModel):
include_tags: list[str] = Field(default_factory=list)
exclude_tags: list[str] = Field(default_factory=list)
name_contains: str | None = None
# Accept either a JSON string (query param) or a dict
metadata_filter: dict[str, Any] | None = None
limit: conint(ge=1, le=500) = 20
offset: conint(ge=0) = 0
sort: Literal["name", "created_at", "updated_at", "size", "last_access_time"] = "created_at"
order: Literal["asc", "desc"] = "desc"
@field_validator("include_tags", "exclude_tags", mode="before")
@classmethod
def _split_csv_tags(cls, v):
# Accept "a,b,c" or ["a","b"] (we are liberal in what we accept)
if v is None:
return []
if isinstance(v, str):
return [t.strip() for t in v.split(",") if t.strip()]
if isinstance(v, list):
out: list[str] = []
for item in v:
if isinstance(item, str):
out.extend([t.strip() for t in item.split(",") if t.strip()])
return out
return v
@field_validator("metadata_filter", mode="before")
@classmethod
def _parse_metadata_json(cls, v):
if v is None or isinstance(v, dict):
return v
if isinstance(v, str) and v.strip():
try:
parsed = json.loads(v)
except Exception as e:
raise ValueError(f"metadata_filter must be JSON: {e}") from e
if not isinstance(parsed, dict):
raise ValueError("metadata_filter must be a JSON object")
return parsed
return None
class UpdateAssetBody(BaseModel):
name: str | None = None
user_metadata: dict[str, Any] | None = None
@model_validator(mode="after")
def _at_least_one(self):
if self.name is None and self.user_metadata is None:
raise ValueError("Provide at least one of: name, user_metadata.")
return self
class CreateFromHashBody(BaseModel):
model_config = ConfigDict(extra="ignore", str_strip_whitespace=True)
hash: str
name: str
tags: list[str] = Field(default_factory=list)
user_metadata: dict[str, Any] = Field(default_factory=dict)
@field_validator("hash")
@classmethod
def _require_blake3(cls, v):
s = (v or "").strip().lower()
if ":" not in s:
raise ValueError("hash must be 'blake3:<hex>'")
algo, digest = s.split(":", 1)
if algo != "blake3":
raise ValueError("only canonical 'blake3:<hex>' is accepted here")
if not digest or any(c for c in digest if c not in "0123456789abcdef"):
raise ValueError("hash digest must be lowercase hex")
return s
@field_validator("tags", mode="before")
@classmethod
def _tags_norm(cls, v):
if v is None:
return []
if isinstance(v, list):
out = [str(t).strip().lower() for t in v if str(t).strip()]
seen = set()
dedup = []
for t in out:
if t not in seen:
seen.add(t)
dedup.append(t)
return dedup
if isinstance(v, str):
return [t.strip().lower() for t in v.split(",") if t.strip()]
return []
class TagsListQuery(BaseModel):
model_config = ConfigDict(extra="ignore", str_strip_whitespace=True)
prefix: str | None = Field(None, min_length=1, max_length=256)
limit: int = Field(100, ge=1, le=1000)
offset: int = Field(0, ge=0, le=10_000_000)
order: Literal["count_desc", "name_asc"] = "count_desc"
include_zero: bool = True
@field_validator("prefix")
@classmethod
def normalize_prefix(cls, v: str | None) -> str | None:
if v is None:
return v
v = v.strip()
return v.lower() or None
class TagsAdd(BaseModel):
model_config = ConfigDict(extra="ignore")
tags: list[str] = Field(..., min_length=1)
@field_validator("tags")
@classmethod
def normalize_tags(cls, v: list[str]) -> list[str]:
out = []
for t in v:
if not isinstance(t, str):
raise TypeError("tags must be strings")
tnorm = t.strip().lower()
if tnorm:
out.append(tnorm)
seen = set()
deduplicated = []
for x in out:
if x not in seen:
seen.add(x)
deduplicated.append(x)
return deduplicated
class TagsRemove(TagsAdd):
pass
class UploadAssetSpec(BaseModel):
"""Upload Asset operation.
- tags: ordered; first is root ('models'|'input'|'output');
if root == 'models', second must be a valid category from folder_paths.folder_names_and_paths
- name: display name
- user_metadata: arbitrary JSON object (optional)
- hash: optional canonical 'blake3:<hex>' provided by the client for validation / fast-path
Files created via this endpoint are stored on disk using the **content hash** as the filename stem
and the original extension is preserved when available.
"""
model_config = ConfigDict(extra="ignore", str_strip_whitespace=True)
tags: list[str] = Field(..., min_length=1)
name: str | None = Field(default=None, max_length=512, description="Display Name")
user_metadata: dict[str, Any] = Field(default_factory=dict)
hash: str | None = Field(default=None)
@field_validator("hash", mode="before")
@classmethod
def _parse_hash(cls, v):
if v is None:
return None
s = str(v).strip().lower()
if not s:
return None
if ":" not in s:
raise ValueError("hash must be 'blake3:<hex>'")
algo, digest = s.split(":", 1)
if algo != "blake3":
raise ValueError("only canonical 'blake3:<hex>' is accepted here")
if not digest or any(c for c in digest if c not in "0123456789abcdef"):
raise ValueError("hash digest must be lowercase hex")
return f"{algo}:{digest}"
@field_validator("tags", mode="before")
@classmethod
def _parse_tags(cls, v):
"""
Accepts a list of strings (possibly multiple form fields),
where each string can be:
- JSON array (e.g., '["models","loras","foo"]')
- comma-separated ('models, loras, foo')
- single token ('models')
Returns a normalized, deduplicated, ordered list.
"""
items: list[str] = []
if v is None:
return []
if isinstance(v, str):
v = [v]
if isinstance(v, list):
for item in v:
if item is None:
continue
s = str(item).strip()
if not s:
continue
if s.startswith("["):
try:
arr = json.loads(s)
if isinstance(arr, list):
items.extend(str(x) for x in arr)
continue
except Exception:
pass # fallback to CSV parse below
items.extend([p for p in s.split(",") if p.strip()])
else:
return []
# normalize + dedupe
norm = []
seen = set()
for t in items:
tnorm = str(t).strip().lower()
if tnorm and tnorm not in seen:
seen.add(tnorm)
norm.append(tnorm)
return norm
@field_validator("user_metadata", mode="before")
@classmethod
def _parse_metadata_json(cls, v):
if v is None or isinstance(v, dict):
return v or {}
if isinstance(v, str):
s = v.strip()
if not s:
return {}
try:
parsed = json.loads(s)
except Exception as e:
raise ValueError(f"user_metadata must be JSON: {e}") from e
if not isinstance(parsed, dict):
raise ValueError("user_metadata must be a JSON object")
return parsed
return {}
@model_validator(mode="after")
def _validate_order(self):
if not self.tags:
raise ValueError("tags must be provided and non-empty")
root = self.tags[0]
if root not in {"models", "input", "output"}:
raise ValueError("first tag must be one of: models, input, output")
if root == "models":
if len(self.tags) < 2:
raise ValueError("models uploads require a category tag as the second tag")
return self

View File

@@ -1,93 +0,0 @@
from datetime import datetime
from typing import Any
from pydantic import BaseModel, ConfigDict, Field, field_serializer
class AssetSummary(BaseModel):
id: str
name: str
asset_hash: str | None = None
size: int | None = None
mime_type: str | None = None
tags: list[str] = Field(default_factory=list)
preview_url: str | None = None
created_at: datetime | None = None
updated_at: datetime | None = None
last_access_time: datetime | None = None
model_config = ConfigDict(from_attributes=True)
@field_serializer("created_at", "updated_at", "last_access_time")
def _ser_dt(self, v: datetime | None, _info):
return v.isoformat() if v else None
class AssetsList(BaseModel):
assets: list[AssetSummary]
total: int
has_more: bool
class AssetUpdated(BaseModel):
id: str
name: str
asset_hash: str | None = None
tags: list[str] = Field(default_factory=list)
user_metadata: dict[str, Any] = Field(default_factory=dict)
updated_at: datetime | None = None
model_config = ConfigDict(from_attributes=True)
@field_serializer("updated_at")
def _ser_updated(self, v: datetime | None, _info):
return v.isoformat() if v else None
class AssetDetail(BaseModel):
id: str
name: str
asset_hash: str | None = None
size: int | None = None
mime_type: str | None = None
tags: list[str] = Field(default_factory=list)
user_metadata: dict[str, Any] = Field(default_factory=dict)
preview_id: str | None = None
created_at: datetime | None = None
last_access_time: datetime | None = None
model_config = ConfigDict(from_attributes=True)
@field_serializer("created_at", "last_access_time")
def _ser_dt(self, v: datetime | None, _info):
return v.isoformat() if v else None
class AssetCreated(AssetDetail):
created_new: bool
class TagUsage(BaseModel):
name: str
count: int
type: str
class TagsList(BaseModel):
tags: list[TagUsage] = Field(default_factory=list)
total: int
has_more: bool
class TagsAdd(BaseModel):
model_config = ConfigDict(str_strip_whitespace=True)
added: list[str] = Field(default_factory=list)
already_present: list[str] = Field(default_factory=list)
total_tags: list[str] = Field(default_factory=list)
class TagsRemove(BaseModel):
model_config = ConfigDict(str_strip_whitespace=True)
removed: list[str] = Field(default_factory=list)
not_present: list[str] = Field(default_factory=list)
total_tags: list[str] = Field(default_factory=list)

View File

@@ -1,204 +0,0 @@
import os
import uuid
import sqlalchemy
from typing import Iterable
from sqlalchemy.orm import Session
from sqlalchemy.dialects import sqlite
from app.assets.helpers import utcnow
from app.assets.database.models import Asset, AssetCacheState, AssetInfo, AssetInfoTag, AssetInfoMeta
MAX_BIND_PARAMS = 800
def _chunk_rows(rows: list[dict], cols_per_row: int, max_bind_params: int) -> Iterable[list[dict]]:
if not rows:
return []
rows_per_stmt = max(1, max_bind_params // max(1, cols_per_row))
for i in range(0, len(rows), rows_per_stmt):
yield rows[i:i + rows_per_stmt]
def _iter_chunks(seq, n: int):
for i in range(0, len(seq), n):
yield seq[i:i + n]
def _rows_per_stmt(cols: int) -> int:
return max(1, MAX_BIND_PARAMS // max(1, cols))
def seed_from_paths_batch(
session: Session,
*,
specs: list[dict],
owner_id: str = "",
) -> dict:
"""Each spec is a dict with keys:
- abs_path: str
- size_bytes: int
- mtime_ns: int
- info_name: str
- tags: list[str]
- fname: Optional[str]
"""
if not specs:
return {"inserted_infos": 0, "won_states": 0, "lost_states": 0}
now = utcnow()
asset_rows: list[dict] = []
state_rows: list[dict] = []
path_to_asset: dict[str, str] = {}
asset_to_info: dict[str, dict] = {} # asset_id -> prepared info row
path_list: list[str] = []
for sp in specs:
ap = os.path.abspath(sp["abs_path"])
aid = str(uuid.uuid4())
iid = str(uuid.uuid4())
path_list.append(ap)
path_to_asset[ap] = aid
asset_rows.append(
{
"id": aid,
"hash": None,
"size_bytes": sp["size_bytes"],
"mime_type": None,
"created_at": now,
}
)
state_rows.append(
{
"asset_id": aid,
"file_path": ap,
"mtime_ns": sp["mtime_ns"],
}
)
asset_to_info[aid] = {
"id": iid,
"owner_id": owner_id,
"name": sp["info_name"],
"asset_id": aid,
"preview_id": None,
"user_metadata": {"filename": sp["fname"]} if sp["fname"] else None,
"created_at": now,
"updated_at": now,
"last_access_time": now,
"_tags": sp["tags"],
"_filename": sp["fname"],
}
# insert all seed Assets (hash=NULL)
ins_asset = sqlite.insert(Asset)
for chunk in _iter_chunks(asset_rows, _rows_per_stmt(5)):
session.execute(ins_asset, chunk)
# try to claim AssetCacheState (file_path)
# Insert with ON CONFLICT DO NOTHING, then query to find which paths were actually inserted
ins_state = (
sqlite.insert(AssetCacheState)
.on_conflict_do_nothing(index_elements=[AssetCacheState.file_path])
)
for chunk in _iter_chunks(state_rows, _rows_per_stmt(3)):
session.execute(ins_state, chunk)
# Query to find which of our paths won (were actually inserted)
winners_by_path: set[str] = set()
for chunk in _iter_chunks(path_list, MAX_BIND_PARAMS):
result = session.execute(
sqlalchemy.select(AssetCacheState.file_path)
.where(AssetCacheState.file_path.in_(chunk))
.where(AssetCacheState.asset_id.in_([path_to_asset[p] for p in chunk]))
)
winners_by_path.update(result.scalars().all())
all_paths_set = set(path_list)
losers_by_path = all_paths_set - winners_by_path
lost_assets = [path_to_asset[p] for p in losers_by_path]
if lost_assets: # losers get their Asset removed
for id_chunk in _iter_chunks(lost_assets, MAX_BIND_PARAMS):
session.execute(sqlalchemy.delete(Asset).where(Asset.id.in_(id_chunk)))
if not winners_by_path:
return {"inserted_infos": 0, "won_states": 0, "lost_states": len(losers_by_path)}
# insert AssetInfo only for winners
# Insert with ON CONFLICT DO NOTHING, then query to find which were actually inserted
winner_info_rows = [asset_to_info[path_to_asset[p]] for p in winners_by_path]
ins_info = (
sqlite.insert(AssetInfo)
.on_conflict_do_nothing(index_elements=[AssetInfo.asset_id, AssetInfo.owner_id, AssetInfo.name])
)
for chunk in _iter_chunks(winner_info_rows, _rows_per_stmt(9)):
session.execute(ins_info, chunk)
# Query to find which info rows were actually inserted (by matching our generated IDs)
all_info_ids = [row["id"] for row in winner_info_rows]
inserted_info_ids: set[str] = set()
for chunk in _iter_chunks(all_info_ids, MAX_BIND_PARAMS):
result = session.execute(
sqlalchemy.select(AssetInfo.id).where(AssetInfo.id.in_(chunk))
)
inserted_info_ids.update(result.scalars().all())
# build and insert tag + meta rows for the AssetInfo
tag_rows: list[dict] = []
meta_rows: list[dict] = []
if inserted_info_ids:
for row in winner_info_rows:
iid = row["id"]
if iid not in inserted_info_ids:
continue
for t in row["_tags"]:
tag_rows.append({
"asset_info_id": iid,
"tag_name": t,
"origin": "automatic",
"added_at": now,
})
if row["_filename"]:
meta_rows.append(
{
"asset_info_id": iid,
"key": "filename",
"ordinal": 0,
"val_str": row["_filename"],
"val_num": None,
"val_bool": None,
"val_json": None,
}
)
bulk_insert_tags_and_meta(session, tag_rows=tag_rows, meta_rows=meta_rows, max_bind_params=MAX_BIND_PARAMS)
return {
"inserted_infos": len(inserted_info_ids),
"won_states": len(winners_by_path),
"lost_states": len(losers_by_path),
}
def bulk_insert_tags_and_meta(
session: Session,
*,
tag_rows: list[dict],
meta_rows: list[dict],
max_bind_params: int,
) -> None:
"""Batch insert into asset_info_tags and asset_info_meta with ON CONFLICT DO NOTHING.
- tag_rows keys: asset_info_id, tag_name, origin, added_at
- meta_rows keys: asset_info_id, key, ordinal, val_str, val_num, val_bool, val_json
"""
if tag_rows:
ins_links = (
sqlite.insert(AssetInfoTag)
.on_conflict_do_nothing(index_elements=[AssetInfoTag.asset_info_id, AssetInfoTag.tag_name])
)
for chunk in _chunk_rows(tag_rows, cols_per_row=4, max_bind_params=max_bind_params):
session.execute(ins_links, chunk)
if meta_rows:
ins_meta = (
sqlite.insert(AssetInfoMeta)
.on_conflict_do_nothing(
index_elements=[AssetInfoMeta.asset_info_id, AssetInfoMeta.key, AssetInfoMeta.ordinal]
)
)
for chunk in _chunk_rows(meta_rows, cols_per_row=7, max_bind_params=max_bind_params):
session.execute(ins_meta, chunk)

View File

@@ -1,233 +0,0 @@
from __future__ import annotations
import uuid
from datetime import datetime
from typing import Any
from sqlalchemy import (
JSON,
BigInteger,
Boolean,
CheckConstraint,
DateTime,
ForeignKey,
Index,
Integer,
Numeric,
String,
Text,
UniqueConstraint,
)
from sqlalchemy.orm import Mapped, foreign, mapped_column, relationship
from app.assets.helpers import utcnow
from app.database.models import to_dict, Base
class Asset(Base):
__tablename__ = "assets"
id: Mapped[str] = mapped_column(String(36), primary_key=True, default=lambda: str(uuid.uuid4()))
hash: Mapped[str | None] = mapped_column(String(256), nullable=True)
size_bytes: Mapped[int] = mapped_column(BigInteger, nullable=False, default=0)
mime_type: Mapped[str | None] = mapped_column(String(255))
created_at: Mapped[datetime] = mapped_column(
DateTime(timezone=False), nullable=False, default=utcnow
)
infos: Mapped[list[AssetInfo]] = relationship(
"AssetInfo",
back_populates="asset",
primaryjoin=lambda: Asset.id == foreign(AssetInfo.asset_id),
foreign_keys=lambda: [AssetInfo.asset_id],
cascade="all,delete-orphan",
passive_deletes=True,
)
preview_of: Mapped[list[AssetInfo]] = relationship(
"AssetInfo",
back_populates="preview_asset",
primaryjoin=lambda: Asset.id == foreign(AssetInfo.preview_id),
foreign_keys=lambda: [AssetInfo.preview_id],
viewonly=True,
)
cache_states: Mapped[list[AssetCacheState]] = relationship(
back_populates="asset",
cascade="all, delete-orphan",
passive_deletes=True,
)
__table_args__ = (
Index("uq_assets_hash", "hash", unique=True),
Index("ix_assets_mime_type", "mime_type"),
CheckConstraint("size_bytes >= 0", name="ck_assets_size_nonneg"),
)
def to_dict(self, include_none: bool = False) -> dict[str, Any]:
return to_dict(self, include_none=include_none)
def __repr__(self) -> str:
return f"<Asset id={self.id} hash={(self.hash or '')[:12]}>"
class AssetCacheState(Base):
__tablename__ = "asset_cache_state"
id: Mapped[int] = mapped_column(Integer, primary_key=True, autoincrement=True)
asset_id: Mapped[str] = mapped_column(String(36), ForeignKey("assets.id", ondelete="CASCADE"), nullable=False)
file_path: Mapped[str] = mapped_column(Text, nullable=False)
mtime_ns: Mapped[int | None] = mapped_column(BigInteger, nullable=True)
needs_verify: Mapped[bool] = mapped_column(Boolean, nullable=False, default=False)
asset: Mapped[Asset] = relationship(back_populates="cache_states")
__table_args__ = (
Index("ix_asset_cache_state_file_path", "file_path"),
Index("ix_asset_cache_state_asset_id", "asset_id"),
CheckConstraint("(mtime_ns IS NULL) OR (mtime_ns >= 0)", name="ck_acs_mtime_nonneg"),
UniqueConstraint("file_path", name="uq_asset_cache_state_file_path"),
)
def to_dict(self, include_none: bool = False) -> dict[str, Any]:
return to_dict(self, include_none=include_none)
def __repr__(self) -> str:
return f"<AssetCacheState id={self.id} asset_id={self.asset_id} path={self.file_path!r}>"
class AssetInfo(Base):
__tablename__ = "assets_info"
id: Mapped[str] = mapped_column(String(36), primary_key=True, default=lambda: str(uuid.uuid4()))
owner_id: Mapped[str] = mapped_column(String(128), nullable=False, default="")
name: Mapped[str] = mapped_column(String(512), nullable=False)
asset_id: Mapped[str] = mapped_column(String(36), ForeignKey("assets.id", ondelete="RESTRICT"), nullable=False)
preview_id: Mapped[str | None] = mapped_column(String(36), ForeignKey("assets.id", ondelete="SET NULL"))
user_metadata: Mapped[dict[str, Any] | None] = mapped_column(JSON(none_as_null=True))
created_at: Mapped[datetime] = mapped_column(DateTime(timezone=False), nullable=False, default=utcnow)
updated_at: Mapped[datetime] = mapped_column(DateTime(timezone=False), nullable=False, default=utcnow)
last_access_time: Mapped[datetime] = mapped_column(DateTime(timezone=False), nullable=False, default=utcnow)
asset: Mapped[Asset] = relationship(
"Asset",
back_populates="infos",
foreign_keys=[asset_id],
lazy="selectin",
)
preview_asset: Mapped[Asset | None] = relationship(
"Asset",
back_populates="preview_of",
foreign_keys=[preview_id],
)
metadata_entries: Mapped[list[AssetInfoMeta]] = relationship(
back_populates="asset_info",
cascade="all,delete-orphan",
passive_deletes=True,
)
tag_links: Mapped[list[AssetInfoTag]] = relationship(
back_populates="asset_info",
cascade="all,delete-orphan",
passive_deletes=True,
overlaps="tags,asset_infos",
)
tags: Mapped[list[Tag]] = relationship(
secondary="asset_info_tags",
back_populates="asset_infos",
lazy="selectin",
viewonly=True,
overlaps="tag_links,asset_info_links,asset_infos,tag",
)
__table_args__ = (
UniqueConstraint("asset_id", "owner_id", "name", name="uq_assets_info_asset_owner_name"),
Index("ix_assets_info_owner_name", "owner_id", "name"),
Index("ix_assets_info_owner_id", "owner_id"),
Index("ix_assets_info_asset_id", "asset_id"),
Index("ix_assets_info_name", "name"),
Index("ix_assets_info_created_at", "created_at"),
Index("ix_assets_info_last_access_time", "last_access_time"),
)
def to_dict(self, include_none: bool = False) -> dict[str, Any]:
data = to_dict(self, include_none=include_none)
data["tags"] = [t.name for t in self.tags]
return data
def __repr__(self) -> str:
return f"<AssetInfo id={self.id} name={self.name!r} asset_id={self.asset_id}>"
class AssetInfoMeta(Base):
__tablename__ = "asset_info_meta"
asset_info_id: Mapped[str] = mapped_column(
String(36), ForeignKey("assets_info.id", ondelete="CASCADE"), primary_key=True
)
key: Mapped[str] = mapped_column(String(256), primary_key=True)
ordinal: Mapped[int] = mapped_column(Integer, primary_key=True, default=0)
val_str: Mapped[str | None] = mapped_column(String(2048), nullable=True)
val_num: Mapped[float | None] = mapped_column(Numeric(38, 10), nullable=True)
val_bool: Mapped[bool | None] = mapped_column(Boolean, nullable=True)
val_json: Mapped[Any | None] = mapped_column(JSON(none_as_null=True), nullable=True)
asset_info: Mapped[AssetInfo] = relationship(back_populates="metadata_entries")
__table_args__ = (
Index("ix_asset_info_meta_key", "key"),
Index("ix_asset_info_meta_key_val_str", "key", "val_str"),
Index("ix_asset_info_meta_key_val_num", "key", "val_num"),
Index("ix_asset_info_meta_key_val_bool", "key", "val_bool"),
)
class AssetInfoTag(Base):
__tablename__ = "asset_info_tags"
asset_info_id: Mapped[str] = mapped_column(
String(36), ForeignKey("assets_info.id", ondelete="CASCADE"), primary_key=True
)
tag_name: Mapped[str] = mapped_column(
String(512), ForeignKey("tags.name", ondelete="RESTRICT"), primary_key=True
)
origin: Mapped[str] = mapped_column(String(32), nullable=False, default="manual")
added_at: Mapped[datetime] = mapped_column(
DateTime(timezone=False), nullable=False, default=utcnow
)
asset_info: Mapped[AssetInfo] = relationship(back_populates="tag_links")
tag: Mapped[Tag] = relationship(back_populates="asset_info_links")
__table_args__ = (
Index("ix_asset_info_tags_tag_name", "tag_name"),
Index("ix_asset_info_tags_asset_info_id", "asset_info_id"),
)
class Tag(Base):
__tablename__ = "tags"
name: Mapped[str] = mapped_column(String(512), primary_key=True)
tag_type: Mapped[str] = mapped_column(String(32), nullable=False, default="user")
asset_info_links: Mapped[list[AssetInfoTag]] = relationship(
back_populates="tag",
overlaps="asset_infos,tags",
)
asset_infos: Mapped[list[AssetInfo]] = relationship(
secondary="asset_info_tags",
back_populates="tags",
viewonly=True,
overlaps="asset_info_links,tag_links,tags,asset_info",
)
__table_args__ = (
Index("ix_tags_tag_type", "tag_type"),
)
def __repr__(self) -> str:
return f"<Tag {self.name}>"

View File

@@ -1,976 +0,0 @@
import os
import logging
import sqlalchemy as sa
from collections import defaultdict
from datetime import datetime
from typing import Iterable, Any
from sqlalchemy import select, delete, exists, func
from sqlalchemy.dialects import sqlite
from sqlalchemy.exc import IntegrityError
from sqlalchemy.orm import Session, contains_eager, noload
from app.assets.database.models import Asset, AssetInfo, AssetCacheState, AssetInfoMeta, AssetInfoTag, Tag
from app.assets.helpers import (
compute_relative_filename, escape_like_prefix, normalize_tags, project_kv, utcnow
)
from typing import Sequence
def visible_owner_clause(owner_id: str) -> sa.sql.ClauseElement:
"""Build owner visibility predicate for reads. Owner-less rows are visible to everyone."""
owner_id = (owner_id or "").strip()
if owner_id == "":
return AssetInfo.owner_id == ""
return AssetInfo.owner_id.in_(["", owner_id])
def pick_best_live_path(states: Sequence[AssetCacheState]) -> str:
"""
Return the best on-disk path among cache states:
1) Prefer a path that exists with needs_verify == False (already verified).
2) Otherwise, pick the first path that exists.
3) Otherwise return empty string.
"""
alive = [s for s in states if getattr(s, "file_path", None) and os.path.isfile(s.file_path)]
if not alive:
return ""
for s in alive:
if not getattr(s, "needs_verify", False):
return s.file_path
return alive[0].file_path
def apply_tag_filters(
stmt: sa.sql.Select,
include_tags: Sequence[str] | None = None,
exclude_tags: Sequence[str] | None = None,
) -> sa.sql.Select:
"""include_tags: every tag must be present; exclude_tags: none may be present."""
include_tags = normalize_tags(include_tags)
exclude_tags = normalize_tags(exclude_tags)
if include_tags:
for tag_name in include_tags:
stmt = stmt.where(
exists().where(
(AssetInfoTag.asset_info_id == AssetInfo.id)
& (AssetInfoTag.tag_name == tag_name)
)
)
if exclude_tags:
stmt = stmt.where(
~exists().where(
(AssetInfoTag.asset_info_id == AssetInfo.id)
& (AssetInfoTag.tag_name.in_(exclude_tags))
)
)
return stmt
def apply_metadata_filter(
stmt: sa.sql.Select,
metadata_filter: dict | None = None,
) -> sa.sql.Select:
"""Apply filters using asset_info_meta projection table."""
if not metadata_filter:
return stmt
def _exists_for_pred(key: str, *preds) -> sa.sql.ClauseElement:
return sa.exists().where(
AssetInfoMeta.asset_info_id == AssetInfo.id,
AssetInfoMeta.key == key,
*preds,
)
def _exists_clause_for_value(key: str, value) -> sa.sql.ClauseElement:
if value is None:
no_row_for_key = sa.not_(
sa.exists().where(
AssetInfoMeta.asset_info_id == AssetInfo.id,
AssetInfoMeta.key == key,
)
)
null_row = _exists_for_pred(
key,
AssetInfoMeta.val_json.is_(None),
AssetInfoMeta.val_str.is_(None),
AssetInfoMeta.val_num.is_(None),
AssetInfoMeta.val_bool.is_(None),
)
return sa.or_(no_row_for_key, null_row)
if isinstance(value, bool):
return _exists_for_pred(key, AssetInfoMeta.val_bool == bool(value))
if isinstance(value, (int, float)):
from decimal import Decimal
num = value if isinstance(value, Decimal) else Decimal(str(value))
return _exists_for_pred(key, AssetInfoMeta.val_num == num)
if isinstance(value, str):
return _exists_for_pred(key, AssetInfoMeta.val_str == value)
return _exists_for_pred(key, AssetInfoMeta.val_json == value)
for k, v in metadata_filter.items():
if isinstance(v, list):
ors = [_exists_clause_for_value(k, elem) for elem in v]
if ors:
stmt = stmt.where(sa.or_(*ors))
else:
stmt = stmt.where(_exists_clause_for_value(k, v))
return stmt
def asset_exists_by_hash(
session: Session,
*,
asset_hash: str,
) -> bool:
"""
Check if an asset with a given hash exists in database.
"""
row = (
session.execute(
select(sa.literal(True)).select_from(Asset).where(Asset.hash == asset_hash).limit(1)
)
).first()
return row is not None
def asset_info_exists_for_asset_id(
session: Session,
*,
asset_id: str,
) -> bool:
q = (
select(sa.literal(True))
.select_from(AssetInfo)
.where(AssetInfo.asset_id == asset_id)
.limit(1)
)
return (session.execute(q)).first() is not None
def get_asset_by_hash(
session: Session,
*,
asset_hash: str,
) -> Asset | None:
return (
session.execute(select(Asset).where(Asset.hash == asset_hash).limit(1))
).scalars().first()
def get_asset_info_by_id(
session: Session,
*,
asset_info_id: str,
) -> AssetInfo | None:
return session.get(AssetInfo, asset_info_id)
def list_asset_infos_page(
session: Session,
owner_id: str = "",
include_tags: Sequence[str] | None = None,
exclude_tags: Sequence[str] | None = None,
name_contains: str | None = None,
metadata_filter: dict | None = None,
limit: int = 20,
offset: int = 0,
sort: str = "created_at",
order: str = "desc",
) -> tuple[list[AssetInfo], dict[str, list[str]], int]:
base = (
select(AssetInfo)
.join(Asset, Asset.id == AssetInfo.asset_id)
.options(contains_eager(AssetInfo.asset), noload(AssetInfo.tags))
.where(visible_owner_clause(owner_id))
)
if name_contains:
escaped, esc = escape_like_prefix(name_contains)
base = base.where(AssetInfo.name.ilike(f"%{escaped}%", escape=esc))
base = apply_tag_filters(base, include_tags, exclude_tags)
base = apply_metadata_filter(base, metadata_filter)
sort = (sort or "created_at").lower()
order = (order or "desc").lower()
sort_map = {
"name": AssetInfo.name,
"created_at": AssetInfo.created_at,
"updated_at": AssetInfo.updated_at,
"last_access_time": AssetInfo.last_access_time,
"size": Asset.size_bytes,
}
sort_col = sort_map.get(sort, AssetInfo.created_at)
sort_exp = sort_col.desc() if order == "desc" else sort_col.asc()
base = base.order_by(sort_exp).limit(limit).offset(offset)
count_stmt = (
select(sa.func.count())
.select_from(AssetInfo)
.join(Asset, Asset.id == AssetInfo.asset_id)
.where(visible_owner_clause(owner_id))
)
if name_contains:
escaped, esc = escape_like_prefix(name_contains)
count_stmt = count_stmt.where(AssetInfo.name.ilike(f"%{escaped}%", escape=esc))
count_stmt = apply_tag_filters(count_stmt, include_tags, exclude_tags)
count_stmt = apply_metadata_filter(count_stmt, metadata_filter)
total = int((session.execute(count_stmt)).scalar_one() or 0)
infos = (session.execute(base)).unique().scalars().all()
id_list: list[str] = [i.id for i in infos]
tag_map: dict[str, list[str]] = defaultdict(list)
if id_list:
rows = session.execute(
select(AssetInfoTag.asset_info_id, Tag.name)
.join(Tag, Tag.name == AssetInfoTag.tag_name)
.where(AssetInfoTag.asset_info_id.in_(id_list))
.order_by(AssetInfoTag.added_at)
)
for aid, tag_name in rows.all():
tag_map[aid].append(tag_name)
return infos, tag_map, total
def fetch_asset_info_asset_and_tags(
session: Session,
asset_info_id: str,
owner_id: str = "",
) -> tuple[AssetInfo, Asset, list[str]] | None:
stmt = (
select(AssetInfo, Asset, Tag.name)
.join(Asset, Asset.id == AssetInfo.asset_id)
.join(AssetInfoTag, AssetInfoTag.asset_info_id == AssetInfo.id, isouter=True)
.join(Tag, Tag.name == AssetInfoTag.tag_name, isouter=True)
.where(
AssetInfo.id == asset_info_id,
visible_owner_clause(owner_id),
)
.options(noload(AssetInfo.tags))
.order_by(Tag.name.asc())
)
rows = (session.execute(stmt)).all()
if not rows:
return None
first_info, first_asset, _ = rows[0]
tags: list[str] = []
seen: set[str] = set()
for _info, _asset, tag_name in rows:
if tag_name and tag_name not in seen:
seen.add(tag_name)
tags.append(tag_name)
return first_info, first_asset, tags
def fetch_asset_info_and_asset(
session: Session,
*,
asset_info_id: str,
owner_id: str = "",
) -> tuple[AssetInfo, Asset] | None:
stmt = (
select(AssetInfo, Asset)
.join(Asset, Asset.id == AssetInfo.asset_id)
.where(
AssetInfo.id == asset_info_id,
visible_owner_clause(owner_id),
)
.limit(1)
.options(noload(AssetInfo.tags))
)
row = session.execute(stmt)
pair = row.first()
if not pair:
return None
return pair[0], pair[1]
def list_cache_states_by_asset_id(
session: Session, *, asset_id: str
) -> Sequence[AssetCacheState]:
return (
session.execute(
select(AssetCacheState)
.where(AssetCacheState.asset_id == asset_id)
.order_by(AssetCacheState.id.asc())
)
).scalars().all()
def touch_asset_info_by_id(
session: Session,
*,
asset_info_id: str,
ts: datetime | None = None,
only_if_newer: bool = True,
) -> None:
ts = ts or utcnow()
stmt = sa.update(AssetInfo).where(AssetInfo.id == asset_info_id)
if only_if_newer:
stmt = stmt.where(
sa.or_(AssetInfo.last_access_time.is_(None), AssetInfo.last_access_time < ts)
)
session.execute(stmt.values(last_access_time=ts))
def create_asset_info_for_existing_asset(
session: Session,
*,
asset_hash: str,
name: str,
user_metadata: dict | None = None,
tags: Sequence[str] | None = None,
tag_origin: str = "manual",
owner_id: str = "",
) -> AssetInfo:
"""Create or return an existing AssetInfo for an Asset identified by asset_hash."""
now = utcnow()
asset = get_asset_by_hash(session, asset_hash=asset_hash)
if not asset:
raise ValueError(f"Unknown asset hash {asset_hash}")
info = AssetInfo(
owner_id=owner_id,
name=name,
asset_id=asset.id,
preview_id=None,
created_at=now,
updated_at=now,
last_access_time=now,
)
try:
with session.begin_nested():
session.add(info)
session.flush()
except IntegrityError:
existing = (
session.execute(
select(AssetInfo)
.options(noload(AssetInfo.tags))
.where(
AssetInfo.asset_id == asset.id,
AssetInfo.name == name,
AssetInfo.owner_id == owner_id,
)
.limit(1)
)
).unique().scalars().first()
if not existing:
raise RuntimeError("AssetInfo upsert failed to find existing row after conflict.")
return existing
# metadata["filename"] hack
new_meta = dict(user_metadata or {})
computed_filename = None
try:
p = pick_best_live_path(list_cache_states_by_asset_id(session, asset_id=asset.id))
if p:
computed_filename = compute_relative_filename(p)
except Exception:
computed_filename = None
if computed_filename:
new_meta["filename"] = computed_filename
if new_meta:
replace_asset_info_metadata_projection(
session,
asset_info_id=info.id,
user_metadata=new_meta,
)
if tags is not None:
set_asset_info_tags(
session,
asset_info_id=info.id,
tags=tags,
origin=tag_origin,
)
return info
def set_asset_info_tags(
session: Session,
*,
asset_info_id: str,
tags: Sequence[str],
origin: str = "manual",
) -> dict:
desired = normalize_tags(tags)
current = set(
tag_name for (tag_name,) in (
session.execute(select(AssetInfoTag.tag_name).where(AssetInfoTag.asset_info_id == asset_info_id))
).all()
)
to_add = [t for t in desired if t not in current]
to_remove = [t for t in current if t not in desired]
if to_add:
ensure_tags_exist(session, to_add, tag_type="user")
session.add_all([
AssetInfoTag(asset_info_id=asset_info_id, tag_name=t, origin=origin, added_at=utcnow())
for t in to_add
])
session.flush()
if to_remove:
session.execute(
delete(AssetInfoTag)
.where(AssetInfoTag.asset_info_id == asset_info_id, AssetInfoTag.tag_name.in_(to_remove))
)
session.flush()
return {"added": to_add, "removed": to_remove, "total": desired}
def replace_asset_info_metadata_projection(
session: Session,
*,
asset_info_id: str,
user_metadata: dict | None = None,
) -> None:
info = session.get(AssetInfo, asset_info_id)
if not info:
raise ValueError(f"AssetInfo {asset_info_id} not found")
info.user_metadata = user_metadata or {}
info.updated_at = utcnow()
session.flush()
session.execute(delete(AssetInfoMeta).where(AssetInfoMeta.asset_info_id == asset_info_id))
session.flush()
if not user_metadata:
return
rows: list[AssetInfoMeta] = []
for k, v in user_metadata.items():
for r in project_kv(k, v):
rows.append(
AssetInfoMeta(
asset_info_id=asset_info_id,
key=r["key"],
ordinal=int(r["ordinal"]),
val_str=r.get("val_str"),
val_num=r.get("val_num"),
val_bool=r.get("val_bool"),
val_json=r.get("val_json"),
)
)
if rows:
session.add_all(rows)
session.flush()
def ingest_fs_asset(
session: Session,
*,
asset_hash: str,
abs_path: str,
size_bytes: int,
mtime_ns: int,
mime_type: str | None = None,
info_name: str | None = None,
owner_id: str = "",
preview_id: str | None = None,
user_metadata: dict | None = None,
tags: Sequence[str] = (),
tag_origin: str = "manual",
require_existing_tags: bool = False,
) -> dict:
"""
Idempotently upsert:
- Asset by content hash (create if missing)
- AssetCacheState(file_path) pointing to asset_id
- Optionally AssetInfo + tag links and metadata projection
Returns flags and ids.
"""
locator = os.path.abspath(abs_path)
now = utcnow()
if preview_id:
if not session.get(Asset, preview_id):
preview_id = None
out: dict[str, Any] = {
"asset_created": False,
"asset_updated": False,
"state_created": False,
"state_updated": False,
"asset_info_id": None,
}
# 1) Asset by hash
asset = (
session.execute(select(Asset).where(Asset.hash == asset_hash).limit(1))
).scalars().first()
if not asset:
vals = {
"hash": asset_hash,
"size_bytes": int(size_bytes),
"mime_type": mime_type,
"created_at": now,
}
res = session.execute(
sqlite.insert(Asset)
.values(**vals)
.on_conflict_do_nothing(index_elements=[Asset.hash])
)
if int(res.rowcount or 0) > 0:
out["asset_created"] = True
asset = (
session.execute(
select(Asset).where(Asset.hash == asset_hash).limit(1)
)
).scalars().first()
if not asset:
raise RuntimeError("Asset row not found after upsert.")
else:
changed = False
if asset.size_bytes != int(size_bytes) and int(size_bytes) > 0:
asset.size_bytes = int(size_bytes)
changed = True
if mime_type and asset.mime_type != mime_type:
asset.mime_type = mime_type
changed = True
if changed:
out["asset_updated"] = True
# 2) AssetCacheState upsert by file_path (unique)
vals = {
"asset_id": asset.id,
"file_path": locator,
"mtime_ns": int(mtime_ns),
}
ins = (
sqlite.insert(AssetCacheState)
.values(**vals)
.on_conflict_do_nothing(index_elements=[AssetCacheState.file_path])
)
res = session.execute(ins)
if int(res.rowcount or 0) > 0:
out["state_created"] = True
else:
upd = (
sa.update(AssetCacheState)
.where(AssetCacheState.file_path == locator)
.where(
sa.or_(
AssetCacheState.asset_id != asset.id,
AssetCacheState.mtime_ns.is_(None),
AssetCacheState.mtime_ns != int(mtime_ns),
)
)
.values(asset_id=asset.id, mtime_ns=int(mtime_ns))
)
res2 = session.execute(upd)
if int(res2.rowcount or 0) > 0:
out["state_updated"] = True
# 3) Optional AssetInfo + tags + metadata
if info_name:
try:
with session.begin_nested():
info = AssetInfo(
owner_id=owner_id,
name=info_name,
asset_id=asset.id,
preview_id=preview_id,
created_at=now,
updated_at=now,
last_access_time=now,
)
session.add(info)
session.flush()
out["asset_info_id"] = info.id
except IntegrityError:
pass
existing_info = (
session.execute(
select(AssetInfo)
.where(
AssetInfo.asset_id == asset.id,
AssetInfo.name == info_name,
(AssetInfo.owner_id == owner_id),
)
.limit(1)
)
).unique().scalar_one_or_none()
if not existing_info:
raise RuntimeError("Failed to update or insert AssetInfo.")
if preview_id and existing_info.preview_id != preview_id:
existing_info.preview_id = preview_id
existing_info.updated_at = now
if existing_info.last_access_time < now:
existing_info.last_access_time = now
session.flush()
out["asset_info_id"] = existing_info.id
norm = [t.strip().lower() for t in (tags or []) if (t or "").strip()]
if norm and out["asset_info_id"] is not None:
if not require_existing_tags:
ensure_tags_exist(session, norm, tag_type="user")
existing_tag_names = set(
name for (name,) in (session.execute(select(Tag.name).where(Tag.name.in_(norm)))).all()
)
missing = [t for t in norm if t not in existing_tag_names]
if missing and require_existing_tags:
raise ValueError(f"Unknown tags: {missing}")
existing_links = set(
tag_name
for (tag_name,) in (
session.execute(
select(AssetInfoTag.tag_name).where(AssetInfoTag.asset_info_id == out["asset_info_id"])
)
).all()
)
to_add = [t for t in norm if t in existing_tag_names and t not in existing_links]
if to_add:
session.add_all(
[
AssetInfoTag(
asset_info_id=out["asset_info_id"],
tag_name=t,
origin=tag_origin,
added_at=now,
)
for t in to_add
]
)
session.flush()
# metadata["filename"] hack
if out["asset_info_id"] is not None:
primary_path = pick_best_live_path(list_cache_states_by_asset_id(session, asset_id=asset.id))
computed_filename = compute_relative_filename(primary_path) if primary_path else None
current_meta = existing_info.user_metadata or {}
new_meta = dict(current_meta)
if user_metadata is not None:
for k, v in user_metadata.items():
new_meta[k] = v
if computed_filename:
new_meta["filename"] = computed_filename
if new_meta != current_meta:
replace_asset_info_metadata_projection(
session,
asset_info_id=out["asset_info_id"],
user_metadata=new_meta,
)
try:
remove_missing_tag_for_asset_id(session, asset_id=asset.id)
except Exception:
logging.exception("Failed to clear 'missing' tag for asset %s", asset.id)
return out
def update_asset_info_full(
session: Session,
*,
asset_info_id: str,
name: str | None = None,
tags: Sequence[str] | None = None,
user_metadata: dict | None = None,
tag_origin: str = "manual",
asset_info_row: Any = None,
) -> AssetInfo:
if not asset_info_row:
info = session.get(AssetInfo, asset_info_id)
if not info:
raise ValueError(f"AssetInfo {asset_info_id} not found")
else:
info = asset_info_row
touched = False
if name is not None and name != info.name:
info.name = name
touched = True
computed_filename = None
try:
p = pick_best_live_path(list_cache_states_by_asset_id(session, asset_id=info.asset_id))
if p:
computed_filename = compute_relative_filename(p)
except Exception:
computed_filename = None
if user_metadata is not None:
new_meta = dict(user_metadata)
if computed_filename:
new_meta["filename"] = computed_filename
replace_asset_info_metadata_projection(
session, asset_info_id=asset_info_id, user_metadata=new_meta
)
touched = True
else:
if computed_filename:
current_meta = info.user_metadata or {}
if current_meta.get("filename") != computed_filename:
new_meta = dict(current_meta)
new_meta["filename"] = computed_filename
replace_asset_info_metadata_projection(
session, asset_info_id=asset_info_id, user_metadata=new_meta
)
touched = True
if tags is not None:
set_asset_info_tags(
session,
asset_info_id=asset_info_id,
tags=tags,
origin=tag_origin,
)
touched = True
if touched and user_metadata is None:
info.updated_at = utcnow()
session.flush()
return info
def delete_asset_info_by_id(
session: Session,
*,
asset_info_id: str,
owner_id: str,
) -> bool:
stmt = sa.delete(AssetInfo).where(
AssetInfo.id == asset_info_id,
visible_owner_clause(owner_id),
)
return int((session.execute(stmt)).rowcount or 0) > 0
def list_tags_with_usage(
session: Session,
prefix: str | None = None,
limit: int = 100,
offset: int = 0,
include_zero: bool = True,
order: str = "count_desc",
owner_id: str = "",
) -> tuple[list[tuple[str, str, int]], int]:
counts_sq = (
select(
AssetInfoTag.tag_name.label("tag_name"),
func.count(AssetInfoTag.asset_info_id).label("cnt"),
)
.select_from(AssetInfoTag)
.join(AssetInfo, AssetInfo.id == AssetInfoTag.asset_info_id)
.where(visible_owner_clause(owner_id))
.group_by(AssetInfoTag.tag_name)
.subquery()
)
q = (
select(
Tag.name,
Tag.tag_type,
func.coalesce(counts_sq.c.cnt, 0).label("count"),
)
.select_from(Tag)
.join(counts_sq, counts_sq.c.tag_name == Tag.name, isouter=True)
)
if prefix:
escaped, esc = escape_like_prefix(prefix.strip().lower())
q = q.where(Tag.name.like(escaped + "%", escape=esc))
if not include_zero:
q = q.where(func.coalesce(counts_sq.c.cnt, 0) > 0)
if order == "name_asc":
q = q.order_by(Tag.name.asc())
else:
q = q.order_by(func.coalesce(counts_sq.c.cnt, 0).desc(), Tag.name.asc())
total_q = select(func.count()).select_from(Tag)
if prefix:
escaped, esc = escape_like_prefix(prefix.strip().lower())
total_q = total_q.where(Tag.name.like(escaped + "%", escape=esc))
if not include_zero:
total_q = total_q.where(
Tag.name.in_(select(AssetInfoTag.tag_name).group_by(AssetInfoTag.tag_name))
)
rows = (session.execute(q.limit(limit).offset(offset))).all()
total = (session.execute(total_q)).scalar_one()
rows_norm = [(name, ttype, int(count or 0)) for (name, ttype, count) in rows]
return rows_norm, int(total or 0)
def ensure_tags_exist(session: Session, names: Iterable[str], tag_type: str = "user") -> None:
wanted = normalize_tags(list(names))
if not wanted:
return
rows = [{"name": n, "tag_type": tag_type} for n in list(dict.fromkeys(wanted))]
ins = (
sqlite.insert(Tag)
.values(rows)
.on_conflict_do_nothing(index_elements=[Tag.name])
)
session.execute(ins)
def get_asset_tags(session: Session, *, asset_info_id: str) -> list[str]:
return [
tag_name for (tag_name,) in (
session.execute(
select(AssetInfoTag.tag_name).where(AssetInfoTag.asset_info_id == asset_info_id)
)
).all()
]
def add_tags_to_asset_info(
session: Session,
*,
asset_info_id: str,
tags: Sequence[str],
origin: str = "manual",
create_if_missing: bool = True,
asset_info_row: Any = None,
) -> dict:
if not asset_info_row:
info = session.get(AssetInfo, asset_info_id)
if not info:
raise ValueError(f"AssetInfo {asset_info_id} not found")
norm = normalize_tags(tags)
if not norm:
total = get_asset_tags(session, asset_info_id=asset_info_id)
return {"added": [], "already_present": [], "total_tags": total}
if create_if_missing:
ensure_tags_exist(session, norm, tag_type="user")
current = {
tag_name
for (tag_name,) in (
session.execute(
sa.select(AssetInfoTag.tag_name).where(AssetInfoTag.asset_info_id == asset_info_id)
)
).all()
}
want = set(norm)
to_add = sorted(want - current)
if to_add:
with session.begin_nested() as nested:
try:
session.add_all(
[
AssetInfoTag(
asset_info_id=asset_info_id,
tag_name=t,
origin=origin,
added_at=utcnow(),
)
for t in to_add
]
)
session.flush()
except IntegrityError:
nested.rollback()
after = set(get_asset_tags(session, asset_info_id=asset_info_id))
return {
"added": sorted(((after - current) & want)),
"already_present": sorted(want & current),
"total_tags": sorted(after),
}
def remove_tags_from_asset_info(
session: Session,
*,
asset_info_id: str,
tags: Sequence[str],
) -> dict:
info = session.get(AssetInfo, asset_info_id)
if not info:
raise ValueError(f"AssetInfo {asset_info_id} not found")
norm = normalize_tags(tags)
if not norm:
total = get_asset_tags(session, asset_info_id=asset_info_id)
return {"removed": [], "not_present": [], "total_tags": total}
existing = {
tag_name
for (tag_name,) in (
session.execute(
sa.select(AssetInfoTag.tag_name).where(AssetInfoTag.asset_info_id == asset_info_id)
)
).all()
}
to_remove = sorted(set(t for t in norm if t in existing))
not_present = sorted(set(t for t in norm if t not in existing))
if to_remove:
session.execute(
delete(AssetInfoTag)
.where(
AssetInfoTag.asset_info_id == asset_info_id,
AssetInfoTag.tag_name.in_(to_remove),
)
)
session.flush()
total = get_asset_tags(session, asset_info_id=asset_info_id)
return {"removed": to_remove, "not_present": not_present, "total_tags": total}
def remove_missing_tag_for_asset_id(
session: Session,
*,
asset_id: str,
) -> None:
session.execute(
sa.delete(AssetInfoTag).where(
AssetInfoTag.asset_info_id.in_(sa.select(AssetInfo.id).where(AssetInfo.asset_id == asset_id)),
AssetInfoTag.tag_name == "missing",
)
)
def set_asset_info_preview(
session: Session,
*,
asset_info_id: str,
preview_asset_id: str | None = None,
) -> None:
"""Set or clear preview_id and bump updated_at. Raises on unknown IDs."""
info = session.get(AssetInfo, asset_info_id)
if not info:
raise ValueError(f"AssetInfo {asset_info_id} not found")
if preview_asset_id is None:
info.preview_id = None
else:
# validate preview asset exists
if not session.get(Asset, preview_asset_id):
raise ValueError(f"Preview Asset {preview_asset_id} not found")
info.preview_id = preview_asset_id
info.updated_at = utcnow()
session.flush()

View File

@@ -1,62 +0,0 @@
from typing import Iterable
import sqlalchemy
from sqlalchemy.orm import Session
from sqlalchemy.dialects import sqlite
from app.assets.helpers import normalize_tags, utcnow
from app.assets.database.models import Tag, AssetInfoTag, AssetInfo
def ensure_tags_exist(session: Session, names: Iterable[str], tag_type: str = "user") -> None:
wanted = normalize_tags(list(names))
if not wanted:
return
rows = [{"name": n, "tag_type": tag_type} for n in list(dict.fromkeys(wanted))]
ins = (
sqlite.insert(Tag)
.values(rows)
.on_conflict_do_nothing(index_elements=[Tag.name])
)
return session.execute(ins)
def add_missing_tag_for_asset_id(
session: Session,
*,
asset_id: str,
origin: str = "automatic",
) -> None:
select_rows = (
sqlalchemy.select(
AssetInfo.id.label("asset_info_id"),
sqlalchemy.literal("missing").label("tag_name"),
sqlalchemy.literal(origin).label("origin"),
sqlalchemy.literal(utcnow()).label("added_at"),
)
.where(AssetInfo.asset_id == asset_id)
.where(
sqlalchemy.not_(
sqlalchemy.exists().where((AssetInfoTag.asset_info_id == AssetInfo.id) & (AssetInfoTag.tag_name == "missing"))
)
)
)
session.execute(
sqlite.insert(AssetInfoTag)
.from_select(
["asset_info_id", "tag_name", "origin", "added_at"],
select_rows,
)
.on_conflict_do_nothing(index_elements=[AssetInfoTag.asset_info_id, AssetInfoTag.tag_name])
)
def remove_missing_tag_for_asset_id(
session: Session,
*,
asset_id: str,
) -> None:
session.execute(
sqlalchemy.delete(AssetInfoTag).where(
AssetInfoTag.asset_info_id.in_(sqlalchemy.select(AssetInfo.id).where(AssetInfo.asset_id == asset_id)),
AssetInfoTag.tag_name == "missing",
)
)

View File

@@ -1,75 +0,0 @@
from blake3 import blake3
from typing import IO
import os
import asyncio
DEFAULT_CHUNK = 8 * 1024 *1024 # 8MB
# NOTE: this allows hashing different representations of a file-like object
def blake3_hash(
fp: str | IO[bytes],
chunk_size: int = DEFAULT_CHUNK,
) -> str:
"""
Returns a BLAKE3 hex digest for ``fp``, which may be:
- a filename (str/bytes) or PathLike
- an open binary file object
If ``fp`` is a file object, it must be opened in **binary** mode and support
``read``, ``seek``, and ``tell``. The function will seek to the start before
reading and will attempt to restore the original position afterward.
"""
# duck typing to check if input is a file-like object
if hasattr(fp, "read"):
return _hash_file_obj(fp, chunk_size)
with open(os.fspath(fp), "rb") as f:
return _hash_file_obj(f, chunk_size)
async def blake3_hash_async(
fp: str | IO[bytes],
chunk_size: int = DEFAULT_CHUNK,
) -> str:
"""Async wrapper for ``blake3_hash_sync``.
Uses a worker thread so the event loop remains responsive.
"""
# If it is a path, open inside the worker thread to keep I/O off the loop.
if hasattr(fp, "read"):
return await asyncio.to_thread(blake3_hash, fp, chunk_size)
def _worker() -> str:
with open(os.fspath(fp), "rb") as f:
return _hash_file_obj(f, chunk_size)
return await asyncio.to_thread(_worker)
def _hash_file_obj(file_obj: IO, chunk_size: int = DEFAULT_CHUNK) -> str:
"""
Hash an already-open binary file object by streaming in chunks.
- Seeks to the beginning before reading (if supported).
- Restores the original position afterward (if tell/seek are supported).
"""
if chunk_size <= 0:
chunk_size = DEFAULT_CHUNK
# in case file object is already open and not at the beginning, track so can be restored after hashing
orig_pos = file_obj.tell()
try:
# seek to the beginning before reading
if orig_pos != 0:
file_obj.seek(0)
h = blake3()
while True:
chunk = file_obj.read(chunk_size)
if not chunk:
break
h.update(chunk)
return h.hexdigest()
finally:
# restore original position in file object, if needed
if orig_pos != 0:
file_obj.seek(orig_pos)

View File

@@ -1,312 +0,0 @@
import contextlib
import os
from decimal import Decimal
from aiohttp import web
from datetime import datetime, timezone
from pathlib import Path
from typing import Literal, Any
import folder_paths
RootType = Literal["models", "input", "output"]
ALLOWED_ROOTS: tuple[RootType, ...] = ("models", "input", "output")
def get_query_dict(request: web.Request) -> dict[str, Any]:
"""
Gets a dictionary of query parameters from the request.
'request.query' is a MultiMapping[str], needs to be converted to a dictionary to be validated by Pydantic.
"""
query_dict = {
key: request.query.getall(key) if len(request.query.getall(key)) > 1 else request.query.get(key)
for key in request.query.keys()
}
return query_dict
def list_tree(base_dir: str) -> list[str]:
out: list[str] = []
base_abs = os.path.abspath(base_dir)
if not os.path.isdir(base_abs):
return out
for dirpath, _subdirs, filenames in os.walk(base_abs, topdown=True, followlinks=False):
for name in filenames:
out.append(os.path.abspath(os.path.join(dirpath, name)))
return out
def prefixes_for_root(root: RootType) -> list[str]:
if root == "models":
bases: list[str] = []
for _bucket, paths in get_comfy_models_folders():
bases.extend(paths)
return [os.path.abspath(p) for p in bases]
if root == "input":
return [os.path.abspath(folder_paths.get_input_directory())]
if root == "output":
return [os.path.abspath(folder_paths.get_output_directory())]
return []
def escape_like_prefix(s: str, escape: str = "!") -> tuple[str, str]:
"""Escapes %, _ and the escape char itself in a LIKE prefix.
Returns (escaped_prefix, escape_char). Caller should append '%' and pass escape=escape_char to .like().
"""
s = s.replace(escape, escape + escape) # escape the escape char first
s = s.replace("%", escape + "%").replace("_", escape + "_") # escape LIKE wildcards
return s, escape
def fast_asset_file_check(
*,
mtime_db: int | None,
size_db: int | None,
stat_result: os.stat_result,
) -> bool:
if mtime_db is None:
return False
actual_mtime_ns = getattr(stat_result, "st_mtime_ns", int(stat_result.st_mtime * 1_000_000_000))
if int(mtime_db) != int(actual_mtime_ns):
return False
sz = int(size_db or 0)
if sz > 0:
return int(stat_result.st_size) == sz
return True
def utcnow() -> datetime:
"""Naive UTC timestamp (no tzinfo). We always treat DB datetimes as UTC."""
return datetime.now(timezone.utc).replace(tzinfo=None)
def get_comfy_models_folders() -> list[tuple[str, list[str]]]:
"""Build a list of (folder_name, base_paths[]) categories that are configured for model locations.
We trust `folder_paths.folder_names_and_paths` and include a category if
*any* of its base paths lies under the Comfy `models_dir`.
"""
targets: list[tuple[str, list[str]]] = []
models_root = os.path.abspath(folder_paths.models_dir)
for name, values in folder_paths.folder_names_and_paths.items():
paths, _exts = values[0], values[1] # NOTE: this prevents nodepacks that hackily edit folder_... from breaking ComfyUI
if any(os.path.abspath(p).startswith(models_root + os.sep) for p in paths):
targets.append((name, paths))
return targets
def resolve_destination_from_tags(tags: list[str]) -> tuple[str, list[str]]:
"""Validates and maps tags -> (base_dir, subdirs_for_fs)"""
root = tags[0]
if root == "models":
if len(tags) < 2:
raise ValueError("at least two tags required for model asset")
try:
bases = folder_paths.folder_names_and_paths[tags[1]][0]
except KeyError:
raise ValueError(f"unknown model category '{tags[1]}'")
if not bases:
raise ValueError(f"no base path configured for category '{tags[1]}'")
base_dir = os.path.abspath(bases[0])
raw_subdirs = tags[2:]
else:
base_dir = os.path.abspath(
folder_paths.get_input_directory() if root == "input" else folder_paths.get_output_directory()
)
raw_subdirs = tags[1:]
for i in raw_subdirs:
if i in (".", ".."):
raise ValueError("invalid path component in tags")
return base_dir, raw_subdirs if raw_subdirs else []
def ensure_within_base(candidate: str, base: str) -> None:
cand_abs = os.path.abspath(candidate)
base_abs = os.path.abspath(base)
try:
if os.path.commonpath([cand_abs, base_abs]) != base_abs:
raise ValueError("destination escapes base directory")
except Exception:
raise ValueError("invalid destination path")
def compute_relative_filename(file_path: str) -> str | None:
"""
Return the model's path relative to the last well-known folder (the model category),
using forward slashes, eg:
/.../models/checkpoints/flux/123/flux.safetensors -> "flux/123/flux.safetensors"
/.../models/text_encoders/clip_g.safetensors -> "clip_g.safetensors"
For non-model paths, returns None.
NOTE: this is a temporary helper, used only for initializing metadata["filename"] field.
"""
try:
root_category, rel_path = get_relative_to_root_category_path_of_asset(file_path)
except ValueError:
return None
p = Path(rel_path)
parts = [seg for seg in p.parts if seg not in (".", "..", p.anchor)]
if not parts:
return None
if root_category == "models":
# parts[0] is the category ("checkpoints", "vae", etc) drop it
inside = parts[1:] if len(parts) > 1 else [parts[0]]
return "/".join(inside)
return "/".join(parts) # input/output: keep all parts
def get_relative_to_root_category_path_of_asset(file_path: str) -> tuple[Literal["input", "output", "models"], str]:
"""Given an absolute or relative file path, determine which root category the path belongs to:
- 'input' if the file resides under `folder_paths.get_input_directory()`
- 'output' if the file resides under `folder_paths.get_output_directory()`
- 'models' if the file resides under any base path of categories returned by `get_comfy_models_folders()`
Returns:
(root_category, relative_path_inside_that_root)
For 'models', the relative path is prefixed with the category name:
e.g. ('models', 'vae/test/sub/ae.safetensors')
Raises:
ValueError: if the path does not belong to input, output, or configured model bases.
"""
fp_abs = os.path.abspath(file_path)
def _is_within(child: str, parent: str) -> bool:
try:
return os.path.commonpath([child, parent]) == parent
except Exception:
return False
def _rel(child: str, parent: str) -> str:
return os.path.relpath(os.path.join(os.sep, os.path.relpath(child, parent)), os.sep)
# 1) input
input_base = os.path.abspath(folder_paths.get_input_directory())
if _is_within(fp_abs, input_base):
return "input", _rel(fp_abs, input_base)
# 2) output
output_base = os.path.abspath(folder_paths.get_output_directory())
if _is_within(fp_abs, output_base):
return "output", _rel(fp_abs, output_base)
# 3) models (check deepest matching base to avoid ambiguity)
best: tuple[int, str, str] | None = None # (base_len, bucket, rel_inside_bucket)
for bucket, bases in get_comfy_models_folders():
for b in bases:
base_abs = os.path.abspath(b)
if not _is_within(fp_abs, base_abs):
continue
cand = (len(base_abs), bucket, _rel(fp_abs, base_abs))
if best is None or cand[0] > best[0]:
best = cand
if best is not None:
_, bucket, rel_inside = best
combined = os.path.join(bucket, rel_inside)
return "models", os.path.relpath(os.path.join(os.sep, combined), os.sep)
raise ValueError(f"Path is not within input, output, or configured model bases: {file_path}")
def get_name_and_tags_from_asset_path(file_path: str) -> tuple[str, list[str]]:
"""Return a tuple (name, tags) derived from a filesystem path.
Semantics:
- Root category is determined by `get_relative_to_root_category_path_of_asset`.
- The returned `name` is the base filename with extension from the relative path.
- The returned `tags` are:
[root_category] + parent folders of the relative path (in order)
For 'models', this means:
file '/.../ModelsDir/vae/test_tag/ae.safetensors'
-> root_category='models', some_path='vae/test_tag/ae.safetensors'
-> name='ae.safetensors', tags=['models', 'vae', 'test_tag']
Raises:
ValueError: if the path does not belong to input, output, or configured model bases.
"""
root_category, some_path = get_relative_to_root_category_path_of_asset(file_path)
p = Path(some_path)
parent_parts = [part for part in p.parent.parts if part not in (".", "..", p.anchor)]
return p.name, list(dict.fromkeys(normalize_tags([root_category, *parent_parts])))
def normalize_tags(tags: list[str] | None) -> list[str]:
"""
Normalize a list of tags by:
- Stripping whitespace and converting to lowercase.
- Removing duplicates.
"""
return [t.strip().lower() for t in (tags or []) if (t or "").strip()]
def collect_models_files() -> list[str]:
out: list[str] = []
for folder_name, bases in get_comfy_models_folders():
rel_files = folder_paths.get_filename_list(folder_name) or []
for rel_path in rel_files:
abs_path = folder_paths.get_full_path(folder_name, rel_path)
if not abs_path:
continue
abs_path = os.path.abspath(abs_path)
allowed = False
for b in bases:
base_abs = os.path.abspath(b)
with contextlib.suppress(Exception):
if os.path.commonpath([abs_path, base_abs]) == base_abs:
allowed = True
break
if allowed:
out.append(abs_path)
return out
def is_scalar(v):
if v is None:
return True
if isinstance(v, bool):
return True
if isinstance(v, (int, float, Decimal, str)):
return True
return False
def project_kv(key: str, value):
"""
Turn a metadata key/value into typed projection rows.
Returns list[dict] with keys:
key, ordinal, and one of val_str / val_num / val_bool / val_json (others None)
"""
rows: list[dict] = []
def _null_row(ordinal: int) -> dict:
return {
"key": key, "ordinal": ordinal,
"val_str": None, "val_num": None, "val_bool": None, "val_json": None
}
if value is None:
rows.append(_null_row(0))
return rows
if is_scalar(value):
if isinstance(value, bool):
rows.append({"key": key, "ordinal": 0, "val_bool": bool(value)})
elif isinstance(value, (int, float, Decimal)):
num = value if isinstance(value, Decimal) else Decimal(str(value))
rows.append({"key": key, "ordinal": 0, "val_num": num})
elif isinstance(value, str):
rows.append({"key": key, "ordinal": 0, "val_str": value})
else:
rows.append({"key": key, "ordinal": 0, "val_json": value})
return rows
if isinstance(value, list):
if all(is_scalar(x) for x in value):
for i, x in enumerate(value):
if x is None:
rows.append(_null_row(i))
elif isinstance(x, bool):
rows.append({"key": key, "ordinal": i, "val_bool": bool(x)})
elif isinstance(x, (int, float, Decimal)):
num = x if isinstance(x, Decimal) else Decimal(str(x))
rows.append({"key": key, "ordinal": i, "val_num": num})
elif isinstance(x, str):
rows.append({"key": key, "ordinal": i, "val_str": x})
else:
rows.append({"key": key, "ordinal": i, "val_json": x})
return rows
for i, x in enumerate(value):
rows.append({"key": key, "ordinal": i, "val_json": x})
return rows
rows.append({"key": key, "ordinal": 0, "val_json": value})
return rows

View File

@@ -1,516 +0,0 @@
import os
import mimetypes
import contextlib
from typing import Sequence
from app.database.db import create_session
from app.assets.api import schemas_out, schemas_in
from app.assets.database.queries import (
asset_exists_by_hash,
asset_info_exists_for_asset_id,
get_asset_by_hash,
get_asset_info_by_id,
fetch_asset_info_asset_and_tags,
fetch_asset_info_and_asset,
create_asset_info_for_existing_asset,
touch_asset_info_by_id,
update_asset_info_full,
delete_asset_info_by_id,
list_cache_states_by_asset_id,
list_asset_infos_page,
list_tags_with_usage,
get_asset_tags,
add_tags_to_asset_info,
remove_tags_from_asset_info,
pick_best_live_path,
ingest_fs_asset,
set_asset_info_preview,
)
from app.assets.helpers import resolve_destination_from_tags, ensure_within_base
from app.assets.database.models import Asset
def _safe_sort_field(requested: str | None) -> str:
if not requested:
return "created_at"
v = requested.lower()
if v in {"name", "created_at", "updated_at", "size", "last_access_time"}:
return v
return "created_at"
def _get_size_mtime_ns(path: str) -> tuple[int, int]:
st = os.stat(path, follow_symlinks=True)
return st.st_size, getattr(st, "st_mtime_ns", int(st.st_mtime * 1_000_000_000))
def _safe_filename(name: str | None, fallback: str) -> str:
n = os.path.basename((name or "").strip() or fallback)
if n:
return n
return fallback
def asset_exists(*, asset_hash: str) -> bool:
"""
Check if an asset with a given hash exists in database.
"""
with create_session() as session:
return asset_exists_by_hash(session, asset_hash=asset_hash)
def list_assets(
*,
include_tags: Sequence[str] | None = None,
exclude_tags: Sequence[str] | None = None,
name_contains: str | None = None,
metadata_filter: dict | None = None,
limit: int = 20,
offset: int = 0,
sort: str = "created_at",
order: str = "desc",
owner_id: str = "",
) -> schemas_out.AssetsList:
sort = _safe_sort_field(sort)
order = "desc" if (order or "desc").lower() not in {"asc", "desc"} else order.lower()
with create_session() as session:
infos, tag_map, total = list_asset_infos_page(
session,
owner_id=owner_id,
include_tags=include_tags,
exclude_tags=exclude_tags,
name_contains=name_contains,
metadata_filter=metadata_filter,
limit=limit,
offset=offset,
sort=sort,
order=order,
)
summaries: list[schemas_out.AssetSummary] = []
for info in infos:
asset = info.asset
tags = tag_map.get(info.id, [])
summaries.append(
schemas_out.AssetSummary(
id=info.id,
name=info.name,
asset_hash=asset.hash if asset else None,
size=int(asset.size_bytes) if asset else None,
mime_type=asset.mime_type if asset else None,
tags=tags,
created_at=info.created_at,
updated_at=info.updated_at,
last_access_time=info.last_access_time,
)
)
return schemas_out.AssetsList(
assets=summaries,
total=total,
has_more=(offset + len(summaries)) < total,
)
def get_asset(
*,
asset_info_id: str,
owner_id: str = "",
) -> schemas_out.AssetDetail:
with create_session() as session:
res = fetch_asset_info_asset_and_tags(session, asset_info_id=asset_info_id, owner_id=owner_id)
if not res:
raise ValueError(f"AssetInfo {asset_info_id} not found")
info, asset, tag_names = res
preview_id = info.preview_id
return schemas_out.AssetDetail(
id=info.id,
name=info.name,
asset_hash=asset.hash if asset else None,
size=int(asset.size_bytes) if asset and asset.size_bytes is not None else None,
mime_type=asset.mime_type if asset else None,
tags=tag_names,
user_metadata=info.user_metadata or {},
preview_id=preview_id,
created_at=info.created_at,
last_access_time=info.last_access_time,
)
def resolve_asset_content_for_download(
*,
asset_info_id: str,
owner_id: str = "",
) -> tuple[str, str, str]:
with create_session() as session:
pair = fetch_asset_info_and_asset(session, asset_info_id=asset_info_id, owner_id=owner_id)
if not pair:
raise ValueError(f"AssetInfo {asset_info_id} not found")
info, asset = pair
states = list_cache_states_by_asset_id(session, asset_id=asset.id)
abs_path = pick_best_live_path(states)
if not abs_path:
raise FileNotFoundError
touch_asset_info_by_id(session, asset_info_id=asset_info_id)
session.commit()
ctype = asset.mime_type or mimetypes.guess_type(info.name or abs_path)[0] or "application/octet-stream"
download_name = info.name or os.path.basename(abs_path)
return abs_path, ctype, download_name
def upload_asset_from_temp_path(
spec: schemas_in.UploadAssetSpec,
*,
temp_path: str,
client_filename: str | None = None,
owner_id: str = "",
expected_asset_hash: str | None = None,
) -> schemas_out.AssetCreated:
"""
Create new asset or update existing asset from a temporary file path.
"""
try:
# NOTE: blake3 is not required right now, so this will fail if blake3 is not installed in local environment
import app.assets.hashing as hashing
digest = hashing.blake3_hash(temp_path)
except Exception as e:
raise RuntimeError(f"failed to hash uploaded file: {e}")
asset_hash = "blake3:" + digest
if expected_asset_hash and asset_hash != expected_asset_hash.strip().lower():
raise ValueError("HASH_MISMATCH")
with create_session() as session:
existing = get_asset_by_hash(session, asset_hash=asset_hash)
if existing is not None:
with contextlib.suppress(Exception):
if temp_path and os.path.exists(temp_path):
os.remove(temp_path)
display_name = _safe_filename(spec.name or (client_filename or ""), fallback=digest)
info = create_asset_info_for_existing_asset(
session,
asset_hash=asset_hash,
name=display_name,
user_metadata=spec.user_metadata or {},
tags=spec.tags or [],
tag_origin="manual",
owner_id=owner_id,
)
tag_names = get_asset_tags(session, asset_info_id=info.id)
session.commit()
return schemas_out.AssetCreated(
id=info.id,
name=info.name,
asset_hash=existing.hash,
size=int(existing.size_bytes) if existing.size_bytes is not None else None,
mime_type=existing.mime_type,
tags=tag_names,
user_metadata=info.user_metadata or {},
preview_id=info.preview_id,
created_at=info.created_at,
last_access_time=info.last_access_time,
created_new=False,
)
base_dir, subdirs = resolve_destination_from_tags(spec.tags)
dest_dir = os.path.join(base_dir, *subdirs) if subdirs else base_dir
os.makedirs(dest_dir, exist_ok=True)
src_for_ext = (client_filename or spec.name or "").strip()
_ext = os.path.splitext(os.path.basename(src_for_ext))[1] if src_for_ext else ""
ext = _ext if 0 < len(_ext) <= 16 else ""
hashed_basename = f"{digest}{ext}"
dest_abs = os.path.abspath(os.path.join(dest_dir, hashed_basename))
ensure_within_base(dest_abs, base_dir)
content_type = (
mimetypes.guess_type(os.path.basename(src_for_ext), strict=False)[0]
or mimetypes.guess_type(hashed_basename, strict=False)[0]
or "application/octet-stream"
)
try:
os.replace(temp_path, dest_abs)
except Exception as e:
raise RuntimeError(f"failed to move uploaded file into place: {e}")
try:
size_bytes, mtime_ns = _get_size_mtime_ns(dest_abs)
except OSError as e:
raise RuntimeError(f"failed to stat destination file: {e}")
with create_session() as session:
result = ingest_fs_asset(
session,
asset_hash=asset_hash,
abs_path=dest_abs,
size_bytes=size_bytes,
mtime_ns=mtime_ns,
mime_type=content_type,
info_name=_safe_filename(spec.name or (client_filename or ""), fallback=digest),
owner_id=owner_id,
preview_id=None,
user_metadata=spec.user_metadata or {},
tags=spec.tags,
tag_origin="manual",
require_existing_tags=False,
)
info_id = result["asset_info_id"]
if not info_id:
raise RuntimeError("failed to create asset metadata")
pair = fetch_asset_info_and_asset(session, asset_info_id=info_id, owner_id=owner_id)
if not pair:
raise RuntimeError("inconsistent DB state after ingest")
info, asset = pair
tag_names = get_asset_tags(session, asset_info_id=info.id)
created_result = schemas_out.AssetCreated(
id=info.id,
name=info.name,
asset_hash=asset.hash,
size=int(asset.size_bytes),
mime_type=asset.mime_type,
tags=tag_names,
user_metadata=info.user_metadata or {},
preview_id=info.preview_id,
created_at=info.created_at,
last_access_time=info.last_access_time,
created_new=result["asset_created"],
)
session.commit()
return created_result
def update_asset(
*,
asset_info_id: str,
name: str | None = None,
tags: list[str] | None = None,
user_metadata: dict | None = None,
owner_id: str = "",
) -> schemas_out.AssetUpdated:
with create_session() as session:
info_row = get_asset_info_by_id(session, asset_info_id=asset_info_id)
if not info_row:
raise ValueError(f"AssetInfo {asset_info_id} not found")
if info_row.owner_id and info_row.owner_id != owner_id:
raise PermissionError("not owner")
info = update_asset_info_full(
session,
asset_info_id=asset_info_id,
name=name,
tags=tags,
user_metadata=user_metadata,
tag_origin="manual",
asset_info_row=info_row,
)
tag_names = get_asset_tags(session, asset_info_id=asset_info_id)
result = schemas_out.AssetUpdated(
id=info.id,
name=info.name,
asset_hash=info.asset.hash if info.asset else None,
tags=tag_names,
user_metadata=info.user_metadata or {},
updated_at=info.updated_at,
)
session.commit()
return result
def set_asset_preview(
*,
asset_info_id: str,
preview_asset_id: str | None = None,
owner_id: str = "",
) -> schemas_out.AssetDetail:
with create_session() as session:
info_row = get_asset_info_by_id(session, asset_info_id=asset_info_id)
if not info_row:
raise ValueError(f"AssetInfo {asset_info_id} not found")
if info_row.owner_id and info_row.owner_id != owner_id:
raise PermissionError("not owner")
set_asset_info_preview(
session,
asset_info_id=asset_info_id,
preview_asset_id=preview_asset_id,
)
res = fetch_asset_info_asset_and_tags(session, asset_info_id=asset_info_id, owner_id=owner_id)
if not res:
raise RuntimeError("State changed during preview update")
info, asset, tags = res
result = schemas_out.AssetDetail(
id=info.id,
name=info.name,
asset_hash=asset.hash if asset else None,
size=int(asset.size_bytes) if asset and asset.size_bytes is not None else None,
mime_type=asset.mime_type if asset else None,
tags=tags,
user_metadata=info.user_metadata or {},
preview_id=info.preview_id,
created_at=info.created_at,
last_access_time=info.last_access_time,
)
session.commit()
return result
def delete_asset_reference(*, asset_info_id: str, owner_id: str, delete_content_if_orphan: bool = True) -> bool:
with create_session() as session:
info_row = get_asset_info_by_id(session, asset_info_id=asset_info_id)
asset_id = info_row.asset_id if info_row else None
deleted = delete_asset_info_by_id(session, asset_info_id=asset_info_id, owner_id=owner_id)
if not deleted:
session.commit()
return False
if not delete_content_if_orphan or not asset_id:
session.commit()
return True
still_exists = asset_info_exists_for_asset_id(session, asset_id=asset_id)
if still_exists:
session.commit()
return True
states = list_cache_states_by_asset_id(session, asset_id=asset_id)
file_paths = [s.file_path for s in (states or []) if getattr(s, "file_path", None)]
asset_row = session.get(Asset, asset_id)
if asset_row is not None:
session.delete(asset_row)
session.commit()
for p in file_paths:
with contextlib.suppress(Exception):
if p and os.path.isfile(p):
os.remove(p)
return True
def create_asset_from_hash(
*,
hash_str: str,
name: str,
tags: list[str] | None = None,
user_metadata: dict | None = None,
owner_id: str = "",
) -> schemas_out.AssetCreated | None:
canonical = hash_str.strip().lower()
with create_session() as session:
asset = get_asset_by_hash(session, asset_hash=canonical)
if not asset:
return None
info = create_asset_info_for_existing_asset(
session,
asset_hash=canonical,
name=_safe_filename(name, fallback=canonical.split(":", 1)[1]),
user_metadata=user_metadata or {},
tags=tags or [],
tag_origin="manual",
owner_id=owner_id,
)
tag_names = get_asset_tags(session, asset_info_id=info.id)
result = schemas_out.AssetCreated(
id=info.id,
name=info.name,
asset_hash=asset.hash,
size=int(asset.size_bytes),
mime_type=asset.mime_type,
tags=tag_names,
user_metadata=info.user_metadata or {},
preview_id=info.preview_id,
created_at=info.created_at,
last_access_time=info.last_access_time,
created_new=False,
)
session.commit()
return result
def add_tags_to_asset(
*,
asset_info_id: str,
tags: list[str],
origin: str = "manual",
owner_id: str = "",
) -> schemas_out.TagsAdd:
with create_session() as session:
info_row = get_asset_info_by_id(session, asset_info_id=asset_info_id)
if not info_row:
raise ValueError(f"AssetInfo {asset_info_id} not found")
if info_row.owner_id and info_row.owner_id != owner_id:
raise PermissionError("not owner")
data = add_tags_to_asset_info(
session,
asset_info_id=asset_info_id,
tags=tags,
origin=origin,
create_if_missing=True,
asset_info_row=info_row,
)
session.commit()
return schemas_out.TagsAdd(**data)
def remove_tags_from_asset(
*,
asset_info_id: str,
tags: list[str],
owner_id: str = "",
) -> schemas_out.TagsRemove:
with create_session() as session:
info_row = get_asset_info_by_id(session, asset_info_id=asset_info_id)
if not info_row:
raise ValueError(f"AssetInfo {asset_info_id} not found")
if info_row.owner_id and info_row.owner_id != owner_id:
raise PermissionError("not owner")
data = remove_tags_from_asset_info(
session,
asset_info_id=asset_info_id,
tags=tags,
)
session.commit()
return schemas_out.TagsRemove(**data)
def list_tags(
prefix: str | None = None,
limit: int = 100,
offset: int = 0,
order: str = "count_desc",
include_zero: bool = True,
owner_id: str = "",
) -> schemas_out.TagsList:
limit = max(1, min(1000, limit))
offset = max(0, offset)
with create_session() as session:
rows, total = list_tags_with_usage(
session,
prefix=prefix,
limit=limit,
offset=offset,
include_zero=include_zero,
order=order,
owner_id=owner_id,
)
tags = [schemas_out.TagUsage(name=name, count=count, type=tag_type) for (name, tag_type, count) in rows]
return schemas_out.TagsList(tags=tags, total=total, has_more=(offset + len(tags)) < total)

View File

@@ -1,263 +0,0 @@
import contextlib
import time
import logging
import os
import sqlalchemy
import folder_paths
from app.database.db import create_session, dependencies_available
from app.assets.helpers import (
collect_models_files, compute_relative_filename, fast_asset_file_check, get_name_and_tags_from_asset_path,
list_tree,prefixes_for_root, escape_like_prefix,
RootType
)
from app.assets.database.tags import add_missing_tag_for_asset_id, ensure_tags_exist, remove_missing_tag_for_asset_id
from app.assets.database.bulk_ops import seed_from_paths_batch
from app.assets.database.models import Asset, AssetCacheState, AssetInfo
def seed_assets(roots: tuple[RootType, ...], enable_logging: bool = False) -> None:
"""
Scan the given roots and seed the assets into the database.
"""
if not dependencies_available():
if enable_logging:
logging.warning("Database dependencies not available, skipping assets scan")
return
t_start = time.perf_counter()
created = 0
skipped_existing = 0
orphans_pruned = 0
paths: list[str] = []
try:
existing_paths: set[str] = set()
for r in roots:
try:
survivors: set[str] = _fast_db_consistency_pass(r, collect_existing_paths=True, update_missing_tags=True)
if survivors:
existing_paths.update(survivors)
except Exception as e:
logging.exception("fast DB scan failed for %s: %s", r, e)
try:
orphans_pruned = _prune_orphaned_assets(roots)
except Exception as e:
logging.exception("orphan pruning failed: %s", e)
if "models" in roots:
paths.extend(collect_models_files())
if "input" in roots:
paths.extend(list_tree(folder_paths.get_input_directory()))
if "output" in roots:
paths.extend(list_tree(folder_paths.get_output_directory()))
specs: list[dict] = []
tag_pool: set[str] = set()
for p in paths:
abs_p = os.path.abspath(p)
if abs_p in existing_paths:
skipped_existing += 1
continue
try:
stat_p = os.stat(abs_p, follow_symlinks=False)
except OSError:
continue
# skip empty files
if not stat_p.st_size:
continue
name, tags = get_name_and_tags_from_asset_path(abs_p)
specs.append(
{
"abs_path": abs_p,
"size_bytes": stat_p.st_size,
"mtime_ns": getattr(stat_p, "st_mtime_ns", int(stat_p.st_mtime * 1_000_000_000)),
"info_name": name,
"tags": tags,
"fname": compute_relative_filename(abs_p),
}
)
for t in tags:
tag_pool.add(t)
# if no file specs, nothing to do
if not specs:
return
with create_session() as sess:
if tag_pool:
ensure_tags_exist(sess, tag_pool, tag_type="user")
result = seed_from_paths_batch(sess, specs=specs, owner_id="")
created += result["inserted_infos"]
sess.commit()
finally:
if enable_logging:
logging.info(
"Assets scan(roots=%s) completed in %.3fs (created=%d, skipped_existing=%d, orphans_pruned=%d, total_seen=%d)",
roots,
time.perf_counter() - t_start,
created,
skipped_existing,
orphans_pruned,
len(paths),
)
def _prune_orphaned_assets(roots: tuple[RootType, ...]) -> int:
"""Prune cache states outside configured prefixes, then delete orphaned seed assets."""
all_prefixes = [os.path.abspath(p) for r in roots for p in prefixes_for_root(r)]
if not all_prefixes:
return 0
def make_prefix_condition(prefix: str):
base = prefix if prefix.endswith(os.sep) else prefix + os.sep
escaped, esc = escape_like_prefix(base)
return AssetCacheState.file_path.like(escaped + "%", escape=esc)
matches_valid_prefix = sqlalchemy.or_(*[make_prefix_condition(p) for p in all_prefixes])
orphan_subq = (
sqlalchemy.select(Asset.id)
.outerjoin(AssetCacheState, AssetCacheState.asset_id == Asset.id)
.where(Asset.hash.is_(None), AssetCacheState.id.is_(None))
).scalar_subquery()
with create_session() as sess:
sess.execute(sqlalchemy.delete(AssetCacheState).where(~matches_valid_prefix))
sess.execute(sqlalchemy.delete(AssetInfo).where(AssetInfo.asset_id.in_(orphan_subq)))
result = sess.execute(sqlalchemy.delete(Asset).where(Asset.id.in_(orphan_subq)))
sess.commit()
return result.rowcount
def _fast_db_consistency_pass(
root: RootType,
*,
collect_existing_paths: bool = False,
update_missing_tags: bool = False,
) -> set[str] | None:
"""Fast DB+FS pass for a root:
- Toggle needs_verify per state using fast check
- For hashed assets with at least one fast-ok state in this root: delete stale missing states
- For seed assets with all states missing: delete Asset and its AssetInfos
- Optionally add/remove 'missing' tags based on fast-ok in this root
- Optionally return surviving absolute paths
"""
prefixes = prefixes_for_root(root)
if not prefixes:
return set() if collect_existing_paths else None
conds = []
for p in prefixes:
base = os.path.abspath(p)
if not base.endswith(os.sep):
base += os.sep
escaped, esc = escape_like_prefix(base)
conds.append(AssetCacheState.file_path.like(escaped + "%", escape=esc))
with create_session() as sess:
rows = (
sess.execute(
sqlalchemy.select(
AssetCacheState.id,
AssetCacheState.file_path,
AssetCacheState.mtime_ns,
AssetCacheState.needs_verify,
AssetCacheState.asset_id,
Asset.hash,
Asset.size_bytes,
)
.join(Asset, Asset.id == AssetCacheState.asset_id)
.where(sqlalchemy.or_(*conds))
.order_by(AssetCacheState.asset_id.asc(), AssetCacheState.id.asc())
)
).all()
by_asset: dict[str, dict] = {}
for sid, fp, mtime_db, needs_verify, aid, a_hash, a_size in rows:
acc = by_asset.get(aid)
if acc is None:
acc = {"hash": a_hash, "size_db": int(a_size or 0), "states": []}
by_asset[aid] = acc
fast_ok = False
try:
exists = True
fast_ok = fast_asset_file_check(
mtime_db=mtime_db,
size_db=acc["size_db"],
stat_result=os.stat(fp, follow_symlinks=True),
)
except FileNotFoundError:
exists = False
except OSError:
exists = False
acc["states"].append({
"sid": sid,
"fp": fp,
"exists": exists,
"fast_ok": fast_ok,
"needs_verify": bool(needs_verify),
})
to_set_verify: list[int] = []
to_clear_verify: list[int] = []
stale_state_ids: list[int] = []
survivors: set[str] = set()
for aid, acc in by_asset.items():
a_hash = acc["hash"]
states = acc["states"]
any_fast_ok = any(s["fast_ok"] for s in states)
all_missing = all(not s["exists"] for s in states)
for s in states:
if not s["exists"]:
continue
if s["fast_ok"] and s["needs_verify"]:
to_clear_verify.append(s["sid"])
if not s["fast_ok"] and not s["needs_verify"]:
to_set_verify.append(s["sid"])
if a_hash is None:
if states and all_missing: # remove seed Asset completely, if no valid AssetCache exists
sess.execute(sqlalchemy.delete(AssetInfo).where(AssetInfo.asset_id == aid))
asset = sess.get(Asset, aid)
if asset:
sess.delete(asset)
else:
for s in states:
if s["exists"]:
survivors.add(os.path.abspath(s["fp"]))
continue
if any_fast_ok: # if Asset has at least one valid AssetCache record, remove any invalid AssetCache records
for s in states:
if not s["exists"]:
stale_state_ids.append(s["sid"])
if update_missing_tags:
with contextlib.suppress(Exception):
remove_missing_tag_for_asset_id(sess, asset_id=aid)
elif update_missing_tags:
with contextlib.suppress(Exception):
add_missing_tag_for_asset_id(sess, asset_id=aid, origin="automatic")
for s in states:
if s["exists"]:
survivors.add(os.path.abspath(s["fp"]))
if stale_state_ids:
sess.execute(sqlalchemy.delete(AssetCacheState).where(AssetCacheState.id.in_(stale_state_ids)))
if to_set_verify:
sess.execute(
sqlalchemy.update(AssetCacheState)
.where(AssetCacheState.id.in_(to_set_verify))
.values(needs_verify=True)
)
if to_clear_verify:
sess.execute(
sqlalchemy.update(AssetCacheState)
.where(AssetCacheState.id.in_(to_clear_verify))
.values(needs_verify=False)
)
sess.commit()
return survivors if collect_existing_paths else None

View File

@@ -1,21 +1,14 @@
from typing import Any
from datetime import datetime
from sqlalchemy.orm import DeclarativeBase
from sqlalchemy.orm import declarative_base
class Base(DeclarativeBase):
pass
Base = declarative_base()
def to_dict(obj: Any, include_none: bool = False) -> dict[str, Any]:
def to_dict(obj):
fields = obj.__table__.columns.keys()
out: dict[str, Any] = {}
for field in fields:
val = getattr(obj, field)
if val is None and not include_none:
continue
if isinstance(val, datetime):
out[field] = val.isoformat()
else:
out[field] = val
return out
return {
field: (val.to_dict() if hasattr(val, "to_dict") else val)
for field in fields
if (val := getattr(obj, field))
}
# TODO: Define models here

View File

@@ -10,8 +10,7 @@ import importlib
from dataclasses import dataclass
from functools import cached_property
from pathlib import Path
from typing import Dict, TypedDict, Optional
from aiohttp import web
from typing import TypedDict, Optional
from importlib.metadata import version
import requests
@@ -258,54 +257,7 @@ comfyui-frontend-package is not installed.
sys.exit(-1)
@classmethod
def template_asset_map(cls) -> Optional[Dict[str, str]]:
"""Return a mapping of template asset names to their absolute paths."""
try:
from comfyui_workflow_templates import (
get_asset_path,
iter_templates,
)
except ImportError:
logging.error(
f"""
********** ERROR ***********
comfyui-workflow-templates is not installed.
{frontend_install_warning_message()}
********** ERROR ***********
""".strip()
)
return None
try:
template_entries = list(iter_templates())
except Exception as exc:
logging.error(f"Failed to enumerate workflow templates: {exc}")
return None
asset_map: Dict[str, str] = {}
try:
for entry in template_entries:
for asset in entry.assets:
asset_map[asset.filename] = get_asset_path(
entry.template_id, asset.filename
)
except Exception as exc:
logging.error(f"Failed to resolve template asset paths: {exc}")
return None
if not asset_map:
logging.error("No workflow template assets found. Did the packages install correctly?")
return None
return asset_map
@classmethod
def legacy_templates_path(cls) -> Optional[str]:
"""Return the legacy templates directory shipped inside the meta package."""
def templates_path(cls) -> str:
try:
import comfyui_workflow_templates
@@ -324,7 +276,6 @@ comfyui-workflow-templates is not installed.
********** ERROR ***********
""".strip()
)
return None
@classmethod
def embedded_docs_path(cls) -> str:
@@ -441,17 +392,3 @@ comfyui-workflow-templates is not installed.
logging.info("Falling back to the default frontend.")
check_frontend_version()
return cls.default_frontend_path()
@classmethod
def template_asset_handler(cls):
assets = cls.template_asset_map()
if not assets:
return None
async def serve_template(request: web.Request) -> web.StreamResponse:
rel_path = request.match_info.get("path", "")
target = assets.get(rel_path)
if target is None:
raise web.HTTPNotFound()
return web.FileResponse(target)
return serve_template

View File

@@ -44,7 +44,7 @@ class ModelFileManager:
@routes.get("/experiment/models/{folder}")
async def get_all_models(request):
folder = request.match_info.get("folder", None)
if folder not in folder_paths.folder_names_and_paths:
if not folder in folder_paths.folder_names_and_paths:
return web.Response(status=404)
files = self.get_model_file_list(folder)
return web.json_response(files)
@@ -55,7 +55,7 @@ class ModelFileManager:
path_index = int(request.match_info.get("path_index", None))
filename = request.match_info.get("filename", None)
if folder_name not in folder_paths.folder_names_and_paths:
if not folder_name in folder_paths.folder_names_and_paths:
return web.Response(status=404)
folders = folder_paths.folder_names_and_paths[folder_name]

View File

@@ -10,7 +10,6 @@ import hashlib
class Source:
custom_node = "custom_node"
templates = "templates"
class SubgraphEntry(TypedDict):
source: str
@@ -39,18 +38,6 @@ class CustomNodeSubgraphEntryInfo(TypedDict):
class SubgraphManager:
def __init__(self):
self.cached_custom_node_subgraphs: dict[SubgraphEntry] | None = None
self.cached_blueprint_subgraphs: dict[SubgraphEntry] | None = None
def _create_entry(self, file: str, source: str, node_pack: str) -> tuple[str, SubgraphEntry]:
"""Create a subgraph entry from a file path. Expects normalized path (forward slashes)."""
entry_id = hashlib.sha256(f"{source}{file}".encode()).hexdigest()
entry: SubgraphEntry = {
"source": source,
"name": os.path.splitext(os.path.basename(file))[0],
"path": file,
"info": {"node_pack": node_pack},
}
return entry_id, entry
async def load_entry_data(self, entry: SubgraphEntry):
with open(entry['path'], 'r') as f:
@@ -73,60 +60,53 @@ class SubgraphManager:
return entries
async def get_custom_node_subgraphs(self, loadedModules, force_reload=False):
"""Load subgraphs from custom nodes."""
# if not forced to reload and cached, return cache
if not force_reload and self.cached_custom_node_subgraphs is not None:
return self.cached_custom_node_subgraphs
# Load subgraphs from custom nodes
subfolder = "subgraphs"
subgraphs_dict: dict[SubgraphEntry] = {}
for folder in folder_paths.get_folder_paths("custom_nodes"):
pattern = os.path.join(folder, "*/subgraphs/*.json")
for file in glob.glob(pattern):
file = file.replace('\\', '/')
node_pack = "custom_nodes." + file.split('/')[-3]
entry_id, entry = self._create_entry(file, Source.custom_node, node_pack)
subgraphs_dict[entry_id] = entry
for folder in folder_paths.get_folder_paths("custom_nodes"):
pattern = os.path.join(folder, f"*/{subfolder}/*.json")
matched_files = glob.glob(pattern)
for file in matched_files:
# replace backslashes with forward slashes
file = file.replace('\\', '/')
info: CustomNodeSubgraphEntryInfo = {
"node_pack": "custom_nodes." + file.split('/')[-3]
}
source = Source.custom_node
# hash source + path to make sure id will be as unique as possible, but
# reproducible across backend reloads
id = hashlib.sha256(f"{source}{file}".encode()).hexdigest()
entry: SubgraphEntry = {
"source": Source.custom_node,
"name": os.path.splitext(os.path.basename(file))[0],
"path": file,
"info": info,
}
subgraphs_dict[id] = entry
self.cached_custom_node_subgraphs = subgraphs_dict
return subgraphs_dict
async def get_blueprint_subgraphs(self, force_reload=False):
"""Load subgraphs from the blueprints directory."""
if not force_reload and self.cached_blueprint_subgraphs is not None:
return self.cached_blueprint_subgraphs
subgraphs_dict: dict[SubgraphEntry] = {}
blueprints_dir = os.path.join(os.path.dirname(os.path.dirname(__file__)), 'blueprints')
if os.path.exists(blueprints_dir):
for file in glob.glob(os.path.join(blueprints_dir, "*.json")):
file = file.replace('\\', '/')
entry_id, entry = self._create_entry(file, Source.templates, "comfyui")
subgraphs_dict[entry_id] = entry
self.cached_blueprint_subgraphs = subgraphs_dict
return subgraphs_dict
async def get_all_subgraphs(self, loadedModules, force_reload=False):
"""Get all subgraphs from all sources (custom nodes and blueprints)."""
custom_node_subgraphs = await self.get_custom_node_subgraphs(loadedModules, force_reload)
blueprint_subgraphs = await self.get_blueprint_subgraphs(force_reload)
return {**custom_node_subgraphs, **blueprint_subgraphs}
async def get_subgraph(self, id: str, loadedModules):
"""Get a specific subgraph by ID from any source."""
entry = (await self.get_all_subgraphs(loadedModules)).get(id)
if entry is not None and entry.get('data') is None:
async def get_custom_node_subgraph(self, id: str, loadedModules):
subgraphs = await self.get_custom_node_subgraphs(loadedModules)
entry: SubgraphEntry = subgraphs.get(id, None)
if entry is not None and entry.get('data', None) is None:
await self.load_entry_data(entry)
return entry
def add_routes(self, routes, loadedModules):
@routes.get("/global_subgraphs")
async def get_global_subgraphs(request):
subgraphs_dict = await self.get_all_subgraphs(loadedModules)
subgraphs_dict = await self.get_custom_node_subgraphs(loadedModules)
# NOTE: we may want to include other sources of global subgraphs such as templates in the future;
# that's the reasoning for the current implementation
return web.json_response(await self.sanitize_entries(subgraphs_dict, remove_data=True))
@routes.get("/global_subgraphs/{id}")
async def get_global_subgraph(request):
id = request.match_info.get("id", None)
subgraph = await self.get_subgraph(id, loadedModules)
subgraph = await self.get_custom_node_subgraph(id, loadedModules)
return web.json_response(await self.sanitize_entry(subgraph))

View File

@@ -59,9 +59,6 @@ class UserManager():
user = "default"
if args.multi_user and "comfy-user" in request.headers:
user = request.headers["comfy-user"]
# Block System Users (use same error message to prevent probing)
if user.startswith(folder_paths.SYSTEM_USER_PREFIX):
raise KeyError("Unknown user: " + user)
if user not in self.users:
raise KeyError("Unknown user: " + user)
@@ -69,16 +66,15 @@ class UserManager():
return user
def get_request_user_filepath(self, request, file, type="userdata", create_dir=True):
user_directory = folder_paths.get_user_directory()
if type == "userdata":
root_dir = folder_paths.get_user_directory()
root_dir = user_directory
else:
raise KeyError("Unknown filepath type:" + type)
user = self.get_request_user_id(request)
user_root = folder_paths.get_public_user_directory(user)
if user_root is None:
return None
path = user_root
path = user_root = os.path.abspath(os.path.join(root_dir, user))
# prevent leaving /{type}
if os.path.commonpath((root_dir, user_root)) != root_dir:
@@ -105,11 +101,7 @@ class UserManager():
name = name.strip()
if not name:
raise ValueError("username not provided")
if name.startswith(folder_paths.SYSTEM_USER_PREFIX):
raise ValueError("System User prefix not allowed")
user_id = re.sub("[^a-zA-Z0-9-_]+", '-', name)
if user_id.startswith(folder_paths.SYSTEM_USER_PREFIX):
raise ValueError("System User prefix not allowed")
user_id = user_id + "_" + str(uuid.uuid4())
self.users[user_id] = name
@@ -140,10 +132,7 @@ class UserManager():
if username in self.users.values():
return web.json_response({"error": "Duplicate username."}, status=400)
try:
user_id = self.add_user(username)
except ValueError as e:
return web.json_response({"error": str(e)}, status=400)
user_id = self.add_user(username)
return web.json_response(user_id)
@routes.get("/userdata")
@@ -435,7 +424,7 @@ class UserManager():
return source
dest = get_user_data_path(request, check_exists=False, param="dest")
if not isinstance(dest, str):
if not isinstance(source, str):
return dest
overwrite = request.query.get("overwrite", 'true') != "false"

View File

@@ -413,8 +413,7 @@ class ControlNet(nn.Module):
out_middle = []
if self.num_classes is not None:
if y is None:
raise ValueError("y is None, did you try using a controlnet for SDXL on SD1?")
assert y.shape[0] == x.shape[0]
emb = emb + self.label_emb(y)
h = x

View File

@@ -97,13 +97,6 @@ class LatentPreviewMethod(enum.Enum):
Latent2RGB = "latent2rgb"
TAESD = "taesd"
@classmethod
def from_string(cls, value: str):
for member in cls:
if member.value == value:
return member
return None
parser.add_argument("--preview-method", type=LatentPreviewMethod, default=LatentPreviewMethod.NoPreviews, help="Default preview method for sampler nodes.", action=EnumAction)
parser.add_argument("--preview-size", type=int, default=512, help="Sets the maximum preview size for sampler nodes.")
@@ -128,12 +121,6 @@ upcast.add_argument("--force-upcast-attention", action="store_true", help="Force
upcast.add_argument("--dont-upcast-attention", action="store_true", help="Disable all upcasting of attention. Should be unnecessary except for debugging.")
parser.add_argument("--enable-manager", action="store_true", help="Enable the ComfyUI-Manager feature.")
manager_group = parser.add_mutually_exclusive_group()
manager_group.add_argument("--disable-manager-ui", action="store_true", help="Disables only the ComfyUI-Manager UI and endpoints. Scheduled installations and similar background tasks will still operate.")
manager_group.add_argument("--enable-manager-legacy-ui", action="store_true", help="Enables the legacy UI of ComfyUI-Manager")
vram_group = parser.add_mutually_exclusive_group()
vram_group.add_argument("--gpu-only", action="store_true", help="Store and run everything (text encoders/CLIP models, etc... on the GPU).")
vram_group.add_argument("--highvram", action="store_true", help="By default models will be unloaded to CPU memory after being used. This option keeps them in GPU memory.")
@@ -144,8 +131,7 @@ vram_group.add_argument("--cpu", action="store_true", help="To use the CPU for e
parser.add_argument("--reserve-vram", type=float, default=None, help="Set the amount of vram in GB you want to reserve for use by your OS/other software. By default some amount is reserved depending on your OS.")
parser.add_argument("--async-offload", nargs='?', const=2, type=int, default=None, metavar="NUM_STREAMS", help="Use async weight offloading. An optional argument controls the amount of offload streams. Default is 2. Enabled by default on Nvidia.")
parser.add_argument("--disable-async-offload", action="store_true", help="Disable async weight offloading.")
parser.add_argument("--async-offload", action="store_true", help="Use async weight offloading.")
parser.add_argument("--force-non-blocking", action="store_true", help="Force ComfyUI to use non-blocking operations for all applicable tensors. This may improve performance on some non-Nvidia systems but can cause issues with some workflows.")
@@ -159,11 +145,10 @@ class PerformanceFeature(enum.Enum):
Fp8MatrixMultiplication = "fp8_matrix_mult"
CublasOps = "cublas_ops"
AutoTune = "autotune"
PinnedMem = "pinned_memory"
parser.add_argument("--fast", nargs="*", type=PerformanceFeature, help="Enable some untested and potentially quality deteriorating optimizations. This is used to test new features so using it might crash your comfyui. --fast with no arguments enables everything. You can pass a list specific optimizations if you only want to enable specific ones. Current valid optimizations: {}".format(" ".join(map(lambda c: c.value, PerformanceFeature))))
parser.add_argument("--disable-pinned-memory", action="store_true", help="Disable pinned memory use.")
parser.add_argument("--mmap-torch-files", action="store_true", help="Use mmap when loading ckpt/pt files.")
parser.add_argument("--disable-mmap", action="store_true", help="Don't use mmap when loading safetensors.")
@@ -174,14 +159,13 @@ parser.add_argument("--windows-standalone-build", action="store_true", help="Win
parser.add_argument("--disable-metadata", action="store_true", help="Disable saving prompt metadata in files.")
parser.add_argument("--disable-all-custom-nodes", action="store_true", help="Disable loading all custom nodes.")
parser.add_argument("--whitelist-custom-nodes", type=str, nargs='+', default=[], help="Specify custom node folders to load even when --disable-all-custom-nodes is enabled.")
parser.add_argument("--disable-api-nodes", action="store_true", help="Disable loading all api nodes. Also prevents the frontend from communicating with the internet.")
parser.add_argument("--disable-api-nodes", action="store_true", help="Disable loading all api nodes.")
parser.add_argument("--multi-user", action="store_true", help="Enables per-user storage.")
parser.add_argument("--verbose", default='INFO', const='DEBUG', nargs="?", choices=['DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL'], help='Set the logging level')
parser.add_argument("--log-stdout", action="store_true", help="Send normal process output to stdout instead of stderr (default).")
# The default built-in provider hosted under web/
DEFAULT_VERSION_STRING = "comfyanonymous/ComfyUI@latest"
@@ -231,7 +215,6 @@ database_default_path = os.path.abspath(
os.path.join(os.path.dirname(__file__), "..", "user", "comfyui.db")
)
parser.add_argument("--database-url", type=str, default=f"sqlite:///{database_default_path}", help="Specify the database URL, e.g. for an in-memory database you can use 'sqlite:///:memory:'.")
parser.add_argument("--disable-assets-autoscan", action="store_true", help="Disable asset scanning on startup for database synchronization.")
if comfy.options.args_parsing:
args = parser.parse_args()

View File

@@ -1,59 +1,6 @@
import torch
from comfy.ldm.modules.attention import optimized_attention_for_device
import comfy.ops
import math
def clip_preprocess(image, size=224, mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711], crop=True):
image = image[:, :, :, :3] if image.shape[3] > 3 else image
mean = torch.tensor(mean, device=image.device, dtype=image.dtype)
std = torch.tensor(std, device=image.device, dtype=image.dtype)
image = image.movedim(-1, 1)
if not (image.shape[2] == size and image.shape[3] == size):
if crop:
scale = (size / min(image.shape[2], image.shape[3]))
scale_size = (round(scale * image.shape[2]), round(scale * image.shape[3]))
else:
scale_size = (size, size)
image = torch.nn.functional.interpolate(image, size=scale_size, mode="bicubic", antialias=True)
h = (image.shape[2] - size)//2
w = (image.shape[3] - size)//2
image = image[:,:,h:h+size,w:w+size]
image = torch.clip((255. * image), 0, 255).round() / 255.0
return (image - mean.view([3,1,1])) / std.view([3,1,1])
def siglip2_flex_calc_resolution(oh, ow, patch_size, max_num_patches, eps=1e-5):
def scale_dim(size, scale):
scaled = math.ceil(size * scale / patch_size) * patch_size
return max(patch_size, int(scaled))
# Binary search for optimal scale
lo, hi = eps / 10, 100.0
while hi - lo >= eps:
mid = (lo + hi) / 2
h, w = scale_dim(oh, mid), scale_dim(ow, mid)
if (h // patch_size) * (w // patch_size) <= max_num_patches:
lo = mid
else:
hi = mid
return scale_dim(oh, lo), scale_dim(ow, lo)
def siglip2_preprocess(image, size, patch_size, num_patches, mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5], crop=True):
if size > 0:
return clip_preprocess(image, size=size, mean=mean, std=std, crop=crop)
image = image[:, :, :, :3] if image.shape[3] > 3 else image
mean = torch.tensor(mean, device=image.device, dtype=image.dtype)
std = torch.tensor(std, device=image.device, dtype=image.dtype)
image = image.movedim(-1, 1)
b, c, h, w = image.shape
h, w = siglip2_flex_calc_resolution(h, w, patch_size, num_patches)
image = torch.nn.functional.interpolate(image, size=(h, w), mode="bilinear", antialias=True)
image = torch.clip((255. * image), 0, 255).round() / 255.0
return (image - mean.view([3, 1, 1])) / std.view([3, 1, 1])
class CLIPAttention(torch.nn.Module):
def __init__(self, embed_dim, heads, dtype, device, operations):
@@ -209,27 +156,6 @@ class CLIPTextModel(torch.nn.Module):
out = self.text_projection(x[2])
return (x[0], x[1], out, x[2])
def siglip2_pos_embed(embed_weight, embeds, orig_shape):
embed_weight_len = round(embed_weight.shape[0] ** 0.5)
embed_weight = comfy.ops.cast_to_input(embed_weight, embeds).movedim(1, 0).reshape(1, -1, embed_weight_len, embed_weight_len)
embed_weight = torch.nn.functional.interpolate(embed_weight, size=orig_shape, mode="bilinear", align_corners=False, antialias=True)
embed_weight = embed_weight.reshape(-1, embed_weight.shape[-2] * embed_weight.shape[-1]).movedim(0, 1)
return embeds + embed_weight
class Siglip2Embeddings(torch.nn.Module):
def __init__(self, embed_dim, num_channels=3, patch_size=14, image_size=224, model_type="", num_patches=None, dtype=None, device=None, operations=None):
super().__init__()
self.patch_embedding = operations.Linear(num_channels * patch_size * patch_size, embed_dim, dtype=dtype, device=device)
self.position_embedding = operations.Embedding(num_patches, embed_dim, dtype=dtype, device=device)
self.patch_size = patch_size
def forward(self, pixel_values):
b, c, h, w = pixel_values.shape
img = pixel_values.movedim(1, -1).reshape(b, h // self.patch_size, self.patch_size, w // self.patch_size, self.patch_size, c)
img = img.permute(0, 1, 3, 2, 4, 5)
img = img.reshape(b, img.shape[1] * img.shape[2], -1)
img = self.patch_embedding(img)
return siglip2_pos_embed(self.position_embedding.weight, img, (h // self.patch_size, w // self.patch_size))
class CLIPVisionEmbeddings(torch.nn.Module):
def __init__(self, embed_dim, num_channels=3, patch_size=14, image_size=224, model_type="", dtype=None, device=None, operations=None):
@@ -273,11 +199,8 @@ class CLIPVision(torch.nn.Module):
intermediate_activation = config_dict["hidden_act"]
model_type = config_dict["model_type"]
if model_type in ["siglip2_vision_model"]:
self.embeddings = Siglip2Embeddings(embed_dim, config_dict["num_channels"], config_dict["patch_size"], config_dict["image_size"], model_type=model_type, num_patches=config_dict.get("num_patches", None), dtype=dtype, device=device, operations=operations)
else:
self.embeddings = CLIPVisionEmbeddings(embed_dim, config_dict["num_channels"], config_dict["patch_size"], config_dict["image_size"], model_type=model_type, dtype=dtype, device=device, operations=operations)
if model_type in ["siglip_vision_model", "siglip2_vision_model"]:
self.embeddings = CLIPVisionEmbeddings(embed_dim, config_dict["num_channels"], config_dict["patch_size"], config_dict["image_size"], model_type=model_type, dtype=dtype, device=device, operations=operations)
if model_type == "siglip_vision_model":
self.pre_layrnorm = lambda a: a
self.output_layernorm = True
else:

View File

@@ -1,5 +1,6 @@
from .utils import load_torch_file, transformers_convert, state_dict_prefix_replace
import os
import torch
import json
import logging
@@ -16,12 +17,28 @@ class Output:
def __setitem__(self, key, item):
setattr(self, key, item)
clip_preprocess = comfy.clip_model.clip_preprocess # Prevent some stuff from breaking, TODO: remove eventually
def clip_preprocess(image, size=224, mean=[0.48145466, 0.4578275, 0.40821073], std=[0.26862954, 0.26130258, 0.27577711], crop=True):
image = image[:, :, :, :3] if image.shape[3] > 3 else image
mean = torch.tensor(mean, device=image.device, dtype=image.dtype)
std = torch.tensor(std, device=image.device, dtype=image.dtype)
image = image.movedim(-1, 1)
if not (image.shape[2] == size and image.shape[3] == size):
if crop:
scale = (size / min(image.shape[2], image.shape[3]))
scale_size = (round(scale * image.shape[2]), round(scale * image.shape[3]))
else:
scale_size = (size, size)
image = torch.nn.functional.interpolate(image, size=scale_size, mode="bicubic", antialias=True)
h = (image.shape[2] - size)//2
w = (image.shape[3] - size)//2
image = image[:,:,h:h+size,w:w+size]
image = torch.clip((255. * image), 0, 255).round() / 255.0
return (image - mean.view([3,1,1])) / std.view([3,1,1])
IMAGE_ENCODERS = {
"clip_vision_model": comfy.clip_model.CLIPVisionModelProjection,
"siglip_vision_model": comfy.clip_model.CLIPVisionModelProjection,
"siglip2_vision_model": comfy.clip_model.CLIPVisionModelProjection,
"dinov2": comfy.image_encoders.dino2.Dinov2Model,
}
@@ -33,10 +50,9 @@ class ClipVisionModel():
self.image_size = config.get("image_size", 224)
self.image_mean = config.get("image_mean", [0.48145466, 0.4578275, 0.40821073])
self.image_std = config.get("image_std", [0.26862954, 0.26130258, 0.27577711])
self.model_type = config.get("model_type", "clip_vision_model")
self.config = config.copy()
model_class = IMAGE_ENCODERS.get(self.model_type)
if self.model_type == "siglip_vision_model":
model_type = config.get("model_type", "clip_vision_model")
model_class = IMAGE_ENCODERS.get(model_type)
if model_type == "siglip_vision_model":
self.return_all_hidden_states = True
else:
self.return_all_hidden_states = False
@@ -57,16 +73,12 @@ class ClipVisionModel():
def encode_image(self, image, crop=True):
comfy.model_management.load_model_gpu(self.patcher)
if self.model_type == "siglip2_vision_model":
pixel_values = comfy.clip_model.siglip2_preprocess(image.to(self.load_device), size=self.image_size, patch_size=self.config.get("patch_size", 16), num_patches=self.config.get("num_patches", 256), mean=self.image_mean, std=self.image_std, crop=crop).float()
else:
pixel_values = comfy.clip_model.clip_preprocess(image.to(self.load_device), size=self.image_size, mean=self.image_mean, std=self.image_std, crop=crop).float()
pixel_values = clip_preprocess(image.to(self.load_device), size=self.image_size, mean=self.image_mean, std=self.image_std, crop=crop).float()
out = self.model(pixel_values=pixel_values, intermediate_output='all' if self.return_all_hidden_states else -2)
outputs = Output()
outputs["last_hidden_state"] = out[0].to(comfy.model_management.intermediate_device())
outputs["image_embeds"] = out[2].to(comfy.model_management.intermediate_device())
outputs["image_sizes"] = [pixel_values.shape[1:]] * pixel_values.shape[0]
if self.return_all_hidden_states:
all_hs = out[1].to(comfy.model_management.intermediate_device())
outputs["penultimate_hidden_states"] = all_hs[:, -2]
@@ -113,14 +125,10 @@ def load_clipvision_from_sd(sd, prefix="", convert_keys=False):
elif "vision_model.encoder.layers.22.layer_norm1.weight" in sd:
embed_shape = sd["vision_model.embeddings.position_embedding.weight"].shape[0]
if sd["vision_model.encoder.layers.0.layer_norm1.weight"].shape[0] == 1152:
patch_embedding_shape = sd["vision_model.embeddings.patch_embedding.weight"].shape
if len(patch_embedding_shape) == 2:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_siglip2_base_naflex.json")
else:
if embed_shape == 729:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_siglip_384.json")
elif embed_shape == 1024:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_siglip_512.json")
if embed_shape == 729:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_siglip_384.json")
elif embed_shape == 1024:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_siglip_512.json")
elif embed_shape == 577:
if "multi_modal_projector.linear_1.bias" in sd:
json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "clip_vision_config_vitl_336_llava.json")

View File

@@ -1,14 +0,0 @@
{
"num_channels": 3,
"hidden_act": "gelu_pytorch_tanh",
"hidden_size": 1152,
"image_size": -1,
"intermediate_size": 4304,
"model_type": "siglip2_vision_model",
"num_attention_heads": 16,
"num_hidden_layers": 27,
"patch_size": 16,
"num_patches": 256,
"image_mean": [0.5, 0.5, 0.5],
"image_std": [0.5, 0.5, 0.5]
}

View File

@@ -236,8 +236,6 @@ class ComfyNodeABC(ABC):
"""Flags a node as experimental, informing users that it may change or not work as expected."""
DEPRECATED: bool
"""Flags a node as deprecated, indicating to users that they should find alternatives to this node."""
DEV_ONLY: bool
"""Flags a node as dev-only, hiding it from search/menus unless dev mode is enabled."""
API_NODE: Optional[bool]
"""Flags a node as an API node. See: https://docs.comfy.org/tutorials/api-nodes/overview."""

View File

@@ -51,43 +51,32 @@ class ContextHandlerABC(ABC):
class IndexListContextWindow(ContextWindowABC):
def __init__(self, index_list: list[int], dim: int=0, total_frames: int=0):
def __init__(self, index_list: list[int], dim: int=0):
self.index_list = index_list
self.context_length = len(index_list)
self.dim = dim
self.total_frames = total_frames
self.center_ratio = (min(index_list) + max(index_list)) / (2 * total_frames)
def get_tensor(self, full: torch.Tensor, device=None, dim=None, retain_index_list=[]) -> torch.Tensor:
def get_tensor(self, full: torch.Tensor, device=None, dim=None) -> torch.Tensor:
if dim is None:
dim = self.dim
if dim == 0 and full.shape[dim] == 1:
return full
idx = tuple([slice(None)] * dim + [self.index_list])
window = full[idx]
if retain_index_list:
idx = tuple([slice(None)] * dim + [retain_index_list])
window[idx] = full[idx]
return window.to(device)
idx = [slice(None)] * dim + [self.index_list]
return full[idx].to(device)
def add_window(self, full: torch.Tensor, to_add: torch.Tensor, dim=None) -> torch.Tensor:
if dim is None:
dim = self.dim
idx = tuple([slice(None)] * dim + [self.index_list])
idx = [slice(None)] * dim + [self.index_list]
full[idx] += to_add
return full
def get_region_index(self, num_regions: int) -> int:
region_idx = int(self.center_ratio * num_regions)
return min(max(region_idx, 0), num_regions - 1)
class IndexListCallbacks:
EVALUATE_CONTEXT_WINDOWS = "evaluate_context_windows"
COMBINE_CONTEXT_WINDOW_RESULTS = "combine_context_window_results"
EXECUTE_START = "execute_start"
EXECUTE_CLEANUP = "execute_cleanup"
RESIZE_COND_ITEM = "resize_cond_item"
def init_callbacks(self):
return {}
@@ -105,8 +94,7 @@ class ContextFuseMethod:
ContextResults = collections.namedtuple("ContextResults", ['window_idx', 'sub_conds_out', 'sub_conds', 'window'])
class IndexListContextHandler(ContextHandlerABC):
def __init__(self, context_schedule: ContextSchedule, fuse_method: ContextFuseMethod, context_length: int=1, context_overlap: int=0, context_stride: int=1,
closed_loop: bool=False, dim:int=0, freenoise: bool=False, cond_retain_index_list: list[int]=[], split_conds_to_windows: bool=False):
def __init__(self, context_schedule: ContextSchedule, fuse_method: ContextFuseMethod, context_length: int=1, context_overlap: int=0, context_stride: int=1, closed_loop=False, dim=0):
self.context_schedule = context_schedule
self.fuse_method = fuse_method
self.context_length = context_length
@@ -115,18 +103,13 @@ class IndexListContextHandler(ContextHandlerABC):
self.closed_loop = closed_loop
self.dim = dim
self._step = 0
self.freenoise = freenoise
self.cond_retain_index_list = [int(x.strip()) for x in cond_retain_index_list.split(",")] if cond_retain_index_list else []
self.split_conds_to_windows = split_conds_to_windows
self.callbacks = {}
def should_use_context(self, model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep: torch.Tensor, model_options: dict[str]) -> bool:
# for now, assume first dim is batch - should have stored on BaseModel in actual implementation
if x_in.size(self.dim) > self.context_length:
logging.info(f"Using context windows {self.context_length} with overlap {self.context_overlap} for {x_in.size(self.dim)} frames.")
if self.cond_retain_index_list:
logging.info(f"Retaining original cond for indexes: {self.cond_retain_index_list}")
logging.info(f"Using context windows {self.context_length} for {x_in.size(self.dim)} frames.")
return True
return False
@@ -140,11 +123,6 @@ class IndexListContextHandler(ContextHandlerABC):
return None
# reuse or resize cond items to match context requirements
resized_cond = []
# if multiple conds, split based on primary region
if self.split_conds_to_windows and len(cond_in) > 1:
region = window.get_region_index(len(cond_in))
logging.info(f"Splitting conds to windows; using region {region} for window {window.index_list[0]}-{window.index_list[-1]} with center ratio {window.center_ratio:.3f}")
cond_in = [cond_in[region]]
# cond object is a list containing a dict - outer list is irrelevant, so just loop through it
for actual_cond in cond_in:
resized_actual_cond = actual_cond.copy()
@@ -167,38 +145,13 @@ class IndexListContextHandler(ContextHandlerABC):
new_cond_item = cond_item.copy()
# when in dictionary, look for tensors and CONDCrossAttn [comfy/conds.py] (has cond attr that is a tensor)
for cond_key, cond_value in new_cond_item.items():
# Allow callbacks to handle custom conditioning items
handled = False
for callback in comfy.patcher_extension.get_all_callbacks(
IndexListCallbacks.RESIZE_COND_ITEM, self.callbacks
):
result = callback(cond_key, cond_value, window, x_in, device, new_cond_item)
if result is not None:
new_cond_item[cond_key] = result
handled = True
break
if handled:
continue
if isinstance(cond_value, torch.Tensor):
if (self.dim < cond_value.ndim and cond_value(self.dim) == x_in.size(self.dim)) or \
(cond_value.ndim < self.dim and cond_value.size(0) == x_in.size(self.dim)):
if cond_value.ndim < self.dim and cond_value.size(0) == x_in.size(self.dim):
new_cond_item[cond_key] = window.get_tensor(cond_value, device)
# Handle audio_embed (temporal dim is 1)
elif cond_key == "audio_embed" and hasattr(cond_value, "cond") and isinstance(cond_value.cond, torch.Tensor):
audio_cond = cond_value.cond
if audio_cond.ndim > 1 and audio_cond.size(1) == x_in.size(self.dim):
new_cond_item[cond_key] = cond_value._copy_with(window.get_tensor(audio_cond, device, dim=1))
# Handle vace_context (temporal dim is 3)
elif cond_key == "vace_context" and hasattr(cond_value, "cond") and isinstance(cond_value.cond, torch.Tensor):
vace_cond = cond_value.cond
if vace_cond.ndim >= 4 and vace_cond.size(3) == x_in.size(self.dim):
sliced_vace = window.get_tensor(vace_cond, device, dim=3, retain_index_list=self.cond_retain_index_list)
new_cond_item[cond_key] = cond_value._copy_with(sliced_vace)
# if has cond that is a Tensor, check if needs to be subset
elif hasattr(cond_value, "cond") and isinstance(cond_value.cond, torch.Tensor):
if (self.dim < cond_value.cond.ndim and cond_value.cond.size(self.dim) == x_in.size(self.dim)) or \
(cond_value.cond.ndim < self.dim and cond_value.cond.size(0) == x_in.size(self.dim)):
new_cond_item[cond_key] = cond_value._copy_with(window.get_tensor(cond_value.cond, device, retain_index_list=self.cond_retain_index_list))
if cond_value.cond.ndim < self.dim and cond_value.cond.size(0) == x_in.size(self.dim):
new_cond_item[cond_key] = cond_value._copy_with(window.get_tensor(cond_value.cond, device))
elif cond_key == "num_video_frames": # for SVD
new_cond_item[cond_key] = cond_value._copy_with(cond_value.cond)
new_cond_item[cond_key].cond = window.context_length
@@ -211,7 +164,7 @@ class IndexListContextHandler(ContextHandlerABC):
return resized_cond
def set_step(self, timestep: torch.Tensor, model_options: dict[str]):
mask = torch.isclose(model_options["transformer_options"]["sample_sigmas"], timestep[0], rtol=0.0001)
mask = torch.isclose(model_options["transformer_options"]["sample_sigmas"], timestep, rtol=0.0001)
matches = torch.nonzero(mask)
if torch.numel(matches) == 0:
raise Exception("No sample_sigmas matched current timestep; something went wrong.")
@@ -220,7 +173,7 @@ class IndexListContextHandler(ContextHandlerABC):
def get_context_windows(self, model: BaseModel, x_in: torch.Tensor, model_options: dict[str]) -> list[IndexListContextWindow]:
full_length = x_in.size(self.dim) # TODO: choose dim based on model
context_windows = self.context_schedule.func(full_length, self, model_options)
context_windows = [IndexListContextWindow(window, dim=self.dim, total_frames=full_length) for window in context_windows]
context_windows = [IndexListContextWindow(window, dim=self.dim) for window in context_windows]
return context_windows
def execute(self, calc_cond_batch: Callable, model: BaseModel, conds: list[list[dict]], x_in: torch.Tensor, timestep: torch.Tensor, model_options: dict[str]):
@@ -297,8 +250,8 @@ class IndexListContextHandler(ContextHandlerABC):
prev_weight = (bias_total / (bias_total + bias))
new_weight = (bias / (bias_total + bias))
# account for dims of tensors
idx_window = tuple([slice(None)] * self.dim + [idx])
pos_window = tuple([slice(None)] * self.dim + [pos])
idx_window = [slice(None)] * self.dim + [idx]
pos_window = [slice(None)] * self.dim + [pos]
# apply new values
conds_final[i][idx_window] = conds_final[i][idx_window] * prev_weight + sub_conds_out[i][pos_window] * new_weight
biases_final[i][idx] = bias_total + bias
@@ -334,28 +287,6 @@ def create_prepare_sampling_wrapper(model: ModelPatcher):
)
def _sampler_sample_wrapper(executor, guider, sigmas, extra_args, callback, noise, *args, **kwargs):
model_options = extra_args.get("model_options", None)
if model_options is None:
raise Exception("model_options not found in sampler_sample_wrapper; this should never happen, something went wrong.")
handler: IndexListContextHandler = model_options.get("context_handler", None)
if handler is None:
raise Exception("context_handler not found in sampler_sample_wrapper; this should never happen, something went wrong.")
if not handler.freenoise:
return executor(guider, sigmas, extra_args, callback, noise, *args, **kwargs)
noise = apply_freenoise(noise, handler.dim, handler.context_length, handler.context_overlap, extra_args["seed"])
return executor(guider, sigmas, extra_args, callback, noise, *args, **kwargs)
def create_sampler_sample_wrapper(model: ModelPatcher):
model.add_wrapper_with_key(
comfy.patcher_extension.WrappersMP.SAMPLER_SAMPLE,
"ContextWindows_sampler_sample",
_sampler_sample_wrapper
)
def match_weights_to_dim(weights: list[float], x_in: torch.Tensor, dim: int, device=None) -> torch.Tensor:
total_dims = len(x_in.shape)
weights_tensor = torch.Tensor(weights).to(device=device)
@@ -607,29 +538,3 @@ def shift_window_to_end(window: list[int], num_frames: int):
for i in range(len(window)):
# 2) add end_delta to each val to slide windows to end
window[i] = window[i] + end_delta
# https://github.com/Kosinkadink/ComfyUI-AnimateDiff-Evolved/blob/90fb1331201a4b29488089e4fbffc0d82cc6d0a9/animatediff/sample_settings.py#L465
def apply_freenoise(noise: torch.Tensor, dim: int, context_length: int, context_overlap: int, seed: int):
logging.info("Context windows: Applying FreeNoise")
generator = torch.Generator(device='cpu').manual_seed(seed)
latent_video_length = noise.shape[dim]
delta = context_length - context_overlap
for start_idx in range(0, latent_video_length - context_length, delta):
place_idx = start_idx + context_length
actual_delta = min(delta, latent_video_length - place_idx)
if actual_delta <= 0:
break
list_idx = torch.randperm(actual_delta, generator=generator, device='cpu') + start_idx
source_slice = [slice(None)] * noise.ndim
source_slice[dim] = list_idx
target_slice = [slice(None)] * noise.ndim
target_slice[dim] = slice(place_idx, place_idx + actual_delta)
noise[tuple(target_slice)] = noise[tuple(source_slice)]
return noise

View File

@@ -65,147 +65,3 @@ def stochastic_rounding(value, dtype, seed=0):
return output
return value.to(dtype=dtype)
# TODO: improve this?
def stochastic_float_to_fp4_e2m1(x, generator):
orig_shape = x.shape
sign = torch.signbit(x).to(torch.uint8)
exp = torch.floor(torch.log2(x.abs()) + 1.0).clamp(0, 3)
x += (torch.rand(x.size(), dtype=x.dtype, layout=x.layout, device=x.device, generator=generator) - 0.5) * (2 ** (exp - 2.0)) * 1.25
x = x.abs()
exp = torch.floor(torch.log2(x) + 1.1925).clamp(0, 3)
mantissa = torch.where(
exp > 0,
(x / (2.0 ** (exp - 1)) - 1.0) * 2.0,
(x * 2.0),
out=x
).round().to(torch.uint8)
del x
exp = exp.to(torch.uint8)
fp4 = (sign << 3) | (exp << 1) | mantissa
del sign, exp, mantissa
fp4_flat = fp4.view(-1)
packed = (fp4_flat[0::2] << 4) | fp4_flat[1::2]
return packed.reshape(list(orig_shape)[:-1] + [-1])
def to_blocked(input_matrix, flatten: bool = True) -> torch.Tensor:
"""
Rearrange a large matrix by breaking it into blocks and applying the rearrangement pattern.
See:
https://docs.nvidia.com/cuda/cublas/index.html#d-block-scaling-factors-layout
Args:
input_matrix: Input tensor of shape (H, W)
Returns:
Rearranged tensor of shape (32*ceil_div(H,128), 16*ceil_div(W,4))
"""
def ceil_div(a, b):
return (a + b - 1) // b
rows, cols = input_matrix.shape
n_row_blocks = ceil_div(rows, 128)
n_col_blocks = ceil_div(cols, 4)
# Calculate the padded shape
padded_rows = n_row_blocks * 128
padded_cols = n_col_blocks * 4
padded = input_matrix
if (rows, cols) != (padded_rows, padded_cols):
padded = torch.zeros(
(padded_rows, padded_cols),
device=input_matrix.device,
dtype=input_matrix.dtype,
)
padded[:rows, :cols] = input_matrix
# Rearrange the blocks
blocks = padded.view(n_row_blocks, 128, n_col_blocks, 4).permute(0, 2, 1, 3)
rearranged = blocks.reshape(-1, 4, 32, 4).transpose(1, 2).reshape(-1, 32, 16)
if flatten:
return rearranged.flatten()
return rearranged.reshape(padded_rows, padded_cols)
def stochastic_round_quantize_nvfp4_block(x, per_tensor_scale, generator):
F4_E2M1_MAX = 6.0
F8_E4M3_MAX = 448.0
orig_shape = x.shape
block_size = 16
x = x.reshape(orig_shape[0], -1, block_size)
scaled_block_scales_fp8 = torch.clamp(((torch.amax(torch.abs(x), dim=-1)) / F4_E2M1_MAX) / per_tensor_scale.to(x.dtype), max=F8_E4M3_MAX).to(torch.float8_e4m3fn)
x = x / (per_tensor_scale.to(x.dtype) * scaled_block_scales_fp8.to(x.dtype)).unsqueeze(-1)
x = x.view(orig_shape).nan_to_num()
data_lp = stochastic_float_to_fp4_e2m1(x, generator=generator)
return data_lp, scaled_block_scales_fp8
def stochastic_round_quantize_nvfp4(x, per_tensor_scale, pad_16x, seed=0):
def roundup(x: int, multiple: int) -> int:
"""Round up x to the nearest multiple."""
return ((x + multiple - 1) // multiple) * multiple
generator = torch.Generator(device=x.device)
generator.manual_seed(seed)
# Handle padding
if pad_16x:
rows, cols = x.shape
padded_rows = roundup(rows, 16)
padded_cols = roundup(cols, 16)
if padded_rows != rows or padded_cols != cols:
x = torch.nn.functional.pad(x, (0, padded_cols - cols, 0, padded_rows - rows))
x, blocked_scaled = stochastic_round_quantize_nvfp4_block(x, per_tensor_scale, generator)
return x, to_blocked(blocked_scaled, flatten=False)
def stochastic_round_quantize_nvfp4_by_block(x, per_tensor_scale, pad_16x, seed=0, block_size=4096 * 4096):
def roundup(x: int, multiple: int) -> int:
"""Round up x to the nearest multiple."""
return ((x + multiple - 1) // multiple) * multiple
orig_shape = x.shape
# Handle padding
if pad_16x:
rows, cols = x.shape
padded_rows = roundup(rows, 16)
padded_cols = roundup(cols, 16)
if padded_rows != rows or padded_cols != cols:
x = torch.nn.functional.pad(x, (0, padded_cols - cols, 0, padded_rows - rows))
# Note: We update orig_shape because the output tensor logic below assumes x.shape matches
# what we want to produce. If we pad here, we want the padded output.
orig_shape = x.shape
orig_shape = list(orig_shape)
output_fp4 = torch.empty(orig_shape[:-1] + [orig_shape[-1] // 2], dtype=torch.uint8, device=x.device)
output_block = torch.empty(orig_shape[:-1] + [orig_shape[-1] // 16], dtype=torch.float8_e4m3fn, device=x.device)
generator = torch.Generator(device=x.device)
generator.manual_seed(seed)
num_slices = max(1, (x.numel() / block_size))
slice_size = max(1, (round(x.shape[0] / num_slices)))
for i in range(0, x.shape[0], slice_size):
fp4, block = stochastic_round_quantize_nvfp4_block(x[i: i + slice_size], per_tensor_scale, generator=generator)
output_fp4[i:i + slice_size].copy_(fp4)
output_block[i:i + slice_size].copy_(block)
return output_fp4, to_blocked(output_block, flatten=False)

View File

@@ -527,8 +527,7 @@ class HookKeyframeGroup:
if self._current_keyframe.get_effective_guarantee_steps(max_sigma) > 0:
break
# if eval_c is outside the percent range, stop looking further
else:
break
else: break
# update steps current context is used
self._current_used_steps += 1
# update current timestep this was performed on

View File

@@ -74,9 +74,6 @@ def get_ancestral_step(sigma_from, sigma_to, eta=1.):
def default_noise_sampler(x, seed=None):
if seed is not None:
if x.device == torch.device("cpu"):
seed += 1
generator = torch.Generator(device=x.device)
generator.manual_seed(seed)
else:
@@ -1560,13 +1557,10 @@ def sample_er_sde(model, x, sigmas, extra_args=None, callback=None, disable=None
@torch.no_grad()
def sample_seeds_2(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=0.5, solver_type="phi_1"):
def sample_seeds_2(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r=0.5):
"""SEEDS-2 - Stochastic Explicit Exponential Derivative-free Solvers (VP Data Prediction) stage 2.
arXiv: https://arxiv.org/abs/2305.14267 (NeurIPS 2023)
"""
if solver_type not in {"phi_1", "phi_2"}:
raise ValueError("solver_type must be 'phi_1' or 'phi_2'")
extra_args = {} if extra_args is None else extra_args
seed = extra_args.get("seed", None)
noise_sampler = default_noise_sampler(x, seed=seed) if noise_sampler is None else noise_sampler
@@ -1606,14 +1600,8 @@ def sample_seeds_2(model, x, sigmas, extra_args=None, callback=None, disable=Non
denoised_2 = model(x_2, sigma_s_1 * s_in, **extra_args)
# Step 2
if solver_type == "phi_1":
denoised_d = torch.lerp(denoised, denoised_2, fac)
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x - alpha_t * ei_h_phi_1(-h_eta) * denoised_d
elif solver_type == "phi_2":
b2 = ei_h_phi_2(-h_eta) / r
b1 = ei_h_phi_1(-h_eta) - b2
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x - alpha_t * (b1 * denoised + b2 * denoised_2)
denoised_d = torch.lerp(denoised, denoised_2, fac)
x = sigmas[i + 1] / sigmas[i] * (-h * eta).exp() * x - alpha_t * ei_h_phi_1(-h_eta) * denoised_d
if inject_noise:
segment_factor = (r - 1) * h * eta
sde_noise = sde_noise * segment_factor.exp()
@@ -1621,17 +1609,6 @@ def sample_seeds_2(model, x, sigmas, extra_args=None, callback=None, disable=Non
x = x + sde_noise * sigmas[i + 1] * s_noise
return x
@torch.no_grad()
def sample_exp_heun_2_x0(model, x, sigmas, extra_args=None, callback=None, disable=None, solver_type="phi_2"):
"""Deterministic exponential Heun second order method in data prediction (x0) and logSNR time."""
return sample_seeds_2(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=0.0, s_noise=0.0, noise_sampler=None, r=1.0, solver_type=solver_type)
@torch.no_grad()
def sample_exp_heun_2_x0_sde(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, solver_type="phi_2"):
"""Stochastic exponential Heun second order method in data prediction (x0) and logSNR time."""
return sample_seeds_2(model, x, sigmas, extra_args=extra_args, callback=callback, disable=disable, eta=eta, s_noise=s_noise, noise_sampler=noise_sampler, r=1.0, solver_type=solver_type)
@torch.no_grad()
def sample_seeds_3(model, x, sigmas, extra_args=None, callback=None, disable=None, eta=1., s_noise=1., noise_sampler=None, r_1=1./3, r_2=2./3):
@@ -1779,7 +1756,7 @@ def sample_sa_solver(model, x, sigmas, extra_args=None, callback=None, disable=F
# Predictor
if sigmas[i + 1] == 0:
# Denoising step
x_pred = denoised
x = denoised
else:
tau_t = tau_func(sigmas[i + 1])
curr_lambdas = lambdas[i - predictor_order_used + 1:i + 1]
@@ -1800,7 +1777,7 @@ def sample_sa_solver(model, x, sigmas, extra_args=None, callback=None, disable=F
if tau_t > 0 and s_noise > 0:
noise = noise_sampler(sigmas[i], sigmas[i + 1]) * sigmas[i + 1] * (-2 * tau_t ** 2 * h).expm1().neg().sqrt() * s_noise
x_pred = x_pred + noise
return x_pred
return x
@torch.no_grad()

View File

@@ -6,9 +6,7 @@ class LatentFormat:
latent_dimensions = 2
latent_rgb_factors = None
latent_rgb_factors_bias = None
latent_rgb_factors_reshape = None
taesd_decoder_name = None
spacial_downscale_ratio = 8
def process_in(self, latent):
return latent * self.scale_factor
@@ -81,7 +79,6 @@ class SD_X4(LatentFormat):
class SC_Prior(LatentFormat):
latent_channels = 16
spacial_downscale_ratio = 42
def __init__(self):
self.scale_factor = 1.0
self.latent_rgb_factors = [
@@ -104,7 +101,6 @@ class SC_Prior(LatentFormat):
]
class SC_B(LatentFormat):
spacial_downscale_ratio = 4
def __init__(self):
self.scale_factor = 1.0 / 0.43
self.latent_rgb_factors = [
@@ -182,55 +178,6 @@ class Flux(SD3):
def process_out(self, latent):
return (latent / self.scale_factor) + self.shift_factor
class Flux2(LatentFormat):
latent_channels = 128
spacial_downscale_ratio = 16
def __init__(self):
self.latent_rgb_factors =[
[0.0058, 0.0113, 0.0073],
[0.0495, 0.0443, 0.0836],
[-0.0099, 0.0096, 0.0644],
[0.2144, 0.3009, 0.3652],
[0.0166, -0.0039, -0.0054],
[0.0157, 0.0103, -0.0160],
[-0.0398, 0.0902, -0.0235],
[-0.0052, 0.0095, 0.0109],
[-0.3527, -0.2712, -0.1666],
[-0.0301, -0.0356, -0.0180],
[-0.0107, 0.0078, 0.0013],
[0.0746, 0.0090, -0.0941],
[0.0156, 0.0169, 0.0070],
[-0.0034, -0.0040, -0.0114],
[0.0032, 0.0181, 0.0080],
[-0.0939, -0.0008, 0.0186],
[0.0018, 0.0043, 0.0104],
[0.0284, 0.0056, -0.0127],
[-0.0024, -0.0022, -0.0030],
[0.1207, -0.0026, 0.0065],
[0.0128, 0.0101, 0.0142],
[0.0137, -0.0072, -0.0007],
[0.0095, 0.0092, -0.0059],
[0.0000, -0.0077, -0.0049],
[-0.0465, -0.0204, -0.0312],
[0.0095, 0.0012, -0.0066],
[0.0290, -0.0034, 0.0025],
[0.0220, 0.0169, -0.0048],
[-0.0332, -0.0457, -0.0468],
[-0.0085, 0.0389, 0.0609],
[-0.0076, 0.0003, -0.0043],
[-0.0111, -0.0460, -0.0614],
]
self.latent_rgb_factors_bias = [-0.0329, -0.0718, -0.0851]
self.latent_rgb_factors_reshape = lambda t: t.reshape(t.shape[0], 32, 2, 2, t.shape[-2], t.shape[-1]).permute(0, 1, 4, 2, 5, 3).reshape(t.shape[0], 32, t.shape[-2] * 2, t.shape[-1] * 2)
def process_in(self, latent):
return latent
def process_out(self, latent):
return latent
class Mochi(LatentFormat):
latent_channels = 12
latent_dimensions = 3
@@ -276,7 +223,6 @@ class Mochi(LatentFormat):
class LTXV(LatentFormat):
latent_channels = 128
latent_dimensions = 3
spacial_downscale_ratio = 32
def __init__(self):
self.latent_rgb_factors = [
@@ -412,11 +358,6 @@ class LTXV(LatentFormat):
self.latent_rgb_factors_bias = [-0.0571, -0.1657, -0.2512]
class LTXAV(LTXV):
def __init__(self):
self.latent_rgb_factors = None
self.latent_rgb_factors_bias = None
class HunyuanVideo(LatentFormat):
latent_channels = 16
latent_dimensions = 3
@@ -441,7 +382,6 @@ class HunyuanVideo(LatentFormat):
]
latent_rgb_factors_bias = [ 0.0259, -0.0192, -0.0761]
taesd_decoder_name = "taehv"
class Cosmos1CV8x8x8(LatentFormat):
latent_channels = 16
@@ -505,7 +445,7 @@ class Wan21(LatentFormat):
]).view(1, self.latent_channels, 1, 1, 1)
self.taesd_decoder_name = "lighttaew2_1"
self.taesd_decoder_name = None #TODO
def process_in(self, latent):
latents_mean = self.latents_mean.to(latent.device, latent.dtype)
@@ -520,7 +460,6 @@ class Wan21(LatentFormat):
class Wan22(Wan21):
latent_channels = 48
latent_dimensions = 3
spacial_downscale_ratio = 16
latent_rgb_factors = [
[ 0.0119, 0.0103, 0.0046],
@@ -577,7 +516,6 @@ class Wan22(Wan21):
def __init__(self):
self.scale_factor = 1.0
self.taesd_decoder_name = "lighttaew2_2"
self.latents_mean = torch.tensor([
-0.2289, -0.0052, -0.1323, -0.2339, -0.2799, 0.0174, 0.1838, 0.1557,
-0.1382, 0.0542, 0.2813, 0.0891, 0.1570, -0.0098, 0.0375, -0.1825,
@@ -598,7 +536,6 @@ class Wan22(Wan21):
class HunyuanImage21(LatentFormat):
latent_channels = 64
latent_dimensions = 2
spacial_downscale_ratio = 32
scale_factor = 0.75289
latent_rgb_factors = [
@@ -674,68 +611,6 @@ class HunyuanImage21Refiner(LatentFormat):
latent_dimensions = 3
scale_factor = 1.03682
def process_in(self, latent):
out = latent * self.scale_factor
out = torch.cat((out[:, :, :1], out), dim=2)
out = out.permute(0, 2, 1, 3, 4)
b, f_times_2, c, h, w = out.shape
out = out.reshape(b, f_times_2 // 2, 2 * c, h, w)
out = out.permute(0, 2, 1, 3, 4).contiguous()
return out
def process_out(self, latent):
z = latent / self.scale_factor
z = z.permute(0, 2, 1, 3, 4)
b, f, c, h, w = z.shape
z = z.reshape(b, f, 2, c // 2, h, w)
z = z.permute(0, 1, 2, 3, 4, 5).reshape(b, f * 2, c // 2, h, w)
z = z.permute(0, 2, 1, 3, 4)
z = z[:, :, 1:]
return z
class HunyuanVideo15(LatentFormat):
latent_rgb_factors = [
[ 0.0568, -0.0521, -0.0131],
[ 0.0014, 0.0735, 0.0326],
[ 0.0186, 0.0531, -0.0138],
[-0.0031, 0.0051, 0.0288],
[ 0.0110, 0.0556, 0.0432],
[-0.0041, -0.0023, -0.0485],
[ 0.0530, 0.0413, 0.0253],
[ 0.0283, 0.0251, 0.0339],
[ 0.0277, -0.0372, -0.0093],
[ 0.0393, 0.0944, 0.1131],
[ 0.0020, 0.0251, 0.0037],
[-0.0017, 0.0012, 0.0234],
[ 0.0468, 0.0436, 0.0203],
[ 0.0354, 0.0439, -0.0233],
[ 0.0090, 0.0123, 0.0346],
[ 0.0382, 0.0029, 0.0217],
[ 0.0261, -0.0300, 0.0030],
[-0.0088, -0.0220, -0.0283],
[-0.0272, -0.0121, -0.0363],
[-0.0664, -0.0622, 0.0144],
[ 0.0414, 0.0479, 0.0529],
[ 0.0355, 0.0612, -0.0247],
[ 0.0147, 0.0264, 0.0174],
[ 0.0438, 0.0038, 0.0542],
[ 0.0431, -0.0573, -0.0033],
[-0.0162, -0.0211, -0.0406],
[-0.0487, -0.0295, -0.0393],
[ 0.0005, -0.0109, 0.0253],
[ 0.0296, 0.0591, 0.0353],
[ 0.0119, 0.0181, -0.0306],
[-0.0085, -0.0362, 0.0229],
[ 0.0005, -0.0106, 0.0242]
]
latent_rgb_factors_bias = [ 0.0456, -0.0202, -0.0644]
latent_channels = 32
latent_dimensions = 3
spacial_downscale_ratio = 16
scale_factor = 1.03682
taesd_decoder_name = "lighttaehy1_5"
class Hunyuan3Dv2(LatentFormat):
latent_channels = 64
latent_dimensions = 1
@@ -757,7 +632,6 @@ class ACEAudio(LatentFormat):
class ChromaRadiance(LatentFormat):
latent_channels = 3
spacial_downscale_ratio = 1
def __init__(self):
self.latent_rgb_factors = [

View File

@@ -1,202 +0,0 @@
from comfy.ldm.cosmos.predict2 import MiniTrainDIT
import torch
from torch import nn
import torch.nn.functional as F
def rotate_half(x):
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def apply_rotary_pos_emb(x, cos, sin, unsqueeze_dim=1):
cos = cos.unsqueeze(unsqueeze_dim)
sin = sin.unsqueeze(unsqueeze_dim)
x_embed = (x * cos) + (rotate_half(x) * sin)
return x_embed
class RotaryEmbedding(nn.Module):
def __init__(self, head_dim):
super().__init__()
self.rope_theta = 10000
inv_freq = 1.0 / (self.rope_theta ** (torch.arange(0, head_dim, 2, dtype=torch.int64).to(dtype=torch.float) / head_dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
@torch.no_grad()
def forward(self, x, position_ids):
inv_freq_expanded = self.inv_freq[None, :, None].float().expand(position_ids.shape[0], -1, 1).to(x.device)
position_ids_expanded = position_ids[:, None, :].float()
device_type = x.device.type if isinstance(x.device.type, str) and x.device.type != "mps" else "cpu"
with torch.autocast(device_type=device_type, enabled=False): # Force float32
freqs = (inv_freq_expanded.float() @ position_ids_expanded.float()).transpose(1, 2)
emb = torch.cat((freqs, freqs), dim=-1)
cos = emb.cos()
sin = emb.sin()
return cos.to(dtype=x.dtype), sin.to(dtype=x.dtype)
class Attention(nn.Module):
def __init__(self, query_dim, context_dim, n_heads, head_dim, device=None, dtype=None, operations=None):
super().__init__()
inner_dim = head_dim * n_heads
self.n_heads = n_heads
self.head_dim = head_dim
self.query_dim = query_dim
self.context_dim = context_dim
self.q_proj = operations.Linear(query_dim, inner_dim, bias=False, device=device, dtype=dtype)
self.q_norm = operations.RMSNorm(self.head_dim, eps=1e-6, device=device, dtype=dtype)
self.k_proj = operations.Linear(context_dim, inner_dim, bias=False, device=device, dtype=dtype)
self.k_norm = operations.RMSNorm(self.head_dim, eps=1e-6, device=device, dtype=dtype)
self.v_proj = operations.Linear(context_dim, inner_dim, bias=False, device=device, dtype=dtype)
self.o_proj = operations.Linear(inner_dim, query_dim, bias=False, device=device, dtype=dtype)
def forward(self, x, mask=None, context=None, position_embeddings=None, position_embeddings_context=None):
context = x if context is None else context
input_shape = x.shape[:-1]
q_shape = (*input_shape, self.n_heads, self.head_dim)
context_shape = context.shape[:-1]
kv_shape = (*context_shape, self.n_heads, self.head_dim)
query_states = self.q_norm(self.q_proj(x).view(q_shape)).transpose(1, 2)
key_states = self.k_norm(self.k_proj(context).view(kv_shape)).transpose(1, 2)
value_states = self.v_proj(context).view(kv_shape).transpose(1, 2)
if position_embeddings is not None:
assert position_embeddings_context is not None
cos, sin = position_embeddings
query_states = apply_rotary_pos_emb(query_states, cos, sin)
cos, sin = position_embeddings_context
key_states = apply_rotary_pos_emb(key_states, cos, sin)
attn_output = F.scaled_dot_product_attention(query_states, key_states, value_states, attn_mask=mask)
attn_output = attn_output.transpose(1, 2).reshape(*input_shape, -1).contiguous()
attn_output = self.o_proj(attn_output)
return attn_output
def init_weights(self):
torch.nn.init.zeros_(self.o_proj.weight)
class TransformerBlock(nn.Module):
def __init__(self, source_dim, model_dim, num_heads=16, mlp_ratio=4.0, use_self_attn=False, layer_norm=False, device=None, dtype=None, operations=None):
super().__init__()
self.use_self_attn = use_self_attn
if self.use_self_attn:
self.norm_self_attn = operations.LayerNorm(model_dim, device=device, dtype=dtype) if layer_norm else operations.RMSNorm(model_dim, eps=1e-6, device=device, dtype=dtype)
self.self_attn = Attention(
query_dim=model_dim,
context_dim=model_dim,
n_heads=num_heads,
head_dim=model_dim//num_heads,
device=device,
dtype=dtype,
operations=operations,
)
self.norm_cross_attn = operations.LayerNorm(model_dim, device=device, dtype=dtype) if layer_norm else operations.RMSNorm(model_dim, eps=1e-6, device=device, dtype=dtype)
self.cross_attn = Attention(
query_dim=model_dim,
context_dim=source_dim,
n_heads=num_heads,
head_dim=model_dim//num_heads,
device=device,
dtype=dtype,
operations=operations,
)
self.norm_mlp = operations.LayerNorm(model_dim, device=device, dtype=dtype) if layer_norm else operations.RMSNorm(model_dim, eps=1e-6, device=device, dtype=dtype)
self.mlp = nn.Sequential(
operations.Linear(model_dim, int(model_dim * mlp_ratio), device=device, dtype=dtype),
nn.GELU(),
operations.Linear(int(model_dim * mlp_ratio), model_dim, device=device, dtype=dtype)
)
def forward(self, x, context, target_attention_mask=None, source_attention_mask=None, position_embeddings=None, position_embeddings_context=None):
if self.use_self_attn:
normed = self.norm_self_attn(x)
attn_out = self.self_attn(normed, mask=target_attention_mask, position_embeddings=position_embeddings, position_embeddings_context=position_embeddings)
x = x + attn_out
normed = self.norm_cross_attn(x)
attn_out = self.cross_attn(normed, mask=source_attention_mask, context=context, position_embeddings=position_embeddings, position_embeddings_context=position_embeddings_context)
x = x + attn_out
x = x + self.mlp(self.norm_mlp(x))
return x
def init_weights(self):
torch.nn.init.zeros_(self.mlp[2].weight)
self.cross_attn.init_weights()
class LLMAdapter(nn.Module):
def __init__(
self,
source_dim=1024,
target_dim=1024,
model_dim=1024,
num_layers=6,
num_heads=16,
use_self_attn=True,
layer_norm=False,
device=None,
dtype=None,
operations=None,
):
super().__init__()
self.embed = operations.Embedding(32128, target_dim, device=device, dtype=dtype)
if model_dim != target_dim:
self.in_proj = operations.Linear(target_dim, model_dim, device=device, dtype=dtype)
else:
self.in_proj = nn.Identity()
self.rotary_emb = RotaryEmbedding(model_dim//num_heads)
self.blocks = nn.ModuleList([
TransformerBlock(source_dim, model_dim, num_heads=num_heads, use_self_attn=use_self_attn, layer_norm=layer_norm, device=device, dtype=dtype, operations=operations) for _ in range(num_layers)
])
self.out_proj = operations.Linear(model_dim, target_dim, device=device, dtype=dtype)
self.norm = operations.RMSNorm(target_dim, eps=1e-6, device=device, dtype=dtype)
def forward(self, source_hidden_states, target_input_ids, target_attention_mask=None, source_attention_mask=None):
if target_attention_mask is not None:
target_attention_mask = target_attention_mask.to(torch.bool)
if target_attention_mask.ndim == 2:
target_attention_mask = target_attention_mask.unsqueeze(1).unsqueeze(1)
if source_attention_mask is not None:
source_attention_mask = source_attention_mask.to(torch.bool)
if source_attention_mask.ndim == 2:
source_attention_mask = source_attention_mask.unsqueeze(1).unsqueeze(1)
x = self.in_proj(self.embed(target_input_ids))
context = source_hidden_states
position_ids = torch.arange(x.shape[1], device=x.device).unsqueeze(0)
position_ids_context = torch.arange(context.shape[1], device=x.device).unsqueeze(0)
position_embeddings = self.rotary_emb(x, position_ids)
position_embeddings_context = self.rotary_emb(x, position_ids_context)
for block in self.blocks:
x = block(x, context, target_attention_mask=target_attention_mask, source_attention_mask=source_attention_mask, position_embeddings=position_embeddings, position_embeddings_context=position_embeddings_context)
return self.norm(self.out_proj(x))
class Anima(MiniTrainDIT):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self.llm_adapter = LLMAdapter(device=kwargs.get("device"), dtype=kwargs.get("dtype"), operations=kwargs.get("operations"))
def preprocess_text_embeds(self, text_embeds, text_ids):
if text_ids is not None:
return self.llm_adapter(text_embeds, text_ids)
else:
return text_embeds

View File

@@ -1,15 +1,15 @@
import torch
from torch import Tensor, nn
from comfy.ldm.flux.math import attention
from comfy.ldm.flux.layers import (
MLPEmbedder,
RMSNorm,
QKNorm,
SelfAttention,
ModulationOut,
)
# TODO: remove this in a few months
SingleStreamBlock = None
DoubleStreamBlock = None
class ChromaModulationOut(ModulationOut):
@@ -48,6 +48,124 @@ class Approximator(nn.Module):
return x
class DoubleStreamBlock(nn.Module):
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, flipped_img_txt=False, dtype=None, device=None, operations=None):
super().__init__()
mlp_hidden_dim = int(hidden_size * mlp_ratio)
self.num_heads = num_heads
self.hidden_size = hidden_size
self.img_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)
self.img_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.img_mlp = nn.Sequential(
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
nn.GELU(approximate="tanh"),
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
)
self.txt_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)
self.txt_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.txt_mlp = nn.Sequential(
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
nn.GELU(approximate="tanh"),
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
)
self.flipped_img_txt = flipped_img_txt
def forward(self, img: Tensor, txt: Tensor, pe: Tensor, vec: Tensor, attn_mask=None, transformer_options={}):
(img_mod1, img_mod2), (txt_mod1, txt_mod2) = vec
# prepare image for attention
img_modulated = torch.addcmul(img_mod1.shift, 1 + img_mod1.scale, self.img_norm1(img))
img_qkv = self.img_attn.qkv(img_modulated)
img_q, img_k, img_v = img_qkv.view(img_qkv.shape[0], img_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
# prepare txt for attention
txt_modulated = torch.addcmul(txt_mod1.shift, 1 + txt_mod1.scale, self.txt_norm1(txt))
txt_qkv = self.txt_attn.qkv(txt_modulated)
txt_q, txt_k, txt_v = txt_qkv.view(txt_qkv.shape[0], txt_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
# run actual attention
attn = attention(torch.cat((txt_q, img_q), dim=2),
torch.cat((txt_k, img_k), dim=2),
torch.cat((txt_v, img_v), dim=2),
pe=pe, mask=attn_mask, transformer_options=transformer_options)
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1] :]
# calculate the img bloks
img.addcmul_(img_mod1.gate, self.img_attn.proj(img_attn))
img.addcmul_(img_mod2.gate, self.img_mlp(torch.addcmul(img_mod2.shift, 1 + img_mod2.scale, self.img_norm2(img))))
# calculate the txt bloks
txt.addcmul_(txt_mod1.gate, self.txt_attn.proj(txt_attn))
txt.addcmul_(txt_mod2.gate, self.txt_mlp(torch.addcmul(txt_mod2.shift, 1 + txt_mod2.scale, self.txt_norm2(txt))))
if txt.dtype == torch.float16:
txt = torch.nan_to_num(txt, nan=0.0, posinf=65504, neginf=-65504)
return img, txt
class SingleStreamBlock(nn.Module):
"""
A DiT block with parallel linear layers as described in
https://arxiv.org/abs/2302.05442 and adapted modulation interface.
"""
def __init__(
self,
hidden_size: int,
num_heads: int,
mlp_ratio: float = 4.0,
qk_scale: float = None,
dtype=None,
device=None,
operations=None
):
super().__init__()
self.hidden_dim = hidden_size
self.num_heads = num_heads
head_dim = hidden_size // num_heads
self.scale = qk_scale or head_dim**-0.5
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
# qkv and mlp_in
self.linear1 = operations.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim, dtype=dtype, device=device)
# proj and mlp_out
self.linear2 = operations.Linear(hidden_size + self.mlp_hidden_dim, hidden_size, dtype=dtype, device=device)
self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations)
self.hidden_size = hidden_size
self.pre_norm = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.mlp_act = nn.GELU(approximate="tanh")
def forward(self, x: Tensor, pe: Tensor, vec: Tensor, attn_mask=None, transformer_options={}) -> Tensor:
mod = vec
x_mod = torch.addcmul(mod.shift, 1 + mod.scale, self.pre_norm(x))
qkv, mlp = torch.split(self.linear1(x_mod), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
q, k, v = qkv.view(qkv.shape[0], qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
q, k = self.norm(q, k, v)
# compute attention
attn = attention(q, k, v, pe=pe, mask=attn_mask, transformer_options=transformer_options)
# compute activation in mlp stream, cat again and run second linear layer
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
x.addcmul_(mod.gate, output)
if x.dtype == torch.float16:
x = torch.nan_to_num(x, nan=0.0, posinf=65504, neginf=-65504)
return x
class LastLayer(nn.Module):
def __init__(self, hidden_size: int, patch_size: int, out_channels: int, dtype=None, device=None, operations=None):
super().__init__()

View File

@@ -11,12 +11,12 @@ import comfy.ldm.common_dit
from comfy.ldm.flux.layers import (
EmbedND,
timestep_embedding,
DoubleStreamBlock,
SingleStreamBlock,
)
from .layers import (
DoubleStreamBlock,
LastLayer,
SingleStreamBlock,
Approximator,
ChromaModulationOut,
)
@@ -40,8 +40,7 @@ class ChromaParams:
out_dim: int
hidden_dim: int
n_layers: int
txt_ids_dims: list
vec_in_dim: int
@@ -91,7 +90,6 @@ class Chroma(nn.Module):
self.num_heads,
mlp_ratio=params.mlp_ratio,
qkv_bias=params.qkv_bias,
modulation=False,
dtype=dtype, device=device, operations=operations
)
for _ in range(params.depth)
@@ -100,7 +98,7 @@ class Chroma(nn.Module):
self.single_blocks = nn.ModuleList(
[
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, modulation=False, dtype=dtype, device=device, operations=operations)
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, dtype=dtype, device=device, operations=operations)
for _ in range(params.depth_single_blocks)
]
)
@@ -180,10 +178,7 @@ class Chroma(nn.Module):
pe = self.pe_embedder(ids)
blocks_replace = patches_replace.get("dit", {})
transformer_options["total_blocks"] = len(self.double_blocks)
transformer_options["block_type"] = "double"
for i, block in enumerate(self.double_blocks):
transformer_options["block_index"] = i
if i not in self.skip_mmdit:
double_mod = (
self.get_modulations(mod_vectors, "double_img", idx=i),
@@ -226,10 +221,7 @@ class Chroma(nn.Module):
img = torch.cat((txt, img), 1)
transformer_options["total_blocks"] = len(self.single_blocks)
transformer_options["block_type"] = "single"
for i, block in enumerate(self.single_blocks):
transformer_options["block_index"] = i
if i not in self.skip_dit:
single_mod = self.get_modulations(mod_vectors, "single", idx=i)
if ("single_block", i) in blocks_replace:

View File

@@ -10,10 +10,12 @@ from torch import Tensor, nn
from einops import repeat
import comfy.ldm.common_dit
from comfy.ldm.flux.layers import EmbedND, DoubleStreamBlock, SingleStreamBlock
from comfy.ldm.flux.layers import EmbedND
from comfy.ldm.chroma.model import Chroma, ChromaParams
from comfy.ldm.chroma.layers import (
DoubleStreamBlock,
SingleStreamBlock,
Approximator,
)
from .layers import (
@@ -37,7 +39,7 @@ class ChromaRadianceParams(ChromaParams):
nerf_final_head_type: str
# None means use the same dtype as the model.
nerf_embedder_dtype: Optional[torch.dtype]
use_x0: bool
class ChromaRadiance(Chroma):
"""
@@ -87,6 +89,7 @@ class ChromaRadiance(Chroma):
dtype=dtype, device=device, operations=operations
)
self.double_blocks = nn.ModuleList(
[
DoubleStreamBlock(
@@ -94,7 +97,6 @@ class ChromaRadiance(Chroma):
self.num_heads,
mlp_ratio=params.mlp_ratio,
qkv_bias=params.qkv_bias,
modulation=False,
dtype=dtype, device=device, operations=operations
)
for _ in range(params.depth)
@@ -107,7 +109,6 @@ class ChromaRadiance(Chroma):
self.hidden_size,
self.num_heads,
mlp_ratio=params.mlp_ratio,
modulation=False,
dtype=dtype, device=device, operations=operations,
)
for _ in range(params.depth_single_blocks)
@@ -159,9 +160,6 @@ class ChromaRadiance(Chroma):
self.skip_dit = []
self.lite = False
if params.use_x0:
self.register_buffer("__x0__", torch.tensor([]))
@property
def _nerf_final_layer(self) -> nn.Module:
if self.params.nerf_final_head_type == "linear":
@@ -270,7 +268,7 @@ class ChromaRadiance(Chroma):
bad_keys = tuple(
k
for k, v in overrides.items()
if not isinstance(v, type(getattr(params, k))) and (v is not None or k not in nullable_keys)
if type(v) != type(getattr(params, k)) and (v is not None or k not in nullable_keys)
)
if bad_keys:
e = f"Invalid value(s) in transformer_options chroma_radiance_options: {', '.join(bad_keys)}"
@@ -279,12 +277,6 @@ class ChromaRadiance(Chroma):
params_dict |= overrides
return params.__class__(**params_dict)
def _apply_x0_residual(self, predicted, noisy, timesteps):
# non zero during training to prevent 0 div
eps = 0.0
return (noisy - predicted) / (timesteps.view(-1,1,1,1) + eps)
def _forward(
self,
x: Tensor,
@@ -325,11 +317,4 @@ class ChromaRadiance(Chroma):
transformer_options,
attn_mask=kwargs.get("attention_mask", None),
)
out = self.forward_nerf(img, img_out, params)[:, :, :h, :w]
# If x0 variant → v-pred, just return this instead
if hasattr(self, "__x0__"):
out = self._apply_x0_residual(out, img, timestep)
return out
return self.forward_nerf(img, img_out, params)[:, :, :h, :w]

View File

@@ -13,7 +13,6 @@ from torchvision import transforms
import comfy.patcher_extension
from comfy.ldm.modules.attention import optimized_attention
import comfy.ldm.common_dit
def apply_rotary_pos_emb(
t: torch.Tensor,
@@ -836,8 +835,6 @@ class MiniTrainDIT(nn.Module):
padding_mask: Optional[torch.Tensor] = None,
**kwargs,
):
orig_shape = list(x.shape)
x = comfy.ldm.common_dit.pad_to_patch_size(x, (self.patch_temporal, self.patch_spatial, self.patch_spatial))
x_B_C_T_H_W = x
timesteps_B_T = timesteps
crossattn_emb = context
@@ -885,5 +882,5 @@ class MiniTrainDIT(nn.Module):
)
x_B_T_H_W_O = self.final_layer(x_B_T_H_W_D, t_embedding_B_T_D, adaln_lora_B_T_3D=adaln_lora_B_T_3D)
x_B_C_Tt_Hp_Wp = self.unpatchify(x_B_T_H_W_O)[:, :, :orig_shape[-3], :orig_shape[-2], :orig_shape[-1]]
x_B_C_Tt_Hp_Wp = self.unpatchify(x_B_T_H_W_O)
return x_B_C_Tt_Hp_Wp

View File

@@ -48,44 +48,15 @@ def timestep_embedding(t: Tensor, dim, max_period=10000, time_factor: float = 10
return embedding
class MLPEmbedder(nn.Module):
def __init__(self, in_dim: int, hidden_dim: int, bias=True, dtype=None, device=None, operations=None):
def __init__(self, in_dim: int, hidden_dim: int, dtype=None, device=None, operations=None):
super().__init__()
self.in_layer = operations.Linear(in_dim, hidden_dim, bias=bias, dtype=dtype, device=device)
self.in_layer = operations.Linear(in_dim, hidden_dim, bias=True, dtype=dtype, device=device)
self.silu = nn.SiLU()
self.out_layer = operations.Linear(hidden_dim, hidden_dim, bias=bias, dtype=dtype, device=device)
self.out_layer = operations.Linear(hidden_dim, hidden_dim, bias=True, dtype=dtype, device=device)
def forward(self, x: Tensor) -> Tensor:
return self.out_layer(self.silu(self.in_layer(x)))
class YakMLP(nn.Module):
def __init__(self, hidden_size: int, intermediate_size: int, dtype=None, device=None, operations=None):
super().__init__()
self.hidden_size = hidden_size
self.intermediate_size = intermediate_size
self.gate_proj = operations.Linear(self.hidden_size, self.intermediate_size, bias=True, dtype=dtype, device=device)
self.up_proj = operations.Linear(self.hidden_size, self.intermediate_size, bias=True, dtype=dtype, device=device)
self.down_proj = operations.Linear(self.intermediate_size, self.hidden_size, bias=True, dtype=dtype, device=device)
self.act_fn = nn.SiLU()
def forward(self, x: Tensor) -> Tensor:
down_proj = self.down_proj(self.act_fn(self.gate_proj(x)) * self.up_proj(x))
return down_proj
def build_mlp(hidden_size, mlp_hidden_dim, mlp_silu_act=False, yak_mlp=False, dtype=None, device=None, operations=None):
if yak_mlp:
return YakMLP(hidden_size, mlp_hidden_dim, dtype=dtype, device=device, operations=operations)
if mlp_silu_act:
return nn.Sequential(
operations.Linear(hidden_size, mlp_hidden_dim * 2, bias=False, dtype=dtype, device=device),
SiLUActivation(),
operations.Linear(mlp_hidden_dim, hidden_size, bias=False, dtype=dtype, device=device),
)
else:
return nn.Sequential(
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
nn.GELU(approximate="tanh"),
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
)
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int, dtype=None, device=None, operations=None):
@@ -109,14 +80,14 @@ class QKNorm(torch.nn.Module):
class SelfAttention(nn.Module):
def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False, proj_bias: bool = True, dtype=None, device=None, operations=None):
def __init__(self, dim: int, num_heads: int = 8, qkv_bias: bool = False, dtype=None, device=None, operations=None):
super().__init__()
self.num_heads = num_heads
head_dim = dim // num_heads
self.qkv = operations.Linear(dim, dim * 3, bias=qkv_bias, dtype=dtype, device=device)
self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations)
self.proj = operations.Linear(dim, dim, bias=proj_bias, dtype=dtype, device=device)
self.proj = operations.Linear(dim, dim, dtype=dtype, device=device)
@dataclass
@@ -127,11 +98,11 @@ class ModulationOut:
class Modulation(nn.Module):
def __init__(self, dim: int, double: bool, bias=True, dtype=None, device=None, operations=None):
def __init__(self, dim: int, double: bool, dtype=None, device=None, operations=None):
super().__init__()
self.is_double = double
self.multiplier = 6 if double else 3
self.lin = operations.Linear(dim, self.multiplier * dim, bias=bias, dtype=dtype, device=device)
self.lin = operations.Linear(dim, self.multiplier * dim, bias=True, dtype=dtype, device=device)
def forward(self, vec: Tensor) -> tuple:
if vec.ndim == 2:
@@ -158,107 +129,77 @@ def apply_mod(tensor, m_mult, m_add=None, modulation_dims=None):
return tensor
class SiLUActivation(nn.Module):
def __init__(self):
super().__init__()
self.gate_fn = nn.SiLU()
def forward(self, x: Tensor) -> Tensor:
x1, x2 = x.chunk(2, dim=-1)
return self.gate_fn(x1) * x2
class DoubleStreamBlock(nn.Module):
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, flipped_img_txt=False, modulation=True, mlp_silu_act=False, proj_bias=True, yak_mlp=False, dtype=None, device=None, operations=None):
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, flipped_img_txt=False, dtype=None, device=None, operations=None):
super().__init__()
mlp_hidden_dim = int(hidden_size * mlp_ratio)
self.num_heads = num_heads
self.hidden_size = hidden_size
self.modulation = modulation
if self.modulation:
self.img_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations)
self.img_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations)
self.img_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, proj_bias=proj_bias, dtype=dtype, device=device, operations=operations)
self.img_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)
self.img_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.img_mlp = nn.Sequential(
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
nn.GELU(approximate="tanh"),
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
)
self.img_mlp = build_mlp(hidden_size, mlp_hidden_dim, mlp_silu_act=mlp_silu_act, yak_mlp=yak_mlp, dtype=dtype, device=device, operations=operations)
if self.modulation:
self.txt_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations)
self.txt_mod = Modulation(hidden_size, double=True, dtype=dtype, device=device, operations=operations)
self.txt_norm1 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, proj_bias=proj_bias, dtype=dtype, device=device, operations=operations)
self.txt_attn = SelfAttention(dim=hidden_size, num_heads=num_heads, qkv_bias=qkv_bias, dtype=dtype, device=device, operations=operations)
self.txt_norm2 = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.txt_mlp = build_mlp(hidden_size, mlp_hidden_dim, mlp_silu_act=mlp_silu_act, yak_mlp=yak_mlp, dtype=dtype, device=device, operations=operations)
self.txt_mlp = nn.Sequential(
operations.Linear(hidden_size, mlp_hidden_dim, bias=True, dtype=dtype, device=device),
nn.GELU(approximate="tanh"),
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
)
self.flipped_img_txt = flipped_img_txt
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims_img=None, modulation_dims_txt=None, transformer_options={}):
if self.modulation:
img_mod1, img_mod2 = self.img_mod(vec)
txt_mod1, txt_mod2 = self.txt_mod(vec)
else:
(img_mod1, img_mod2), (txt_mod1, txt_mod2) = vec
img_mod1, img_mod2 = self.img_mod(vec)
txt_mod1, txt_mod2 = self.txt_mod(vec)
# prepare image for attention
img_modulated = self.img_norm1(img)
img_modulated = apply_mod(img_modulated, (1 + img_mod1.scale), img_mod1.shift, modulation_dims_img)
img_qkv = self.img_attn.qkv(img_modulated)
del img_modulated
img_q, img_k, img_v = img_qkv.view(img_qkv.shape[0], img_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
del img_qkv
img_q, img_k = self.img_attn.norm(img_q, img_k, img_v)
# prepare txt for attention
txt_modulated = self.txt_norm1(txt)
txt_modulated = apply_mod(txt_modulated, (1 + txt_mod1.scale), txt_mod1.shift, modulation_dims_txt)
txt_qkv = self.txt_attn.qkv(txt_modulated)
del txt_modulated
txt_q, txt_k, txt_v = txt_qkv.view(txt_qkv.shape[0], txt_qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
del txt_qkv
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
if self.flipped_img_txt:
q = torch.cat((img_q, txt_q), dim=2)
del img_q, txt_q
k = torch.cat((img_k, txt_k), dim=2)
del img_k, txt_k
v = torch.cat((img_v, txt_v), dim=2)
del img_v, txt_v
# run actual attention
attn = attention(q, k, v,
attn = attention(torch.cat((img_q, txt_q), dim=2),
torch.cat((img_k, txt_k), dim=2),
torch.cat((img_v, txt_v), dim=2),
pe=pe, mask=attn_mask, transformer_options=transformer_options)
del q, k, v
img_attn, txt_attn = attn[:, : img.shape[1]], attn[:, img.shape[1]:]
else:
q = torch.cat((txt_q, img_q), dim=2)
del txt_q, img_q
k = torch.cat((txt_k, img_k), dim=2)
del txt_k, img_k
v = torch.cat((txt_v, img_v), dim=2)
del txt_v, img_v
# run actual attention
attn = attention(q, k, v,
attn = attention(torch.cat((txt_q, img_q), dim=2),
torch.cat((txt_k, img_k), dim=2),
torch.cat((txt_v, img_v), dim=2),
pe=pe, mask=attn_mask, transformer_options=transformer_options)
del q, k, v
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1]:]
# calculate the img bloks
img += apply_mod(self.img_attn.proj(img_attn), img_mod1.gate, None, modulation_dims_img)
del img_attn
img += apply_mod(self.img_mlp(apply_mod(self.img_norm2(img), (1 + img_mod2.scale), img_mod2.shift, modulation_dims_img)), img_mod2.gate, None, modulation_dims_img)
img = img + apply_mod(self.img_attn.proj(img_attn), img_mod1.gate, None, modulation_dims_img)
img = img + apply_mod(self.img_mlp(apply_mod(self.img_norm2(img), (1 + img_mod2.scale), img_mod2.shift, modulation_dims_img)), img_mod2.gate, None, modulation_dims_img)
# calculate the txt bloks
txt += apply_mod(self.txt_attn.proj(txt_attn), txt_mod1.gate, None, modulation_dims_txt)
del txt_attn
txt += apply_mod(self.txt_mlp(apply_mod(self.txt_norm2(txt), (1 + txt_mod2.scale), txt_mod2.shift, modulation_dims_txt)), txt_mod2.gate, None, modulation_dims_txt)
if txt.dtype == torch.float16:
@@ -279,10 +220,6 @@ class SingleStreamBlock(nn.Module):
num_heads: int,
mlp_ratio: float = 4.0,
qk_scale: float = None,
modulation=True,
mlp_silu_act=False,
bias=True,
yak_mlp=False,
dtype=None,
device=None,
operations=None
@@ -294,55 +231,30 @@ class SingleStreamBlock(nn.Module):
self.scale = qk_scale or head_dim**-0.5
self.mlp_hidden_dim = int(hidden_size * mlp_ratio)
self.mlp_hidden_dim_first = self.mlp_hidden_dim
self.yak_mlp = yak_mlp
if mlp_silu_act:
self.mlp_hidden_dim_first = int(hidden_size * mlp_ratio * 2)
self.mlp_act = SiLUActivation()
else:
self.mlp_act = nn.GELU(approximate="tanh")
if self.yak_mlp:
self.mlp_hidden_dim_first *= 2
self.mlp_act = nn.SiLU()
# qkv and mlp_in
self.linear1 = operations.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim_first, bias=bias, dtype=dtype, device=device)
self.linear1 = operations.Linear(hidden_size, hidden_size * 3 + self.mlp_hidden_dim, dtype=dtype, device=device)
# proj and mlp_out
self.linear2 = operations.Linear(hidden_size + self.mlp_hidden_dim, hidden_size, bias=bias, dtype=dtype, device=device)
self.linear2 = operations.Linear(hidden_size + self.mlp_hidden_dim, hidden_size, dtype=dtype, device=device)
self.norm = QKNorm(head_dim, dtype=dtype, device=device, operations=operations)
self.hidden_size = hidden_size
self.pre_norm = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
if modulation:
self.modulation = Modulation(hidden_size, double=False, dtype=dtype, device=device, operations=operations)
else:
self.modulation = None
self.mlp_act = nn.GELU(approximate="tanh")
self.modulation = Modulation(hidden_size, double=False, dtype=dtype, device=device, operations=operations)
def forward(self, x: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims=None, transformer_options={}) -> Tensor:
if self.modulation:
mod, _ = self.modulation(vec)
else:
mod = vec
qkv, mlp = torch.split(self.linear1(apply_mod(self.pre_norm(x), (1 + mod.scale), mod.shift, modulation_dims)), [3 * self.hidden_size, self.mlp_hidden_dim_first], dim=-1)
mod, _ = self.modulation(vec)
qkv, mlp = torch.split(self.linear1(apply_mod(self.pre_norm(x), (1 + mod.scale), mod.shift, modulation_dims)), [3 * self.hidden_size, self.mlp_hidden_dim], dim=-1)
q, k, v = qkv.view(qkv.shape[0], qkv.shape[1], 3, self.num_heads, -1).permute(2, 0, 3, 1, 4)
del qkv
q, k = self.norm(q, k, v)
# compute attention
attn = attention(q, k, v, pe=pe, mask=attn_mask, transformer_options=transformer_options)
del q, k, v
# compute activation in mlp stream, cat again and run second linear layer
if self.yak_mlp:
mlp = self.mlp_act(mlp[..., self.mlp_hidden_dim_first // 2:]) * mlp[..., :self.mlp_hidden_dim_first // 2]
else:
mlp = self.mlp_act(mlp)
output = self.linear2(torch.cat((attn, mlp), 2))
output = self.linear2(torch.cat((attn, self.mlp_act(mlp)), 2))
x += apply_mod(output, mod.gate, None, modulation_dims)
if x.dtype == torch.float16:
x = torch.nan_to_num(x, nan=0.0, posinf=65504, neginf=-65504)
@@ -350,11 +262,11 @@ class SingleStreamBlock(nn.Module):
class LastLayer(nn.Module):
def __init__(self, hidden_size: int, patch_size: int, out_channels: int, bias=True, dtype=None, device=None, operations=None):
def __init__(self, hidden_size: int, patch_size: int, out_channels: int, dtype=None, device=None, operations=None):
super().__init__()
self.norm_final = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.linear = operations.Linear(hidden_size, patch_size * patch_size * out_channels, bias=bias, dtype=dtype, device=device)
self.adaLN_modulation = nn.Sequential(nn.SiLU(), operations.Linear(hidden_size, 2 * hidden_size, bias=bias, dtype=dtype, device=device))
self.linear = operations.Linear(hidden_size, patch_size * patch_size * out_channels, bias=True, dtype=dtype, device=device)
self.adaLN_modulation = nn.Sequential(nn.SiLU(), operations.Linear(hidden_size, 2 * hidden_size, bias=True, dtype=dtype, device=device))
def forward(self, x: Tensor, vec: Tensor, modulation_dims=None) -> Tensor:
if vec.ndim == 2:

View File

@@ -4,16 +4,23 @@ from torch import Tensor
from comfy.ldm.modules.attention import optimized_attention
import comfy.model_management
import logging
def attention(q: Tensor, k: Tensor, v: Tensor, pe: Tensor, mask=None, transformer_options={}) -> Tensor:
q_shape = q.shape
k_shape = k.shape
if pe is not None:
q, k = apply_rope(q, k, pe)
q = q.to(dtype=pe.dtype).reshape(*q.shape[:-1], -1, 1, 2)
k = k.to(dtype=pe.dtype).reshape(*k.shape[:-1], -1, 1, 2)
q = (pe[..., 0] * q[..., 0] + pe[..., 1] * q[..., 1]).reshape(*q_shape).type_as(v)
k = (pe[..., 0] * k[..., 0] + pe[..., 1] * k[..., 1]).reshape(*k_shape).type_as(v)
heads = q.shape[1]
x = optimized_attention(q, k, v, heads, skip_reshape=True, mask=mask, transformer_options=transformer_options)
return x
def rope(pos: Tensor, dim: int, theta: int) -> Tensor:
assert dim % 2 == 0
if comfy.model_management.is_device_mps(pos.device) or comfy.model_management.is_intel_xpu() or comfy.model_management.is_directml_enabled():
@@ -28,20 +35,13 @@ def rope(pos: Tensor, dim: int, theta: int) -> Tensor:
out = rearrange(out, "b n d (i j) -> b n d i j", i=2, j=2)
return out.to(dtype=torch.float32, device=pos.device)
def apply_rope1(x: Tensor, freqs_cis: Tensor):
x_ = x.to(dtype=freqs_cis.dtype).reshape(*x.shape[:-1], -1, 1, 2)
try:
import comfy.quant_ops
apply_rope = comfy.quant_ops.ck.apply_rope
apply_rope1 = comfy.quant_ops.ck.apply_rope1
except:
logging.warning("No comfy kitchen, using old apply_rope functions.")
def apply_rope1(x: Tensor, freqs_cis: Tensor):
x_ = x.to(dtype=freqs_cis.dtype).reshape(*x.shape[:-1], -1, 1, 2)
x_out = freqs_cis[..., 0] * x_[..., 0]
x_out.addcmul_(freqs_cis[..., 1], x_[..., 1])
x_out = freqs_cis[..., 0] * x_[..., 0]
x_out.addcmul_(freqs_cis[..., 1], x_[..., 1])
return x_out.reshape(*x.shape).type_as(x)
return x_out.reshape(*x.shape).type_as(x)
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor):
return apply_rope1(xq, freqs_cis), apply_rope1(xk, freqs_cis)
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor):
return apply_rope1(xq, freqs_cis), apply_rope1(xk, freqs_cis)

View File

@@ -15,8 +15,6 @@ from .layers import (
MLPEmbedder,
SingleStreamBlock,
timestep_embedding,
Modulation,
RMSNorm
)
@dataclass
@@ -35,14 +33,6 @@ class FluxParams:
patch_size: int
qkv_bias: bool
guidance_embed: bool
txt_ids_dims: list
global_modulation: bool = False
mlp_silu_act: bool = False
ops_bias: bool = True
default_ref_method: str = "offset"
ref_index_scale: float = 1.0
yak_mlp: bool = False
txt_norm: bool = False
class Flux(nn.Module):
@@ -68,22 +58,13 @@ class Flux(nn.Module):
self.hidden_size = params.hidden_size
self.num_heads = params.num_heads
self.pe_embedder = EmbedND(dim=pe_dim, theta=params.theta, axes_dim=params.axes_dim)
self.img_in = operations.Linear(self.in_channels, self.hidden_size, bias=params.ops_bias, dtype=dtype, device=device)
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, bias=params.ops_bias, dtype=dtype, device=device, operations=operations)
if params.vec_in_dim is not None:
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size, dtype=dtype, device=device, operations=operations)
else:
self.vector_in = None
self.img_in = operations.Linear(self.in_channels, self.hidden_size, bias=True, dtype=dtype, device=device)
self.time_in = MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, dtype=dtype, device=device, operations=operations)
self.vector_in = MLPEmbedder(params.vec_in_dim, self.hidden_size, dtype=dtype, device=device, operations=operations)
self.guidance_in = (
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, bias=params.ops_bias, dtype=dtype, device=device, operations=operations) if params.guidance_embed else nn.Identity()
MLPEmbedder(in_dim=256, hidden_dim=self.hidden_size, dtype=dtype, device=device, operations=operations) if params.guidance_embed else nn.Identity()
)
self.txt_in = operations.Linear(params.context_in_dim, self.hidden_size, bias=params.ops_bias, dtype=dtype, device=device)
if params.txt_norm:
self.txt_norm = RMSNorm(params.context_in_dim, dtype=dtype, device=device, operations=operations)
else:
self.txt_norm = None
self.txt_in = operations.Linear(params.context_in_dim, self.hidden_size, dtype=dtype, device=device)
self.double_blocks = nn.ModuleList(
[
@@ -92,10 +73,6 @@ class Flux(nn.Module):
self.num_heads,
mlp_ratio=params.mlp_ratio,
qkv_bias=params.qkv_bias,
modulation=params.global_modulation is False,
mlp_silu_act=params.mlp_silu_act,
proj_bias=params.ops_bias,
yak_mlp=params.yak_mlp,
dtype=dtype, device=device, operations=operations
)
for _ in range(params.depth)
@@ -104,30 +81,13 @@ class Flux(nn.Module):
self.single_blocks = nn.ModuleList(
[
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, modulation=params.global_modulation is False, mlp_silu_act=params.mlp_silu_act, bias=params.ops_bias, yak_mlp=params.yak_mlp, dtype=dtype, device=device, operations=operations)
SingleStreamBlock(self.hidden_size, self.num_heads, mlp_ratio=params.mlp_ratio, dtype=dtype, device=device, operations=operations)
for _ in range(params.depth_single_blocks)
]
)
if final_layer:
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels, bias=params.ops_bias, dtype=dtype, device=device, operations=operations)
if params.global_modulation:
self.double_stream_modulation_img = Modulation(
self.hidden_size,
double=True,
bias=False,
dtype=dtype, device=device, operations=operations
)
self.double_stream_modulation_txt = Modulation(
self.hidden_size,
double=True,
bias=False,
dtype=dtype, device=device, operations=operations
)
self.single_stream_modulation = Modulation(
self.hidden_size, double=False, bias=False, dtype=dtype, device=device, operations=operations
)
self.final_layer = LastLayer(self.hidden_size, 1, self.out_channels, dtype=dtype, device=device, operations=operations)
def forward_orig(
self,
@@ -143,6 +103,9 @@ class Flux(nn.Module):
attn_mask: Tensor = None,
) -> Tensor:
if y is None:
y = torch.zeros((img.shape[0], self.params.vec_in_dim), device=img.device, dtype=img.dtype)
patches = transformer_options.get("patches", {})
patches_replace = transformer_options.get("patches_replace", {})
if img.ndim != 3 or txt.ndim != 3:
@@ -155,19 +118,9 @@ class Flux(nn.Module):
if guidance is not None:
vec = vec + self.guidance_in(timestep_embedding(guidance, 256).to(img.dtype))
if self.vector_in is not None:
if y is None:
y = torch.zeros((img.shape[0], self.params.vec_in_dim), device=img.device, dtype=img.dtype)
vec = vec + self.vector_in(y[:, :self.params.vec_in_dim])
if self.txt_norm is not None:
txt = self.txt_norm(txt)
vec = vec + self.vector_in(y[:, :self.params.vec_in_dim])
txt = self.txt_in(txt)
vec_orig = vec
if self.params.global_modulation:
vec = (self.double_stream_modulation_img(vec_orig), self.double_stream_modulation_txt(vec_orig))
if "post_input" in patches:
for p in patches["post_input"]:
out = p({"img": img, "txt": txt, "img_ids": img_ids, "txt_ids": txt_ids})
@@ -183,10 +136,7 @@ class Flux(nn.Module):
pe = None
blocks_replace = patches_replace.get("dit", {})
transformer_options["total_blocks"] = len(self.double_blocks)
transformer_options["block_type"] = "double"
for i, block in enumerate(self.double_blocks):
transformer_options["block_index"] = i
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
@@ -227,13 +177,7 @@ class Flux(nn.Module):
img = torch.cat((txt, img), 1)
if self.params.global_modulation:
vec, _ = self.single_stream_modulation(vec_orig)
transformer_options["total_blocks"] = len(self.single_blocks)
transformer_options["block_type"] = "single"
for i, block in enumerate(self.single_blocks):
transformer_options["block_index"] = i
if ("single_block", i) in blocks_replace:
def block_wrap(args):
out = {}
@@ -263,10 +207,10 @@ class Flux(nn.Module):
img = img[:, txt.shape[1] :, ...]
img = self.final_layer(img, vec_orig) # (N, T, patch_size ** 2 * out_channels)
img = self.final_layer(img, vec) # (N, T, patch_size ** 2 * out_channels)
return img
def process_img(self, x, index=0, h_offset=0, w_offset=0, transformer_options={}):
def process_img(self, x, index=0, h_offset=0, w_offset=0):
bs, c, h, w = x.shape
patch_size = self.patch_size
x = comfy.ldm.common_dit.pad_to_patch_size(x, (patch_size, patch_size))
@@ -278,22 +222,10 @@ class Flux(nn.Module):
h_offset = ((h_offset + (patch_size // 2)) // patch_size)
w_offset = ((w_offset + (patch_size // 2)) // patch_size)
steps_h = h_len
steps_w = w_len
rope_options = transformer_options.get("rope_options", None)
if rope_options is not None:
h_len = (h_len - 1.0) * rope_options.get("scale_y", 1.0) + 1.0
w_len = (w_len - 1.0) * rope_options.get("scale_x", 1.0) + 1.0
index += rope_options.get("shift_t", 0.0)
h_offset += rope_options.get("shift_y", 0.0)
w_offset += rope_options.get("shift_x", 0.0)
img_ids = torch.zeros((steps_h, steps_w, len(self.params.axes_dim)), device=x.device, dtype=torch.float32)
img_ids = torch.zeros((h_len, w_len, 3), device=x.device, dtype=x.dtype)
img_ids[:, :, 0] = img_ids[:, :, 1] + index
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(h_offset, h_len - 1 + h_offset, steps=steps_h, device=x.device, dtype=torch.float32).unsqueeze(1)
img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(w_offset, w_len - 1 + w_offset, steps=steps_w, device=x.device, dtype=torch.float32).unsqueeze(0)
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(h_offset, h_len - 1 + h_offset, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1)
img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(w_offset, w_len - 1 + w_offset, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0)
return img, repeat(img_ids, "h w c -> b (h w) c", b=bs)
def forward(self, x, timestep, context, y=None, guidance=None, ref_latents=None, control=None, transformer_options={}, **kwargs):
@@ -309,16 +241,16 @@ class Flux(nn.Module):
h_len = ((h_orig + (patch_size // 2)) // patch_size)
w_len = ((w_orig + (patch_size // 2)) // patch_size)
img, img_ids = self.process_img(x, transformer_options=transformer_options)
img, img_ids = self.process_img(x)
img_tokens = img.shape[1]
if ref_latents is not None:
h = 0
w = 0
index = 0
ref_latents_method = kwargs.get("ref_latents_method", self.params.default_ref_method)
ref_latents_method = kwargs.get("ref_latents_method", "offset")
for ref in ref_latents:
if ref_latents_method == "index":
index += self.params.ref_index_scale
index += 1
h_offset = 0
w_offset = 0
elif ref_latents_method == "uxo":
@@ -342,12 +274,7 @@ class Flux(nn.Module):
img = torch.cat([img, kontext], dim=1)
img_ids = torch.cat([img_ids, kontext_ids], dim=1)
txt_ids = torch.zeros((bs, context.shape[1], len(self.params.axes_dim)), device=x.device, dtype=torch.float32)
if len(self.params.txt_ids_dims) > 0:
for i in self.params.txt_ids_dims:
txt_ids[:, :, i] = torch.linspace(0, context.shape[1] - 1, steps=context.shape[1], device=x.device, dtype=torch.float32)
txt_ids = torch.zeros((bs, context.shape[1], 3), device=x.device, dtype=x.dtype)
out = self.forward_orig(img, img_ids, context, txt_ids, timestep, y, guidance, control, transformer_options, attn_mask=kwargs.get("attention_mask", None))
out = out[:, :img_tokens]
return rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=self.patch_size, pw=self.patch_size)[:,:,:h_orig,:w_orig]
return rearrange(out, "b (h w) (c ph pw) -> b c (h ph) (w pw)", h=h_len, w=w_len, ph=2, pw=2)[:,:,:h_orig,:w_orig]

View File

@@ -6,6 +6,7 @@ import comfy.ldm.flux.layers
import comfy.ldm.modules.diffusionmodules.mmdit
from comfy.ldm.modules.attention import optimized_attention
from dataclasses import dataclass
from einops import repeat
@@ -41,9 +42,6 @@ class HunyuanVideoParams:
guidance_embed: bool
byt5: bool
meanflow: bool
use_cond_type_embedding: bool
vision_in_dim: int
meanflow_sum: bool
class SelfAttentionRef(nn.Module):
@@ -159,10 +157,7 @@ class TokenRefiner(nn.Module):
t = self.t_embedder(timestep_embedding(timesteps, 256, time_factor=1.0).to(x.dtype))
# m = mask.float().unsqueeze(-1)
# c = (x.float() * m).sum(dim=1) / m.sum(dim=1) #TODO: the following works when the x.shape is the same length as the tokens but might break otherwise
if x.dtype == torch.float16:
c = x.float().sum(dim=1) / x.shape[1]
else:
c = x.sum(dim=1) / x.shape[1]
c = x.sum(dim=1) / x.shape[1]
c = t + self.c_embedder(c.to(x.dtype))
x = self.input_embedder(x)
@@ -201,15 +196,11 @@ class HunyuanVideo(nn.Module):
def __init__(self, image_model=None, final_layer=True, dtype=None, device=None, operations=None, **kwargs):
super().__init__()
self.dtype = dtype
operation_settings = {"operations": operations, "device": device, "dtype": dtype}
params = HunyuanVideoParams(**kwargs)
self.params = params
self.patch_size = params.patch_size
self.in_channels = params.in_channels
self.out_channels = params.out_channels
self.use_cond_type_embedding = params.use_cond_type_embedding
self.vision_in_dim = params.vision_in_dim
if params.hidden_size % params.num_heads != 0:
raise ValueError(
f"Hidden size {params.hidden_size} must be divisible by num_heads {params.num_heads}"
@@ -275,18 +266,6 @@ class HunyuanVideo(nn.Module):
if final_layer:
self.final_layer = LastLayer(self.hidden_size, self.patch_size[-1], self.out_channels, dtype=dtype, device=device, operations=operations)
# HunyuanVideo 1.5 specific modules
if self.vision_in_dim is not None:
from comfy.ldm.wan.model import MLPProj
self.vision_in = MLPProj(in_dim=self.vision_in_dim, out_dim=self.hidden_size, operation_settings=operation_settings)
else:
self.vision_in = None
if self.use_cond_type_embedding:
# 0: text_encoder feature 1: byt5 feature 2: vision_encoder feature
self.cond_type_embedding = nn.Embedding(3, self.hidden_size)
else:
self.cond_type_embedding = None
def forward_orig(
self,
img: Tensor,
@@ -297,7 +276,6 @@ class HunyuanVideo(nn.Module):
timesteps: Tensor,
y: Tensor = None,
txt_byt5=None,
clip_fea=None,
guidance: Tensor = None,
guiding_frame_index=None,
ref_latent=None,
@@ -318,7 +296,7 @@ class HunyuanVideo(nn.Module):
timesteps_r = transformer_options['sample_sigmas'][w[0] + 1]
timesteps_r = timesteps_r.unsqueeze(0).to(device=timesteps.device, dtype=timesteps.dtype)
vec_r = self.time_r_in(timestep_embedding(timesteps_r, 256, time_factor=1000.0).to(img.dtype))
vec = (vec + vec_r) if self.params.meanflow_sum else (vec + vec_r) / 2
vec = (vec + vec_r) / 2
if ref_latent is not None:
ref_latent_ids = self.img_ids(ref_latent)
@@ -353,31 +331,12 @@ class HunyuanVideo(nn.Module):
txt = self.txt_in(txt, timesteps, txt_mask, transformer_options=transformer_options)
if self.cond_type_embedding is not None:
self.cond_type_embedding.to(txt.device)
cond_emb = self.cond_type_embedding(torch.zeros_like(txt[:, :, 0], device=txt.device, dtype=torch.long))
txt = txt + cond_emb.to(txt.dtype)
if self.byt5_in is not None and txt_byt5 is not None:
txt_byt5 = self.byt5_in(txt_byt5)
if self.cond_type_embedding is not None:
cond_emb = self.cond_type_embedding(torch.ones_like(txt_byt5[:, :, 0], device=txt_byt5.device, dtype=torch.long))
txt_byt5 = txt_byt5 + cond_emb.to(txt_byt5.dtype)
txt = torch.cat((txt_byt5, txt), dim=1) # byt5 first for HunyuanVideo1.5
else:
txt = torch.cat((txt, txt_byt5), dim=1)
txt_byt5_ids = torch.zeros((txt_ids.shape[0], txt_byt5.shape[1], txt_ids.shape[-1]), device=txt_ids.device, dtype=txt_ids.dtype)
txt = torch.cat((txt, txt_byt5), dim=1)
txt_ids = torch.cat((txt_ids, txt_byt5_ids), dim=1)
if clip_fea is not None:
txt_vision_states = self.vision_in(clip_fea)
if self.cond_type_embedding is not None:
cond_emb = self.cond_type_embedding(2 * torch.ones_like(txt_vision_states[:, :, 0], dtype=torch.long, device=txt_vision_states.device))
txt_vision_states = txt_vision_states + cond_emb
txt = torch.cat((txt_vision_states.to(txt.dtype), txt), dim=1)
extra_txt_ids = torch.zeros((txt_ids.shape[0], txt_vision_states.shape[1], txt_ids.shape[-1]), device=txt_ids.device, dtype=txt_ids.dtype)
txt_ids = torch.cat((txt_ids, extra_txt_ids), dim=1)
ids = torch.cat((img_ids, txt_ids), dim=1)
pe = self.pe_embedder(ids)
@@ -390,10 +349,7 @@ class HunyuanVideo(nn.Module):
attn_mask = None
blocks_replace = patches_replace.get("dit", {})
transformer_options["total_blocks"] = len(self.double_blocks)
transformer_options["block_type"] = "double"
for i, block in enumerate(self.double_blocks):
transformer_options["block_index"] = i
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
@@ -415,10 +371,7 @@ class HunyuanVideo(nn.Module):
img = torch.cat((img, txt), 1)
transformer_options["total_blocks"] = len(self.single_blocks)
transformer_options["block_type"] = "single"
for i, block in enumerate(self.single_blocks):
transformer_options["block_index"] = i
if ("single_block", i) in blocks_replace:
def block_wrap(args):
out = {}
@@ -477,14 +430,14 @@ class HunyuanVideo(nn.Module):
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(0, w_len - 1, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0)
return repeat(img_ids, "h w c -> b (h w) c", b=bs)
def forward(self, x, timestep, context, y=None, txt_byt5=None, clip_fea=None, guidance=None, attention_mask=None, guiding_frame_index=None, ref_latent=None, disable_time_r=False, control=None, transformer_options={}, **kwargs):
def forward(self, x, timestep, context, y=None, txt_byt5=None, guidance=None, attention_mask=None, guiding_frame_index=None, ref_latent=None, disable_time_r=False, control=None, transformer_options={}, **kwargs):
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
self._forward,
self,
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options)
).execute(x, timestep, context, y, txt_byt5, clip_fea, guidance, attention_mask, guiding_frame_index, ref_latent, disable_time_r, control, transformer_options, **kwargs)
).execute(x, timestep, context, y, txt_byt5, guidance, attention_mask, guiding_frame_index, ref_latent, disable_time_r, control, transformer_options, **kwargs)
def _forward(self, x, timestep, context, y=None, txt_byt5=None, clip_fea=None, guidance=None, attention_mask=None, guiding_frame_index=None, ref_latent=None, disable_time_r=False, control=None, transformer_options={}, **kwargs):
def _forward(self, x, timestep, context, y=None, txt_byt5=None, guidance=None, attention_mask=None, guiding_frame_index=None, ref_latent=None, disable_time_r=False, control=None, transformer_options={}, **kwargs):
bs = x.shape[0]
if len(self.patch_size) == 3:
img_ids = self.img_ids(x)
@@ -492,5 +445,5 @@ class HunyuanVideo(nn.Module):
else:
img_ids = self.img_ids_2d(x)
txt_ids = torch.zeros((bs, context.shape[1], 2), device=x.device, dtype=x.dtype)
out = self.forward_orig(x, img_ids, context, txt_ids, attention_mask, timestep, y, txt_byt5, clip_fea, guidance, guiding_frame_index, ref_latent, disable_time_r=disable_time_r, control=control, transformer_options=transformer_options)
out = self.forward_orig(x, img_ids, context, txt_ids, attention_mask, timestep, y, txt_byt5, guidance, guiding_frame_index, ref_latent, disable_time_r=disable_time_r, control=control, transformer_options=transformer_options)
return out

View File

@@ -1,122 +0,0 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from comfy.ldm.modules.diffusionmodules.model import ResnetBlock, VideoConv3d
from comfy.ldm.hunyuan_video.vae_refiner import RMS_norm
import comfy.model_management
import comfy.model_patcher
class SRResidualCausalBlock3D(nn.Module):
def __init__(self, channels: int):
super().__init__()
self.block = nn.Sequential(
VideoConv3d(channels, channels, kernel_size=3),
nn.SiLU(inplace=True),
VideoConv3d(channels, channels, kernel_size=3),
nn.SiLU(inplace=True),
VideoConv3d(channels, channels, kernel_size=3),
)
def forward(self, x: torch.Tensor) -> torch.Tensor:
return x + self.block(x)
class SRModel3DV2(nn.Module):
def __init__(
self,
in_channels: int,
out_channels: int,
hidden_channels: int = 64,
num_blocks: int = 6,
global_residual: bool = False,
):
super().__init__()
self.in_conv = VideoConv3d(in_channels, hidden_channels, kernel_size=3)
self.blocks = nn.ModuleList([SRResidualCausalBlock3D(hidden_channels) for _ in range(num_blocks)])
self.out_conv = VideoConv3d(hidden_channels, out_channels, kernel_size=3)
self.global_residual = bool(global_residual)
def forward(self, x: torch.Tensor) -> torch.Tensor:
residual = x
y = self.in_conv(x)
for blk in self.blocks:
y = blk(y)
y = self.out_conv(y)
if self.global_residual and (y.shape == residual.shape):
y = y + residual
return y
class Upsampler(nn.Module):
def __init__(
self,
z_channels: int,
out_channels: int,
block_out_channels: tuple[int, ...],
num_res_blocks: int = 2,
):
super().__init__()
self.num_res_blocks = num_res_blocks
self.block_out_channels = block_out_channels
self.z_channels = z_channels
ch = block_out_channels[0]
self.conv_in = VideoConv3d(z_channels, ch, kernel_size=3)
self.up = nn.ModuleList()
for i, tgt in enumerate(block_out_channels):
stage = nn.Module()
stage.block = nn.ModuleList([ResnetBlock(in_channels=ch if j == 0 else tgt,
out_channels=tgt,
temb_channels=0,
conv_shortcut=False,
conv_op=VideoConv3d, norm_op=RMS_norm)
for j in range(num_res_blocks + 1)])
ch = tgt
self.up.append(stage)
self.norm_out = RMS_norm(ch)
self.conv_out = VideoConv3d(ch, out_channels, kernel_size=3)
def forward(self, z):
"""
Args:
z: (B, C, T, H, W)
target_shape: (H, W)
"""
# z to block_in
repeats = self.block_out_channels[0] // (self.z_channels)
x = self.conv_in(z) + z.repeat_interleave(repeats=repeats, dim=1)
# upsampling
for stage in self.up:
for blk in stage.block:
x = blk(x)
out = self.conv_out(F.silu(self.norm_out(x)))
return out
UPSAMPLERS = {
"720p": SRModel3DV2,
"1080p": Upsampler,
}
class HunyuanVideo15SRModel():
def __init__(self, model_type, config):
self.load_device = comfy.model_management.vae_device()
offload_device = comfy.model_management.vae_offload_device()
self.dtype = comfy.model_management.vae_dtype(self.load_device)
self.model_class = UPSAMPLERS.get(model_type)
self.model = self.model_class(**config).eval()
self.patcher = comfy.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
def load_sd(self, sd):
return self.model.load_state_dict(sd, strict=True)
def get_sd(self):
return self.model.state_dict()
def resample_latent(self, latent):
comfy.model_management.load_model_gpu(self.patcher)
return self.model(latent.to(self.load_device))

View File

@@ -1,13 +1,11 @@
import torch
import torch.nn as nn
import torch.nn.functional as F
from comfy.ldm.modules.diffusionmodules.model import ResnetBlock, AttnBlock, CarriedConv3d, Normalize, conv_carry_causal_3d, torch_cat_if_needed
from comfy.ldm.modules.diffusionmodules.model import ResnetBlock, AttnBlock, VideoConv3d, Normalize
import comfy.ops
import comfy.ldm.models.autoencoder
import comfy.model_management
ops = comfy.ops.disable_weight_init
class RMS_norm(nn.Module):
def __init__(self, dim):
super().__init__()
@@ -16,10 +14,10 @@ class RMS_norm(nn.Module):
self.gamma = nn.Parameter(torch.empty(shape))
def forward(self, x):
return F.normalize(x, dim=1) * self.scale * comfy.model_management.cast_to(self.gamma, dtype=x.dtype, device=x.device)
return F.normalize(x, dim=1) * self.scale * self.gamma
class DnSmpl(nn.Module):
def __init__(self, ic, oc, tds, refiner_vae, op):
def __init__(self, ic, oc, tds=True, refiner_vae=True, op=VideoConv3d):
super().__init__()
fct = 2 * 2 * 2 if tds else 1 * 2 * 2
assert oc % fct == 0
@@ -29,12 +27,11 @@ class DnSmpl(nn.Module):
self.tds = tds
self.gs = fct * ic // oc
def forward(self, x, conv_carry_in=None, conv_carry_out=None):
def forward(self, x):
r1 = 2 if self.tds else 1
h = conv_carry_causal_3d([x], self.conv, conv_carry_in, conv_carry_out)
if self.tds and self.refiner_vae and conv_carry_in is None:
h = self.conv(x)
if self.tds and self.refiner_vae:
hf = h[:, :, :1, :, :]
b, c, f, ht, wd = hf.shape
hf = hf.reshape(b, c, f, ht // 2, 2, wd // 2, 2)
@@ -42,7 +39,14 @@ class DnSmpl(nn.Module):
hf = hf.reshape(b, 2 * 2 * c, f, ht // 2, wd // 2)
hf = torch.cat([hf, hf], dim=1)
h = h[:, :, 1:, :, :]
hn = h[:, :, 1:, :, :]
b, c, frms, ht, wd = hn.shape
nf = frms // r1
hn = hn.reshape(b, c, nf, r1, ht // 2, 2, wd // 2, 2)
hn = hn.permute(0, 3, 5, 7, 1, 2, 4, 6)
hn = hn.reshape(b, r1 * 2 * 2 * c, nf, ht // 2, wd // 2)
h = torch.cat([hf, hn], dim=2)
xf = x[:, :, :1, :, :]
b, ci, f, ht, wd = xf.shape
@@ -50,36 +54,38 @@ class DnSmpl(nn.Module):
xf = xf.permute(0, 4, 6, 1, 2, 3, 5)
xf = xf.reshape(b, 2 * 2 * ci, f, ht // 2, wd // 2)
B, C, T, H, W = xf.shape
xf = xf.view(B, hf.shape[1], self.gs // 2, T, H, W).mean(dim=2)
xf = xf.view(B, h.shape[1], self.gs // 2, T, H, W).mean(dim=2)
x = x[:, :, 1:, :, :]
xn = x[:, :, 1:, :, :]
b, ci, frms, ht, wd = xn.shape
nf = frms // r1
xn = xn.reshape(b, ci, nf, r1, ht // 2, 2, wd // 2, 2)
xn = xn.permute(0, 3, 5, 7, 1, 2, 4, 6)
xn = xn.reshape(b, r1 * 2 * 2 * ci, nf, ht // 2, wd // 2)
B, C, T, H, W = xn.shape
xn = xn.view(B, h.shape[1], self.gs, T, H, W).mean(dim=2)
sc = torch.cat([xf, xn], dim=2)
else:
b, c, frms, ht, wd = h.shape
if h.shape[2] == 0:
return hf + xf
nf = frms // r1
h = h.reshape(b, c, nf, r1, ht // 2, 2, wd // 2, 2)
h = h.permute(0, 3, 5, 7, 1, 2, 4, 6)
h = h.reshape(b, r1 * 2 * 2 * c, nf, ht // 2, wd // 2)
b, c, frms, ht, wd = h.shape
nf = frms // r1
h = h.reshape(b, c, nf, r1, ht // 2, 2, wd // 2, 2)
h = h.permute(0, 3, 5, 7, 1, 2, 4, 6)
h = h.reshape(b, r1 * 2 * 2 * c, nf, ht // 2, wd // 2)
b, ci, frms, ht, wd = x.shape
nf = frms // r1
sc = x.reshape(b, ci, nf, r1, ht // 2, 2, wd // 2, 2)
sc = sc.permute(0, 3, 5, 7, 1, 2, 4, 6)
sc = sc.reshape(b, r1 * 2 * 2 * ci, nf, ht // 2, wd // 2)
B, C, T, H, W = sc.shape
sc = sc.view(B, h.shape[1], self.gs, T, H, W).mean(dim=2)
b, ci, frms, ht, wd = x.shape
nf = frms // r1
x = x.reshape(b, ci, nf, r1, ht // 2, 2, wd // 2, 2)
x = x.permute(0, 3, 5, 7, 1, 2, 4, 6)
x = x.reshape(b, r1 * 2 * 2 * ci, nf, ht // 2, wd // 2)
B, C, T, H, W = x.shape
x = x.view(B, h.shape[1], self.gs, T, H, W).mean(dim=2)
if self.tds and self.refiner_vae and conv_carry_in is None:
h = torch.cat([hf, h], dim=2)
x = torch.cat([xf, x], dim=2)
return h + x
return h + sc
class UpSmpl(nn.Module):
def __init__(self, ic, oc, tus, refiner_vae, op):
def __init__(self, ic, oc, tus=True, refiner_vae=True, op=VideoConv3d):
super().__init__()
fct = 2 * 2 * 2 if tus else 1 * 2 * 2
self.conv = op(ic, oc * fct, kernel_size=3, stride=1, padding=1)
@@ -88,11 +94,11 @@ class UpSmpl(nn.Module):
self.tus = tus
self.rp = fct * oc // ic
def forward(self, x, conv_carry_in=None, conv_carry_out=None):
def forward(self, x):
r1 = 2 if self.tus else 1
h = conv_carry_causal_3d([x], self.conv, conv_carry_in, conv_carry_out)
h = self.conv(x)
if self.tus and self.refiner_vae and conv_carry_in is None:
if self.tus and self.refiner_vae:
hf = h[:, :, :1, :, :]
b, c, f, ht, wd = hf.shape
nc = c // (2 * 2)
@@ -101,7 +107,14 @@ class UpSmpl(nn.Module):
hf = hf.reshape(b, nc, f, ht * 2, wd * 2)
hf = hf[:, : hf.shape[1] // 2]
h = h[:, :, 1:, :, :]
hn = h[:, :, 1:, :, :]
b, c, frms, ht, wd = hn.shape
nc = c // (r1 * 2 * 2)
hn = hn.reshape(b, r1, 2, 2, nc, frms, ht, wd)
hn = hn.permute(0, 4, 5, 1, 6, 2, 7, 3)
hn = hn.reshape(b, nc, frms * r1, ht * 2, wd * 2)
h = torch.cat([hf, hn], dim=2)
xf = x[:, :, :1, :, :]
b, ci, f, ht, wd = xf.shape
@@ -112,26 +125,29 @@ class UpSmpl(nn.Module):
xf = xf.permute(0, 3, 4, 5, 1, 6, 2)
xf = xf.reshape(b, nc, f, ht * 2, wd * 2)
x = x[:, :, 1:, :, :]
xn = x[:, :, 1:, :, :]
xn = xn.repeat_interleave(repeats=self.rp, dim=1)
b, c, frms, ht, wd = xn.shape
nc = c // (r1 * 2 * 2)
xn = xn.reshape(b, r1, 2, 2, nc, frms, ht, wd)
xn = xn.permute(0, 4, 5, 1, 6, 2, 7, 3)
xn = xn.reshape(b, nc, frms * r1, ht * 2, wd * 2)
sc = torch.cat([xf, xn], dim=2)
else:
b, c, frms, ht, wd = h.shape
nc = c // (r1 * 2 * 2)
h = h.reshape(b, r1, 2, 2, nc, frms, ht, wd)
h = h.permute(0, 4, 5, 1, 6, 2, 7, 3)
h = h.reshape(b, nc, frms * r1, ht * 2, wd * 2)
b, c, frms, ht, wd = h.shape
nc = c // (r1 * 2 * 2)
h = h.reshape(b, r1, 2, 2, nc, frms, ht, wd)
h = h.permute(0, 4, 5, 1, 6, 2, 7, 3)
h = h.reshape(b, nc, frms * r1, ht * 2, wd * 2)
sc = x.repeat_interleave(repeats=self.rp, dim=1)
b, c, frms, ht, wd = sc.shape
nc = c // (r1 * 2 * 2)
sc = sc.reshape(b, r1, 2, 2, nc, frms, ht, wd)
sc = sc.permute(0, 4, 5, 1, 6, 2, 7, 3)
sc = sc.reshape(b, nc, frms * r1, ht * 2, wd * 2)
x = x.repeat_interleave(repeats=self.rp, dim=1)
b, c, frms, ht, wd = x.shape
nc = c // (r1 * 2 * 2)
x = x.reshape(b, r1, 2, 2, nc, frms, ht, wd)
x = x.permute(0, 4, 5, 1, 6, 2, 7, 3)
x = x.reshape(b, nc, frms * r1, ht * 2, wd * 2)
if self.tus and self.refiner_vae and conv_carry_in is None:
h = torch.cat([hf, h], dim=2)
x = torch.cat([xf, x], dim=2)
return h + x
return h + sc
class Encoder(nn.Module):
def __init__(self, in_channels, z_channels, block_out_channels, num_res_blocks,
@@ -144,7 +160,7 @@ class Encoder(nn.Module):
self.refiner_vae = refiner_vae
if self.refiner_vae:
conv_op = CarriedConv3d
conv_op = VideoConv3d
norm_op = RMS_norm
else:
conv_op = ops.Conv3d
@@ -172,9 +188,9 @@ class Encoder(nn.Module):
self.down.append(stage)
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=ch, out_channels=ch, conv_op=conv_op, norm_op=norm_op)
self.mid.block_1 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=conv_op, norm_op=norm_op)
self.mid.attn_1 = AttnBlock(ch, conv_op=ops.Conv3d, norm_op=norm_op)
self.mid.block_2 = ResnetBlock(in_channels=ch, out_channels=ch, conv_op=conv_op, norm_op=norm_op)
self.mid.block_2 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=conv_op, norm_op=norm_op)
self.norm_out = norm_op(ch)
self.conv_out = conv_op(ch, z_channels << 1, 3, 1, 1)
@@ -185,48 +201,31 @@ class Encoder(nn.Module):
if not self.refiner_vae and x.shape[2] == 1:
x = x.expand(-1, -1, self.ffactor_temporal, -1, -1)
if self.refiner_vae:
xl = [x[:, :, :1, :, :]]
if x.shape[2] > self.ffactor_temporal:
xl += torch.split(x[:, :, 1: 1 + ((x.shape[2] - 1) // self.ffactor_temporal) * self.ffactor_temporal, :, :], self.ffactor_temporal * 2, dim=2)
x = xl
else:
x = [x]
out = []
x = self.conv_in(x)
conv_carry_in = None
for stage in self.down:
for blk in stage.block:
x = blk(x)
if hasattr(stage, 'downsample'):
x = stage.downsample(x)
for i, x1 in enumerate(x):
conv_carry_out = []
if i == len(x) - 1:
conv_carry_out = None
x1 = [ x1 ]
x1 = conv_carry_causal_3d(x1, self.conv_in, conv_carry_in, conv_carry_out)
for stage in self.down:
for blk in stage.block:
x1 = blk(x1, None, conv_carry_in, conv_carry_out)
if hasattr(stage, 'downsample'):
x1 = stage.downsample(x1, conv_carry_in, conv_carry_out)
out.append(x1)
conv_carry_in = conv_carry_out
out = torch_cat_if_needed(out, dim=2)
x = self.mid.block_2(self.mid.attn_1(self.mid.block_1(out)))
del out
x = self.mid.block_2(self.mid.attn_1(self.mid.block_1(x)))
b, c, t, h, w = x.shape
grp = c // (self.z_channels << 1)
skip = x.view(b, c // grp, grp, t, h, w).mean(2)
out = conv_carry_causal_3d([F.silu(self.norm_out(x))], self.conv_out) + skip
out = self.conv_out(F.silu(self.norm_out(x))) + skip
if self.refiner_vae:
out = self.regul(out)[0]
out = torch.cat((out[:, :, :1], out), dim=2)
out = out.permute(0, 2, 1, 3, 4)
b, f_times_2, c, h, w = out.shape
out = out.reshape(b, f_times_2 // 2, 2 * c, h, w)
out = out.permute(0, 2, 1, 3, 4).contiguous()
return out
class Decoder(nn.Module):
@@ -240,7 +239,7 @@ class Decoder(nn.Module):
self.refiner_vae = refiner_vae
if self.refiner_vae:
conv_op = CarriedConv3d
conv_op = VideoConv3d
norm_op = RMS_norm
else:
conv_op = ops.Conv3d
@@ -250,9 +249,9 @@ class Decoder(nn.Module):
self.conv_in = conv_op(z_channels, ch, kernel_size=3, stride=1, padding=1)
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=ch, out_channels=ch, conv_op=conv_op, norm_op=norm_op)
self.mid.block_1 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=conv_op, norm_op=norm_op)
self.mid.attn_1 = AttnBlock(ch, conv_op=ops.Conv3d, norm_op=norm_op)
self.mid.block_2 = ResnetBlock(in_channels=ch, out_channels=ch, conv_op=conv_op, norm_op=norm_op)
self.mid.block_2 = ResnetBlock(in_channels=ch, out_channels=ch, temb_channels=0, conv_op=conv_op, norm_op=norm_op)
self.up = nn.ModuleList()
depth = (ffactor_spatial >> 1).bit_length()
@@ -276,38 +275,27 @@ class Decoder(nn.Module):
self.conv_out = conv_op(ch, out_channels, 3, stride=1, padding=1)
def forward(self, z):
x = conv_carry_causal_3d([z], self.conv_in) + z.repeat_interleave(self.block_out_channels[0] // self.z_channels, 1)
if self.refiner_vae:
z = z.permute(0, 2, 1, 3, 4)
b, f, c, h, w = z.shape
z = z.reshape(b, f, 2, c // 2, h, w)
z = z.permute(0, 1, 2, 3, 4, 5).reshape(b, f * 2, c // 2, h, w)
z = z.permute(0, 2, 1, 3, 4)
z = z[:, :, 1:]
x = self.conv_in(z) + z.repeat_interleave(self.block_out_channels[0] // self.z_channels, 1)
x = self.mid.block_2(self.mid.attn_1(self.mid.block_1(x)))
if self.refiner_vae:
x = torch.split(x, 2, dim=2)
else:
x = [ x ]
out = []
for stage in self.up:
for blk in stage.block:
x = blk(x)
if hasattr(stage, 'upsample'):
x = stage.upsample(x)
conv_carry_in = None
for i, x1 in enumerate(x):
conv_carry_out = []
if i == len(x) - 1:
conv_carry_out = None
for stage in self.up:
for blk in stage.block:
x1 = blk(x1, None, conv_carry_in, conv_carry_out)
if hasattr(stage, 'upsample'):
x1 = stage.upsample(x1, conv_carry_in, conv_carry_out)
x1 = [ F.silu(self.norm_out(x1)) ]
x1 = conv_carry_causal_3d(x1, self.conv_out, conv_carry_in, conv_carry_out)
out.append(x1)
conv_carry_in = conv_carry_out
del x
out = torch_cat_if_needed(out, dim=2)
out = self.conv_out(F.silu(self.norm_out(x)))
if not self.refiner_vae:
if z.shape[-3] == 1:
out = out[:, :, -1:]
return out

View File

@@ -1,413 +0,0 @@
import torch
from torch import nn
import math
import comfy.ldm.common_dit
from comfy.ldm.modules.attention import optimized_attention
from comfy.ldm.flux.math import apply_rope1
from comfy.ldm.flux.layers import EmbedND
def attention(q, k, v, heads, transformer_options={}):
return optimized_attention(
q.transpose(1, 2),
k.transpose(1, 2),
v.transpose(1, 2),
heads=heads,
skip_reshape=True,
transformer_options=transformer_options
)
def apply_scale_shift_norm(norm, x, scale, shift):
return torch.addcmul(shift, norm(x), scale + 1.0)
def apply_gate_sum(x, out, gate):
return torch.addcmul(x, gate, out)
def get_shift_scale_gate(params):
shift, scale, gate = torch.chunk(params, 3, dim=-1)
return tuple(x.unsqueeze(1) for x in (shift, scale, gate))
def get_freqs(dim, max_period=10000.0):
return torch.exp(-math.log(max_period) * torch.arange(start=0, end=dim, dtype=torch.float32) / dim)
class TimeEmbeddings(nn.Module):
def __init__(self, model_dim, time_dim, max_period=10000.0, operation_settings=None):
super().__init__()
assert model_dim % 2 == 0
self.model_dim = model_dim
self.max_period = max_period
self.register_buffer("freqs", get_freqs(model_dim // 2, max_period), persistent=False)
operations = operation_settings.get("operations")
self.in_layer = operations.Linear(model_dim, time_dim, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.activation = nn.SiLU()
self.out_layer = operations.Linear(time_dim, time_dim, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
def forward(self, timestep, dtype):
args = torch.outer(timestep, self.freqs.to(device=timestep.device))
time_embed = torch.cat([torch.cos(args), torch.sin(args)], dim=-1).to(dtype)
time_embed = self.out_layer(self.activation(self.in_layer(time_embed)))
return time_embed
class TextEmbeddings(nn.Module):
def __init__(self, text_dim, model_dim, operation_settings=None):
super().__init__()
operations = operation_settings.get("operations")
self.in_layer = operations.Linear(text_dim, model_dim, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.norm = operations.LayerNorm(model_dim, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
def forward(self, text_embed):
text_embed = self.in_layer(text_embed)
return self.norm(text_embed).type_as(text_embed)
class VisualEmbeddings(nn.Module):
def __init__(self, visual_dim, model_dim, patch_size, operation_settings=None):
super().__init__()
self.patch_size = patch_size
operations = operation_settings.get("operations")
self.in_layer = operations.Linear(visual_dim, model_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
def forward(self, x):
x = x.movedim(1, -1) # B C T H W -> B T H W C
B, T, H, W, dim = x.shape
pt, ph, pw = self.patch_size
x = x.view(
B,
T // pt, pt,
H // ph, ph,
W // pw, pw,
dim,
).permute(0, 1, 3, 5, 2, 4, 6, 7).flatten(4, 7)
return self.in_layer(x)
class Modulation(nn.Module):
def __init__(self, time_dim, model_dim, num_params, operation_settings=None):
super().__init__()
self.activation = nn.SiLU()
self.out_layer = operation_settings.get("operations").Linear(time_dim, num_params * model_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
def forward(self, x):
return self.out_layer(self.activation(x))
class SelfAttention(nn.Module):
def __init__(self, num_channels, head_dim, operation_settings=None):
super().__init__()
assert num_channels % head_dim == 0
self.num_heads = num_channels // head_dim
self.head_dim = head_dim
operations = operation_settings.get("operations")
self.to_query = operations.Linear(num_channels, num_channels, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.to_key = operations.Linear(num_channels, num_channels, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.to_value = operations.Linear(num_channels, num_channels, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.query_norm = operations.RMSNorm(head_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.key_norm = operations.RMSNorm(head_dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.out_layer = operations.Linear(num_channels, num_channels, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.num_chunks = 2
def _compute_qk(self, x, freqs, proj_fn, norm_fn):
result = proj_fn(x).view(*x.shape[:-1], self.num_heads, -1)
return apply_rope1(norm_fn(result), freqs)
def _forward(self, x, freqs, transformer_options={}):
q = self._compute_qk(x, freqs, self.to_query, self.query_norm)
k = self._compute_qk(x, freqs, self.to_key, self.key_norm)
v = self.to_value(x).view(*x.shape[:-1], self.num_heads, -1)
out = attention(q, k, v, self.num_heads, transformer_options=transformer_options)
return self.out_layer(out)
def _forward_chunked(self, x, freqs, transformer_options={}):
def process_chunks(proj_fn, norm_fn):
x_chunks = torch.chunk(x, self.num_chunks, dim=1)
freqs_chunks = torch.chunk(freqs, self.num_chunks, dim=1)
chunks = []
for x_chunk, freqs_chunk in zip(x_chunks, freqs_chunks):
chunks.append(self._compute_qk(x_chunk, freqs_chunk, proj_fn, norm_fn))
return torch.cat(chunks, dim=1)
q = process_chunks(self.to_query, self.query_norm)
k = process_chunks(self.to_key, self.key_norm)
v = self.to_value(x).view(*x.shape[:-1], self.num_heads, -1)
out = attention(q, k, v, self.num_heads, transformer_options=transformer_options)
return self.out_layer(out)
def forward(self, x, freqs, transformer_options={}):
if x.shape[1] > 8192:
return self._forward_chunked(x, freqs, transformer_options=transformer_options)
else:
return self._forward(x, freqs, transformer_options=transformer_options)
class CrossAttention(SelfAttention):
def get_qkv(self, x, context):
q = self.to_query(x).view(*x.shape[:-1], self.num_heads, -1)
k = self.to_key(context).view(*context.shape[:-1], self.num_heads, -1)
v = self.to_value(context).view(*context.shape[:-1], self.num_heads, -1)
return q, k, v
def forward(self, x, context, transformer_options={}):
q, k, v = self.get_qkv(x, context)
out = attention(self.query_norm(q), self.key_norm(k), v, self.num_heads, transformer_options=transformer_options)
return self.out_layer(out)
class FeedForward(nn.Module):
def __init__(self, dim, ff_dim, operation_settings=None):
super().__init__()
operations = operation_settings.get("operations")
self.in_layer = operations.Linear(dim, ff_dim, bias=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.activation = nn.GELU()
self.out_layer = operations.Linear(ff_dim, dim, bias=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.num_chunks = 4
def _forward(self, x):
return self.out_layer(self.activation(self.in_layer(x)))
def _forward_chunked(self, x):
chunks = torch.chunk(x, self.num_chunks, dim=1)
output_chunks = []
for chunk in chunks:
output_chunks.append(self._forward(chunk))
return torch.cat(output_chunks, dim=1)
def forward(self, x):
if x.shape[1] > 8192:
return self._forward_chunked(x)
else:
return self._forward(x)
class OutLayer(nn.Module):
def __init__(self, model_dim, time_dim, visual_dim, patch_size, operation_settings=None):
super().__init__()
self.patch_size = patch_size
self.modulation = Modulation(time_dim, model_dim, 2, operation_settings=operation_settings)
operations = operation_settings.get("operations")
self.norm = operations.LayerNorm(model_dim, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.out_layer = operations.Linear(model_dim, math.prod(patch_size) * visual_dim, bias=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
def forward(self, visual_embed, time_embed):
B, T, H, W, _ = visual_embed.shape
shift, scale = torch.chunk(self.modulation(time_embed), 2, dim=-1)
scale = scale[:, None, None, None, :]
shift = shift[:, None, None, None, :]
visual_embed = apply_scale_shift_norm(self.norm, visual_embed, scale, shift)
x = self.out_layer(visual_embed)
out_dim = x.shape[-1] // (self.patch_size[0] * self.patch_size[1] * self.patch_size[2])
x = x.view(
B, T, H, W,
out_dim,
self.patch_size[0], self.patch_size[1], self.patch_size[2]
)
return x.permute(0, 4, 1, 5, 2, 6, 3, 7).flatten(2, 3).flatten(3, 4).flatten(4, 5)
class TransformerEncoderBlock(nn.Module):
def __init__(self, model_dim, time_dim, ff_dim, head_dim, operation_settings=None):
super().__init__()
self.text_modulation = Modulation(time_dim, model_dim, 6, operation_settings=operation_settings)
operations = operation_settings.get("operations")
self.self_attention_norm = operations.LayerNorm(model_dim, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.self_attention = SelfAttention(model_dim, head_dim, operation_settings=operation_settings)
self.feed_forward_norm = operations.LayerNorm(model_dim, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.feed_forward = FeedForward(model_dim, ff_dim, operation_settings=operation_settings)
def forward(self, x, time_embed, freqs, transformer_options={}):
self_attn_params, ff_params = torch.chunk(self.text_modulation(time_embed), 2, dim=-1)
shift, scale, gate = get_shift_scale_gate(self_attn_params)
out = apply_scale_shift_norm(self.self_attention_norm, x, scale, shift)
out = self.self_attention(out, freqs, transformer_options=transformer_options)
x = apply_gate_sum(x, out, gate)
shift, scale, gate = get_shift_scale_gate(ff_params)
out = apply_scale_shift_norm(self.feed_forward_norm, x, scale, shift)
out = self.feed_forward(out)
x = apply_gate_sum(x, out, gate)
return x
class TransformerDecoderBlock(nn.Module):
def __init__(self, model_dim, time_dim, ff_dim, head_dim, operation_settings=None):
super().__init__()
self.visual_modulation = Modulation(time_dim, model_dim, 9, operation_settings=operation_settings)
operations = operation_settings.get("operations")
self.self_attention_norm = operations.LayerNorm(model_dim, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.self_attention = SelfAttention(model_dim, head_dim, operation_settings=operation_settings)
self.cross_attention_norm = operations.LayerNorm(model_dim, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.cross_attention = CrossAttention(model_dim, head_dim, operation_settings=operation_settings)
self.feed_forward_norm = operations.LayerNorm(model_dim, elementwise_affine=False, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.feed_forward = FeedForward(model_dim, ff_dim, operation_settings=operation_settings)
def forward(self, visual_embed, text_embed, time_embed, freqs, transformer_options={}):
self_attn_params, cross_attn_params, ff_params = torch.chunk(self.visual_modulation(time_embed), 3, dim=-1)
# self attention
shift, scale, gate = get_shift_scale_gate(self_attn_params)
visual_out = apply_scale_shift_norm(self.self_attention_norm, visual_embed, scale, shift)
visual_out = self.self_attention(visual_out, freqs, transformer_options=transformer_options)
visual_embed = apply_gate_sum(visual_embed, visual_out, gate)
# cross attention
shift, scale, gate = get_shift_scale_gate(cross_attn_params)
visual_out = apply_scale_shift_norm(self.cross_attention_norm, visual_embed, scale, shift)
visual_out = self.cross_attention(visual_out, text_embed, transformer_options=transformer_options)
visual_embed = apply_gate_sum(visual_embed, visual_out, gate)
# feed forward
shift, scale, gate = get_shift_scale_gate(ff_params)
visual_out = apply_scale_shift_norm(self.feed_forward_norm, visual_embed, scale, shift)
visual_out = self.feed_forward(visual_out)
visual_embed = apply_gate_sum(visual_embed, visual_out, gate)
return visual_embed
class Kandinsky5(nn.Module):
def __init__(
self,
in_visual_dim=16, out_visual_dim=16, in_text_dim=3584, in_text_dim2=768, time_dim=512,
model_dim=1792, ff_dim=7168, visual_embed_dim=132, patch_size=(1, 2, 2), num_text_blocks=2, num_visual_blocks=32,
axes_dims=(16, 24, 24), rope_scale_factor=(1.0, 2.0, 2.0),
dtype=None, device=None, operations=None, **kwargs
):
super().__init__()
head_dim = sum(axes_dims)
self.rope_scale_factor = rope_scale_factor
self.in_visual_dim = in_visual_dim
self.model_dim = model_dim
self.patch_size = patch_size
self.visual_embed_dim = visual_embed_dim
self.dtype = dtype
self.device = device
operation_settings = {"operations": operations, "device": device, "dtype": dtype}
self.time_embeddings = TimeEmbeddings(model_dim, time_dim, operation_settings=operation_settings)
self.text_embeddings = TextEmbeddings(in_text_dim, model_dim, operation_settings=operation_settings)
self.pooled_text_embeddings = TextEmbeddings(in_text_dim2, time_dim, operation_settings=operation_settings)
self.visual_embeddings = VisualEmbeddings(visual_embed_dim, model_dim, patch_size, operation_settings=operation_settings)
self.text_transformer_blocks = nn.ModuleList(
[TransformerEncoderBlock(model_dim, time_dim, ff_dim, head_dim, operation_settings=operation_settings) for _ in range(num_text_blocks)]
)
self.visual_transformer_blocks = nn.ModuleList(
[TransformerDecoderBlock(model_dim, time_dim, ff_dim, head_dim, operation_settings=operation_settings) for _ in range(num_visual_blocks)]
)
self.out_layer = OutLayer(model_dim, time_dim, out_visual_dim, patch_size, operation_settings=operation_settings)
self.rope_embedder_3d = EmbedND(dim=head_dim, theta=10000.0, axes_dim=axes_dims)
self.rope_embedder_1d = EmbedND(dim=head_dim, theta=10000.0, axes_dim=[head_dim])
def rope_encode_1d(self, seq_len, seq_start=0, steps=None, device=None, dtype=None, transformer_options={}):
steps = seq_len if steps is None else steps
seq_ids = torch.linspace(seq_start, seq_start + (seq_len - 1), steps=steps, device=device, dtype=dtype)
seq_ids = seq_ids.reshape(-1, 1).unsqueeze(0) # Shape: (1, steps, 1)
freqs = self.rope_embedder_1d(seq_ids).movedim(1, 2)
return freqs
def rope_encode_3d(self, t, h, w, t_start=0, steps_t=None, steps_h=None, steps_w=None, device=None, dtype=None, transformer_options={}):
patch_size = self.patch_size
t_len = ((t + (patch_size[0] // 2)) // patch_size[0])
h_len = ((h + (patch_size[1] // 2)) // patch_size[1])
w_len = ((w + (patch_size[2] // 2)) // patch_size[2])
if steps_t is None:
steps_t = t_len
if steps_h is None:
steps_h = h_len
if steps_w is None:
steps_w = w_len
h_start = 0
w_start = 0
rope_options = transformer_options.get("rope_options", None)
if rope_options is not None:
t_len = (t_len - 1.0) * rope_options.get("scale_t", 1.0) + 1.0
h_len = (h_len - 1.0) * rope_options.get("scale_y", 1.0) + 1.0
w_len = (w_len - 1.0) * rope_options.get("scale_x", 1.0) + 1.0
t_start += rope_options.get("shift_t", 0.0)
h_start += rope_options.get("shift_y", 0.0)
w_start += rope_options.get("shift_x", 0.0)
else:
rope_scale_factor = self.rope_scale_factor
if self.model_dim == 4096: # pro video model uses different rope scaling at higher resolutions
if h * w >= 14080:
rope_scale_factor = (1.0, 3.16, 3.16)
t_len = (t_len - 1.0) / rope_scale_factor[0] + 1.0
h_len = (h_len - 1.0) / rope_scale_factor[1] + 1.0
w_len = (w_len - 1.0) / rope_scale_factor[2] + 1.0
img_ids = torch.zeros((steps_t, steps_h, steps_w, 3), device=device, dtype=dtype)
img_ids[:, :, :, 0] = img_ids[:, :, :, 0] + torch.linspace(t_start, t_start + (t_len - 1), steps=steps_t, device=device, dtype=dtype).reshape(-1, 1, 1)
img_ids[:, :, :, 1] = img_ids[:, :, :, 1] + torch.linspace(h_start, h_start + (h_len - 1), steps=steps_h, device=device, dtype=dtype).reshape(1, -1, 1)
img_ids[:, :, :, 2] = img_ids[:, :, :, 2] + torch.linspace(w_start, w_start + (w_len - 1), steps=steps_w, device=device, dtype=dtype).reshape(1, 1, -1)
img_ids = img_ids.reshape(1, -1, img_ids.shape[-1])
freqs = self.rope_embedder_3d(img_ids).movedim(1, 2)
return freqs
def forward_orig(self, x, timestep, context, y, freqs, freqs_text, transformer_options={}, **kwargs):
patches_replace = transformer_options.get("patches_replace", {})
context = self.text_embeddings(context)
time_embed = self.time_embeddings(timestep, x.dtype) + self.pooled_text_embeddings(y)
for block in self.text_transformer_blocks:
context = block(context, time_embed, freqs_text, transformer_options=transformer_options)
visual_embed = self.visual_embeddings(x)
visual_shape = visual_embed.shape[:-1]
visual_embed = visual_embed.flatten(1, -2)
blocks_replace = patches_replace.get("dit", {})
transformer_options["total_blocks"] = len(self.visual_transformer_blocks)
transformer_options["block_type"] = "double"
for i, block in enumerate(self.visual_transformer_blocks):
transformer_options["block_index"] = i
if ("double_block", i) in blocks_replace:
def block_wrap(args):
return block(x=args["x"], context=args["context"], time_embed=args["time_embed"], freqs=args["freqs"], transformer_options=args.get("transformer_options"))
visual_embed = blocks_replace[("double_block", i)]({"x": visual_embed, "context": context, "time_embed": time_embed, "freqs": freqs, "transformer_options": transformer_options}, {"original_block": block_wrap})["x"]
else:
visual_embed = block(visual_embed, context, time_embed, freqs=freqs, transformer_options=transformer_options)
visual_embed = visual_embed.reshape(*visual_shape, -1)
return self.out_layer(visual_embed, time_embed)
def _forward(self, x, timestep, context, y, time_dim_replace=None, transformer_options={}, **kwargs):
original_dims = x.ndim
if original_dims == 4:
x = x.unsqueeze(2)
bs, c, t_len, h, w = x.shape
x = comfy.ldm.common_dit.pad_to_patch_size(x, self.patch_size)
if time_dim_replace is not None:
time_dim_replace = comfy.ldm.common_dit.pad_to_patch_size(time_dim_replace, self.patch_size)
x[:, :time_dim_replace.shape[1], :time_dim_replace.shape[2]] = time_dim_replace
freqs = self.rope_encode_3d(t_len, h, w, device=x.device, dtype=x.dtype, transformer_options=transformer_options)
freqs_text = self.rope_encode_1d(context.shape[1], device=x.device, dtype=x.dtype, transformer_options=transformer_options)
out = self.forward_orig(x, timestep, context, y, freqs, freqs_text, transformer_options=transformer_options, **kwargs)
if original_dims == 4:
out = out.squeeze(2)
return out
def forward(self, x, timestep, context, y, time_dim_replace=None, transformer_options={}, **kwargs):
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
self._forward,
self,
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options)
).execute(x, timestep, context, y, time_dim_replace=time_dim_replace, transformer_options=transformer_options, **kwargs)

View File

@@ -1,871 +0,0 @@
from typing import Tuple
import torch
import torch.nn as nn
from comfy.ldm.lightricks.model import (
CrossAttention,
FeedForward,
AdaLayerNormSingle,
PixArtAlphaTextProjection,
LTXVModel,
)
from comfy.ldm.lightricks.symmetric_patchifier import AudioPatchifier
import comfy.ldm.common_dit
class CompressedTimestep:
"""Store video timestep embeddings in compressed form using per-frame indexing."""
__slots__ = ('data', 'batch_size', 'num_frames', 'patches_per_frame', 'feature_dim')
def __init__(self, tensor: torch.Tensor, patches_per_frame: int):
"""
tensor: [batch_size, num_tokens, feature_dim] tensor where num_tokens = num_frames * patches_per_frame
patches_per_frame: Number of spatial patches per frame (height * width in latent space), or None to disable compression
"""
self.batch_size, num_tokens, self.feature_dim = tensor.shape
# Check if compression is valid (num_tokens must be divisible by patches_per_frame)
if patches_per_frame is not None and num_tokens % patches_per_frame == 0 and num_tokens >= patches_per_frame:
self.patches_per_frame = patches_per_frame
self.num_frames = num_tokens // patches_per_frame
# Reshape to [batch, frames, patches_per_frame, feature_dim] and store one value per frame
# All patches in a frame are identical, so we only keep the first one
reshaped = tensor.view(self.batch_size, self.num_frames, patches_per_frame, self.feature_dim)
self.data = reshaped[:, :, 0, :].contiguous() # [batch, frames, feature_dim]
else:
# Not divisible or too small - store directly without compression
self.patches_per_frame = 1
self.num_frames = num_tokens
self.data = tensor
def expand(self):
"""Expand back to original tensor."""
if self.patches_per_frame == 1:
return self.data
# [batch, frames, feature_dim] -> [batch, frames, patches_per_frame, feature_dim] -> [batch, tokens, feature_dim]
expanded = self.data.unsqueeze(2).expand(self.batch_size, self.num_frames, self.patches_per_frame, self.feature_dim)
return expanded.reshape(self.batch_size, -1, self.feature_dim)
def expand_for_computation(self, scale_shift_table: torch.Tensor, batch_size: int, indices: slice = slice(None, None)):
"""Compute ada values on compressed per-frame data, then expand spatially."""
num_ada_params = scale_shift_table.shape[0]
# No compression - compute directly
if self.patches_per_frame == 1:
num_tokens = self.data.shape[1]
dim_per_param = self.feature_dim // num_ada_params
reshaped = self.data.reshape(batch_size, num_tokens, num_ada_params, dim_per_param)[:, :, indices, :]
table_values = scale_shift_table[indices].unsqueeze(0).unsqueeze(0).to(device=self.data.device, dtype=self.data.dtype)
ada_values = (table_values + reshaped).unbind(dim=2)
return ada_values
# Compressed: compute on per-frame data then expand spatially
# Reshape: [batch, frames, feature_dim] -> [batch, frames, num_ada_params, dim_per_param]
frame_reshaped = self.data.reshape(batch_size, self.num_frames, num_ada_params, -1)[:, :, indices, :]
table_values = scale_shift_table[indices].unsqueeze(0).unsqueeze(0).to(
device=self.data.device, dtype=self.data.dtype
)
frame_ada = (table_values + frame_reshaped).unbind(dim=2)
# Expand each ada parameter spatially: [batch, frames, dim] -> [batch, frames, patches, dim] -> [batch, tokens, dim]
return tuple(
frame_val.unsqueeze(2).expand(batch_size, self.num_frames, self.patches_per_frame, -1)
.reshape(batch_size, -1, frame_val.shape[-1])
for frame_val in frame_ada
)
class BasicAVTransformerBlock(nn.Module):
def __init__(
self,
v_dim,
a_dim,
v_heads,
a_heads,
vd_head,
ad_head,
v_context_dim=None,
a_context_dim=None,
attn_precision=None,
dtype=None,
device=None,
operations=None,
):
super().__init__()
self.attn_precision = attn_precision
self.attn1 = CrossAttention(
query_dim=v_dim,
heads=v_heads,
dim_head=vd_head,
context_dim=None,
attn_precision=self.attn_precision,
dtype=dtype,
device=device,
operations=operations,
)
self.audio_attn1 = CrossAttention(
query_dim=a_dim,
heads=a_heads,
dim_head=ad_head,
context_dim=None,
attn_precision=self.attn_precision,
dtype=dtype,
device=device,
operations=operations,
)
self.attn2 = CrossAttention(
query_dim=v_dim,
context_dim=v_context_dim,
heads=v_heads,
dim_head=vd_head,
attn_precision=self.attn_precision,
dtype=dtype,
device=device,
operations=operations,
)
self.audio_attn2 = CrossAttention(
query_dim=a_dim,
context_dim=a_context_dim,
heads=a_heads,
dim_head=ad_head,
attn_precision=self.attn_precision,
dtype=dtype,
device=device,
operations=operations,
)
# Q: Video, K,V: Audio
self.audio_to_video_attn = CrossAttention(
query_dim=v_dim,
context_dim=a_dim,
heads=a_heads,
dim_head=ad_head,
attn_precision=self.attn_precision,
dtype=dtype,
device=device,
operations=operations,
)
# Q: Audio, K,V: Video
self.video_to_audio_attn = CrossAttention(
query_dim=a_dim,
context_dim=v_dim,
heads=a_heads,
dim_head=ad_head,
attn_precision=self.attn_precision,
dtype=dtype,
device=device,
operations=operations,
)
self.ff = FeedForward(
v_dim, dim_out=v_dim, glu=True, dtype=dtype, device=device, operations=operations
)
self.audio_ff = FeedForward(
a_dim, dim_out=a_dim, glu=True, dtype=dtype, device=device, operations=operations
)
self.scale_shift_table = nn.Parameter(torch.empty(6, v_dim, device=device, dtype=dtype))
self.audio_scale_shift_table = nn.Parameter(
torch.empty(6, a_dim, device=device, dtype=dtype)
)
self.scale_shift_table_a2v_ca_audio = nn.Parameter(
torch.empty(5, a_dim, device=device, dtype=dtype)
)
self.scale_shift_table_a2v_ca_video = nn.Parameter(
torch.empty(5, v_dim, device=device, dtype=dtype)
)
def get_ada_values(
self, scale_shift_table: torch.Tensor, batch_size: int, timestep: torch.Tensor, indices: slice = slice(None, None)
):
if isinstance(timestep, CompressedTimestep):
return timestep.expand_for_computation(scale_shift_table, batch_size, indices)
num_ada_params = scale_shift_table.shape[0]
ada_values = (
scale_shift_table[indices].unsqueeze(0).unsqueeze(0).to(device=timestep.device, dtype=timestep.dtype)
+ timestep.reshape(batch_size, timestep.shape[1], num_ada_params, -1)[:, :, indices, :]
).unbind(dim=2)
return ada_values
def get_av_ca_ada_values(
self,
scale_shift_table: torch.Tensor,
batch_size: int,
scale_shift_timestep: torch.Tensor,
gate_timestep: torch.Tensor,
num_scale_shift_values: int = 4,
):
scale_shift_ada_values = self.get_ada_values(
scale_shift_table[:num_scale_shift_values, :],
batch_size,
scale_shift_timestep,
)
gate_ada_values = self.get_ada_values(
scale_shift_table[num_scale_shift_values:, :],
batch_size,
gate_timestep,
)
return (*scale_shift_ada_values, *gate_ada_values)
def forward(
self, x: Tuple[torch.Tensor, torch.Tensor], v_context=None, a_context=None, attention_mask=None, v_timestep=None, a_timestep=None,
v_pe=None, a_pe=None, v_cross_pe=None, a_cross_pe=None, v_cross_scale_shift_timestep=None, a_cross_scale_shift_timestep=None,
v_cross_gate_timestep=None, a_cross_gate_timestep=None, transformer_options=None,
) -> Tuple[torch.Tensor, torch.Tensor]:
run_vx = transformer_options.get("run_vx", True)
run_ax = transformer_options.get("run_ax", True)
vx, ax = x
run_ax = run_ax and ax.numel() > 0
run_a2v = run_vx and transformer_options.get("a2v_cross_attn", True) and ax.numel() > 0
run_v2a = run_ax and transformer_options.get("v2a_cross_attn", True)
# video
if run_vx:
# video self-attention
vshift_msa, vscale_msa = (self.get_ada_values(self.scale_shift_table, vx.shape[0], v_timestep, slice(0, 2)))
norm_vx = comfy.ldm.common_dit.rms_norm(vx) * (1 + vscale_msa) + vshift_msa
del vshift_msa, vscale_msa
attn1_out = self.attn1(norm_vx, pe=v_pe, transformer_options=transformer_options)
del norm_vx
# video cross-attention
vgate_msa = self.get_ada_values(self.scale_shift_table, vx.shape[0], v_timestep, slice(2, 3))[0]
vx.addcmul_(attn1_out, vgate_msa)
del vgate_msa, attn1_out
vx.add_(self.attn2(comfy.ldm.common_dit.rms_norm(vx), context=v_context, mask=attention_mask, transformer_options=transformer_options))
# audio
if run_ax:
# audio self-attention
ashift_msa, ascale_msa = (self.get_ada_values(self.audio_scale_shift_table, ax.shape[0], a_timestep, slice(0, 2)))
norm_ax = comfy.ldm.common_dit.rms_norm(ax) * (1 + ascale_msa) + ashift_msa
del ashift_msa, ascale_msa
attn1_out = self.audio_attn1(norm_ax, pe=a_pe, transformer_options=transformer_options)
del norm_ax
# audio cross-attention
agate_msa = self.get_ada_values(self.audio_scale_shift_table, ax.shape[0], a_timestep, slice(2, 3))[0]
ax.addcmul_(attn1_out, agate_msa)
del agate_msa, attn1_out
ax.add_(self.audio_attn2(comfy.ldm.common_dit.rms_norm(ax), context=a_context, mask=attention_mask, transformer_options=transformer_options))
# video - audio cross attention.
if run_a2v or run_v2a:
vx_norm3 = comfy.ldm.common_dit.rms_norm(vx)
ax_norm3 = comfy.ldm.common_dit.rms_norm(ax)
# audio to video cross attention
if run_a2v:
scale_ca_audio_hidden_states_a2v, shift_ca_audio_hidden_states_a2v = self.get_ada_values(
self.scale_shift_table_a2v_ca_audio[:4, :], ax.shape[0], a_cross_scale_shift_timestep)[:2]
scale_ca_video_hidden_states_a2v_v, shift_ca_video_hidden_states_a2v_v = self.get_ada_values(
self.scale_shift_table_a2v_ca_video[:4, :], vx.shape[0], v_cross_scale_shift_timestep)[:2]
vx_scaled = vx_norm3 * (1 + scale_ca_video_hidden_states_a2v_v) + shift_ca_video_hidden_states_a2v_v
ax_scaled = ax_norm3 * (1 + scale_ca_audio_hidden_states_a2v) + shift_ca_audio_hidden_states_a2v
del scale_ca_video_hidden_states_a2v_v, shift_ca_video_hidden_states_a2v_v, scale_ca_audio_hidden_states_a2v, shift_ca_audio_hidden_states_a2v
a2v_out = self.audio_to_video_attn(vx_scaled, context=ax_scaled, pe=v_cross_pe, k_pe=a_cross_pe, transformer_options=transformer_options)
del vx_scaled, ax_scaled
gate_out_a2v = self.get_ada_values(self.scale_shift_table_a2v_ca_video[4:, :], vx.shape[0], v_cross_gate_timestep)[0]
vx.addcmul_(a2v_out, gate_out_a2v)
del gate_out_a2v, a2v_out
# video to audio cross attention
if run_v2a:
scale_ca_audio_hidden_states_v2a, shift_ca_audio_hidden_states_v2a = self.get_ada_values(
self.scale_shift_table_a2v_ca_audio[:4, :], ax.shape[0], a_cross_scale_shift_timestep)[2:4]
scale_ca_video_hidden_states_v2a, shift_ca_video_hidden_states_v2a = self.get_ada_values(
self.scale_shift_table_a2v_ca_video[:4, :], vx.shape[0], v_cross_scale_shift_timestep)[2:4]
ax_scaled = ax_norm3 * (1 + scale_ca_audio_hidden_states_v2a) + shift_ca_audio_hidden_states_v2a
vx_scaled = vx_norm3 * (1 + scale_ca_video_hidden_states_v2a) + shift_ca_video_hidden_states_v2a
del scale_ca_video_hidden_states_v2a, shift_ca_video_hidden_states_v2a, scale_ca_audio_hidden_states_v2a, shift_ca_audio_hidden_states_v2a
v2a_out = self.video_to_audio_attn(ax_scaled, context=vx_scaled, pe=a_cross_pe, k_pe=v_cross_pe, transformer_options=transformer_options)
del ax_scaled, vx_scaled
gate_out_v2a = self.get_ada_values(self.scale_shift_table_a2v_ca_audio[4:, :], ax.shape[0], a_cross_gate_timestep)[0]
ax.addcmul_(v2a_out, gate_out_v2a)
del gate_out_v2a, v2a_out
del vx_norm3, ax_norm3
# video feedforward
if run_vx:
vshift_mlp, vscale_mlp = self.get_ada_values(self.scale_shift_table, vx.shape[0], v_timestep, slice(3, 5))
vx_scaled = comfy.ldm.common_dit.rms_norm(vx) * (1 + vscale_mlp) + vshift_mlp
del vshift_mlp, vscale_mlp
ff_out = self.ff(vx_scaled)
del vx_scaled
vgate_mlp = self.get_ada_values(self.scale_shift_table, vx.shape[0], v_timestep, slice(5, 6))[0]
vx.addcmul_(ff_out, vgate_mlp)
del vgate_mlp, ff_out
# audio feedforward
if run_ax:
ashift_mlp, ascale_mlp = self.get_ada_values(self.audio_scale_shift_table, ax.shape[0], a_timestep, slice(3, 5))
ax_scaled = comfy.ldm.common_dit.rms_norm(ax) * (1 + ascale_mlp) + ashift_mlp
del ashift_mlp, ascale_mlp
ff_out = self.audio_ff(ax_scaled)
del ax_scaled
agate_mlp = self.get_ada_values(self.audio_scale_shift_table, ax.shape[0], a_timestep, slice(5, 6))[0]
ax.addcmul_(ff_out, agate_mlp)
del agate_mlp, ff_out
return vx, ax
class LTXAVModel(LTXVModel):
"""LTXAV model for audio-video generation."""
def __init__(
self,
in_channels=128,
audio_in_channels=128,
cross_attention_dim=4096,
audio_cross_attention_dim=2048,
attention_head_dim=128,
audio_attention_head_dim=64,
num_attention_heads=32,
audio_num_attention_heads=32,
caption_channels=3840,
num_layers=48,
positional_embedding_theta=10000.0,
positional_embedding_max_pos=[20, 2048, 2048],
audio_positional_embedding_max_pos=[20],
causal_temporal_positioning=False,
vae_scale_factors=(8, 32, 32),
use_middle_indices_grid=False,
timestep_scale_multiplier=1000.0,
av_ca_timestep_scale_multiplier=1.0,
dtype=None,
device=None,
operations=None,
**kwargs,
):
# Store audio-specific parameters
self.audio_in_channels = audio_in_channels
self.audio_cross_attention_dim = audio_cross_attention_dim
self.audio_attention_head_dim = audio_attention_head_dim
self.audio_num_attention_heads = audio_num_attention_heads
self.audio_positional_embedding_max_pos = audio_positional_embedding_max_pos
# Calculate audio dimensions
self.audio_inner_dim = audio_num_attention_heads * audio_attention_head_dim
self.audio_out_channels = audio_in_channels
# Audio-specific constants
self.num_audio_channels = 8
self.audio_frequency_bins = 16
self.av_ca_timestep_scale_multiplier = av_ca_timestep_scale_multiplier
super().__init__(
in_channels=in_channels,
cross_attention_dim=cross_attention_dim,
attention_head_dim=attention_head_dim,
num_attention_heads=num_attention_heads,
caption_channels=caption_channels,
num_layers=num_layers,
positional_embedding_theta=positional_embedding_theta,
positional_embedding_max_pos=positional_embedding_max_pos,
causal_temporal_positioning=causal_temporal_positioning,
vae_scale_factors=vae_scale_factors,
use_middle_indices_grid=use_middle_indices_grid,
timestep_scale_multiplier=timestep_scale_multiplier,
dtype=dtype,
device=device,
operations=operations,
**kwargs,
)
def _init_model_components(self, device, dtype, **kwargs):
"""Initialize LTXAV-specific components."""
# Audio-specific projections
self.audio_patchify_proj = self.operations.Linear(
self.audio_in_channels, self.audio_inner_dim, bias=True, dtype=dtype, device=device
)
# Audio-specific AdaLN
self.audio_adaln_single = AdaLayerNormSingle(
self.audio_inner_dim,
use_additional_conditions=False,
dtype=dtype,
device=device,
operations=self.operations,
)
num_scale_shift_values = 4
self.av_ca_video_scale_shift_adaln_single = AdaLayerNormSingle(
self.inner_dim,
use_additional_conditions=False,
embedding_coefficient=num_scale_shift_values,
dtype=dtype,
device=device,
operations=self.operations,
)
self.av_ca_a2v_gate_adaln_single = AdaLayerNormSingle(
self.inner_dim,
use_additional_conditions=False,
embedding_coefficient=1,
dtype=dtype,
device=device,
operations=self.operations,
)
self.av_ca_audio_scale_shift_adaln_single = AdaLayerNormSingle(
self.audio_inner_dim,
use_additional_conditions=False,
embedding_coefficient=num_scale_shift_values,
dtype=dtype,
device=device,
operations=self.operations,
)
self.av_ca_v2a_gate_adaln_single = AdaLayerNormSingle(
self.audio_inner_dim,
use_additional_conditions=False,
embedding_coefficient=1,
dtype=dtype,
device=device,
operations=self.operations,
)
# Audio caption projection
self.audio_caption_projection = PixArtAlphaTextProjection(
in_features=self.caption_channels,
hidden_size=self.audio_inner_dim,
dtype=dtype,
device=device,
operations=self.operations,
)
def _init_transformer_blocks(self, device, dtype, **kwargs):
"""Initialize transformer blocks for LTXAV."""
self.transformer_blocks = nn.ModuleList(
[
BasicAVTransformerBlock(
v_dim=self.inner_dim,
a_dim=self.audio_inner_dim,
v_heads=self.num_attention_heads,
a_heads=self.audio_num_attention_heads,
vd_head=self.attention_head_dim,
ad_head=self.audio_attention_head_dim,
v_context_dim=self.cross_attention_dim,
a_context_dim=self.audio_cross_attention_dim,
dtype=dtype,
device=device,
operations=self.operations,
)
for _ in range(self.num_layers)
]
)
def _init_output_components(self, device, dtype):
"""Initialize output components for LTXAV."""
# Video output components
super()._init_output_components(device, dtype)
# Audio output components
self.audio_scale_shift_table = nn.Parameter(
torch.empty(2, self.audio_inner_dim, dtype=dtype, device=device)
)
self.audio_norm_out = self.operations.LayerNorm(
self.audio_inner_dim, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device
)
self.audio_proj_out = self.operations.Linear(
self.audio_inner_dim, self.audio_out_channels, dtype=dtype, device=device
)
self.a_patchifier = AudioPatchifier(1, start_end=True)
def separate_audio_and_video_latents(self, x, audio_length):
"""Separate audio and video latents from combined input."""
# vx = x[:, : self.in_channels]
# ax = x[:, self.in_channels :]
#
# ax = ax.reshape(ax.shape[0], -1)
# ax = ax[:, : audio_length * self.num_audio_channels * self.audio_frequency_bins]
#
# ax = ax.reshape(
# ax.shape[0], self.num_audio_channels, audio_length, self.audio_frequency_bins
# )
vx = x[0]
ax = x[1] if len(x) > 1 else torch.zeros(
(vx.shape[0], self.num_audio_channels, 0, self.audio_frequency_bins),
device=vx.device, dtype=vx.dtype
)
return vx, ax
def recombine_audio_and_video_latents(self, vx, ax, target_shape=None):
if ax.numel() == 0:
return vx
else:
return [vx, ax]
"""Recombine audio and video latents for output."""
# if ax.device != vx.device or ax.dtype != vx.dtype:
# logging.warning("Audio and video latents are on different devices or dtypes.")
# ax = ax.to(device=vx.device, dtype=vx.dtype)
# logging.warning(f"Audio audio latent moved to device: {ax.device}, dtype: {ax.dtype}")
#
# ax = ax.reshape(ax.shape[0], -1)
# # pad to f x h x w of the video latents
# divisor = vx.shape[-1] * vx.shape[-2] * vx.shape[-3]
# if target_shape is None:
# repetitions = math.ceil(ax.shape[-1] / divisor)
# else:
# repetitions = target_shape[1] - vx.shape[1]
# padded_len = repetitions * divisor
# ax = F.pad(ax, (0, padded_len - ax.shape[-1]))
# ax = ax.reshape(ax.shape[0], -1, vx.shape[-3], vx.shape[-2], vx.shape[-1])
# return torch.cat([vx, ax], dim=1)
def _process_input(self, x, keyframe_idxs, denoise_mask, **kwargs):
"""Process input for LTXAV - separate audio and video, then patchify."""
audio_length = kwargs.get("audio_length", 0)
# Separate audio and video latents
vx, ax = self.separate_audio_and_video_latents(x, audio_length)
has_spatial_mask = False
if denoise_mask is not None:
# check if any frame has spatial variation (inpainting)
for frame_idx in range(denoise_mask.shape[2]):
frame_mask = denoise_mask[0, 0, frame_idx]
if frame_mask.numel() > 0 and frame_mask.min() != frame_mask.max():
has_spatial_mask = True
break
[vx, v_pixel_coords, additional_args] = super()._process_input(
vx, keyframe_idxs, denoise_mask, **kwargs
)
additional_args["has_spatial_mask"] = has_spatial_mask
ax, a_latent_coords = self.a_patchifier.patchify(ax)
ax = self.audio_patchify_proj(ax)
# additional_args.update({"av_orig_shape": list(x.shape)})
return [vx, ax], [v_pixel_coords, a_latent_coords], additional_args
def _prepare_timestep(self, timestep, batch_size, hidden_dtype, **kwargs):
"""Prepare timestep embeddings."""
# TODO: some code reuse is needed here.
grid_mask = kwargs.get("grid_mask", None)
if grid_mask is not None:
timestep = timestep[:, grid_mask]
timestep_scaled = timestep * self.timestep_scale_multiplier
v_timestep, v_embedded_timestep = self.adaln_single(
timestep_scaled.flatten(),
{"resolution": None, "aspect_ratio": None},
batch_size=batch_size,
hidden_dtype=hidden_dtype,
)
# Calculate patches_per_frame from orig_shape: [batch, channels, frames, height, width]
# Video tokens are arranged as (frames * height * width), so patches_per_frame = height * width
orig_shape = kwargs.get("orig_shape")
has_spatial_mask = kwargs.get("has_spatial_mask", None)
v_patches_per_frame = None
if not has_spatial_mask and orig_shape is not None and len(orig_shape) == 5:
# orig_shape[3] = height, orig_shape[4] = width (in latent space)
v_patches_per_frame = orig_shape[3] * orig_shape[4]
# Reshape to [batch_size, num_tokens, dim] and compress for storage
v_timestep = CompressedTimestep(v_timestep.view(batch_size, -1, v_timestep.shape[-1]), v_patches_per_frame)
v_embedded_timestep = CompressedTimestep(v_embedded_timestep.view(batch_size, -1, v_embedded_timestep.shape[-1]), v_patches_per_frame)
# Prepare audio timestep
a_timestep = kwargs.get("a_timestep")
if a_timestep is not None:
a_timestep_scaled = a_timestep * self.timestep_scale_multiplier
a_timestep_flat = a_timestep_scaled.flatten()
timestep_flat = timestep_scaled.flatten()
av_ca_factor = self.av_ca_timestep_scale_multiplier / self.timestep_scale_multiplier
# Cross-attention timesteps - compress these too
av_ca_audio_scale_shift_timestep, _ = self.av_ca_audio_scale_shift_adaln_single(
a_timestep_flat,
{"resolution": None, "aspect_ratio": None},
batch_size=batch_size,
hidden_dtype=hidden_dtype,
)
av_ca_video_scale_shift_timestep, _ = self.av_ca_video_scale_shift_adaln_single(
timestep_flat,
{"resolution": None, "aspect_ratio": None},
batch_size=batch_size,
hidden_dtype=hidden_dtype,
)
av_ca_a2v_gate_noise_timestep, _ = self.av_ca_a2v_gate_adaln_single(
timestep_flat * av_ca_factor,
{"resolution": None, "aspect_ratio": None},
batch_size=batch_size,
hidden_dtype=hidden_dtype,
)
av_ca_v2a_gate_noise_timestep, _ = self.av_ca_v2a_gate_adaln_single(
a_timestep_flat * av_ca_factor,
{"resolution": None, "aspect_ratio": None},
batch_size=batch_size,
hidden_dtype=hidden_dtype,
)
# Compress cross-attention timesteps (only video side, audio is too small to benefit)
# v_patches_per_frame is None for spatial masks, set for temporal masks or no mask
cross_av_timestep_ss = [
av_ca_audio_scale_shift_timestep.view(batch_size, -1, av_ca_audio_scale_shift_timestep.shape[-1]),
CompressedTimestep(av_ca_video_scale_shift_timestep.view(batch_size, -1, av_ca_video_scale_shift_timestep.shape[-1]), v_patches_per_frame), # video - compressed if possible
CompressedTimestep(av_ca_a2v_gate_noise_timestep.view(batch_size, -1, av_ca_a2v_gate_noise_timestep.shape[-1]), v_patches_per_frame), # video - compressed if possible
av_ca_v2a_gate_noise_timestep.view(batch_size, -1, av_ca_v2a_gate_noise_timestep.shape[-1]),
]
a_timestep, a_embedded_timestep = self.audio_adaln_single(
a_timestep_flat,
{"resolution": None, "aspect_ratio": None},
batch_size=batch_size,
hidden_dtype=hidden_dtype,
)
# Audio timesteps
a_timestep = a_timestep.view(batch_size, -1, a_timestep.shape[-1])
a_embedded_timestep = a_embedded_timestep.view(batch_size, -1, a_embedded_timestep.shape[-1])
else:
a_timestep = timestep_scaled
a_embedded_timestep = kwargs.get("embedded_timestep")
cross_av_timestep_ss = []
return [v_timestep, a_timestep, cross_av_timestep_ss], [
v_embedded_timestep,
a_embedded_timestep,
]
def _prepare_context(self, context, batch_size, x, attention_mask=None):
vx = x[0]
ax = x[1]
v_context, a_context = torch.split(
context, int(context.shape[-1] / 2), len(context.shape) - 1
)
v_context, attention_mask = super()._prepare_context(
v_context, batch_size, vx, attention_mask
)
if self.audio_caption_projection is not None:
a_context = self.audio_caption_projection(a_context)
a_context = a_context.view(batch_size, -1, ax.shape[-1])
return [v_context, a_context], attention_mask
def _prepare_positional_embeddings(self, pixel_coords, frame_rate, x_dtype):
v_pixel_coords = pixel_coords[0]
v_pe = super()._prepare_positional_embeddings(v_pixel_coords, frame_rate, x_dtype)
a_latent_coords = pixel_coords[1]
a_pe = self._precompute_freqs_cis(
a_latent_coords,
dim=self.audio_inner_dim,
out_dtype=x_dtype,
max_pos=self.audio_positional_embedding_max_pos,
use_middle_indices_grid=self.use_middle_indices_grid,
num_attention_heads=self.audio_num_attention_heads,
)
# calculate positional embeddings for the middle of the token duration, to use in av cross attention layers.
max_pos = max(
self.positional_embedding_max_pos[0], self.audio_positional_embedding_max_pos[0]
)
v_pixel_coords = v_pixel_coords.to(torch.float32)
v_pixel_coords[:, 0] = v_pixel_coords[:, 0] * (1.0 / frame_rate)
av_cross_video_freq_cis = self._precompute_freqs_cis(
v_pixel_coords[:, 0:1, :],
dim=self.audio_cross_attention_dim,
out_dtype=x_dtype,
max_pos=[max_pos],
use_middle_indices_grid=True,
num_attention_heads=self.audio_num_attention_heads,
)
av_cross_audio_freq_cis = self._precompute_freqs_cis(
a_latent_coords[:, 0:1, :],
dim=self.audio_cross_attention_dim,
out_dtype=x_dtype,
max_pos=[max_pos],
use_middle_indices_grid=True,
num_attention_heads=self.audio_num_attention_heads,
)
return [(v_pe, av_cross_video_freq_cis), (a_pe, av_cross_audio_freq_cis)]
def _process_transformer_blocks(
self, x, context, attention_mask, timestep, pe, transformer_options={}, **kwargs
):
vx = x[0]
ax = x[1]
v_context = context[0]
a_context = context[1]
v_timestep = timestep[0]
a_timestep = timestep[1]
v_pe, av_cross_video_freq_cis = pe[0]
a_pe, av_cross_audio_freq_cis = pe[1]
(
av_ca_audio_scale_shift_timestep,
av_ca_video_scale_shift_timestep,
av_ca_a2v_gate_noise_timestep,
av_ca_v2a_gate_noise_timestep,
) = timestep[2]
"""Process transformer blocks for LTXAV."""
patches_replace = transformer_options.get("patches_replace", {})
blocks_replace = patches_replace.get("dit", {})
# Process transformer blocks
for i, block in enumerate(self.transformer_blocks):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = block(
args["img"],
v_context=args["v_context"],
a_context=args["a_context"],
attention_mask=args["attention_mask"],
v_timestep=args["v_timestep"],
a_timestep=args["a_timestep"],
v_pe=args["v_pe"],
a_pe=args["a_pe"],
v_cross_pe=args["v_cross_pe"],
a_cross_pe=args["a_cross_pe"],
v_cross_scale_shift_timestep=args["v_cross_scale_shift_timestep"],
a_cross_scale_shift_timestep=args["a_cross_scale_shift_timestep"],
v_cross_gate_timestep=args["v_cross_gate_timestep"],
a_cross_gate_timestep=args["a_cross_gate_timestep"],
transformer_options=args["transformer_options"],
)
return out
out = blocks_replace[("double_block", i)](
{
"img": (vx, ax),
"v_context": v_context,
"a_context": a_context,
"attention_mask": attention_mask,
"v_timestep": v_timestep,
"a_timestep": a_timestep,
"v_pe": v_pe,
"a_pe": a_pe,
"v_cross_pe": av_cross_video_freq_cis,
"a_cross_pe": av_cross_audio_freq_cis,
"v_cross_scale_shift_timestep": av_ca_video_scale_shift_timestep,
"a_cross_scale_shift_timestep": av_ca_audio_scale_shift_timestep,
"v_cross_gate_timestep": av_ca_a2v_gate_noise_timestep,
"a_cross_gate_timestep": av_ca_v2a_gate_noise_timestep,
"transformer_options": transformer_options,
},
{"original_block": block_wrap},
)
vx, ax = out["img"]
else:
vx, ax = block(
(vx, ax),
v_context=v_context,
a_context=a_context,
attention_mask=attention_mask,
v_timestep=v_timestep,
a_timestep=a_timestep,
v_pe=v_pe,
a_pe=a_pe,
v_cross_pe=av_cross_video_freq_cis,
a_cross_pe=av_cross_audio_freq_cis,
v_cross_scale_shift_timestep=av_ca_video_scale_shift_timestep,
a_cross_scale_shift_timestep=av_ca_audio_scale_shift_timestep,
v_cross_gate_timestep=av_ca_a2v_gate_noise_timestep,
a_cross_gate_timestep=av_ca_v2a_gate_noise_timestep,
transformer_options=transformer_options,
)
return [vx, ax]
def _process_output(self, x, embedded_timestep, keyframe_idxs, **kwargs):
vx = x[0]
ax = x[1]
v_embedded_timestep = embedded_timestep[0]
a_embedded_timestep = embedded_timestep[1]
# Expand compressed video timestep if needed
if isinstance(v_embedded_timestep, CompressedTimestep):
v_embedded_timestep = v_embedded_timestep.expand()
vx = super()._process_output(vx, v_embedded_timestep, keyframe_idxs, **kwargs)
# Process audio output
a_scale_shift_values = (
self.audio_scale_shift_table[None, None].to(device=a_embedded_timestep.device, dtype=a_embedded_timestep.dtype)
+ a_embedded_timestep[:, :, None]
)
a_shift, a_scale = a_scale_shift_values[:, :, 0], a_scale_shift_values[:, :, 1]
ax = self.audio_norm_out(ax)
ax = ax * (1 + a_scale) + a_shift
ax = self.audio_proj_out(ax)
# Unpatchify audio
ax = self.a_patchifier.unpatchify(
ax, channels=self.num_audio_channels, freq=self.audio_frequency_bins
)
# Recombine audio and video
original_shape = kwargs.get("av_orig_shape")
return self.recombine_audio_and_video_latents(vx, ax, original_shape)
def forward(
self,
x,
timestep,
context,
attention_mask=None,
frame_rate=25,
transformer_options={},
keyframe_idxs=None,
**kwargs,
):
"""
Forward pass for LTXAV model.
Args:
x: Combined audio-video input tensor
timestep: Tuple of (video_timestep, audio_timestep) or single timestep
context: Context tensor (e.g., text embeddings)
attention_mask: Attention mask tensor
frame_rate: Frame rate for temporal processing
transformer_options: Additional options for transformer blocks
keyframe_idxs: Keyframe indices for temporal processing
**kwargs: Additional keyword arguments including audio_length
Returns:
Combined audio-video output tensor
"""
# Handle timestep format
if isinstance(timestep, (tuple, list)) and len(timestep) == 2:
v_timestep, a_timestep = timestep
kwargs["a_timestep"] = a_timestep
timestep = v_timestep
else:
kwargs["a_timestep"] = timestep
# Call parent forward method
return super().forward(
x,
timestep,
context,
attention_mask,
frame_rate,
transformer_options,
keyframe_idxs,
**kwargs,
)

View File

@@ -1,305 +0,0 @@
import math
from typing import Optional
import comfy.ldm.common_dit
import torch
from comfy.ldm.lightricks.model import (
CrossAttention,
FeedForward,
generate_freq_grid_np,
interleaved_freqs_cis,
split_freqs_cis,
)
from torch import nn
class BasicTransformerBlock1D(nn.Module):
r"""
A basic Transformer block.
Parameters:
dim (`int`): The number of channels in the input and output.
num_attention_heads (`int`): The number of heads to use for multi-head attention.
attention_head_dim (`int`): The number of channels in each head.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to be used in feed-forward.
attention_bias (:
obj: `bool`, *optional*, defaults to `False`): Configure if the attentions should contain a bias parameter.
upcast_attention (`bool`, *optional*):
Whether to upcast the attention computation to float32. This is useful for mixed precision training.
norm_elementwise_affine (`bool`, *optional*, defaults to `True`):
Whether to use learnable elementwise affine parameters for normalization.
standardization_norm (`str`, *optional*, defaults to `"layer_norm"`): The type of pre-normalization to use. Can be `"layer_norm"` or `"rms_norm"`.
norm_eps (`float`, *optional*, defaults to 1e-5): Epsilon value for normalization layers.
qk_norm (`str`, *optional*, defaults to None):
Set to 'layer_norm' or `rms_norm` to perform query and key normalization.
final_dropout (`bool` *optional*, defaults to False):
Whether to apply a final dropout after the last feed-forward layer.
ff_inner_dim (`int`, *optional*): Dimension of the inner feed-forward layer. If not provided, defaults to `dim * 4`.
ff_bias (`bool`, *optional*, defaults to `True`): Whether to use bias in the feed-forward layer.
attention_out_bias (`bool`, *optional*, defaults to `True`): Whether to use bias in the attention output layer.
use_rope (`bool`, *optional*, defaults to `False`): Whether to use Rotary Position Embeddings (RoPE).
ffn_dim_mult (`int`, *optional*, defaults to 4): Multiplier for the inner dimension of the feed-forward layer.
"""
def __init__(
self,
dim,
n_heads,
d_head,
context_dim=None,
attn_precision=None,
dtype=None,
device=None,
operations=None,
):
super().__init__()
# Define 3 blocks. Each block has its own normalization layer.
# 1. Self-Attn
self.attn1 = CrossAttention(
query_dim=dim,
heads=n_heads,
dim_head=d_head,
context_dim=None,
dtype=dtype,
device=device,
operations=operations,
)
# 3. Feed-forward
self.ff = FeedForward(
dim,
dim_out=dim,
glu=True,
dtype=dtype,
device=device,
operations=operations,
)
def forward(self, hidden_states, attention_mask=None, pe=None) -> torch.FloatTensor:
# Notice that normalization is always applied before the real computation in the following blocks.
# 1. Normalization Before Self-Attention
norm_hidden_states = comfy.ldm.common_dit.rms_norm(hidden_states)
norm_hidden_states = norm_hidden_states.squeeze(1)
# 2. Self-Attention
attn_output = self.attn1(norm_hidden_states, mask=attention_mask, pe=pe)
hidden_states = attn_output + hidden_states
if hidden_states.ndim == 4:
hidden_states = hidden_states.squeeze(1)
# 3. Normalization before Feed-Forward
norm_hidden_states = comfy.ldm.common_dit.rms_norm(hidden_states)
# 4. Feed-forward
ff_output = self.ff(norm_hidden_states)
hidden_states = ff_output + hidden_states
if hidden_states.ndim == 4:
hidden_states = hidden_states.squeeze(1)
return hidden_states
class Embeddings1DConnector(nn.Module):
_supports_gradient_checkpointing = True
def __init__(
self,
in_channels=128,
cross_attention_dim=2048,
attention_head_dim=128,
num_attention_heads=30,
num_layers=2,
positional_embedding_theta=10000.0,
positional_embedding_max_pos=[4096],
causal_temporal_positioning=False,
num_learnable_registers: Optional[int] = 128,
dtype=None,
device=None,
operations=None,
split_rope=False,
double_precision_rope=False,
**kwargs,
):
super().__init__()
self.dtype = dtype
self.out_channels = in_channels
self.num_attention_heads = num_attention_heads
self.inner_dim = num_attention_heads * attention_head_dim
self.causal_temporal_positioning = causal_temporal_positioning
self.positional_embedding_theta = positional_embedding_theta
self.positional_embedding_max_pos = positional_embedding_max_pos
self.split_rope = split_rope
self.double_precision_rope = double_precision_rope
self.transformer_1d_blocks = nn.ModuleList(
[
BasicTransformerBlock1D(
self.inner_dim,
num_attention_heads,
attention_head_dim,
context_dim=cross_attention_dim,
dtype=dtype,
device=device,
operations=operations,
)
for _ in range(num_layers)
]
)
inner_dim = num_attention_heads * attention_head_dim
self.num_learnable_registers = num_learnable_registers
if self.num_learnable_registers:
self.learnable_registers = nn.Parameter(
torch.rand(
self.num_learnable_registers, inner_dim, dtype=dtype, device=device
)
* 2.0
- 1.0
)
def get_fractional_positions(self, indices_grid):
fractional_positions = torch.stack(
[
indices_grid[:, i] / self.positional_embedding_max_pos[i]
for i in range(1)
],
dim=-1,
)
return fractional_positions
def precompute_freqs(self, indices_grid, spacing):
source_dtype = indices_grid.dtype
dtype = (
torch.float32
if source_dtype in (torch.bfloat16, torch.float16)
else source_dtype
)
fractional_positions = self.get_fractional_positions(indices_grid)
indices = (
generate_freq_grid_np(
self.positional_embedding_theta,
indices_grid.shape[1],
self.inner_dim,
)
if self.double_precision_rope
else self.generate_freq_grid(spacing, dtype, fractional_positions.device)
).to(device=fractional_positions.device)
if spacing == "exp_2":
freqs = (
(indices * fractional_positions.unsqueeze(-1))
.transpose(-1, -2)
.flatten(2)
)
else:
freqs = (
(indices * (fractional_positions.unsqueeze(-1) * 2 - 1))
.transpose(-1, -2)
.flatten(2)
)
return freqs
def generate_freq_grid(self, spacing, dtype, device):
dim = self.inner_dim
theta = self.positional_embedding_theta
n_pos_dims = 1
n_elem = 2 * n_pos_dims # 2 for cos and sin e.g. x 3 = 6
start = 1
end = theta
if spacing == "exp":
indices = theta ** (torch.arange(0, dim, n_elem, device="cpu", dtype=torch.float32) / (dim - n_elem))
indices = indices.to(dtype=dtype, device=device)
elif spacing == "exp_2":
indices = 1.0 / theta ** (torch.arange(0, dim, n_elem, device=device) / dim)
indices = indices.to(dtype=dtype)
elif spacing == "linear":
indices = torch.linspace(
start, end, dim // n_elem, device=device, dtype=dtype
)
elif spacing == "sqrt":
indices = torch.linspace(
start**2, end**2, dim // n_elem, device=device, dtype=dtype
).sqrt()
indices = indices * math.pi / 2
return indices
def precompute_freqs_cis(self, indices_grid, spacing="exp"):
dim = self.inner_dim
n_elem = 2 # 2 because of cos and sin
freqs = self.precompute_freqs(indices_grid, spacing)
if self.split_rope:
expected_freqs = dim // 2
current_freqs = freqs.shape[-1]
pad_size = expected_freqs - current_freqs
cos_freq, sin_freq = split_freqs_cis(
freqs, pad_size, self.num_attention_heads
)
else:
cos_freq, sin_freq = interleaved_freqs_cis(freqs, dim % n_elem)
return cos_freq.to(self.dtype), sin_freq.to(self.dtype), self.split_rope
def forward(
self,
hidden_states: torch.Tensor,
attention_mask: Optional[torch.Tensor] = None,
):
"""
The [`Transformer2DModel`] forward method.
Args:
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
Input `hidden_states`.
indices_grid (`torch.LongTensor` of shape `(batch size, 3, num latent pixels)`):
attention_mask ( `torch.Tensor`, *optional*):
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
negative values to the attention scores corresponding to "discard" tokens.
Returns:
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
`tuple` where the first element is the sample tensor.
"""
# 1. Input
if self.num_learnable_registers:
num_registers_duplications = math.ceil(
max(1024, hidden_states.shape[1]) / self.num_learnable_registers
)
learnable_registers = torch.tile(
self.learnable_registers.to(hidden_states), (num_registers_duplications, 1)
)
hidden_states = torch.cat((hidden_states, learnable_registers[hidden_states.shape[1]:].unsqueeze(0).repeat(hidden_states.shape[0], 1, 1)), dim=1)
if attention_mask is not None:
attention_mask = torch.zeros([1, 1, 1, hidden_states.shape[1]], dtype=attention_mask.dtype, device=attention_mask.device)
indices_grid = torch.arange(
hidden_states.shape[1], dtype=torch.float32, device=hidden_states.device
)
indices_grid = indices_grid[None, None, :]
freqs_cis = self.precompute_freqs_cis(indices_grid)
# 2. Blocks
for block_idx, block in enumerate(self.transformer_1d_blocks):
hidden_states = block(
hidden_states, attention_mask=attention_mask, pe=freqs_cis
)
# 3. Output
# if self.output_scale is not None:
# hidden_states = hidden_states / self.output_scale
hidden_states = comfy.ldm.common_dit.rms_norm(hidden_states)
return hidden_states, attention_mask

View File

@@ -1,292 +0,0 @@
from typing import Optional, Tuple
import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
def _rational_for_scale(scale: float) -> Tuple[int, int]:
mapping = {0.75: (3, 4), 1.5: (3, 2), 2.0: (2, 1), 4.0: (4, 1)}
if float(scale) not in mapping:
raise ValueError(
f"Unsupported spatial_scale {scale}. Choose from {list(mapping.keys())}"
)
return mapping[float(scale)]
class PixelShuffleND(nn.Module):
def __init__(self, dims, upscale_factors=(2, 2, 2)):
super().__init__()
assert dims in [1, 2, 3], "dims must be 1, 2, or 3"
self.dims = dims
self.upscale_factors = upscale_factors
def forward(self, x):
if self.dims == 3:
return rearrange(
x,
"b (c p1 p2 p3) d h w -> b c (d p1) (h p2) (w p3)",
p1=self.upscale_factors[0],
p2=self.upscale_factors[1],
p3=self.upscale_factors[2],
)
elif self.dims == 2:
return rearrange(
x,
"b (c p1 p2) h w -> b c (h p1) (w p2)",
p1=self.upscale_factors[0],
p2=self.upscale_factors[1],
)
elif self.dims == 1:
return rearrange(
x,
"b (c p1) f h w -> b c (f p1) h w",
p1=self.upscale_factors[0],
)
class BlurDownsample(nn.Module):
"""
Anti-aliased spatial downsampling by integer stride using a fixed separable binomial kernel.
Applies only on H,W. Works for dims=2 or dims=3 (per-frame).
"""
def __init__(self, dims: int, stride: int):
super().__init__()
assert dims in (2, 3)
assert stride >= 1 and isinstance(stride, int)
self.dims = dims
self.stride = stride
# 5x5 separable binomial kernel [1,4,6,4,1] (outer product), normalized
k = torch.tensor([1.0, 4.0, 6.0, 4.0, 1.0])
k2d = k[:, None] @ k[None, :]
k2d = (k2d / k2d.sum()).float() # shape (5,5)
self.register_buffer("kernel", k2d[None, None, :, :]) # (1,1,5,5)
def forward(self, x: torch.Tensor) -> torch.Tensor:
if self.stride == 1:
return x
def _apply_2d(x2d: torch.Tensor) -> torch.Tensor:
# x2d: (B, C, H, W)
B, C, H, W = x2d.shape
weight = self.kernel.expand(C, 1, 5, 5) # depthwise
x2d = F.conv2d(
x2d, weight=weight, bias=None, stride=self.stride, padding=2, groups=C
)
return x2d
if self.dims == 2:
return _apply_2d(x)
else:
# dims == 3: apply per-frame on H,W
b, c, f, h, w = x.shape
x = rearrange(x, "b c f h w -> (b f) c h w")
x = _apply_2d(x)
h2, w2 = x.shape[-2:]
x = rearrange(x, "(b f) c h w -> b c f h w", b=b, f=f, h=h2, w=w2)
return x
class SpatialRationalResampler(nn.Module):
"""
Fully-learned rational spatial scaling: up by 'num' via PixelShuffle, then anti-aliased
downsample by 'den' using fixed blur + stride. Operates on H,W only.
For dims==3, work per-frame for spatial scaling (temporal axis untouched).
"""
def __init__(self, mid_channels: int, scale: float):
super().__init__()
self.scale = float(scale)
self.num, self.den = _rational_for_scale(self.scale)
self.conv = nn.Conv2d(
mid_channels, (self.num**2) * mid_channels, kernel_size=3, padding=1
)
self.pixel_shuffle = PixelShuffleND(2, upscale_factors=(self.num, self.num))
self.blur_down = BlurDownsample(dims=2, stride=self.den)
def forward(self, x: torch.Tensor) -> torch.Tensor:
b, c, f, h, w = x.shape
x = rearrange(x, "b c f h w -> (b f) c h w")
x = self.conv(x)
x = self.pixel_shuffle(x)
x = self.blur_down(x)
x = rearrange(x, "(b f) c h w -> b c f h w", b=b, f=f)
return x
class ResBlock(nn.Module):
def __init__(
self, channels: int, mid_channels: Optional[int] = None, dims: int = 3
):
super().__init__()
if mid_channels is None:
mid_channels = channels
Conv = nn.Conv2d if dims == 2 else nn.Conv3d
self.conv1 = Conv(channels, mid_channels, kernel_size=3, padding=1)
self.norm1 = nn.GroupNorm(32, mid_channels)
self.conv2 = Conv(mid_channels, channels, kernel_size=3, padding=1)
self.norm2 = nn.GroupNorm(32, channels)
self.activation = nn.SiLU()
def forward(self, x: torch.Tensor) -> torch.Tensor:
residual = x
x = self.conv1(x)
x = self.norm1(x)
x = self.activation(x)
x = self.conv2(x)
x = self.norm2(x)
x = self.activation(x + residual)
return x
class LatentUpsampler(nn.Module):
"""
Model to spatially upsample VAE latents.
Args:
in_channels (`int`): Number of channels in the input latent
mid_channels (`int`): Number of channels in the middle layers
num_blocks_per_stage (`int`): Number of ResBlocks to use in each stage (pre/post upsampling)
dims (`int`): Number of dimensions for convolutions (2 or 3)
spatial_upsample (`bool`): Whether to spatially upsample the latent
temporal_upsample (`bool`): Whether to temporally upsample the latent
"""
def __init__(
self,
in_channels: int = 128,
mid_channels: int = 512,
num_blocks_per_stage: int = 4,
dims: int = 3,
spatial_upsample: bool = True,
temporal_upsample: bool = False,
spatial_scale: float = 2.0,
rational_resampler: bool = False,
):
super().__init__()
self.in_channels = in_channels
self.mid_channels = mid_channels
self.num_blocks_per_stage = num_blocks_per_stage
self.dims = dims
self.spatial_upsample = spatial_upsample
self.temporal_upsample = temporal_upsample
self.spatial_scale = float(spatial_scale)
self.rational_resampler = rational_resampler
Conv = nn.Conv2d if dims == 2 else nn.Conv3d
self.initial_conv = Conv(in_channels, mid_channels, kernel_size=3, padding=1)
self.initial_norm = nn.GroupNorm(32, mid_channels)
self.initial_activation = nn.SiLU()
self.res_blocks = nn.ModuleList(
[ResBlock(mid_channels, dims=dims) for _ in range(num_blocks_per_stage)]
)
if spatial_upsample and temporal_upsample:
self.upsampler = nn.Sequential(
nn.Conv3d(mid_channels, 8 * mid_channels, kernel_size=3, padding=1),
PixelShuffleND(3),
)
elif spatial_upsample:
if rational_resampler:
self.upsampler = SpatialRationalResampler(
mid_channels=mid_channels, scale=self.spatial_scale
)
else:
self.upsampler = nn.Sequential(
nn.Conv2d(mid_channels, 4 * mid_channels, kernel_size=3, padding=1),
PixelShuffleND(2),
)
elif temporal_upsample:
self.upsampler = nn.Sequential(
nn.Conv3d(mid_channels, 2 * mid_channels, kernel_size=3, padding=1),
PixelShuffleND(1),
)
else:
raise ValueError(
"Either spatial_upsample or temporal_upsample must be True"
)
self.post_upsample_res_blocks = nn.ModuleList(
[ResBlock(mid_channels, dims=dims) for _ in range(num_blocks_per_stage)]
)
self.final_conv = Conv(mid_channels, in_channels, kernel_size=3, padding=1)
def forward(self, latent: torch.Tensor) -> torch.Tensor:
b, c, f, h, w = latent.shape
if self.dims == 2:
x = rearrange(latent, "b c f h w -> (b f) c h w")
x = self.initial_conv(x)
x = self.initial_norm(x)
x = self.initial_activation(x)
for block in self.res_blocks:
x = block(x)
x = self.upsampler(x)
for block in self.post_upsample_res_blocks:
x = block(x)
x = self.final_conv(x)
x = rearrange(x, "(b f) c h w -> b c f h w", b=b, f=f)
else:
x = self.initial_conv(latent)
x = self.initial_norm(x)
x = self.initial_activation(x)
for block in self.res_blocks:
x = block(x)
if self.temporal_upsample:
x = self.upsampler(x)
x = x[:, :, 1:, :, :]
else:
if isinstance(self.upsampler, SpatialRationalResampler):
x = self.upsampler(x)
else:
x = rearrange(x, "b c f h w -> (b f) c h w")
x = self.upsampler(x)
x = rearrange(x, "(b f) c h w -> b c f h w", b=b, f=f)
for block in self.post_upsample_res_blocks:
x = block(x)
x = self.final_conv(x)
return x
@classmethod
def from_config(cls, config):
return cls(
in_channels=config.get("in_channels", 4),
mid_channels=config.get("mid_channels", 128),
num_blocks_per_stage=config.get("num_blocks_per_stage", 4),
dims=config.get("dims", 2),
spatial_upsample=config.get("spatial_upsample", True),
temporal_upsample=config.get("temporal_upsample", False),
spatial_scale=config.get("spatial_scale", 2.0),
rational_resampler=config.get("rational_resampler", False),
)
def config(self):
return {
"_class_name": "LatentUpsampler",
"in_channels": self.in_channels,
"mid_channels": self.mid_channels,
"num_blocks_per_stage": self.num_blocks_per_stage,
"dims": self.dims,
"spatial_upsample": self.spatial_upsample,
"temporal_upsample": self.temporal_upsample,
"spatial_scale": self.spatial_scale,
"rational_resampler": self.rational_resampler,
}

View File

@@ -1,47 +1,14 @@
from abc import ABC, abstractmethod
from enum import Enum
import functools
import math
from typing import Dict, Optional, Tuple
from einops import rearrange
import numpy as np
import torch
from torch import nn
import comfy.patcher_extension
import comfy.ldm.modules.attention
import comfy.ldm.common_dit
from einops import rearrange
import math
from typing import Dict, Optional, Tuple
from .symmetric_patchifier import SymmetricPatchifier, latent_to_pixel_coords
def _log_base(x, base):
return np.log(x) / np.log(base)
class LTXRopeType(str, Enum):
INTERLEAVED = "interleaved"
SPLIT = "split"
KEY = "rope_type"
@classmethod
def from_dict(cls, kwargs, default=None):
if default is None:
default = cls.INTERLEAVED
return cls(kwargs.get(cls.KEY, default))
class LTXFrequenciesPrecision(str, Enum):
FLOAT32 = "float32"
FLOAT64 = "float64"
KEY = "frequencies_precision"
@classmethod
def from_dict(cls, kwargs, default=None):
if default is None:
default = cls.FLOAT32
return cls(kwargs.get(cls.KEY, default))
def get_timestep_embedding(
timesteps: torch.Tensor,
@@ -73,7 +40,9 @@ def get_timestep_embedding(
assert len(timesteps.shape) == 1, "Timesteps should be a 1d-array"
half_dim = embedding_dim // 2
exponent = -math.log(max_period) * torch.arange(start=0, end=half_dim, dtype=torch.float32, device=timesteps.device)
exponent = -math.log(max_period) * torch.arange(
start=0, end=half_dim, dtype=torch.float32, device=timesteps.device
)
exponent = exponent / (half_dim - downscale_freq_shift)
emb = torch.exp(exponent)
@@ -105,9 +74,7 @@ class TimestepEmbedding(nn.Module):
post_act_fn: Optional[str] = None,
cond_proj_dim=None,
sample_proj_bias=True,
dtype=None,
device=None,
operations=None,
dtype=None, device=None, operations=None,
):
super().__init__()
@@ -124,9 +91,7 @@ class TimestepEmbedding(nn.Module):
time_embed_dim_out = out_dim
else:
time_embed_dim_out = time_embed_dim
self.linear_2 = operations.Linear(
time_embed_dim, time_embed_dim_out, sample_proj_bias, dtype=dtype, device=device
)
self.linear_2 = operations.Linear(time_embed_dim, time_embed_dim_out, sample_proj_bias, dtype=dtype, device=device)
if post_act_fn is None:
self.post_act = None
@@ -175,22 +140,12 @@ class PixArtAlphaCombinedTimestepSizeEmbeddings(nn.Module):
https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L164C9-L168C29
"""
def __init__(
self,
embedding_dim,
size_emb_dim,
use_additional_conditions: bool = False,
dtype=None,
device=None,
operations=None,
):
def __init__(self, embedding_dim, size_emb_dim, use_additional_conditions: bool = False, dtype=None, device=None, operations=None):
super().__init__()
self.outdim = size_emb_dim
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0)
self.timestep_embedder = TimestepEmbedding(
in_channels=256, time_embed_dim=embedding_dim, dtype=dtype, device=device, operations=operations
)
self.timestep_embedder = TimestepEmbedding(in_channels=256, time_embed_dim=embedding_dim, dtype=dtype, device=device, operations=operations)
def forward(self, timestep, resolution, aspect_ratio, batch_size, hidden_dtype):
timesteps_proj = self.time_proj(timestep)
@@ -209,22 +164,15 @@ class AdaLayerNormSingle(nn.Module):
use_additional_conditions (`bool`): To use additional conditions for normalization or not.
"""
def __init__(
self, embedding_dim: int, embedding_coefficient: int = 6, use_additional_conditions: bool = False, dtype=None, device=None, operations=None
):
def __init__(self, embedding_dim: int, use_additional_conditions: bool = False, dtype=None, device=None, operations=None):
super().__init__()
self.emb = PixArtAlphaCombinedTimestepSizeEmbeddings(
embedding_dim,
size_emb_dim=embedding_dim // 3,
use_additional_conditions=use_additional_conditions,
dtype=dtype,
device=device,
operations=operations,
embedding_dim, size_emb_dim=embedding_dim // 3, use_additional_conditions=use_additional_conditions, dtype=dtype, device=device, operations=operations
)
self.silu = nn.SiLU()
self.linear = operations.Linear(embedding_dim, embedding_coefficient * embedding_dim, bias=True, dtype=dtype, device=device)
self.linear = operations.Linear(embedding_dim, 6 * embedding_dim, bias=True, dtype=dtype, device=device)
def forward(
self,
@@ -238,7 +186,6 @@ class AdaLayerNormSingle(nn.Module):
embedded_timestep = self.emb(timestep, **added_cond_kwargs, batch_size=batch_size, hidden_dtype=hidden_dtype)
return self.linear(self.silu(embedded_timestep)), embedded_timestep
class PixArtAlphaTextProjection(nn.Module):
"""
Projects caption embeddings. Also handles dropout for classifier-free guidance.
@@ -246,24 +193,18 @@ class PixArtAlphaTextProjection(nn.Module):
Adapted from https://github.com/PixArt-alpha/PixArt-alpha/blob/master/diffusion/model/nets/PixArt_blocks.py
"""
def __init__(
self, in_features, hidden_size, out_features=None, act_fn="gelu_tanh", dtype=None, device=None, operations=None
):
def __init__(self, in_features, hidden_size, out_features=None, act_fn="gelu_tanh", dtype=None, device=None, operations=None):
super().__init__()
if out_features is None:
out_features = hidden_size
self.linear_1 = operations.Linear(
in_features=in_features, out_features=hidden_size, bias=True, dtype=dtype, device=device
)
self.linear_1 = operations.Linear(in_features=in_features, out_features=hidden_size, bias=True, dtype=dtype, device=device)
if act_fn == "gelu_tanh":
self.act_1 = nn.GELU(approximate="tanh")
elif act_fn == "silu":
self.act_1 = nn.SiLU()
else:
raise ValueError(f"Unknown activation function: {act_fn}")
self.linear_2 = operations.Linear(
in_features=hidden_size, out_features=out_features, bias=True, dtype=dtype, device=device
)
self.linear_2 = operations.Linear(in_features=hidden_size, out_features=out_features, bias=True, dtype=dtype, device=device)
def forward(self, caption):
hidden_states = self.linear_1(caption)
@@ -282,28 +223,25 @@ class GELU_approx(nn.Module):
class FeedForward(nn.Module):
def __init__(self, dim, dim_out, mult=4, glu=False, dropout=0.0, dtype=None, device=None, operations=None):
def __init__(self, dim, dim_out, mult=4, glu=False, dropout=0., dtype=None, device=None, operations=None):
super().__init__()
inner_dim = int(dim * mult)
project_in = GELU_approx(dim, inner_dim, dtype=dtype, device=device, operations=operations)
self.net = nn.Sequential(
project_in, nn.Dropout(dropout), operations.Linear(inner_dim, dim_out, dtype=dtype, device=device)
project_in,
nn.Dropout(dropout),
operations.Linear(inner_dim, dim_out, dtype=dtype, device=device)
)
def forward(self, x):
return self.net(x)
def apply_rotary_emb(input_tensor, freqs_cis):
cos_freqs, sin_freqs = freqs_cis[0], freqs_cis[1]
split_pe = freqs_cis[2] if len(freqs_cis) > 2 else False
return (
apply_split_rotary_emb(input_tensor, cos_freqs, sin_freqs)
if split_pe else
apply_interleaved_rotary_emb(input_tensor, cos_freqs, sin_freqs)
)
def apply_interleaved_rotary_emb(input_tensor, cos_freqs, sin_freqs): # TODO: remove duplicate funcs and pick the best/fastest one
def apply_rotary_emb(input_tensor, freqs_cis): #TODO: remove duplicate funcs and pick the best/fastest one
cos_freqs = freqs_cis[0]
sin_freqs = freqs_cis[1]
t_dup = rearrange(input_tensor, "... (d r) -> ... d r", r=2)
t1, t2 = t_dup.unbind(dim=-1)
t_dup = torch.stack((-t2, t1), dim=-1)
@@ -313,37 +251,9 @@ def apply_interleaved_rotary_emb(input_tensor, cos_freqs, sin_freqs): # TODO: r
return out
def apply_split_rotary_emb(input_tensor, cos, sin):
needs_reshape = False
if input_tensor.ndim != 4 and cos.ndim == 4:
B, H, T, _ = cos.shape
input_tensor = input_tensor.reshape(B, T, H, -1).swapaxes(1, 2)
needs_reshape = True
split_input = rearrange(input_tensor, "... (d r) -> ... d r", d=2)
first_half_input = split_input[..., :1, :]
second_half_input = split_input[..., 1:, :]
output = split_input * cos.unsqueeze(-2)
first_half_output = output[..., :1, :]
second_half_output = output[..., 1:, :]
first_half_output.addcmul_(-sin.unsqueeze(-2), second_half_input)
second_half_output.addcmul_(sin.unsqueeze(-2), first_half_input)
output = rearrange(output, "... d r -> ... (d r)")
return output.swapaxes(1, 2).reshape(B, T, -1) if needs_reshape else output
class CrossAttention(nn.Module):
def __init__(
self,
query_dim,
context_dim=None,
heads=8,
dim_head=64,
dropout=0.0,
attn_precision=None,
dtype=None,
device=None,
operations=None,
):
def __init__(self, query_dim, context_dim=None, heads=8, dim_head=64, dropout=0., attn_precision=None, dtype=None, device=None, operations=None):
super().__init__()
inner_dim = dim_head * heads
context_dim = query_dim if context_dim is None else context_dim
@@ -359,11 +269,9 @@ class CrossAttention(nn.Module):
self.to_k = operations.Linear(context_dim, inner_dim, bias=True, dtype=dtype, device=device)
self.to_v = operations.Linear(context_dim, inner_dim, bias=True, dtype=dtype, device=device)
self.to_out = nn.Sequential(
operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout)
)
self.to_out = nn.Sequential(operations.Linear(inner_dim, query_dim, dtype=dtype, device=device), nn.Dropout(dropout))
def forward(self, x, context=None, mask=None, pe=None, k_pe=None, transformer_options={}):
def forward(self, x, context=None, mask=None, pe=None, transformer_options={}):
q = self.to_q(x)
context = x if context is None else context
k = self.to_k(context)
@@ -374,7 +282,7 @@ class CrossAttention(nn.Module):
if pe is not None:
q = apply_rotary_emb(q, pe)
k = apply_rotary_emb(k, pe if k_pe is None else k_pe)
k = apply_rotary_emb(k, pe)
if mask is None:
out = comfy.ldm.modules.attention.optimized_attention(q, k, v, self.heads, attn_precision=self.attn_precision, transformer_options=transformer_options)
@@ -384,495 +292,146 @@ class CrossAttention(nn.Module):
class BasicTransformerBlock(nn.Module):
def __init__(
self, dim, n_heads, d_head, context_dim=None, attn_precision=None, dtype=None, device=None, operations=None
):
def __init__(self, dim, n_heads, d_head, context_dim=None, attn_precision=None, dtype=None, device=None, operations=None):
super().__init__()
self.attn_precision = attn_precision
self.attn1 = CrossAttention(
query_dim=dim,
heads=n_heads,
dim_head=d_head,
context_dim=None,
attn_precision=self.attn_precision,
dtype=dtype,
device=device,
operations=operations,
)
self.attn1 = CrossAttention(query_dim=dim, heads=n_heads, dim_head=d_head, context_dim=None, attn_precision=self.attn_precision, dtype=dtype, device=device, operations=operations)
self.ff = FeedForward(dim, dim_out=dim, glu=True, dtype=dtype, device=device, operations=operations)
self.attn2 = CrossAttention(
query_dim=dim,
context_dim=context_dim,
heads=n_heads,
dim_head=d_head,
attn_precision=self.attn_precision,
dtype=dtype,
device=device,
operations=operations,
)
self.attn2 = CrossAttention(query_dim=dim, context_dim=context_dim, heads=n_heads, dim_head=d_head, attn_precision=self.attn_precision, dtype=dtype, device=device, operations=operations)
self.scale_shift_table = nn.Parameter(torch.empty(6, dim, device=device, dtype=dtype))
def forward(self, x, context=None, attention_mask=None, timestep=None, pe=None, transformer_options={}):
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (self.scale_shift_table[None, None].to(device=x.device, dtype=x.dtype) + timestep.reshape(x.shape[0], timestep.shape[1], self.scale_shift_table.shape[0], -1)).unbind(dim=2)
attn1_input = comfy.ldm.common_dit.rms_norm(x)
attn1_input = torch.addcmul(attn1_input, attn1_input, scale_msa).add_(shift_msa)
attn1_input = self.attn1(attn1_input, pe=pe, transformer_options=transformer_options)
x.addcmul_(attn1_input, gate_msa)
del attn1_input
x += self.attn1(comfy.ldm.common_dit.rms_norm(x) * (1 + scale_msa) + shift_msa, pe=pe, transformer_options=transformer_options) * gate_msa
x += self.attn2(x, context=context, mask=attention_mask, transformer_options=transformer_options)
y = comfy.ldm.common_dit.rms_norm(x)
y = torch.addcmul(y, y, scale_mlp).add_(shift_mlp)
x.addcmul_(self.ff(y), gate_mlp)
y = comfy.ldm.common_dit.rms_norm(x) * (1 + scale_mlp) + shift_mlp
x += self.ff(y) * gate_mlp
return x
def get_fractional_positions(indices_grid, max_pos):
n_pos_dims = indices_grid.shape[1]
assert n_pos_dims == len(max_pos), f'Number of position dimensions ({n_pos_dims}) must match max_pos length ({len(max_pos)})'
fractional_positions = torch.stack(
[indices_grid[:, i] / max_pos[i] for i in range(n_pos_dims)],
axis=-1,
[
indices_grid[:, i] / max_pos[i]
for i in range(3)
],
dim=-1,
)
return fractional_positions
@functools.lru_cache(maxsize=5)
def generate_freq_grid_np(positional_embedding_theta, positional_embedding_max_pos_count, inner_dim, _ = None):
theta = positional_embedding_theta
def precompute_freqs_cis(indices_grid, dim, out_dtype, theta=10000.0, max_pos=[20, 2048, 2048]):
dtype = torch.float32 #self.dtype
fractional_positions = get_fractional_positions(indices_grid, max_pos)
start = 1
end = theta
n_elem = 2 * positional_embedding_max_pos_count
pow_indices = np.power(
theta,
np.linspace(
_log_base(start, theta),
_log_base(end, theta),
inner_dim // n_elem,
dtype=np.float64,
),
)
return torch.tensor(pow_indices * math.pi / 2, dtype=torch.float32)
def generate_freq_grid_pytorch(positional_embedding_theta, positional_embedding_max_pos_count, inner_dim, device):
theta = positional_embedding_theta
start = 1
end = theta
n_elem = 2 * positional_embedding_max_pos_count
device = fractional_positions.device
indices = theta ** (
torch.linspace(
math.log(start, theta),
math.log(end, theta),
inner_dim // n_elem,
dim // 6,
device=device,
dtype=torch.float32,
dtype=dtype,
)
)
indices = indices.to(dtype=torch.float32)
indices = indices.to(dtype=dtype)
indices = indices * math.pi / 2
return indices
def generate_freqs(indices, indices_grid, max_pos, use_middle_indices_grid):
if use_middle_indices_grid:
assert(len(indices_grid.shape) == 4 and indices_grid.shape[-1] ==2)
indices_grid_start, indices_grid_end = indices_grid[..., 0], indices_grid[..., 1]
indices_grid = (indices_grid_start + indices_grid_end) / 2.0
elif len(indices_grid.shape) == 4:
indices_grid = indices_grid[..., 0]
# Get fractional positions and compute frequency indices
fractional_positions = get_fractional_positions(indices_grid, max_pos)
indices = indices.to(device=fractional_positions.device)
freqs = (
(indices * (fractional_positions.unsqueeze(-1) * 2 - 1))
.transpose(-1, -2)
.flatten(2)
)
return freqs
def interleaved_freqs_cis(freqs, pad_size):
cos_freq = freqs.cos().repeat_interleave(2, dim=-1)
sin_freq = freqs.sin().repeat_interleave(2, dim=-1)
if pad_size != 0:
cos_padding = torch.ones_like(cos_freq[:, :, : pad_size])
sin_padding = torch.zeros_like(cos_freq[:, :, : pad_size])
if dim % 6 != 0:
cos_padding = torch.ones_like(cos_freq[:, :, : dim % 6])
sin_padding = torch.zeros_like(cos_freq[:, :, : dim % 6])
cos_freq = torch.cat([cos_padding, cos_freq], dim=-1)
sin_freq = torch.cat([sin_padding, sin_freq], dim=-1)
return cos_freq, sin_freq
return cos_freq.to(out_dtype), sin_freq.to(out_dtype)
def split_freqs_cis(freqs, pad_size, num_attention_heads):
cos_freq = freqs.cos()
sin_freq = freqs.sin()
if pad_size != 0:
cos_padding = torch.ones_like(cos_freq[:, :, :pad_size])
sin_padding = torch.zeros_like(sin_freq[:, :, :pad_size])
class LTXVModel(torch.nn.Module):
def __init__(self,
in_channels=128,
cross_attention_dim=2048,
attention_head_dim=64,
num_attention_heads=32,
cos_freq = torch.concatenate([cos_padding, cos_freq], axis=-1)
sin_freq = torch.concatenate([sin_padding, sin_freq], axis=-1)
caption_channels=4096,
num_layers=28,
# Reshape freqs to be compatible with multi-head attention
B , T, half_HD = cos_freq.shape
cos_freq = cos_freq.reshape(B, T, num_attention_heads, half_HD // num_attention_heads)
sin_freq = sin_freq.reshape(B, T, num_attention_heads, half_HD // num_attention_heads)
cos_freq = torch.swapaxes(cos_freq, 1, 2) # (B,H,T,D//2)
sin_freq = torch.swapaxes(sin_freq, 1, 2) # (B,H,T,D//2)
return cos_freq, sin_freq
class LTXBaseModel(torch.nn.Module, ABC):
"""
Abstract base class for LTX models (Lightricks Transformer models).
This class defines the common interface and shared functionality for all LTX models,
including LTXV (video) and LTXAV (audio-video) variants.
"""
def __init__(
self,
in_channels: int,
cross_attention_dim: int,
attention_head_dim: int,
num_attention_heads: int,
caption_channels: int,
num_layers: int,
positional_embedding_theta: float = 10000.0,
positional_embedding_max_pos: list = [20, 2048, 2048],
causal_temporal_positioning: bool = False,
vae_scale_factors: tuple = (8, 32, 32),
use_middle_indices_grid=False,
timestep_scale_multiplier = 1000.0,
dtype=None,
device=None,
operations=None,
**kwargs,
):
positional_embedding_theta=10000.0,
positional_embedding_max_pos=[20, 2048, 2048],
causal_temporal_positioning=False,
vae_scale_factors=(8, 32, 32),
dtype=None, device=None, operations=None, **kwargs):
super().__init__()
self.generator = None
self.vae_scale_factors = vae_scale_factors
self.use_middle_indices_grid = use_middle_indices_grid
self.dtype = dtype
self.in_channels = in_channels
self.cross_attention_dim = cross_attention_dim
self.attention_head_dim = attention_head_dim
self.num_attention_heads = num_attention_heads
self.caption_channels = caption_channels
self.num_layers = num_layers
self.positional_embedding_theta = positional_embedding_theta
self.positional_embedding_max_pos = positional_embedding_max_pos
self.split_positional_embedding = LTXRopeType.from_dict(kwargs)
self.freq_grid_generator = (
generate_freq_grid_np if LTXFrequenciesPrecision.from_dict(kwargs) == LTXFrequenciesPrecision.FLOAT64
else generate_freq_grid_pytorch
)
self.causal_temporal_positioning = causal_temporal_positioning
self.operations = operations
self.timestep_scale_multiplier = timestep_scale_multiplier
# Common dimensions
self.inner_dim = num_attention_heads * attention_head_dim
self.out_channels = in_channels
self.inner_dim = num_attention_heads * attention_head_dim
self.causal_temporal_positioning = causal_temporal_positioning
# Initialize common components
self._init_common_components(device, dtype)
# Initialize model-specific components
self._init_model_components(device, dtype, **kwargs)
# Initialize transformer blocks
self._init_transformer_blocks(device, dtype, **kwargs)
# Initialize output components
self._init_output_components(device, dtype)
def _init_common_components(self, device, dtype):
"""Initialize components common to all LTX models
- patchify_proj: Linear projection for patchifying input
- adaln_single: AdaLN layer for timestep embedding
- caption_projection: Linear projection for caption embedding
"""
self.patchify_proj = self.operations.Linear(
self.in_channels, self.inner_dim, bias=True, dtype=dtype, device=device
)
self.patchify_proj = operations.Linear(in_channels, self.inner_dim, bias=True, dtype=dtype, device=device)
self.adaln_single = AdaLayerNormSingle(
self.inner_dim, use_additional_conditions=False, dtype=dtype, device=device, operations=self.operations
self.inner_dim, use_additional_conditions=False, dtype=dtype, device=device, operations=operations
)
# self.adaln_single.linear = operations.Linear(self.inner_dim, 4 * self.inner_dim, bias=True, dtype=dtype, device=device)
self.caption_projection = PixArtAlphaTextProjection(
in_features=self.caption_channels,
hidden_size=self.inner_dim,
dtype=dtype,
device=device,
operations=self.operations,
in_features=caption_channels, hidden_size=self.inner_dim, dtype=dtype, device=device, operations=operations
)
@abstractmethod
def _init_model_components(self, device, dtype, **kwargs):
"""Initialize model-specific components. Must be implemented by subclasses."""
pass
@abstractmethod
def _init_transformer_blocks(self, device, dtype, **kwargs):
"""Initialize transformer blocks. Must be implemented by subclasses."""
pass
@abstractmethod
def _init_output_components(self, device, dtype):
"""Initialize output components. Must be implemented by subclasses."""
pass
@abstractmethod
def _process_input(self, x, keyframe_idxs, denoise_mask, **kwargs):
"""Process input data. Must be implemented by subclasses."""
pass
@abstractmethod
def _process_transformer_blocks(self, x, context, attention_mask, timestep, pe, **kwargs):
"""Process transformer blocks. Must be implemented by subclasses."""
pass
@abstractmethod
def _process_output(self, x, embedded_timestep, keyframe_idxs, **kwargs):
"""Process output data. Must be implemented by subclasses."""
pass
def _prepare_timestep(self, timestep, batch_size, hidden_dtype, **kwargs):
"""Prepare timestep embeddings."""
grid_mask = kwargs.get("grid_mask", None)
if grid_mask is not None:
timestep = timestep[:, grid_mask]
timestep = timestep * self.timestep_scale_multiplier
timestep, embedded_timestep = self.adaln_single(
timestep.flatten(),
{"resolution": None, "aspect_ratio": None},
batch_size=batch_size,
hidden_dtype=hidden_dtype,
)
# Second dimension is 1 or number of tokens (if timestep_per_token)
timestep = timestep.view(batch_size, -1, timestep.shape[-1])
embedded_timestep = embedded_timestep.view(batch_size, -1, embedded_timestep.shape[-1])
return timestep, embedded_timestep
def _prepare_context(self, context, batch_size, x, attention_mask=None):
"""Prepare context for transformer blocks."""
if self.caption_projection is not None:
context = self.caption_projection(context)
context = context.view(batch_size, -1, x.shape[-1])
return context, attention_mask
def _precompute_freqs_cis(
self,
indices_grid,
dim,
out_dtype,
theta=10000.0,
max_pos=[20, 2048, 2048],
use_middle_indices_grid=False,
num_attention_heads=32,
):
split_mode = self.split_positional_embedding == LTXRopeType.SPLIT
indices = self.freq_grid_generator(theta, indices_grid.shape[1], dim, indices_grid.device)
freqs = generate_freqs(indices, indices_grid, max_pos, use_middle_indices_grid)
if split_mode:
expected_freqs = dim // 2
current_freqs = freqs.shape[-1]
pad_size = expected_freqs - current_freqs
cos_freq, sin_freq = split_freqs_cis(freqs, pad_size, num_attention_heads)
else:
# 2 because of cos and sin by 3 for (t, x, y), 1 for temporal only
n_elem = 2 * indices_grid.shape[1]
cos_freq, sin_freq = interleaved_freqs_cis(freqs, dim % n_elem)
return cos_freq.to(out_dtype), sin_freq.to(out_dtype), split_mode
def _prepare_positional_embeddings(self, pixel_coords, frame_rate, x_dtype):
"""Prepare positional embeddings."""
fractional_coords = pixel_coords.to(torch.float32)
fractional_coords[:, 0] = fractional_coords[:, 0] * (1.0 / frame_rate)
pe = self._precompute_freqs_cis(
fractional_coords,
dim=self.inner_dim,
out_dtype=x_dtype,
max_pos=self.positional_embedding_max_pos,
use_middle_indices_grid=self.use_middle_indices_grid,
num_attention_heads=self.num_attention_heads,
)
return pe
def _prepare_attention_mask(self, attention_mask, x_dtype):
"""Prepare attention mask."""
if attention_mask is not None and not torch.is_floating_point(attention_mask):
attention_mask = (attention_mask - 1).to(x_dtype).reshape(
(attention_mask.shape[0], 1, -1, attention_mask.shape[-1])
) * torch.finfo(x_dtype).max
return attention_mask
def forward(
self, x, timestep, context, attention_mask, frame_rate=25, transformer_options={}, keyframe_idxs=None, denoise_mask=None, **kwargs
):
"""
Forward pass for LTX models.
Args:
x: Input tensor
timestep: Timestep tensor
context: Context tensor (e.g., text embeddings)
attention_mask: Attention mask tensor
frame_rate: Frame rate for temporal processing
transformer_options: Additional options for transformer blocks
keyframe_idxs: Keyframe indices for temporal processing
**kwargs: Additional keyword arguments
Returns:
Processed output tensor
"""
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
self._forward,
self,
comfy.patcher_extension.get_all_wrappers(
comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options
),
).execute(x, timestep, context, attention_mask, frame_rate, transformer_options, keyframe_idxs, denoise_mask=denoise_mask, **kwargs)
def _forward(
self, x, timestep, context, attention_mask, frame_rate=25, transformer_options={}, keyframe_idxs=None, denoise_mask=None, **kwargs
):
"""
Internal forward pass for LTX models.
Args:
x: Input tensor
timestep: Timestep tensor
context: Context tensor (e.g., text embeddings)
attention_mask: Attention mask tensor
frame_rate: Frame rate for temporal processing
transformer_options: Additional options for transformer blocks
keyframe_idxs: Keyframe indices for temporal processing
**kwargs: Additional keyword arguments
Returns:
Processed output tensor
"""
if isinstance(x, list):
input_dtype = x[0].dtype
batch_size = x[0].shape[0]
else:
input_dtype = x.dtype
batch_size = x.shape[0]
# Process input
merged_args = {**transformer_options, **kwargs}
x, pixel_coords, additional_args = self._process_input(x, keyframe_idxs, denoise_mask, **merged_args)
merged_args.update(additional_args)
# Prepare timestep and context
timestep, embedded_timestep = self._prepare_timestep(timestep, batch_size, input_dtype, **merged_args)
context, attention_mask = self._prepare_context(context, batch_size, x, attention_mask)
# Prepare attention mask and positional embeddings
attention_mask = self._prepare_attention_mask(attention_mask, input_dtype)
pe = self._prepare_positional_embeddings(pixel_coords, frame_rate, input_dtype)
# Process transformer blocks
x = self._process_transformer_blocks(
x, context, attention_mask, timestep, pe, transformer_options=transformer_options, **merged_args
)
# Process output
x = self._process_output(x, embedded_timestep, keyframe_idxs, **merged_args)
return x
class LTXVModel(LTXBaseModel):
"""LTXV model for video generation."""
def __init__(
self,
in_channels=128,
cross_attention_dim=2048,
attention_head_dim=64,
num_attention_heads=32,
caption_channels=4096,
num_layers=28,
positional_embedding_theta=10000.0,
positional_embedding_max_pos=[20, 2048, 2048],
causal_temporal_positioning=False,
vae_scale_factors=(8, 32, 32),
use_middle_indices_grid=False,
timestep_scale_multiplier = 1000.0,
dtype=None,
device=None,
operations=None,
**kwargs,
):
super().__init__(
in_channels=in_channels,
cross_attention_dim=cross_attention_dim,
attention_head_dim=attention_head_dim,
num_attention_heads=num_attention_heads,
caption_channels=caption_channels,
num_layers=num_layers,
positional_embedding_theta=positional_embedding_theta,
positional_embedding_max_pos=positional_embedding_max_pos,
causal_temporal_positioning=causal_temporal_positioning,
vae_scale_factors=vae_scale_factors,
use_middle_indices_grid=use_middle_indices_grid,
timestep_scale_multiplier=timestep_scale_multiplier,
dtype=dtype,
device=device,
operations=operations,
**kwargs,
)
def _init_model_components(self, device, dtype, **kwargs):
"""Initialize LTXV-specific components."""
# No additional components needed for LTXV beyond base class
pass
def _init_transformer_blocks(self, device, dtype, **kwargs):
"""Initialize transformer blocks for LTXV."""
self.transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock(
self.inner_dim,
self.num_attention_heads,
self.attention_head_dim,
context_dim=self.cross_attention_dim,
dtype=dtype,
device=device,
operations=self.operations,
num_attention_heads,
attention_head_dim,
context_dim=cross_attention_dim,
# attn_precision=attn_precision,
dtype=dtype, device=device, operations=operations
)
for _ in range(self.num_layers)
for d in range(num_layers)
]
)
def _init_output_components(self, device, dtype):
"""Initialize output components for LTXV."""
self.scale_shift_table = nn.Parameter(torch.empty(2, self.inner_dim, dtype=dtype, device=device))
self.norm_out = self.operations.LayerNorm(
self.inner_dim, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device
)
self.proj_out = self.operations.Linear(self.inner_dim, self.out_channels, dtype=dtype, device=device)
self.patchifier = SymmetricPatchifier(1, start_end=True)
self.norm_out = operations.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6, dtype=dtype, device=device)
self.proj_out = operations.Linear(self.inner_dim, self.out_channels, dtype=dtype, device=device)
self.patchifier = SymmetricPatchifier(1)
def forward(self, x, timestep, context, attention_mask, frame_rate=25, transformer_options={}, keyframe_idxs=None, **kwargs):
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
self._forward,
self,
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options)
).execute(x, timestep, context, attention_mask, frame_rate, transformer_options, keyframe_idxs, **kwargs)
def _forward(self, x, timestep, context, attention_mask, frame_rate=25, transformer_options={}, keyframe_idxs=None, **kwargs):
patches_replace = transformer_options.get("patches_replace", {})
orig_shape = list(x.shape)
def _process_input(self, x, keyframe_idxs, denoise_mask, **kwargs):
"""Process input for LTXV."""
additional_args = {"orig_shape": list(x.shape)}
x, latent_coords = self.patchifier.patchify(x)
pixel_coords = latent_to_pixel_coords(
latent_coords=latent_coords,
@@ -880,30 +439,44 @@ class LTXVModel(LTXBaseModel):
causal_fix=self.causal_temporal_positioning,
)
grid_mask = None
if keyframe_idxs is not None:
additional_args.update({ "orig_patchified_shape": list(x.shape)})
denoise_mask = self.patchifier.patchify(denoise_mask)[0]
grid_mask = ~torch.any(denoise_mask < 0, dim=-1)[0]
additional_args.update({"grid_mask": grid_mask})
x = x[:, grid_mask, :]
pixel_coords = pixel_coords[:, :, grid_mask, ...]
pixel_coords[:, :, -keyframe_idxs.shape[2]:] = keyframe_idxs
kf_grid_mask = grid_mask[-keyframe_idxs.shape[2]:]
keyframe_idxs = keyframe_idxs[..., kf_grid_mask, :]
pixel_coords[:, :, -keyframe_idxs.shape[2]:, :] = keyframe_idxs
fractional_coords = pixel_coords.to(torch.float32)
fractional_coords[:, 0] = fractional_coords[:, 0] * (1.0 / frame_rate)
x = self.patchify_proj(x)
return x, pixel_coords, additional_args
timestep = timestep * 1000.0
if attention_mask is not None and not torch.is_floating_point(attention_mask):
attention_mask = (attention_mask - 1).to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])) * torch.finfo(x.dtype).max
pe = precompute_freqs_cis(fractional_coords, dim=self.inner_dim, out_dtype=x.dtype)
batch_size = x.shape[0]
timestep, embedded_timestep = self.adaln_single(
timestep.flatten(),
{"resolution": None, "aspect_ratio": None},
batch_size=batch_size,
hidden_dtype=x.dtype,
)
# Second dimension is 1 or number of tokens (if timestep_per_token)
timestep = timestep.view(batch_size, -1, timestep.shape[-1])
embedded_timestep = embedded_timestep.view(
batch_size, -1, embedded_timestep.shape[-1]
)
# 2. Blocks
if self.caption_projection is not None:
batch_size = x.shape[0]
context = self.caption_projection(context)
context = context.view(
batch_size, -1, x.shape[-1]
)
def _process_transformer_blocks(self, x, context, attention_mask, timestep, pe, transformer_options={}, **kwargs):
"""Process transformer blocks for LTXV."""
patches_replace = transformer_options.get("patches_replace", {})
blocks_replace = patches_replace.get("dit", {})
for i, block in enumerate(self.transformer_blocks):
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = block(args["img"], context=args["txt"], attention_mask=args["attention_mask"], timestep=args["vec"], pe=args["pe"], transformer_options=args["transformer_options"])
@@ -921,28 +494,16 @@ class LTXVModel(LTXBaseModel):
transformer_options=transformer_options,
)
return x
def _process_output(self, x, embedded_timestep, keyframe_idxs, **kwargs):
"""Process output for LTXV."""
# Apply scale-shift modulation
# 3. Output
scale_shift_values = (
self.scale_shift_table[None, None].to(device=x.device, dtype=x.dtype) + embedded_timestep[:, :, None]
)
shift, scale = scale_shift_values[:, :, 0], scale_shift_values[:, :, 1]
x = self.norm_out(x)
# Modulation
x = x * (1 + scale) + shift
x = self.proj_out(x)
if keyframe_idxs is not None:
grid_mask = kwargs["grid_mask"]
orig_patchified_shape = kwargs["orig_patchified_shape"]
full_x = torch.zeros(orig_patchified_shape, dtype=x.dtype, device=x.device)
full_x[:, grid_mask, :] = x
x = full_x
# Unpatchify to restore original dimensions
orig_shape = kwargs["orig_shape"]
x = self.patchifier.unpatchify(
latents=x,
output_height=orig_shape[3],

View File

@@ -21,23 +21,20 @@ def latent_to_pixel_coords(
Returns:
Tensor: A tensor of pixel coordinates corresponding to the input latent coordinates.
"""
shape = [1] * latent_coords.ndim
shape[1] = -1
pixel_coords = (
latent_coords
* torch.tensor(scale_factors, device=latent_coords.device).view(*shape)
* torch.tensor(scale_factors, device=latent_coords.device)[None, :, None]
)
if causal_fix:
# Fix temporal scale for first frame to 1 due to causality
pixel_coords[:, 0, ...] = (pixel_coords[:, 0, ...] + 1 - scale_factors[0]).clamp(min=0)
pixel_coords[:, 0] = (pixel_coords[:, 0] + 1 - scale_factors[0]).clamp(min=0)
return pixel_coords
class Patchifier(ABC):
def __init__(self, patch_size: int, start_end: bool=False):
def __init__(self, patch_size: int):
super().__init__()
self._patch_size = (1, patch_size, patch_size)
self.start_end = start_end
@abstractmethod
def patchify(
@@ -74,23 +71,11 @@ class Patchifier(ABC):
torch.arange(0, latent_width, self._patch_size[2], device=device),
indexing="ij",
)
latent_sample_coords_start = torch.stack(latent_sample_coords, dim=0)
delta = torch.tensor(self._patch_size, device=latent_sample_coords_start.device, dtype=latent_sample_coords_start.dtype)[:, None, None, None]
latent_sample_coords_end = latent_sample_coords_start + delta
latent_sample_coords_start = latent_sample_coords_start.unsqueeze(0).repeat(batch_size, 1, 1, 1, 1)
latent_sample_coords_start = rearrange(
latent_sample_coords_start, "b c f h w -> b c (f h w)", b=batch_size
latent_sample_coords = torch.stack(latent_sample_coords, dim=0)
latent_coords = latent_sample_coords.unsqueeze(0).repeat(batch_size, 1, 1, 1, 1)
latent_coords = rearrange(
latent_coords, "b c f h w -> b c (f h w)", b=batch_size
)
if self.start_end:
latent_sample_coords_end = latent_sample_coords_end.unsqueeze(0).repeat(batch_size, 1, 1, 1, 1)
latent_sample_coords_end = rearrange(
latent_sample_coords_end, "b c f h w -> b c (f h w)", b=batch_size
)
latent_coords = torch.stack((latent_sample_coords_start, latent_sample_coords_end), dim=-1)
else:
latent_coords = latent_sample_coords_start
return latent_coords
@@ -130,61 +115,3 @@ class SymmetricPatchifier(Patchifier):
q=self._patch_size[2],
)
return latents
class AudioPatchifier(Patchifier):
def __init__(self, patch_size: int,
sample_rate=16000,
hop_length=160,
audio_latent_downsample_factor=4,
is_causal=True,
start_end=False,
shift = 0
):
super().__init__(patch_size, start_end=start_end)
self.hop_length = hop_length
self.sample_rate = sample_rate
self.audio_latent_downsample_factor = audio_latent_downsample_factor
self.is_causal = is_causal
self.shift = shift
def copy_with_shift(self, shift):
return AudioPatchifier(
self.patch_size, self.sample_rate, self.hop_length, self.audio_latent_downsample_factor,
self.is_causal, self.start_end, shift
)
def _get_audio_latent_time_in_sec(self, start_latent, end_latent: int, dtype: torch.dtype, device=torch.device):
audio_latent_frame = torch.arange(start_latent, end_latent, dtype=dtype, device=device)
audio_mel_frame = audio_latent_frame * self.audio_latent_downsample_factor
if self.is_causal:
audio_mel_frame = (audio_mel_frame + 1 - self.audio_latent_downsample_factor).clip(min=0)
return audio_mel_frame * self.hop_length / self.sample_rate
def patchify(self, audio_latents: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
# audio_latents: (batch, channels, time, freq)
b, _, t, _ = audio_latents.shape
audio_latents = rearrange(
audio_latents,
"b c t f -> b t (c f)",
)
audio_latents_start_timings = self._get_audio_latent_time_in_sec(self.shift, t + self.shift, torch.float32, audio_latents.device)
audio_latents_start_timings = audio_latents_start_timings.unsqueeze(0).expand(b, -1).unsqueeze(1)
if self.start_end:
audio_latents_end_timings = self._get_audio_latent_time_in_sec(self.shift + 1, t + self.shift + 1, torch.float32, audio_latents.device)
audio_latents_end_timings = audio_latents_end_timings.unsqueeze(0).expand(b, -1).unsqueeze(1)
audio_latents_timings = torch.stack([audio_latents_start_timings, audio_latents_end_timings], dim=-1)
else:
audio_latents_timings = audio_latents_start_timings
return audio_latents, audio_latents_timings
def unpatchify(self, audio_latents: torch.Tensor, channels: int, freq: int) -> torch.Tensor:
# audio_latents: (batch, time, freq * channels)
audio_latents = rearrange(
audio_latents, "b t (c f) -> b c t f", c=channels, f=freq
)
return audio_latents

View File

@@ -1,279 +0,0 @@
import json
from dataclasses import dataclass
import math
import torch
import torchaudio
import comfy.model_management
import comfy.model_patcher
import comfy.utils as utils
from comfy.ldm.mmaudio.vae.distributions import DiagonalGaussianDistribution
from comfy.ldm.lightricks.symmetric_patchifier import AudioPatchifier
from comfy.ldm.lightricks.vae.causal_audio_autoencoder import (
CausalityAxis,
CausalAudioAutoencoder,
)
from comfy.ldm.lightricks.vocoders.vocoder import Vocoder
LATENT_DOWNSAMPLE_FACTOR = 4
@dataclass(frozen=True)
class AudioVAEComponentConfig:
"""Container for model component configuration extracted from metadata."""
autoencoder: dict
vocoder: dict
@classmethod
def from_metadata(cls, metadata: dict) -> "AudioVAEComponentConfig":
assert metadata is not None and "config" in metadata, "Metadata is required for audio VAE"
raw_config = metadata["config"]
if isinstance(raw_config, str):
parsed_config = json.loads(raw_config)
else:
parsed_config = raw_config
audio_config = parsed_config.get("audio_vae")
vocoder_config = parsed_config.get("vocoder")
assert audio_config is not None, "Audio VAE config is required for audio VAE"
assert vocoder_config is not None, "Vocoder config is required for audio VAE"
return cls(autoencoder=audio_config, vocoder=vocoder_config)
class ModelDeviceManager:
"""Manages device placement and GPU residency for the composed model."""
def __init__(self, module: torch.nn.Module):
load_device = comfy.model_management.get_torch_device()
offload_device = comfy.model_management.vae_offload_device()
self.patcher = comfy.model_patcher.ModelPatcher(module, load_device, offload_device)
def ensure_model_loaded(self) -> None:
comfy.model_management.free_memory(
self.patcher.model_size(),
self.patcher.load_device,
)
comfy.model_management.load_model_gpu(self.patcher)
def move_to_load_device(self, tensor: torch.Tensor) -> torch.Tensor:
return tensor.to(self.patcher.load_device)
@property
def load_device(self):
return self.patcher.load_device
class AudioLatentNormalizer:
"""Applies per-channel statistics in patch space and restores original layout."""
def __init__(self, patchfier: AudioPatchifier, statistics_processor: torch.nn.Module):
self.patchifier = patchfier
self.statistics = statistics_processor
def normalize(self, latents: torch.Tensor) -> torch.Tensor:
channels = latents.shape[1]
freq = latents.shape[3]
patched, _ = self.patchifier.patchify(latents)
normalized = self.statistics.normalize(patched)
return self.patchifier.unpatchify(normalized, channels=channels, freq=freq)
def denormalize(self, latents: torch.Tensor) -> torch.Tensor:
channels = latents.shape[1]
freq = latents.shape[3]
patched, _ = self.patchifier.patchify(latents)
denormalized = self.statistics.un_normalize(patched)
return self.patchifier.unpatchify(denormalized, channels=channels, freq=freq)
class AudioPreprocessor:
"""Prepares raw waveforms for the autoencoder by matching training conditions."""
def __init__(self, target_sample_rate: int, mel_bins: int, mel_hop_length: int, n_fft: int):
self.target_sample_rate = target_sample_rate
self.mel_bins = mel_bins
self.mel_hop_length = mel_hop_length
self.n_fft = n_fft
def resample(self, waveform: torch.Tensor, source_rate: int) -> torch.Tensor:
if source_rate == self.target_sample_rate:
return waveform
return torchaudio.functional.resample(waveform, source_rate, self.target_sample_rate)
def waveform_to_mel(
self, waveform: torch.Tensor, waveform_sample_rate: int, device
) -> torch.Tensor:
waveform = self.resample(waveform, waveform_sample_rate)
mel_transform = torchaudio.transforms.MelSpectrogram(
sample_rate=self.target_sample_rate,
n_fft=self.n_fft,
win_length=self.n_fft,
hop_length=self.mel_hop_length,
f_min=0.0,
f_max=self.target_sample_rate / 2.0,
n_mels=self.mel_bins,
window_fn=torch.hann_window,
center=True,
pad_mode="reflect",
power=1.0,
mel_scale="slaney",
norm="slaney",
).to(device)
mel = mel_transform(waveform)
mel = torch.log(torch.clamp(mel, min=1e-5))
return mel.permute(0, 1, 3, 2).contiguous()
class AudioVAE(torch.nn.Module):
"""High-level Audio VAE wrapper exposing encode and decode entry points."""
def __init__(self, state_dict: dict, metadata: dict):
super().__init__()
component_config = AudioVAEComponentConfig.from_metadata(metadata)
vae_sd = utils.state_dict_prefix_replace(state_dict, {"audio_vae.": ""}, filter_keys=True)
vocoder_sd = utils.state_dict_prefix_replace(state_dict, {"vocoder.": ""}, filter_keys=True)
self.autoencoder = CausalAudioAutoencoder(config=component_config.autoencoder)
self.vocoder = Vocoder(config=component_config.vocoder)
self.autoencoder.load_state_dict(vae_sd, strict=False)
self.vocoder.load_state_dict(vocoder_sd, strict=False)
autoencoder_config = self.autoencoder.get_config()
self.normalizer = AudioLatentNormalizer(
AudioPatchifier(
patch_size=1,
audio_latent_downsample_factor=LATENT_DOWNSAMPLE_FACTOR,
sample_rate=autoencoder_config["sampling_rate"],
hop_length=autoencoder_config["mel_hop_length"],
is_causal=autoencoder_config["is_causal"],
),
self.autoencoder.per_channel_statistics,
)
self.preprocessor = AudioPreprocessor(
target_sample_rate=autoencoder_config["sampling_rate"],
mel_bins=autoencoder_config["mel_bins"],
mel_hop_length=autoencoder_config["mel_hop_length"],
n_fft=autoencoder_config["n_fft"],
)
self.device_manager = ModelDeviceManager(self)
def encode(self, audio: dict) -> torch.Tensor:
"""Encode a waveform dictionary into normalized latent tensors."""
waveform = audio["waveform"]
waveform_sample_rate = audio["sample_rate"]
input_device = waveform.device
# Ensure that Audio VAE is loaded on the correct device.
self.device_manager.ensure_model_loaded()
waveform = self.device_manager.move_to_load_device(waveform)
expected_channels = self.autoencoder.encoder.in_channels
if waveform.shape[1] != expected_channels:
if waveform.shape[1] == 1:
waveform = waveform.expand(-1, expected_channels, *waveform.shape[2:])
else:
raise ValueError(
f"Input audio must have {expected_channels} channels, got {waveform.shape[1]}"
)
mel_spec = self.preprocessor.waveform_to_mel(
waveform, waveform_sample_rate, device=self.device_manager.load_device
)
latents = self.autoencoder.encode(mel_spec)
posterior = DiagonalGaussianDistribution(latents)
latent_mode = posterior.mode()
normalized = self.normalizer.normalize(latent_mode)
return normalized.to(input_device)
def decode(self, latents: torch.Tensor) -> torch.Tensor:
"""Decode normalized latent tensors into an audio waveform."""
original_shape = latents.shape
# Ensure that Audio VAE is loaded on the correct device.
self.device_manager.ensure_model_loaded()
latents = self.device_manager.move_to_load_device(latents)
latents = self.normalizer.denormalize(latents)
target_shape = self.target_shape_from_latents(original_shape)
mel_spec = self.autoencoder.decode(latents, target_shape=target_shape)
waveform = self.run_vocoder(mel_spec)
return self.device_manager.move_to_load_device(waveform)
def target_shape_from_latents(self, latents_shape):
batch, _, time, _ = latents_shape
target_length = time * LATENT_DOWNSAMPLE_FACTOR
if self.autoencoder.causality_axis != CausalityAxis.NONE:
target_length -= LATENT_DOWNSAMPLE_FACTOR - 1
return (
batch,
self.autoencoder.decoder.out_ch,
target_length,
self.autoencoder.mel_bins,
)
def num_of_latents_from_frames(self, frames_number: int, frame_rate: int) -> int:
return math.ceil((float(frames_number) / frame_rate) * self.latents_per_second)
def run_vocoder(self, mel_spec: torch.Tensor) -> torch.Tensor:
audio_channels = self.autoencoder.decoder.out_ch
vocoder_input = mel_spec.transpose(2, 3)
if audio_channels == 1:
vocoder_input = vocoder_input.squeeze(1)
elif audio_channels != 2:
raise ValueError(f"Unsupported audio_channels: {audio_channels}")
return self.vocoder(vocoder_input)
@property
def sample_rate(self) -> int:
return int(self.autoencoder.sampling_rate)
@property
def mel_hop_length(self) -> int:
return int(self.autoencoder.mel_hop_length)
@property
def mel_bins(self) -> int:
return int(self.autoencoder.mel_bins)
@property
def latent_channels(self) -> int:
return int(self.autoencoder.decoder.z_channels)
@property
def latent_frequency_bins(self) -> int:
return int(self.mel_bins // LATENT_DOWNSAMPLE_FACTOR)
@property
def latents_per_second(self) -> float:
return self.sample_rate / self.mel_hop_length / LATENT_DOWNSAMPLE_FACTOR
@property
def output_sample_rate(self) -> int:
output_rate = getattr(self.vocoder, "output_sample_rate", None)
if output_rate is not None:
return int(output_rate)
upsample_factor = getattr(self.vocoder, "upsample_factor", None)
if upsample_factor is None:
raise AttributeError(
"Vocoder is missing upsample_factor; cannot infer output sample rate"
)
return int(self.sample_rate * upsample_factor / self.mel_hop_length)
def memory_required(self, input_shape):
return self.device_manager.patcher.model_size()

View File

@@ -1,909 +0,0 @@
from __future__ import annotations
import torch
from torch import nn
from torch.nn import functional as F
from typing import Optional
from enum import Enum
from .pixel_norm import PixelNorm
import comfy.ops
import logging
ops = comfy.ops.disable_weight_init
class StringConvertibleEnum(Enum):
"""
Base enum class that provides string-to-enum conversion functionality.
This mixin adds a str_to_enum() class method that handles conversion from
strings, None, or existing enum instances with case-insensitive matching.
"""
@classmethod
def str_to_enum(cls, value):
"""
Convert a string, enum instance, or None to the appropriate enum member.
Args:
value: Can be an enum instance of this class, a string, or None
Returns:
Enum member of this class
Raises:
ValueError: If the value cannot be converted to a valid enum member
"""
# Already an enum instance of this class
if isinstance(value, cls):
return value
# None maps to NONE member if it exists
if value is None:
if hasattr(cls, "NONE"):
return cls.NONE
raise ValueError(f"{cls.__name__} does not have a NONE member to map None to")
# String conversion (case-insensitive)
if isinstance(value, str):
value_lower = value.lower()
# Try to match against enum values
for member in cls:
# Handle members with None values
if member.value is None:
if value_lower == "none":
return member
# Handle members with string values
elif isinstance(member.value, str) and member.value.lower() == value_lower:
return member
# Build helpful error message with valid values
valid_values = []
for member in cls:
if member.value is None:
valid_values.append("none")
elif isinstance(member.value, str):
valid_values.append(member.value)
raise ValueError(f"Invalid {cls.__name__} string: '{value}'. " f"Valid values are: {valid_values}")
raise ValueError(
f"Cannot convert type {type(value).__name__} to {cls.__name__} enum. "
f"Expected string, None, or {cls.__name__} instance."
)
class AttentionType(StringConvertibleEnum):
"""Enum for specifying the attention mechanism type."""
VANILLA = "vanilla"
LINEAR = "linear"
NONE = "none"
class CausalityAxis(StringConvertibleEnum):
"""Enum for specifying the causality axis in causal convolutions."""
NONE = None
WIDTH = "width"
HEIGHT = "height"
WIDTH_COMPATIBILITY = "width-compatibility"
def Normalize(in_channels, *, num_groups=32, normtype="group"):
if normtype == "group":
return torch.nn.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
elif normtype == "pixel":
return PixelNorm(dim=1, eps=1e-6)
else:
raise ValueError(f"Invalid normalization type: {normtype}")
class CausalConv2d(nn.Module):
"""
A causal 2D convolution.
This layer ensures that the output at time `t` only depends on inputs
at time `t` and earlier. It achieves this by applying asymmetric padding
to the time dimension (width) before the convolution.
"""
def __init__(
self,
in_channels,
out_channels,
kernel_size,
stride=1,
dilation=1,
groups=1,
bias=True,
causality_axis: CausalityAxis = CausalityAxis.HEIGHT,
):
super().__init__()
self.causality_axis = causality_axis
# Ensure kernel_size and dilation are tuples
kernel_size = nn.modules.utils._pair(kernel_size)
dilation = nn.modules.utils._pair(dilation)
# Calculate padding dimensions
pad_h = (kernel_size[0] - 1) * dilation[0]
pad_w = (kernel_size[1] - 1) * dilation[1]
# The padding tuple for F.pad is (pad_left, pad_right, pad_top, pad_bottom)
match self.causality_axis:
case CausalityAxis.NONE:
self.padding = (pad_w // 2, pad_w - pad_w // 2, pad_h // 2, pad_h - pad_h // 2)
case CausalityAxis.WIDTH | CausalityAxis.WIDTH_COMPATIBILITY:
self.padding = (pad_w, 0, pad_h // 2, pad_h - pad_h // 2)
case CausalityAxis.HEIGHT:
self.padding = (pad_w // 2, pad_w - pad_w // 2, pad_h, 0)
case _:
raise ValueError(f"Invalid causality_axis: {causality_axis}")
# The internal convolution layer uses no padding, as we handle it manually
self.conv = ops.Conv2d(
in_channels,
out_channels,
kernel_size,
stride=stride,
padding=0,
dilation=dilation,
groups=groups,
bias=bias,
)
def forward(self, x):
# Apply causal padding before convolution
x = F.pad(x, self.padding)
return self.conv(x)
def make_conv2d(
in_channels,
out_channels,
kernel_size,
stride=1,
padding=None,
dilation=1,
groups=1,
bias=True,
causality_axis: Optional[CausalityAxis] = None,
):
"""
Create a 2D convolution layer that can be either causal or non-causal.
Args:
in_channels: Number of input channels
out_channels: Number of output channels
kernel_size: Size of the convolution kernel
stride: Convolution stride
padding: Padding (if None, will be calculated based on causal flag)
dilation: Dilation rate
groups: Number of groups for grouped convolution
bias: Whether to use bias
causality_axis: Dimension along which to apply causality.
Returns:
Either a regular Conv2d or CausalConv2d layer
"""
if causality_axis is not None:
# For causal convolution, padding is handled internally by CausalConv2d
return CausalConv2d(in_channels, out_channels, kernel_size, stride, dilation, groups, bias, causality_axis)
else:
# For non-causal convolution, use symmetric padding if not specified
if padding is None:
if isinstance(kernel_size, int):
padding = kernel_size // 2
else:
padding = tuple(k // 2 for k in kernel_size)
return ops.Conv2d(
in_channels,
out_channels,
kernel_size,
stride,
padding,
dilation,
groups,
bias,
)
class Upsample(nn.Module):
def __init__(self, in_channels, with_conv, causality_axis: CausalityAxis = CausalityAxis.HEIGHT):
super().__init__()
self.with_conv = with_conv
self.causality_axis = causality_axis
if self.with_conv:
self.conv = make_conv2d(in_channels, in_channels, kernel_size=3, stride=1, causality_axis=causality_axis)
def forward(self, x):
x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest")
if self.with_conv:
x = self.conv(x)
# Drop FIRST element in the causal axis to undo encoder's padding, while keeping the length 1 + 2 * n.
# For example, if the input is [0, 1, 2], after interpolation, the output is [0, 0, 1, 1, 2, 2].
# The causal convolution will pad the first element as [-, -, 0, 0, 1, 1, 2, 2],
# So the output elements rely on the following windows:
# 0: [-,-,0]
# 1: [-,0,0]
# 2: [0,0,1]
# 3: [0,1,1]
# 4: [1,1,2]
# 5: [1,2,2]
# Notice that the first and second elements in the output rely only on the first element in the input,
# while all other elements rely on two elements in the input.
# So we can drop the first element to undo the padding (rather than the last element).
# This is a no-op for non-causal convolutions.
match self.causality_axis:
case CausalityAxis.NONE:
pass # x remains unchanged
case CausalityAxis.HEIGHT:
x = x[:, :, 1:, :]
case CausalityAxis.WIDTH:
x = x[:, :, :, 1:]
case CausalityAxis.WIDTH_COMPATIBILITY:
pass # x remains unchanged
case _:
raise ValueError(f"Invalid causality_axis: {self.causality_axis}")
return x
class Downsample(nn.Module):
"""
A downsampling layer that can use either a strided convolution
or average pooling. Supports standard and causal padding for the
convolutional mode.
"""
def __init__(self, in_channels, with_conv, causality_axis: CausalityAxis = CausalityAxis.WIDTH):
super().__init__()
self.with_conv = with_conv
self.causality_axis = causality_axis
if self.causality_axis != CausalityAxis.NONE and not self.with_conv:
raise ValueError("causality is only supported when `with_conv=True`.")
if self.with_conv:
# Do time downsampling here
# no asymmetric padding in torch conv, must do it ourselves
self.conv = ops.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0)
def forward(self, x):
if self.with_conv:
# (pad_left, pad_right, pad_top, pad_bottom)
match self.causality_axis:
case CausalityAxis.NONE:
pad = (0, 1, 0, 1)
case CausalityAxis.WIDTH:
pad = (2, 0, 0, 1)
case CausalityAxis.HEIGHT:
pad = (0, 1, 2, 0)
case CausalityAxis.WIDTH_COMPATIBILITY:
pad = (1, 0, 0, 1)
case _:
raise ValueError(f"Invalid causality_axis: {self.causality_axis}")
x = torch.nn.functional.pad(x, pad, mode="constant", value=0)
x = self.conv(x)
else:
# This branch is only taken if with_conv=False, which implies causality_axis is NONE.
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
return x
class ResnetBlock(nn.Module):
def __init__(
self,
*,
in_channels,
out_channels=None,
conv_shortcut=False,
dropout,
temb_channels=512,
norm_type="group",
causality_axis: CausalityAxis = CausalityAxis.HEIGHT,
):
super().__init__()
self.causality_axis = causality_axis
if self.causality_axis != CausalityAxis.NONE and norm_type == "group":
raise ValueError("Causal ResnetBlock with GroupNorm is not supported.")
self.in_channels = in_channels
out_channels = in_channels if out_channels is None else out_channels
self.out_channels = out_channels
self.use_conv_shortcut = conv_shortcut
self.norm1 = Normalize(in_channels, normtype=norm_type)
self.non_linearity = nn.SiLU()
self.conv1 = make_conv2d(in_channels, out_channels, kernel_size=3, stride=1, causality_axis=causality_axis)
if temb_channels > 0:
self.temb_proj = ops.Linear(temb_channels, out_channels)
self.norm2 = Normalize(out_channels, normtype=norm_type)
self.dropout = torch.nn.Dropout(dropout)
self.conv2 = make_conv2d(out_channels, out_channels, kernel_size=3, stride=1, causality_axis=causality_axis)
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
self.conv_shortcut = make_conv2d(
in_channels, out_channels, kernel_size=3, stride=1, causality_axis=causality_axis
)
else:
self.nin_shortcut = make_conv2d(
in_channels, out_channels, kernel_size=1, stride=1, causality_axis=causality_axis
)
def forward(self, x, temb):
h = x
h = self.norm1(h)
h = self.non_linearity(h)
h = self.conv1(h)
if temb is not None:
h = h + self.temb_proj(self.non_linearity(temb))[:, :, None, None]
h = self.norm2(h)
h = self.non_linearity(h)
h = self.dropout(h)
h = self.conv2(h)
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
x = self.conv_shortcut(x)
else:
x = self.nin_shortcut(x)
return x + h
class AttnBlock(nn.Module):
def __init__(self, in_channels, norm_type="group"):
super().__init__()
self.in_channels = in_channels
self.norm = Normalize(in_channels, normtype=norm_type)
self.q = ops.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
self.k = ops.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
self.v = ops.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
self.proj_out = ops.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0)
def forward(self, x):
h_ = x
h_ = self.norm(h_)
q = self.q(h_)
k = self.k(h_)
v = self.v(h_)
# compute attention
b, c, h, w = q.shape
q = q.reshape(b, c, h * w).contiguous()
q = q.permute(0, 2, 1).contiguous() # b,hw,c
k = k.reshape(b, c, h * w).contiguous() # b,c,hw
w_ = torch.bmm(q, k).contiguous() # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j]
w_ = w_ * (int(c) ** (-0.5))
w_ = torch.nn.functional.softmax(w_, dim=2)
# attend to values
v = v.reshape(b, c, h * w).contiguous()
w_ = w_.permute(0, 2, 1).contiguous() # b,hw,hw (first hw of k, second of q)
h_ = torch.bmm(v, w_).contiguous() # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j]
h_ = h_.reshape(b, c, h, w).contiguous()
h_ = self.proj_out(h_)
return x + h_
def make_attn(in_channels, attn_type="vanilla", norm_type="group"):
# Convert string to enum if needed
attn_type = AttentionType.str_to_enum(attn_type)
if attn_type != AttentionType.NONE:
logging.info(f"making attention of type '{attn_type.value}' with {in_channels} in_channels")
else:
logging.info(f"making identity attention with {in_channels} in_channels")
match attn_type:
case AttentionType.VANILLA:
return AttnBlock(in_channels, norm_type=norm_type)
case AttentionType.NONE:
return nn.Identity(in_channels)
case AttentionType.LINEAR:
raise NotImplementedError(f"Attention type {attn_type.value} is not supported yet.")
case _:
raise ValueError(f"Unknown attention type: {attn_type}")
class Encoder(nn.Module):
def __init__(
self,
*,
ch,
out_ch,
ch_mult=(1, 2, 4, 8),
num_res_blocks,
attn_resolutions,
dropout=0.0,
resamp_with_conv=True,
in_channels,
resolution,
z_channels,
double_z=True,
attn_type="vanilla",
mid_block_add_attention=True,
norm_type="group",
causality_axis=CausalityAxis.WIDTH.value,
**ignore_kwargs,
):
super().__init__()
self.ch = ch
self.temb_ch = 0
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.resolution = resolution
self.in_channels = in_channels
self.z_channels = z_channels
self.double_z = double_z
self.norm_type = norm_type
# Convert string to enum if needed (for config loading)
causality_axis = CausalityAxis.str_to_enum(causality_axis)
self.attn_type = AttentionType.str_to_enum(attn_type)
# downsampling
self.conv_in = make_conv2d(
in_channels,
self.ch,
kernel_size=3,
stride=1,
causality_axis=causality_axis,
)
self.non_linearity = nn.SiLU()
curr_res = resolution
in_ch_mult = (1,) + tuple(ch_mult)
self.in_ch_mult = in_ch_mult
self.down = nn.ModuleList()
for i_level in range(self.num_resolutions):
block = nn.ModuleList()
attn = nn.ModuleList()
block_in = ch * in_ch_mult[i_level]
block_out = ch * ch_mult[i_level]
for _ in range(self.num_res_blocks):
block.append(
ResnetBlock(
in_channels=block_in,
out_channels=block_out,
temb_channels=self.temb_ch,
dropout=dropout,
norm_type=self.norm_type,
causality_axis=causality_axis,
)
)
block_in = block_out
if curr_res in attn_resolutions:
attn.append(make_attn(block_in, attn_type=self.attn_type, norm_type=self.norm_type))
down = nn.Module()
down.block = block
down.attn = attn
if i_level != self.num_resolutions - 1:
down.downsample = Downsample(block_in, resamp_with_conv, causality_axis=causality_axis)
curr_res = curr_res // 2
self.down.append(down)
# middle
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(
in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch,
dropout=dropout,
norm_type=self.norm_type,
causality_axis=causality_axis,
)
if mid_block_add_attention:
self.mid.attn_1 = make_attn(block_in, attn_type=self.attn_type, norm_type=self.norm_type)
else:
self.mid.attn_1 = nn.Identity()
self.mid.block_2 = ResnetBlock(
in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch,
dropout=dropout,
norm_type=self.norm_type,
causality_axis=causality_axis,
)
# end
self.norm_out = Normalize(block_in, normtype=self.norm_type)
self.conv_out = make_conv2d(
block_in,
2 * z_channels if double_z else z_channels,
kernel_size=3,
stride=1,
causality_axis=causality_axis,
)
def forward(self, x):
"""
Forward pass through the encoder.
Args:
x: Input tensor of shape [batch, channels, time, n_mels]
Returns:
Encoded latent representation
"""
feature_maps = [self.conv_in(x)]
# Process each resolution level (from high to low resolution)
for resolution_level in range(self.num_resolutions):
# Apply residual blocks at current resolution level
for block_idx in range(self.num_res_blocks):
# Apply ResNet block with optional timestep embedding
current_features = self.down[resolution_level].block[block_idx](feature_maps[-1], temb=None)
# Apply attention if configured for this resolution level
if len(self.down[resolution_level].attn) > 0:
current_features = self.down[resolution_level].attn[block_idx](current_features)
# Store processed features
feature_maps.append(current_features)
# Downsample spatial dimensions (except at the final resolution level)
if resolution_level != self.num_resolutions - 1:
downsampled_features = self.down[resolution_level].downsample(feature_maps[-1])
feature_maps.append(downsampled_features)
# === MIDDLE PROCESSING PHASE ===
# Take the lowest resolution features for middle processing
bottleneck_features = feature_maps[-1]
# Apply first middle ResNet block
bottleneck_features = self.mid.block_1(bottleneck_features, temb=None)
# Apply middle attention block
bottleneck_features = self.mid.attn_1(bottleneck_features)
# Apply second middle ResNet block
bottleneck_features = self.mid.block_2(bottleneck_features, temb=None)
# === OUTPUT PHASE ===
# Normalize the bottleneck features
output_features = self.norm_out(bottleneck_features)
# Apply non-linearity (SiLU activation)
output_features = self.non_linearity(output_features)
# Final convolution to produce latent representation
# [batch, channels, time, n_mels] -> [batch, 2 * z_channels if double_z else z_channels, time, n_mels]
return self.conv_out(output_features)
class Decoder(nn.Module):
def __init__(
self,
*,
ch,
out_ch,
ch_mult=(1, 2, 4, 8),
num_res_blocks,
attn_resolutions,
dropout=0.0,
resamp_with_conv=True,
in_channels,
resolution,
z_channels,
give_pre_end=False,
tanh_out=False,
attn_type="vanilla",
mid_block_add_attention=True,
norm_type="group",
causality_axis=CausalityAxis.WIDTH.value,
**ignorekwargs,
):
super().__init__()
self.ch = ch
self.temb_ch = 0
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.resolution = resolution
self.in_channels = in_channels
self.out_ch = out_ch
self.give_pre_end = give_pre_end
self.tanh_out = tanh_out
self.norm_type = norm_type
self.z_channels = z_channels
# Convert string to enum if needed (for config loading)
causality_axis = CausalityAxis.str_to_enum(causality_axis)
self.attn_type = AttentionType.str_to_enum(attn_type)
# compute block_in and curr_res at lowest res
block_in = ch * ch_mult[self.num_resolutions - 1]
curr_res = resolution // 2 ** (self.num_resolutions - 1)
self.z_shape = (1, z_channels, curr_res, curr_res)
# z to block_in
self.conv_in = make_conv2d(z_channels, block_in, kernel_size=3, stride=1, causality_axis=causality_axis)
self.non_linearity = nn.SiLU()
# middle
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(
in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch,
dropout=dropout,
norm_type=self.norm_type,
causality_axis=causality_axis,
)
if mid_block_add_attention:
self.mid.attn_1 = make_attn(block_in, attn_type=self.attn_type, norm_type=self.norm_type)
else:
self.mid.attn_1 = nn.Identity()
self.mid.block_2 = ResnetBlock(
in_channels=block_in,
out_channels=block_in,
temb_channels=self.temb_ch,
dropout=dropout,
norm_type=self.norm_type,
causality_axis=causality_axis,
)
# upsampling
self.up = nn.ModuleList()
for i_level in reversed(range(self.num_resolutions)):
block = nn.ModuleList()
attn = nn.ModuleList()
block_out = ch * ch_mult[i_level]
for _ in range(self.num_res_blocks + 1):
block.append(
ResnetBlock(
in_channels=block_in,
out_channels=block_out,
temb_channels=self.temb_ch,
dropout=dropout,
norm_type=self.norm_type,
causality_axis=causality_axis,
)
)
block_in = block_out
if curr_res in attn_resolutions:
attn.append(make_attn(block_in, attn_type=self.attn_type, norm_type=self.norm_type))
up = nn.Module()
up.block = block
up.attn = attn
if i_level != 0:
up.upsample = Upsample(block_in, resamp_with_conv, causality_axis=causality_axis)
curr_res = curr_res * 2
self.up.insert(0, up) # prepend to get consistent order
# end
self.norm_out = Normalize(block_in, normtype=self.norm_type)
self.conv_out = make_conv2d(block_in, out_ch, kernel_size=3, stride=1, causality_axis=causality_axis)
def _adjust_output_shape(self, decoded_output, target_shape):
"""
Adjust output shape to match target dimensions for variable-length audio.
This function handles the common case where decoded audio spectrograms need to be
resized to match a specific target shape.
Args:
decoded_output: Tensor of shape (batch, channels, time, frequency)
target_shape: Target shape tuple (batch, channels, time, frequency)
Returns:
Tensor adjusted to match target_shape exactly
"""
# Current output shape: (batch, channels, time, frequency)
_, _, current_time, current_freq = decoded_output.shape
_, target_channels, target_time, target_freq = target_shape
# Step 1: Crop first to avoid exceeding target dimensions
decoded_output = decoded_output[
:, :target_channels, : min(current_time, target_time), : min(current_freq, target_freq)
]
# Step 2: Calculate padding needed for time and frequency dimensions
time_padding_needed = target_time - decoded_output.shape[2]
freq_padding_needed = target_freq - decoded_output.shape[3]
# Step 3: Apply padding if needed
if time_padding_needed > 0 or freq_padding_needed > 0:
# PyTorch padding format: (pad_left, pad_right, pad_top, pad_bottom)
# For audio: pad_left/right = frequency, pad_top/bottom = time
padding = (
0,
max(freq_padding_needed, 0), # frequency padding (left, right)
0,
max(time_padding_needed, 0), # time padding (top, bottom)
)
decoded_output = F.pad(decoded_output, padding)
# Step 4: Final safety crop to ensure exact target shape
decoded_output = decoded_output[:, :target_channels, :target_time, :target_freq]
return decoded_output
def get_config(self):
return {
"ch": self.ch,
"out_ch": self.out_ch,
"ch_mult": self.ch_mult,
"num_res_blocks": self.num_res_blocks,
"in_channels": self.in_channels,
"resolution": self.resolution,
"z_channels": self.z_channels,
}
def forward(self, latent_features, target_shape=None):
"""
Decode latent features back to audio spectrograms.
Args:
latent_features: Encoded latent representation of shape (batch, channels, height, width)
target_shape: Optional target output shape (batch, channels, time, frequency)
If provided, output will be cropped/padded to match this shape
Returns:
Reconstructed audio spectrogram of shape (batch, channels, time, frequency)
"""
assert target_shape is not None, "Target shape is required for CausalAudioAutoencoder Decoder"
# Transform latent features to decoder's internal feature dimension
hidden_features = self.conv_in(latent_features)
# Middle processing
hidden_features = self.mid.block_1(hidden_features, temb=None)
hidden_features = self.mid.attn_1(hidden_features)
hidden_features = self.mid.block_2(hidden_features, temb=None)
# Upsampling
# Progressively increase spatial resolution from lowest to highest
for resolution_level in reversed(range(self.num_resolutions)):
# Apply residual blocks at current resolution level
for block_index in range(self.num_res_blocks + 1):
hidden_features = self.up[resolution_level].block[block_index](hidden_features, temb=None)
if len(self.up[resolution_level].attn) > 0:
hidden_features = self.up[resolution_level].attn[block_index](hidden_features)
if resolution_level != 0:
hidden_features = self.up[resolution_level].upsample(hidden_features)
# Output
if self.give_pre_end:
# Return intermediate features before final processing (for debugging/analysis)
decoded_output = hidden_features
else:
# Standard output path: normalize, activate, and convert to output channels
# Final normalization layer
hidden_features = self.norm_out(hidden_features)
# Apply SiLU (Swish) activation function
hidden_features = self.non_linearity(hidden_features)
# Final convolution to map to output channels (typically 2 for stereo audio)
decoded_output = self.conv_out(hidden_features)
# Optional tanh activation to bound output values to [-1, 1] range
if self.tanh_out:
decoded_output = torch.tanh(decoded_output)
# Adjust shape for audio data
if target_shape is not None:
decoded_output = self._adjust_output_shape(decoded_output, target_shape)
return decoded_output
class processor(nn.Module):
def __init__(self):
super().__init__()
self.register_buffer("std-of-means", torch.empty(128))
self.register_buffer("mean-of-means", torch.empty(128))
def un_normalize(self, x):
return (x * self.get_buffer("std-of-means").to(x)) + self.get_buffer("mean-of-means").to(x)
def normalize(self, x):
return (x - self.get_buffer("mean-of-means").to(x)) / self.get_buffer("std-of-means").to(x)
class CausalAudioAutoencoder(nn.Module):
def __init__(self, config=None):
super().__init__()
if config is None:
config = self._guess_config()
# Extract encoder and decoder configs from the new format
model_config = config.get("model", {}).get("params", {})
variables_config = config.get("variables", {})
self.sampling_rate = variables_config.get(
"sampling_rate",
model_config.get("sampling_rate", config.get("sampling_rate", 16000)),
)
encoder_config = model_config.get("encoder", model_config.get("ddconfig", {}))
decoder_config = model_config.get("decoder", encoder_config)
# Load mel spectrogram parameters
self.mel_bins = encoder_config.get("mel_bins", 64)
self.mel_hop_length = model_config.get("preprocessing", {}).get("stft", {}).get("hop_length", 160)
self.n_fft = model_config.get("preprocessing", {}).get("stft", {}).get("filter_length", 1024)
# Store causality configuration at VAE level (not just in encoder internals)
causality_axis_value = encoder_config.get("causality_axis", CausalityAxis.WIDTH.value)
self.causality_axis = CausalityAxis.str_to_enum(causality_axis_value)
self.is_causal = self.causality_axis == CausalityAxis.HEIGHT
self.encoder = Encoder(**encoder_config)
self.decoder = Decoder(**decoder_config)
self.per_channel_statistics = processor()
def _guess_config(self):
encoder_config = {
# Required parameters - based on ltx-video-av-1679000 model metadata
"ch": 128,
"out_ch": 8,
"ch_mult": [1, 2, 4], # Based on metadata: [1, 2, 4] not [1, 2, 4, 8]
"num_res_blocks": 2,
"attn_resolutions": [], # Based on metadata: empty list, no attention
"dropout": 0.0,
"resamp_with_conv": True,
"in_channels": 2, # stereo
"resolution": 256,
"z_channels": 8,
"double_z": True,
"attn_type": "vanilla",
"mid_block_add_attention": False, # Based on metadata: false
"norm_type": "pixel",
"causality_axis": "height", # Based on metadata
"mel_bins": 64, # Based on metadata: mel_bins = 64
}
decoder_config = {
# Inherits encoder config, can override specific params
**encoder_config,
"out_ch": 2, # Stereo audio output (2 channels)
"give_pre_end": False,
"tanh_out": False,
}
config = {
"_class_name": "CausalAudioAutoencoder",
"sampling_rate": 16000,
"model": {
"params": {
"encoder": encoder_config,
"decoder": decoder_config,
}
},
}
return config
def get_config(self):
return {
"sampling_rate": self.sampling_rate,
"mel_bins": self.mel_bins,
"mel_hop_length": self.mel_hop_length,
"n_fft": self.n_fft,
"causality_axis": self.causality_axis.value,
"is_causal": self.is_causal,
}
def encode(self, x):
return self.encoder(x)
def decode(self, x, target_shape=None):
return self.decoder(x, target_shape=target_shape)

View File

@@ -1,11 +1,11 @@
from typing import Tuple, Union
import threading
import torch
import torch.nn as nn
import comfy.ops
ops = comfy.ops.disable_weight_init
class CausalConv3d(nn.Module):
def __init__(
self,
@@ -42,34 +42,23 @@ class CausalConv3d(nn.Module):
padding_mode=spatial_padding_mode,
groups=groups,
)
self.temporal_cache_state={}
def forward(self, x, causal: bool = True):
tid = threading.get_ident()
cached, is_end = self.temporal_cache_state.get(tid, (None, False))
if cached is None:
padding_length = self.time_kernel_size - 1
if not causal:
padding_length = padding_length // 2
if x.shape[2] == 0:
return x
cached = x[:, :, :1, :, :].repeat((1, 1, padding_length, 1, 1))
pieces = [ cached, x ]
if is_end and not causal:
pieces.append(x[:, :, -1:, :, :].repeat((1, 1, (self.time_kernel_size - 1) // 2, 1, 1)))
needs_caching = not is_end
if needs_caching and x.shape[2] >= self.time_kernel_size - 1:
needs_caching = False
self.temporal_cache_state[tid] = (x[:, :, -(self.time_kernel_size - 1):, :, :], False)
x = torch.cat(pieces, dim=2)
if needs_caching:
self.temporal_cache_state[tid] = (x[:, :, -(self.time_kernel_size - 1):, :, :], False)
return self.conv(x) if x.shape[2] >= self.time_kernel_size else x[:, :, :0, :, :]
if causal:
first_frame_pad = x[:, :, :1, :, :].repeat(
(1, 1, self.time_kernel_size - 1, 1, 1)
)
x = torch.concatenate((first_frame_pad, x), dim=2)
else:
first_frame_pad = x[:, :, :1, :, :].repeat(
(1, 1, (self.time_kernel_size - 1) // 2, 1, 1)
)
last_frame_pad = x[:, :, -1:, :, :].repeat(
(1, 1, (self.time_kernel_size - 1) // 2, 1, 1)
)
x = torch.concatenate((first_frame_pad, x, last_frame_pad), dim=2)
x = self.conv(x)
return x
@property
def weight(self):

View File

@@ -1,5 +1,4 @@
from __future__ import annotations
import threading
import torch
from torch import nn
from functools import partial
@@ -7,35 +6,12 @@ import math
from einops import rearrange
from typing import List, Optional, Tuple, Union
from .conv_nd_factory import make_conv_nd, make_linear_nd
from .causal_conv3d import CausalConv3d
from .pixel_norm import PixelNorm
from ..model import PixArtAlphaCombinedTimestepSizeEmbeddings
import comfy.ops
from comfy.ldm.modules.diffusionmodules.model import torch_cat_if_needed
ops = comfy.ops.disable_weight_init
def mark_conv3d_ended(module):
tid = threading.get_ident()
for _, m in module.named_modules():
if isinstance(m, CausalConv3d):
current = m.temporal_cache_state.get(tid, (None, False))
m.temporal_cache_state[tid] = (current[0], True)
def split2(tensor, split_point, dim=2):
return torch.split(tensor, [split_point, tensor.shape[dim] - split_point], dim=dim)
def add_exchange_cache(dest, cache_in, new_input, dim=2):
if dest is not None:
if cache_in is not None:
cache_to_dest = min(dest.shape[dim], cache_in.shape[dim])
lead_in_dest, dest = split2(dest, cache_to_dest, dim=dim)
lead_in_source, cache_in = split2(cache_in, cache_to_dest, dim=dim)
lead_in_dest.add_(lead_in_source)
body, new_input = split2(new_input, dest.shape[dim], dim)
dest.add_(body)
return torch_cat_if_needed([cache_in, new_input], dim=dim)
class Encoder(nn.Module):
r"""
The `Encoder` layer of a variational autoencoder that encodes its input into a latent representation.
@@ -229,7 +205,7 @@ class Encoder(nn.Module):
self.gradient_checkpointing = False
def forward_orig(self, sample: torch.FloatTensor) -> torch.FloatTensor:
def forward(self, sample: torch.FloatTensor) -> torch.FloatTensor:
r"""The forward method of the `Encoder` class."""
sample = patchify(sample, patch_size_hw=self.patch_size, patch_size_t=1)
@@ -278,22 +254,6 @@ class Encoder(nn.Module):
return sample
def forward(self, *args, **kwargs):
#No encoder support so just flag the end so it doesnt use the cache.
mark_conv3d_ended(self)
try:
return self.forward_orig(*args, **kwargs)
finally:
tid = threading.get_ident()
for _, module in self.named_modules():
# ComfyUI doesn't thread this kind of stuff today, but just in case
# we key on the thread to make it thread safe.
tid = threading.get_ident()
if hasattr(module, "temporal_cache_state"):
module.temporal_cache_state.pop(tid, None)
MAX_CHUNK_SIZE=(128 * 1024 ** 2)
class Decoder(nn.Module):
r"""
@@ -381,6 +341,18 @@ class Decoder(nn.Module):
timestep_conditioning=timestep_conditioning,
spatial_padding_mode=spatial_padding_mode,
)
elif block_name == "attn_res_x":
block = UNetMidBlock3D(
dims=dims,
in_channels=input_channel,
num_layers=block_params["num_layers"],
resnet_groups=norm_num_groups,
norm_layer=norm_layer,
inject_noise=block_params.get("inject_noise", False),
timestep_conditioning=timestep_conditioning,
attention_head_dim=block_params["attention_head_dim"],
spatial_padding_mode=spatial_padding_mode,
)
elif block_name == "res_x_y":
output_channel = output_channel // block_params.get("multiplier", 2)
block = ResnetBlock3D(
@@ -456,9 +428,8 @@ class Decoder(nn.Module):
)
self.last_scale_shift_table = nn.Parameter(torch.empty(2, output_channel))
# def forward(self, sample: torch.FloatTensor, target_shape) -> torch.FloatTensor:
def forward_orig(
def forward(
self,
sample: torch.FloatTensor,
timestep: Optional[torch.Tensor] = None,
@@ -466,7 +437,6 @@ class Decoder(nn.Module):
r"""The forward method of the `Decoder` class."""
batch_size = sample.shape[0]
mark_conv3d_ended(self.conv_in)
sample = self.conv_in(sample, causal=self.causal)
checkpoint_fn = (
@@ -475,12 +445,24 @@ class Decoder(nn.Module):
else lambda x: x
)
timestep_shift_scale = None
scaled_timestep = None
if self.timestep_conditioning:
assert (
timestep is not None
), "should pass timestep with timestep_conditioning=True"
scaled_timestep = timestep * self.timestep_scale_multiplier.to(dtype=sample.dtype, device=sample.device)
for up_block in self.up_blocks:
if self.timestep_conditioning and isinstance(up_block, UNetMidBlock3D):
sample = checkpoint_fn(up_block)(
sample, causal=self.causal, timestep=scaled_timestep
)
else:
sample = checkpoint_fn(up_block)(sample, causal=self.causal)
sample = self.conv_norm_out(sample)
if self.timestep_conditioning:
embedded_timestep = self.last_time_embedder(
timestep=scaled_timestep.flatten(),
resolution=None,
@@ -501,62 +483,16 @@ class Decoder(nn.Module):
embedded_timestep.shape[-2],
embedded_timestep.shape[-1],
)
timestep_shift_scale = ada_values.unbind(dim=1)
shift, scale = ada_values.unbind(dim=1)
sample = sample * (1 + scale) + shift
output = []
def run_up(idx, sample, ended):
if idx >= len(self.up_blocks):
sample = self.conv_norm_out(sample)
if timestep_shift_scale is not None:
shift, scale = timestep_shift_scale
sample = sample * (1 + scale) + shift
sample = self.conv_act(sample)
if ended:
mark_conv3d_ended(self.conv_out)
sample = self.conv_out(sample, causal=self.causal)
if sample is not None and sample.shape[2] > 0:
output.append(sample)
return
up_block = self.up_blocks[idx]
if (ended):
mark_conv3d_ended(up_block)
if self.timestep_conditioning and isinstance(up_block, UNetMidBlock3D):
sample = checkpoint_fn(up_block)(
sample, causal=self.causal, timestep=scaled_timestep
)
else:
sample = checkpoint_fn(up_block)(sample, causal=self.causal)
if sample is None or sample.shape[2] == 0:
return
total_bytes = sample.numel() * sample.element_size()
num_chunks = (total_bytes + MAX_CHUNK_SIZE - 1) // MAX_CHUNK_SIZE
samples = torch.chunk(sample, chunks=num_chunks, dim=2)
for chunk_idx, sample1 in enumerate(samples):
run_up(idx + 1, sample1, ended and chunk_idx == len(samples) - 1)
run_up(0, sample, True)
sample = torch.cat(output, dim=2)
sample = self.conv_act(sample)
sample = self.conv_out(sample, causal=self.causal)
sample = unpatchify(sample, patch_size_hw=self.patch_size, patch_size_t=1)
return sample
def forward(self, *args, **kwargs):
try:
return self.forward_orig(*args, **kwargs)
finally:
for _, module in self.named_modules():
#ComfyUI doesn't thread this kind of stuff today, but just incase
#we key on the thread to make it thread safe.
tid = threading.get_ident()
if hasattr(module, "temporal_cache_state"):
module.temporal_cache_state.pop(tid, None)
class UNetMidBlock3D(nn.Module):
"""
@@ -727,22 +663,8 @@ class DepthToSpaceUpsample(nn.Module):
)
self.residual = residual
self.out_channels_reduction_factor = out_channels_reduction_factor
self.temporal_cache_state = {}
def forward(self, x, causal: bool = True, timestep: Optional[torch.Tensor] = None):
tid = threading.get_ident()
cached, drop_first_conv, drop_first_res = self.temporal_cache_state.get(tid, (None, True, True))
y = self.conv(x, causal=causal)
y = rearrange(
y,
"b (c p1 p2 p3) d h w -> b c (d p1) (h p2) (w p3)",
p1=self.stride[0],
p2=self.stride[1],
p3=self.stride[2],
)
if self.stride[0] == 2 and y.shape[2] > 0 and drop_first_conv:
y = y[:, :, 1:, :, :]
drop_first_conv = False
if self.residual:
# Reshape and duplicate the input to match the output shape
x_in = rearrange(
@@ -754,20 +676,21 @@ class DepthToSpaceUpsample(nn.Module):
)
num_repeat = math.prod(self.stride) // self.out_channels_reduction_factor
x_in = x_in.repeat(1, num_repeat, 1, 1, 1)
if self.stride[0] == 2 and x_in.shape[2] > 0 and drop_first_res:
if self.stride[0] == 2:
x_in = x_in[:, :, 1:, :, :]
drop_first_res = False
if y.shape[2] == 0:
y = None
cached = add_exchange_cache(y, cached, x_in, dim=2)
self.temporal_cache_state[tid] = (cached, drop_first_conv, drop_first_res)
else:
self.temporal_cache_state[tid] = (None, drop_first_conv, False)
return y
x = self.conv(x, causal=causal)
x = rearrange(
x,
"b (c p1 p2 p3) d h w -> b c (d p1) (h p2) (w p3)",
p1=self.stride[0],
p2=self.stride[1],
p3=self.stride[2],
)
if self.stride[0] == 2:
x = x[:, :, 1:, :, :]
if self.residual:
x = x + x_in
return x
class LayerNorm(nn.Module):
def __init__(self, dim, eps, elementwise_affine=True) -> None:
@@ -884,8 +807,6 @@ class ResnetBlock3D(nn.Module):
torch.randn(4, in_channels) / in_channels**0.5
)
self.temporal_cache_state={}
def _feed_spatial_noise(
self, hidden_states: torch.FloatTensor, per_channel_scale: torch.FloatTensor
) -> torch.FloatTensor:
@@ -959,12 +880,9 @@ class ResnetBlock3D(nn.Module):
input_tensor = self.conv_shortcut(input_tensor)
tid = threading.get_ident()
cached = self.temporal_cache_state.get(tid, None)
cached = add_exchange_cache(hidden_states, cached, input_tensor, dim=2)
self.temporal_cache_state[tid] = cached
output_tensor = input_tensor + hidden_states
return hidden_states
return output_tensor
def patchify(x, patch_size_hw, patch_size_t=1):

View File

@@ -1,213 +0,0 @@
import torch
import torch.nn.functional as F
import torch.nn as nn
import comfy.ops
import numpy as np
ops = comfy.ops.disable_weight_init
LRELU_SLOPE = 0.1
def get_padding(kernel_size, dilation=1):
return int((kernel_size * dilation - dilation) / 2)
class ResBlock1(torch.nn.Module):
def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
super(ResBlock1, self).__init__()
self.convs1 = nn.ModuleList(
[
ops.Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]),
),
ops.Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1]),
),
ops.Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation[2],
padding=get_padding(kernel_size, dilation[2]),
),
]
)
self.convs2 = nn.ModuleList(
[
ops.Conv1d(
channels,
channels,
kernel_size,
1,
dilation=1,
padding=get_padding(kernel_size, 1),
),
ops.Conv1d(
channels,
channels,
kernel_size,
1,
dilation=1,
padding=get_padding(kernel_size, 1),
),
ops.Conv1d(
channels,
channels,
kernel_size,
1,
dilation=1,
padding=get_padding(kernel_size, 1),
),
]
)
def forward(self, x):
for c1, c2 in zip(self.convs1, self.convs2):
xt = F.leaky_relu(x, LRELU_SLOPE)
xt = c1(xt)
xt = F.leaky_relu(xt, LRELU_SLOPE)
xt = c2(xt)
x = xt + x
return x
class ResBlock2(torch.nn.Module):
def __init__(self, channels, kernel_size=3, dilation=(1, 3)):
super(ResBlock2, self).__init__()
self.convs = nn.ModuleList(
[
ops.Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation[0],
padding=get_padding(kernel_size, dilation[0]),
),
ops.Conv1d(
channels,
channels,
kernel_size,
1,
dilation=dilation[1],
padding=get_padding(kernel_size, dilation[1]),
),
]
)
def forward(self, x):
for c in self.convs:
xt = F.leaky_relu(x, LRELU_SLOPE)
xt = c(xt)
x = xt + x
return x
class Vocoder(torch.nn.Module):
"""
Vocoder model for synthesizing audio from spectrograms, based on: https://github.com/jik876/hifi-gan.
"""
def __init__(self, config=None):
super(Vocoder, self).__init__()
if config is None:
config = self.get_default_config()
resblock_kernel_sizes = config.get("resblock_kernel_sizes", [3, 7, 11])
upsample_rates = config.get("upsample_rates", [6, 5, 2, 2, 2])
upsample_kernel_sizes = config.get("upsample_kernel_sizes", [16, 15, 8, 4, 4])
resblock_dilation_sizes = config.get("resblock_dilation_sizes", [[1, 3, 5], [1, 3, 5], [1, 3, 5]])
upsample_initial_channel = config.get("upsample_initial_channel", 1024)
stereo = config.get("stereo", True)
resblock = config.get("resblock", "1")
self.output_sample_rate = config.get("output_sample_rate")
self.num_kernels = len(resblock_kernel_sizes)
self.num_upsamples = len(upsample_rates)
in_channels = 128 if stereo else 64
self.conv_pre = ops.Conv1d(in_channels, upsample_initial_channel, 7, 1, padding=3)
resblock_class = ResBlock1 if resblock == "1" else ResBlock2
self.ups = nn.ModuleList()
for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
self.ups.append(
ops.ConvTranspose1d(
upsample_initial_channel // (2**i),
upsample_initial_channel // (2 ** (i + 1)),
k,
u,
padding=(k - u) // 2,
)
)
self.resblocks = nn.ModuleList()
for i in range(len(self.ups)):
ch = upsample_initial_channel // (2 ** (i + 1))
for _, (k, d) in enumerate(zip(resblock_kernel_sizes, resblock_dilation_sizes)):
self.resblocks.append(resblock_class(ch, k, d))
out_channels = 2 if stereo else 1
self.conv_post = ops.Conv1d(ch, out_channels, 7, 1, padding=3)
self.upsample_factor = np.prod([self.ups[i].stride[0] for i in range(len(self.ups))])
def get_default_config(self):
"""Generate default configuration for the vocoder."""
config = {
"resblock_kernel_sizes": [3, 7, 11],
"upsample_rates": [6, 5, 2, 2, 2],
"upsample_kernel_sizes": [16, 15, 8, 4, 4],
"resblock_dilation_sizes": [[1, 3, 5], [1, 3, 5], [1, 3, 5]],
"upsample_initial_channel": 1024,
"stereo": True,
"resblock": "1",
}
return config
def forward(self, x):
"""
Forward pass of the vocoder.
Args:
x: Input spectrogram tensor. Can be:
- 3D: (batch_size, channels, time_steps) for mono
- 4D: (batch_size, 2, channels, time_steps) for stereo
Returns:
Audio tensor of shape (batch_size, out_channels, audio_length)
"""
if x.dim() == 4: # stereo
assert x.shape[1] == 2, "Input must have 2 channels for stereo"
x = torch.cat((x[:, 0, :, :], x[:, 1, :, :]), dim=1)
x = self.conv_pre(x)
for i in range(self.num_upsamples):
x = F.leaky_relu(x, LRELU_SLOPE)
x = self.ups[i](x)
xs = None
for j in range(self.num_kernels):
if xs is None:
xs = self.resblocks[i * self.num_kernels + j](x)
else:
xs += self.resblocks[i * self.num_kernels + j](x)
x = xs / self.num_kernels
x = F.leaky_relu(x)
x = self.conv_post(x)
x = torch.tanh(x)
return x

View File

@@ -1,160 +0,0 @@
import torch
from torch import nn
from .model import JointTransformerBlock
class ZImageControlTransformerBlock(JointTransformerBlock):
def __init__(
self,
layer_id: int,
dim: int,
n_heads: int,
n_kv_heads: int,
multiple_of: int,
ffn_dim_multiplier: float,
norm_eps: float,
qk_norm: bool,
modulation=True,
block_id=0,
operation_settings=None,
):
super().__init__(layer_id, dim, n_heads, n_kv_heads, multiple_of, ffn_dim_multiplier, norm_eps, qk_norm, modulation, z_image_modulation=True, operation_settings=operation_settings)
self.block_id = block_id
if block_id == 0:
self.before_proj = operation_settings.get("operations").Linear(self.dim, self.dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.after_proj = operation_settings.get("operations").Linear(self.dim, self.dim, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
def forward(self, c, x, **kwargs):
if self.block_id == 0:
c = self.before_proj(c) + x
c = super().forward(c, **kwargs)
c_skip = self.after_proj(c)
return c_skip, c
class ZImage_Control(torch.nn.Module):
def __init__(
self,
dim: int = 3840,
n_heads: int = 30,
n_kv_heads: int = 30,
multiple_of: int = 256,
ffn_dim_multiplier: float = (8.0 / 3.0),
norm_eps: float = 1e-5,
qk_norm: bool = True,
n_control_layers=6,
control_in_dim=16,
additional_in_dim=0,
broken=False,
refiner_control=False,
dtype=None,
device=None,
operations=None,
**kwargs
):
super().__init__()
operation_settings = {"operations": operations, "device": device, "dtype": dtype}
self.broken = broken
self.additional_in_dim = additional_in_dim
self.control_in_dim = control_in_dim
n_refiner_layers = 2
self.n_control_layers = n_control_layers
self.control_layers = nn.ModuleList(
[
ZImageControlTransformerBlock(
i,
dim,
n_heads,
n_kv_heads,
multiple_of,
ffn_dim_multiplier,
norm_eps,
qk_norm,
block_id=i,
operation_settings=operation_settings,
)
for i in range(self.n_control_layers)
]
)
all_x_embedder = {}
patch_size = 2
f_patch_size = 1
x_embedder = operations.Linear(f_patch_size * patch_size * patch_size * (self.control_in_dim + self.additional_in_dim), dim, bias=True, device=device, dtype=dtype)
all_x_embedder[f"{patch_size}-{f_patch_size}"] = x_embedder
self.refiner_control = refiner_control
self.control_all_x_embedder = nn.ModuleDict(all_x_embedder)
if self.refiner_control:
self.control_noise_refiner = nn.ModuleList(
[
ZImageControlTransformerBlock(
layer_id,
dim,
n_heads,
n_kv_heads,
multiple_of,
ffn_dim_multiplier,
norm_eps,
qk_norm,
block_id=layer_id,
operation_settings=operation_settings,
)
for layer_id in range(n_refiner_layers)
]
)
else:
self.control_noise_refiner = nn.ModuleList(
[
JointTransformerBlock(
layer_id,
dim,
n_heads,
n_kv_heads,
multiple_of,
ffn_dim_multiplier,
norm_eps,
qk_norm,
modulation=True,
z_image_modulation=True,
operation_settings=operation_settings,
)
for layer_id in range(n_refiner_layers)
]
)
def forward(self, cap_feats, control_context, x_freqs_cis, adaln_input):
patch_size = 2
f_patch_size = 1
pH = pW = patch_size
B, C, H, W = control_context.shape
control_context = self.control_all_x_embedder[f"{patch_size}-{f_patch_size}"](control_context.view(B, C, H // pH, pH, W // pW, pW).permute(0, 2, 4, 3, 5, 1).flatten(3).flatten(1, 2))
x_attn_mask = None
if not self.refiner_control:
for layer in self.control_noise_refiner:
control_context = layer(control_context, x_attn_mask, x_freqs_cis[:control_context.shape[0], :control_context.shape[1]], adaln_input)
return control_context
def forward_noise_refiner_block(self, layer_id, control_context, x, x_attn_mask, x_freqs_cis, adaln_input):
if self.refiner_control:
if self.broken:
if layer_id == 0:
return self.control_layers[layer_id](control_context, x, x_mask=x_attn_mask, freqs_cis=x_freqs_cis[:control_context.shape[0], :control_context.shape[1]], adaln_input=adaln_input)
if layer_id > 0:
out = None
for i in range(1, len(self.control_layers)):
o, control_context = self.control_layers[i](control_context, x, x_mask=x_attn_mask, freqs_cis=x_freqs_cis[:control_context.shape[0], :control_context.shape[1]], adaln_input=adaln_input)
if out is None:
out = o
return (out, control_context)
else:
return self.control_noise_refiner[layer_id](control_context, x, x_mask=x_attn_mask, freqs_cis=x_freqs_cis[:control_context.shape[0], :control_context.shape[1]], adaln_input=adaln_input)
else:
return (None, control_context)
def forward_control_block(self, layer_id, control_context, x, x_attn_mask, x_freqs_cis, adaln_input):
return self.control_layers[layer_id](control_context, x, x_mask=x_attn_mask, freqs_cis=x_freqs_cis[:control_context.shape[0], :control_context.shape[1]], adaln_input=adaln_input)

View File

@@ -11,64 +11,16 @@ import comfy.ldm.common_dit
from comfy.ldm.modules.diffusionmodules.mmdit import TimestepEmbedder
from comfy.ldm.modules.attention import optimized_attention_masked
from comfy.ldm.flux.layers import EmbedND
from comfy.ldm.flux.math import apply_rope
import comfy.patcher_extension
import comfy.utils
def invert_slices(slices, length):
sorted_slices = sorted(slices)
result = []
current = 0
for start, end in sorted_slices:
if current < start:
result.append((current, start))
current = max(current, end)
if current < length:
result.append((current, length))
return result
def modulate(x, scale, timestep_zero_index=None):
if timestep_zero_index is None:
return x * (1 + scale.unsqueeze(1))
else:
scale = (1 + scale.unsqueeze(1))
actual_batch = scale.size(0) // 2
slices = timestep_zero_index
invert = invert_slices(timestep_zero_index, x.shape[1])
for s in slices:
x[:, s[0]:s[1]] *= scale[actual_batch:]
for s in invert:
x[:, s[0]:s[1]] *= scale[:actual_batch]
return x
def apply_gate(gate, x, timestep_zero_index=None):
if timestep_zero_index is None:
return gate * x
else:
actual_batch = gate.size(0) // 2
slices = timestep_zero_index
invert = invert_slices(timestep_zero_index, x.shape[1])
for s in slices:
x[:, s[0]:s[1]] *= gate[actual_batch:]
for s in invert:
x[:, s[0]:s[1]] *= gate[:actual_batch]
return x
def modulate(x, scale):
return x * (1 + scale.unsqueeze(1))
#############################################################################
# Core NextDiT Model #
#############################################################################
def clamp_fp16(x):
if x.dtype == torch.float16:
return torch.nan_to_num(x, nan=0.0, posinf=65504, neginf=-65504)
return x
class JointAttention(nn.Module):
"""Multi-head attention module."""
@@ -79,7 +31,6 @@ class JointAttention(nn.Module):
n_heads: int,
n_kv_heads: Optional[int],
qk_norm: bool,
out_bias: bool = False,
operation_settings={},
):
"""
@@ -108,7 +59,7 @@ class JointAttention(nn.Module):
self.out = operation_settings.get("operations").Linear(
n_heads * self.head_dim,
dim,
bias=out_bias,
bias=False,
device=operation_settings.get("device"),
dtype=operation_settings.get("dtype"),
)
@@ -119,6 +70,35 @@ class JointAttention(nn.Module):
else:
self.q_norm = self.k_norm = nn.Identity()
@staticmethod
def apply_rotary_emb(
x_in: torch.Tensor,
freqs_cis: torch.Tensor,
) -> torch.Tensor:
"""
Apply rotary embeddings to input tensors using the given frequency
tensor.
This function applies rotary embeddings to the given query 'xq' and
key 'xk' tensors using the provided frequency tensor 'freqs_cis'. The
input tensors are reshaped as complex numbers, and the frequency tensor
is reshaped for broadcasting compatibility. The resulting tensors
contain rotary embeddings and are returned as real tensors.
Args:
x_in (torch.Tensor): Query or Key tensor to apply rotary embeddings.
freqs_cis (torch.Tensor): Precomputed frequency tensor for complex
exponentials.
Returns:
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor
and key tensor with rotary embeddings.
"""
t_ = x_in.reshape(*x_in.shape[:-1], -1, 1, 2)
t_out = freqs_cis[..., 0] * t_[..., 0] + freqs_cis[..., 1] * t_[..., 1]
return t_out.reshape(*x_in.shape)
def forward(
self,
x: torch.Tensor,
@@ -154,7 +134,8 @@ class JointAttention(nn.Module):
xq = self.q_norm(xq)
xk = self.k_norm(xk)
xq, xk = apply_rope(xq, xk, freqs_cis)
xq = JointAttention.apply_rotary_emb(xq, freqs_cis=freqs_cis)
xk = JointAttention.apply_rotary_emb(xk, freqs_cis=freqs_cis)
n_rep = self.n_local_heads // self.n_local_kv_heads
if n_rep >= 1:
@@ -216,7 +197,7 @@ class FeedForward(nn.Module):
# @torch.compile
def _forward_silu_gating(self, x1, x3):
return clamp_fp16(F.silu(x1) * x3)
return F.silu(x1) * x3
def forward(self, x):
return self.w2(self._forward_silu_gating(self.w1(x), self.w3(x)))
@@ -234,8 +215,6 @@ class JointTransformerBlock(nn.Module):
norm_eps: float,
qk_norm: bool,
modulation=True,
z_image_modulation=False,
attn_out_bias=False,
operation_settings={},
) -> None:
"""
@@ -256,10 +235,10 @@ class JointTransformerBlock(nn.Module):
super().__init__()
self.dim = dim
self.head_dim = dim // n_heads
self.attention = JointAttention(dim, n_heads, n_kv_heads, qk_norm, out_bias=attn_out_bias, operation_settings=operation_settings)
self.attention = JointAttention(dim, n_heads, n_kv_heads, qk_norm, operation_settings=operation_settings)
self.feed_forward = FeedForward(
dim=dim,
hidden_dim=dim,
hidden_dim=4 * dim,
multiple_of=multiple_of,
ffn_dim_multiplier=ffn_dim_multiplier,
operation_settings=operation_settings,
@@ -273,27 +252,16 @@ class JointTransformerBlock(nn.Module):
self.modulation = modulation
if modulation:
if z_image_modulation:
self.adaLN_modulation = nn.Sequential(
operation_settings.get("operations").Linear(
min(dim, 256),
4 * dim,
bias=True,
device=operation_settings.get("device"),
dtype=operation_settings.get("dtype"),
),
)
else:
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
operation_settings.get("operations").Linear(
min(dim, 1024),
4 * dim,
bias=True,
device=operation_settings.get("device"),
dtype=operation_settings.get("dtype"),
),
)
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
operation_settings.get("operations").Linear(
min(dim, 1024),
4 * dim,
bias=True,
device=operation_settings.get("device"),
dtype=operation_settings.get("dtype"),
),
)
def forward(
self,
@@ -301,7 +269,6 @@ class JointTransformerBlock(nn.Module):
x_mask: torch.Tensor,
freqs_cis: torch.Tensor,
adaln_input: Optional[torch.Tensor]=None,
timestep_zero_index=None,
transformer_options={},
):
"""
@@ -320,28 +287,28 @@ class JointTransformerBlock(nn.Module):
assert adaln_input is not None
scale_msa, gate_msa, scale_mlp, gate_mlp = self.adaLN_modulation(adaln_input).chunk(4, dim=1)
x = x + apply_gate(gate_msa.unsqueeze(1).tanh(), self.attention_norm2(
clamp_fp16(self.attention(
modulate(self.attention_norm1(x), scale_msa, timestep_zero_index=timestep_zero_index),
x = x + gate_msa.unsqueeze(1).tanh() * self.attention_norm2(
self.attention(
modulate(self.attention_norm1(x), scale_msa),
x_mask,
freqs_cis,
transformer_options=transformer_options,
))), timestep_zero_index=timestep_zero_index
)
)
x = x + apply_gate(gate_mlp.unsqueeze(1).tanh(), self.ffn_norm2(
clamp_fp16(self.feed_forward(
modulate(self.ffn_norm1(x), scale_mlp, timestep_zero_index=timestep_zero_index),
))), timestep_zero_index=timestep_zero_index
x = x + gate_mlp.unsqueeze(1).tanh() * self.ffn_norm2(
self.feed_forward(
modulate(self.ffn_norm1(x), scale_mlp),
)
)
else:
assert adaln_input is None
x = x + self.attention_norm2(
clamp_fp16(self.attention(
self.attention(
self.attention_norm1(x),
x_mask,
freqs_cis,
transformer_options=transformer_options,
))
)
)
x = x + self.ffn_norm2(
self.feed_forward(
@@ -356,7 +323,7 @@ class FinalLayer(nn.Module):
The final layer of NextDiT.
"""
def __init__(self, hidden_size, patch_size, out_channels, z_image_modulation=False, operation_settings={}):
def __init__(self, hidden_size, patch_size, out_channels, operation_settings={}):
super().__init__()
self.norm_final = operation_settings.get("operations").LayerNorm(
hidden_size,
@@ -373,15 +340,10 @@ class FinalLayer(nn.Module):
dtype=operation_settings.get("dtype"),
)
if z_image_modulation:
min_mod = 256
else:
min_mod = 1024
self.adaLN_modulation = nn.Sequential(
nn.SiLU(),
operation_settings.get("operations").Linear(
min(hidden_size, min_mod),
min(hidden_size, 1024),
hidden_size,
bias=True,
device=operation_settings.get("device"),
@@ -389,37 +351,13 @@ class FinalLayer(nn.Module):
),
)
def forward(self, x, c, timestep_zero_index=None):
def forward(self, x, c):
scale = self.adaLN_modulation(c)
x = modulate(self.norm_final(x), scale, timestep_zero_index=timestep_zero_index)
x = modulate(self.norm_final(x), scale)
x = self.linear(x)
return x
def pad_zimage(feats, pad_token, pad_tokens_multiple):
pad_extra = (-feats.shape[1]) % pad_tokens_multiple
return torch.cat((feats, pad_token.to(device=feats.device, dtype=feats.dtype, copy=True).unsqueeze(0).repeat(feats.shape[0], pad_extra, 1)), dim=1), pad_extra
def pos_ids_x(start_t, H_tokens, W_tokens, batch_size, device, transformer_options={}):
rope_options = transformer_options.get("rope_options", None)
h_scale = 1.0
w_scale = 1.0
h_start = 0
w_start = 0
if rope_options is not None:
h_scale = rope_options.get("scale_y", 1.0)
w_scale = rope_options.get("scale_x", 1.0)
h_start = rope_options.get("shift_y", 0.0)
w_start = rope_options.get("shift_x", 0.0)
x_pos_ids = torch.zeros((batch_size, H_tokens * W_tokens, 3), dtype=torch.float32, device=device)
x_pos_ids[:, :, 0] = start_t
x_pos_ids[:, :, 1] = (torch.arange(H_tokens, dtype=torch.float32, device=device) * h_scale + h_start).view(-1, 1).repeat(1, W_tokens).flatten()
x_pos_ids[:, :, 2] = (torch.arange(W_tokens, dtype=torch.float32, device=device) * w_scale + w_start).view(1, -1).repeat(H_tokens, 1).flatten()
return x_pos_ids
class NextDiT(nn.Module):
"""
Diffusion model with a Transformer backbone.
@@ -435,23 +373,16 @@ class NextDiT(nn.Module):
n_heads: int = 32,
n_kv_heads: Optional[int] = None,
multiple_of: int = 256,
ffn_dim_multiplier: float = 4.0,
ffn_dim_multiplier: Optional[float] = None,
norm_eps: float = 1e-5,
qk_norm: bool = False,
cap_feat_dim: int = 5120,
axes_dims: List[int] = (16, 56, 56),
axes_lens: List[int] = (1, 512, 512),
rope_theta=10000.0,
z_image_modulation=False,
time_scale=1.0,
pad_tokens_multiple=None,
clip_text_dim=None,
siglip_feat_dim=None,
image_model=None,
device=None,
dtype=None,
operations=None,
**kwargs,
) -> None:
super().__init__()
self.dtype = dtype
@@ -459,8 +390,6 @@ class NextDiT(nn.Module):
self.in_channels = in_channels
self.out_channels = in_channels
self.patch_size = patch_size
self.time_scale = time_scale
self.pad_tokens_multiple = pad_tokens_multiple
self.x_embedder = operation_settings.get("operations").Linear(
in_features=patch_size * patch_size * in_channels,
@@ -482,7 +411,6 @@ class NextDiT(nn.Module):
norm_eps,
qk_norm,
modulation=True,
z_image_modulation=z_image_modulation,
operation_settings=operation_settings,
)
for layer_id in range(n_refiner_layers)
@@ -506,7 +434,7 @@ class NextDiT(nn.Module):
]
)
self.t_embedder = TimestepEmbedder(min(dim, 1024), output_size=256 if z_image_modulation else None, **operation_settings)
self.t_embedder = TimestepEmbedder(min(dim, 1024), **operation_settings)
self.cap_embedder = nn.Sequential(
operation_settings.get("operations").RMSNorm(cap_feat_dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")),
operation_settings.get("operations").Linear(
@@ -518,31 +446,6 @@ class NextDiT(nn.Module):
),
)
self.clip_text_pooled_proj = None
if clip_text_dim is not None:
self.clip_text_dim = clip_text_dim
self.clip_text_pooled_proj = nn.Sequential(
operation_settings.get("operations").RMSNorm(clip_text_dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")),
operation_settings.get("operations").Linear(
clip_text_dim,
clip_text_dim,
bias=True,
device=operation_settings.get("device"),
dtype=operation_settings.get("dtype"),
),
)
self.time_text_embed = nn.Sequential(
nn.SiLU(),
operation_settings.get("operations").Linear(
min(dim, 1024) + clip_text_dim,
min(dim, 1024),
bias=True,
device=operation_settings.get("device"),
dtype=operation_settings.get("dtype"),
),
)
self.layers = nn.ModuleList(
[
JointTransformerBlock(
@@ -554,60 +457,18 @@ class NextDiT(nn.Module):
ffn_dim_multiplier,
norm_eps,
qk_norm,
z_image_modulation=z_image_modulation,
attn_out_bias=False,
operation_settings=operation_settings,
)
for layer_id in range(n_layers)
]
)
if siglip_feat_dim is not None:
self.siglip_embedder = nn.Sequential(
operation_settings.get("operations").RMSNorm(siglip_feat_dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype")),
operation_settings.get("operations").Linear(
siglip_feat_dim,
dim,
bias=True,
device=operation_settings.get("device"),
dtype=operation_settings.get("dtype"),
),
)
self.siglip_refiner = nn.ModuleList(
[
JointTransformerBlock(
layer_id,
dim,
n_heads,
n_kv_heads,
multiple_of,
ffn_dim_multiplier,
norm_eps,
qk_norm,
modulation=False,
operation_settings=operation_settings,
)
for layer_id in range(n_refiner_layers)
]
)
self.siglip_pad_token = nn.Parameter(torch.empty((1, dim), device=device, dtype=dtype))
else:
self.siglip_embedder = None
self.siglip_refiner = None
self.siglip_pad_token = None
# This norm final is in the lumina 2.0 code but isn't actually used for anything.
# self.norm_final = operation_settings.get("operations").RMSNorm(dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.final_layer = FinalLayer(dim, patch_size, self.out_channels, z_image_modulation=z_image_modulation, operation_settings=operation_settings)
if self.pad_tokens_multiple is not None:
self.x_pad_token = nn.Parameter(torch.empty((1, dim), device=device, dtype=dtype))
self.cap_pad_token = nn.Parameter(torch.empty((1, dim), device=device, dtype=dtype))
self.norm_final = operation_settings.get("operations").RMSNorm(dim, eps=norm_eps, elementwise_affine=True, device=operation_settings.get("device"), dtype=operation_settings.get("dtype"))
self.final_layer = FinalLayer(dim, patch_size, self.out_channels, operation_settings=operation_settings)
assert (dim // n_heads) == sum(axes_dims)
self.axes_dims = axes_dims
self.axes_lens = axes_lens
self.rope_embedder = EmbedND(dim=dim // n_heads, theta=rope_theta, axes_dim=axes_dims)
self.rope_embedder = EmbedND(dim=dim // n_heads, theta=10000.0, axes_dim=axes_dims)
self.dim = dim
self.n_heads = n_heads
@@ -636,168 +497,115 @@ class NextDiT(nn.Module):
imgs = torch.stack(imgs, dim=0)
return imgs
def embed_cap(self, cap_feats=None, offset=0, bsz=1, device=None, dtype=None):
if cap_feats is not None:
cap_feats = self.cap_embedder(cap_feats)
cap_feats_len = cap_feats.shape[1]
if self.pad_tokens_multiple is not None:
cap_feats, _ = pad_zimage(cap_feats, self.cap_pad_token, self.pad_tokens_multiple)
else:
cap_feats_len = 0
cap_feats = self.cap_pad_token.to(device=device, dtype=dtype, copy=True).unsqueeze(0).repeat(bsz, self.pad_tokens_multiple, 1)
cap_pos_ids = torch.zeros(bsz, cap_feats.shape[1], 3, dtype=torch.float32, device=device)
cap_pos_ids[:, :, 0] = torch.arange(cap_feats.shape[1], dtype=torch.float32, device=device) + 1.0 + offset
embeds = (cap_feats,)
freqs_cis = (self.rope_embedder(cap_pos_ids).movedim(1, 2),)
return embeds, freqs_cis, cap_feats_len
def embed_all(self, x, cap_feats=None, siglip_feats=None, offset=0, omni=False, transformer_options={}):
bsz = 1
pH = pW = self.patch_size
device = x.device
embeds, freqs_cis, cap_feats_len = self.embed_cap(cap_feats, offset=offset, bsz=bsz, device=device, dtype=x.dtype)
if (not omni) or self.siglip_embedder is None:
cap_feats_len = embeds[0].shape[1] + offset
embeds += (None,)
freqs_cis += (None,)
else:
cap_feats_len += offset
if siglip_feats is not None:
b, h, w, c = siglip_feats.shape
siglip_feats = siglip_feats.permute(0, 3, 1, 2).reshape(b, h * w, c)
siglip_feats = self.siglip_embedder(siglip_feats)
siglip_pos_ids = torch.zeros((bsz, siglip_feats.shape[1], 3), dtype=torch.float32, device=device)
siglip_pos_ids[:, :, 0] = cap_feats_len + 2
siglip_pos_ids[:, :, 1] = (torch.linspace(0, h * 8 - 1, steps=h, dtype=torch.float32, device=device).floor()).view(-1, 1).repeat(1, w).flatten()
siglip_pos_ids[:, :, 2] = (torch.linspace(0, w * 8 - 1, steps=w, dtype=torch.float32, device=device).floor()).view(1, -1).repeat(h, 1).flatten()
if self.siglip_pad_token is not None:
siglip_feats, pad_extra = pad_zimage(siglip_feats, self.siglip_pad_token, self.pad_tokens_multiple) # TODO: double check
siglip_pos_ids = torch.nn.functional.pad(siglip_pos_ids, (0, 0, 0, pad_extra))
else:
if self.siglip_pad_token is not None:
siglip_feats = self.siglip_pad_token.to(device=device, dtype=x.dtype, copy=True).unsqueeze(0).repeat(bsz, self.pad_tokens_multiple, 1)
siglip_pos_ids = torch.zeros((bsz, siglip_feats.shape[1], 3), dtype=torch.float32, device=device)
if siglip_feats is None:
embeds += (None,)
freqs_cis += (None,)
else:
embeds += (siglip_feats,)
freqs_cis += (self.rope_embedder(siglip_pos_ids).movedim(1, 2),)
B, C, H, W = x.shape
x = self.x_embedder(x.view(B, C, H // pH, pH, W // pW, pW).permute(0, 2, 4, 3, 5, 1).flatten(3).flatten(1, 2))
x_pos_ids = pos_ids_x(cap_feats_len + 1, H // pH, W // pW, bsz, device, transformer_options=transformer_options)
if self.pad_tokens_multiple is not None:
x, pad_extra = pad_zimage(x, self.x_pad_token, self.pad_tokens_multiple)
x_pos_ids = torch.nn.functional.pad(x_pos_ids, (0, 0, 0, pad_extra))
embeds += (x,)
freqs_cis += (self.rope_embedder(x_pos_ids).movedim(1, 2),)
return embeds, freqs_cis, cap_feats_len + len(freqs_cis) - 1
def patchify_and_embed(
self, x: torch.Tensor, cap_feats: torch.Tensor, cap_mask: torch.Tensor, t: torch.Tensor, num_tokens, ref_latents=[], ref_contexts=[], siglip_feats=[], transformer_options={}
self, x: List[torch.Tensor] | torch.Tensor, cap_feats: torch.Tensor, cap_mask: torch.Tensor, t: torch.Tensor, num_tokens, transformer_options={}
) -> Tuple[torch.Tensor, torch.Tensor, List[Tuple[int, int]], List[int], torch.Tensor]:
bsz = x.shape[0]
cap_mask = None # TODO?
main_siglip = None
orig_x = x
bsz = len(x)
pH = pW = self.patch_size
device = x[0].device
dtype = x[0].dtype
embeds = ([], [], [])
freqs_cis = ([], [], [])
leftover_cap = []
if cap_mask is not None:
l_effective_cap_len = cap_mask.sum(dim=1).tolist()
else:
l_effective_cap_len = [num_tokens] * bsz
start_t = 0
omni = len(ref_latents) > 0
if omni:
for i, ref in enumerate(ref_latents):
if i < len(ref_contexts):
ref_con = ref_contexts[i]
else:
ref_con = None
if i < len(siglip_feats):
sig_feat = siglip_feats[i]
else:
sig_feat = None
if cap_mask is not None and not torch.is_floating_point(cap_mask):
cap_mask = (cap_mask - 1).to(dtype) * torch.finfo(dtype).max
out = self.embed_all(ref, ref_con, sig_feat, offset=start_t, omni=omni, transformer_options=transformer_options)
for i, e in enumerate(out[0]):
if e is not None:
embeds[i].append(comfy.utils.repeat_to_batch_size(e, bsz))
freqs_cis[i].append(out[1][i])
start_t = out[2]
leftover_cap = ref_contexts[len(ref_latents):]
img_sizes = [(img.size(1), img.size(2)) for img in x]
l_effective_img_len = [(H // pH) * (W // pW) for (H, W) in img_sizes]
H, W = x.shape[-2], x.shape[-1]
img_sizes = [(H, W)] * bsz
out = self.embed_all(x, cap_feats, main_siglip, offset=start_t, omni=omni, transformer_options=transformer_options)
img_len = out[0][-1].shape[1]
cap_len = out[0][0].shape[1]
for i, e in enumerate(out[0]):
if e is not None:
e = comfy.utils.repeat_to_batch_size(e, bsz)
embeds[i].append(e)
freqs_cis[i].append(out[1][i])
start_t = out[2]
max_seq_len = max(
(cap_len+img_len for cap_len, img_len in zip(l_effective_cap_len, l_effective_img_len))
)
max_cap_len = max(l_effective_cap_len)
max_img_len = max(l_effective_img_len)
for cap in leftover_cap:
out = self.embed_cap(cap, offset=start_t, bsz=bsz, device=x.device, dtype=x.dtype)
cap_len += out[0][0].shape[1]
embeds[0].append(comfy.utils.repeat_to_batch_size(out[0][0], bsz))
freqs_cis[0].append(out[1][0])
start_t += out[2]
position_ids = torch.zeros(bsz, max_seq_len, 3, dtype=torch.float32, device=device)
patches = transformer_options.get("patches", {})
for i in range(bsz):
cap_len = l_effective_cap_len[i]
img_len = l_effective_img_len[i]
H, W = img_sizes[i]
H_tokens, W_tokens = H // pH, W // pW
assert H_tokens * W_tokens == img_len
rope_options = transformer_options.get("rope_options", None)
h_scale = 1.0
w_scale = 1.0
h_start = 0
w_start = 0
if rope_options is not None:
h_scale = rope_options.get("scale_y", 1.0)
w_scale = rope_options.get("scale_x", 1.0)
h_start = rope_options.get("shift_y", 0.0)
w_start = rope_options.get("shift_x", 0.0)
position_ids[i, :cap_len, 0] = torch.arange(cap_len, dtype=torch.float32, device=device)
position_ids[i, cap_len:cap_len+img_len, 0] = cap_len
row_ids = (torch.arange(H_tokens, dtype=torch.float32, device=device) * h_scale + h_start).view(-1, 1).repeat(1, W_tokens).flatten()
col_ids = (torch.arange(W_tokens, dtype=torch.float32, device=device) * w_scale + w_start).view(1, -1).repeat(H_tokens, 1).flatten()
position_ids[i, cap_len:cap_len+img_len, 1] = row_ids
position_ids[i, cap_len:cap_len+img_len, 2] = col_ids
freqs_cis = self.rope_embedder(position_ids).movedim(1, 2).to(dtype)
# build freqs_cis for cap and image individually
cap_freqs_cis_shape = list(freqs_cis.shape)
# cap_freqs_cis_shape[1] = max_cap_len
cap_freqs_cis_shape[1] = cap_feats.shape[1]
cap_freqs_cis = torch.zeros(*cap_freqs_cis_shape, device=device, dtype=freqs_cis.dtype)
img_freqs_cis_shape = list(freqs_cis.shape)
img_freqs_cis_shape[1] = max_img_len
img_freqs_cis = torch.zeros(*img_freqs_cis_shape, device=device, dtype=freqs_cis.dtype)
for i in range(bsz):
cap_len = l_effective_cap_len[i]
img_len = l_effective_img_len[i]
cap_freqs_cis[i, :cap_len] = freqs_cis[i, :cap_len]
img_freqs_cis[i, :img_len] = freqs_cis[i, cap_len:cap_len+img_len]
# refine context
cap_feats = torch.cat(embeds[0], dim=1)
cap_freqs_cis = torch.cat(freqs_cis[0], dim=1)
for layer in self.context_refiner:
cap_feats = layer(cap_feats, cap_mask, cap_freqs_cis, transformer_options=transformer_options)
feats = (cap_feats,)
fc = (cap_freqs_cis,)
# refine image
flat_x = []
for i in range(bsz):
img = x[i]
C, H, W = img.size()
img = img.view(C, H // pH, pH, W // pW, pW).permute(1, 3, 2, 4, 0).flatten(2).flatten(0, 1)
flat_x.append(img)
x = flat_x
padded_img_embed = torch.zeros(bsz, max_img_len, x[0].shape[-1], device=device, dtype=x[0].dtype)
padded_img_mask = torch.zeros(bsz, max_img_len, dtype=dtype, device=device)
for i in range(bsz):
padded_img_embed[i, :l_effective_img_len[i]] = x[i]
padded_img_mask[i, l_effective_img_len[i]:] = -torch.finfo(dtype).max
if omni and len(embeds[1]) > 0:
siglip_mask = None
siglip_feats_combined = torch.cat(embeds[1], dim=1)
siglip_feats_freqs_cis = torch.cat(freqs_cis[1], dim=1)
if self.siglip_refiner is not None:
for layer in self.siglip_refiner:
siglip_feats_combined = layer(siglip_feats_combined, siglip_mask, siglip_feats_freqs_cis, transformer_options=transformer_options)
feats += (siglip_feats_combined,)
fc += (siglip_feats_freqs_cis,)
padded_img_embed = self.x_embedder(padded_img_embed)
padded_img_mask = padded_img_mask.unsqueeze(1)
for layer in self.noise_refiner:
padded_img_embed = layer(padded_img_embed, padded_img_mask, img_freqs_cis, t, transformer_options=transformer_options)
padded_img_mask = None
x = torch.cat(embeds[-1], dim=1)
fc_x = torch.cat(freqs_cis[-1], dim=1)
if omni:
timestep_zero_index = [(x.shape[1] - img_len, x.shape[1])]
if cap_mask is not None:
mask = torch.zeros(bsz, max_seq_len, dtype=dtype, device=device)
mask[:, :max_cap_len] = cap_mask[:, :max_cap_len]
else:
timestep_zero_index = None
mask = None
x_input = x
for i, layer in enumerate(self.noise_refiner):
x = layer(x, padded_img_mask, fc_x, t, timestep_zero_index=timestep_zero_index, transformer_options=transformer_options)
if "noise_refiner" in patches:
for p in patches["noise_refiner"]:
out = p({"img": x, "img_input": x_input, "txt": cap_feats, "pe": fc_x, "vec": t, "x": orig_x, "block_index": i, "transformer_options": transformer_options, "block_type": "noise_refiner"})
if "img" in out:
x = out["img"]
padded_full_embed = torch.zeros(bsz, max_seq_len, self.dim, device=device, dtype=x[0].dtype)
for i in range(bsz):
cap_len = l_effective_cap_len[i]
img_len = l_effective_img_len[i]
padded_full_embed = torch.cat(feats + (x,), dim=1)
if timestep_zero_index is not None:
ind = padded_full_embed.shape[1] - x.shape[1]
timestep_zero_index = [(ind + x.shape[1] - img_len, ind + x.shape[1])]
timestep_zero_index.append((feats[0].shape[1] - cap_len, feats[0].shape[1]))
padded_full_embed[i, :cap_len] = cap_feats[i, :cap_len]
padded_full_embed[i, cap_len:cap_len+img_len] = padded_img_embed[i, :img_len]
mask = None
l_effective_cap_len = [padded_full_embed.shape[1] - img_len] * bsz
return padded_full_embed, mask, img_sizes, l_effective_cap_len, torch.cat(fc + (fc_x,), dim=1), timestep_zero_index
return padded_full_embed, mask, img_sizes, l_effective_cap_len, freqs_cis
def forward(self, x, timesteps, context, num_tokens, attention_mask=None, **kwargs):
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
@@ -807,11 +615,7 @@ class NextDiT(nn.Module):
).execute(x, timesteps, context, num_tokens, attention_mask, **kwargs)
# def forward(self, x, t, cap_feats, cap_mask):
def _forward(self, x, timesteps, context, num_tokens, attention_mask=None, ref_latents=[], ref_contexts=[], siglip_feats=[], transformer_options={}, **kwargs):
omni = len(ref_latents) > 0
if omni:
timesteps = torch.cat([timesteps * 0, timesteps], dim=0)
def _forward(self, x, timesteps, context, num_tokens, attention_mask=None, **kwargs):
t = 1.0 - timesteps
cap_feats = context
cap_mask = attention_mask
@@ -823,38 +627,21 @@ class NextDiT(nn.Module):
y: (N,) tensor of text tokens/features
"""
t = self.t_embedder(t * self.time_scale, dtype=x.dtype) # (N, D)
t = self.t_embedder(t, dtype=x.dtype) # (N, D)
adaln_input = t
if self.clip_text_pooled_proj is not None:
pooled = kwargs.get("clip_text_pooled", None)
if pooled is not None:
pooled = self.clip_text_pooled_proj(pooled)
else:
pooled = torch.zeros((x.shape[0], self.clip_text_dim), device=x.device, dtype=x.dtype)
cap_feats = self.cap_embedder(cap_feats) # (N, L, D) # todo check if able to batchify w.o. redundant compute
adaln_input = self.time_text_embed(torch.cat((t, pooled), dim=-1))
patches = transformer_options.get("patches", {})
transformer_options = kwargs.get("transformer_options", {})
x_is_tensor = isinstance(x, torch.Tensor)
img, mask, img_size, cap_size, freqs_cis, timestep_zero_index = self.patchify_and_embed(x, cap_feats, cap_mask, adaln_input, num_tokens, ref_latents=ref_latents, ref_contexts=ref_contexts, siglip_feats=siglip_feats, transformer_options=transformer_options)
freqs_cis = freqs_cis.to(img.device)
x, mask, img_size, cap_size, freqs_cis = self.patchify_and_embed(x, cap_feats, cap_mask, t, num_tokens, transformer_options=transformer_options)
freqs_cis = freqs_cis.to(x.device)
transformer_options["total_blocks"] = len(self.layers)
transformer_options["block_type"] = "double"
img_input = img
for i, layer in enumerate(self.layers):
transformer_options["block_index"] = i
img = layer(img, mask, freqs_cis, adaln_input, timestep_zero_index=timestep_zero_index, transformer_options=transformer_options)
if "double_block" in patches:
for p in patches["double_block"]:
out = p({"img": img[:, cap_size[0]:], "img_input": img_input[:, cap_size[0]:], "txt": img[:, :cap_size[0]], "pe": freqs_cis[:, cap_size[0]:], "vec": adaln_input, "x": x, "block_index": i, "transformer_options": transformer_options})
if "img" in out:
img[:, cap_size[0]:] = out["img"]
if "txt" in out:
img[:, :cap_size[0]] = out["txt"]
for layer in self.layers:
x = layer(x, mask, freqs_cis, adaln_input, transformer_options=transformer_options)
img = self.final_layer(img, adaln_input, timestep_zero_index=timestep_zero_index)
img = self.unpatchify(img, img_size, cap_size, return_tensor=x_is_tensor)[:, :, :h, :w]
return -img
x = self.final_layer(x, adaln_input)
x = self.unpatchify(x, img_size, cap_size, return_tensor=x_is_tensor)[:,:,:h,:w]
return -x

View File

@@ -9,8 +9,6 @@ from comfy.ldm.modules.distributions.distributions import DiagonalGaussianDistri
from comfy.ldm.util import get_obj_from_str, instantiate_from_config
from comfy.ldm.modules.ema import LitEma
import comfy.ops
from einops import rearrange
import comfy.model_management
class DiagonalGaussianRegularizer(torch.nn.Module):
def __init__(self, sample: bool = False):
@@ -181,21 +179,6 @@ class AutoencodingEngineLegacy(AutoencodingEngine):
self.post_quant_conv = conv_op(embed_dim, ddconfig["z_channels"], 1)
self.embed_dim = embed_dim
if ddconfig.get("batch_norm_latent", False):
self.bn_eps = 1e-4
self.bn_momentum = 0.1
self.ps = [2, 2]
self.bn = torch.nn.BatchNorm2d(math.prod(self.ps) * ddconfig["z_channels"],
eps=self.bn_eps,
momentum=self.bn_momentum,
affine=False,
track_running_stats=True,
)
self.bn.eval()
else:
self.bn = None
def get_autoencoder_params(self) -> list:
params = super().get_autoencoder_params()
return params
@@ -218,36 +201,11 @@ class AutoencodingEngineLegacy(AutoencodingEngine):
z = torch.cat(z, 0)
z, reg_log = self.regularization(z)
if self.bn is not None:
z = rearrange(z,
"... c (i pi) (j pj) -> ... (c pi pj) i j",
pi=self.ps[0],
pj=self.ps[1],
)
z = torch.nn.functional.batch_norm(z,
comfy.model_management.cast_to(self.bn.running_mean, dtype=z.dtype, device=z.device),
comfy.model_management.cast_to(self.bn.running_var, dtype=z.dtype, device=z.device),
momentum=self.bn_momentum,
eps=self.bn_eps)
if return_reg_log:
return z, reg_log
return z
def decode(self, z: torch.Tensor, **decoder_kwargs) -> torch.Tensor:
if self.bn is not None:
s = torch.sqrt(comfy.model_management.cast_to(self.bn.running_var.view(1, -1, 1, 1), dtype=z.dtype, device=z.device) + self.bn_eps)
m = comfy.model_management.cast_to(self.bn.running_mean.view(1, -1, 1, 1), dtype=z.dtype, device=z.device)
z = z * s + m
z = rearrange(
z,
"... (c pi pj) i j -> ... c (i pi) (j pj)",
pi=self.ps[0],
pj=self.ps[1],
)
if self.max_batch_size is None:
dec = self.post_quant_conv(z)
dec = self.decoder(dec, **decoder_kwargs)

View File

@@ -30,13 +30,6 @@ except ImportError as e:
raise e
exit(-1)
SAGE_ATTENTION3_IS_AVAILABLE = False
try:
from sageattn3 import sageattn3_blackwell
SAGE_ATTENTION3_IS_AVAILABLE = True
except ImportError:
pass
FLASH_ATTENTION_IS_AVAILABLE = False
try:
from flash_attn import flash_attn_func
@@ -524,7 +517,6 @@ def attention_pytorch(q, k, v, heads, mask=None, attn_precision=None, skip_resha
@wrap_attn
def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False, **kwargs):
exception_fallback = False
if skip_reshape:
b, _, _, dim_head = q.shape
tensor_layout = "HND"
@@ -549,8 +541,6 @@ def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=
out = sageattn(q, k, v, attn_mask=mask, is_causal=False, tensor_layout=tensor_layout)
except Exception as e:
logging.error("Error running sage attention: {}, using pytorch attention instead.".format(e))
exception_fallback = True
if exception_fallback:
if tensor_layout == "NHD":
q, k, v = map(
lambda t: t.transpose(1, 2),
@@ -570,93 +560,6 @@ def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=
out = out.reshape(b, -1, heads * dim_head)
return out
@wrap_attn
def attention3_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False, **kwargs):
exception_fallback = False
if (q.device.type != "cuda" or
q.dtype not in (torch.float16, torch.bfloat16) or
mask is not None):
return attention_pytorch(
q, k, v, heads,
mask=mask,
attn_precision=attn_precision,
skip_reshape=skip_reshape,
skip_output_reshape=skip_output_reshape,
**kwargs
)
if skip_reshape:
B, H, L, D = q.shape
if H != heads:
return attention_pytorch(
q, k, v, heads,
mask=mask,
attn_precision=attn_precision,
skip_reshape=True,
skip_output_reshape=skip_output_reshape,
**kwargs
)
q_s, k_s, v_s = q, k, v
N = q.shape[2]
dim_head = D
else:
B, N, inner_dim = q.shape
if inner_dim % heads != 0:
return attention_pytorch(
q, k, v, heads,
mask=mask,
attn_precision=attn_precision,
skip_reshape=False,
skip_output_reshape=skip_output_reshape,
**kwargs
)
dim_head = inner_dim // heads
if dim_head >= 256 or N <= 1024:
return attention_pytorch(
q, k, v, heads,
mask=mask,
attn_precision=attn_precision,
skip_reshape=skip_reshape,
skip_output_reshape=skip_output_reshape,
**kwargs
)
if not skip_reshape:
q_s, k_s, v_s = map(
lambda t: t.view(B, -1, heads, dim_head).permute(0, 2, 1, 3).contiguous(),
(q, k, v),
)
B, H, L, D = q_s.shape
try:
out = sageattn3_blackwell(q_s, k_s, v_s, is_causal=False)
except Exception as e:
exception_fallback = True
logging.error("Error running SageAttention3: %s, falling back to pytorch attention.", e)
if exception_fallback:
if not skip_reshape:
del q_s, k_s, v_s
return attention_pytorch(
q, k, v, heads,
mask=mask,
attn_precision=attn_precision,
skip_reshape=False,
skip_output_reshape=skip_output_reshape,
**kwargs
)
if skip_reshape:
if not skip_output_reshape:
out = out.permute(0, 2, 1, 3).reshape(B, L, H * D)
else:
if skip_output_reshape:
pass
else:
out = out.permute(0, 2, 1, 3).reshape(B, L, H * D)
return out
try:
@torch.library.custom_op("flash_attention::flash_attn", mutates_args=())
@@ -744,8 +647,6 @@ optimized_attention_masked = optimized_attention
# register core-supported attention functions
if SAGE_ATTENTION_IS_AVAILABLE:
register_attention_function("sage", attention_sage)
if SAGE_ATTENTION3_IS_AVAILABLE:
register_attention_function("sage3", attention3_sage)
if FLASH_ATTENTION_IS_AVAILABLE:
register_attention_function("flash", attention_flash)
if model_management.xformers_enabled():

View File

@@ -211,14 +211,12 @@ class TimestepEmbedder(nn.Module):
Embeds scalar timesteps into vector representations.
"""
def __init__(self, hidden_size, frequency_embedding_size=256, output_size=None, dtype=None, device=None, operations=None):
def __init__(self, hidden_size, frequency_embedding_size=256, dtype=None, device=None, operations=None):
super().__init__()
if output_size is None:
output_size = hidden_size
self.mlp = nn.Sequential(
operations.Linear(frequency_embedding_size, hidden_size, bias=True, dtype=dtype, device=device),
nn.SiLU(),
operations.Linear(hidden_size, output_size, bias=True, dtype=dtype, device=device),
operations.Linear(hidden_size, hidden_size, bias=True, dtype=dtype, device=device),
)
self.frequency_embedding_size = frequency_embedding_size

View File

@@ -13,15 +13,6 @@ if model_management.xformers_enabled_vae():
import xformers
import xformers.ops
def torch_cat_if_needed(xl, dim):
xl = [x for x in xl if x is not None and x.shape[dim] > 0]
if len(xl) > 1:
return torch.cat(xl, dim)
elif len(xl) == 1:
return xl[0]
else:
return None
def get_timestep_embedding(timesteps, embedding_dim):
"""
This matches the implementation in Denoising Diffusion Probabilistic Models:
@@ -52,37 +43,6 @@ def Normalize(in_channels, num_groups=32):
return ops.GroupNorm(num_groups=num_groups, num_channels=in_channels, eps=1e-6, affine=True)
class CarriedConv3d(nn.Module):
def __init__(self, n_channels, out_channels, kernel_size, stride=1, dilation=1, padding=0, **kwargs):
super().__init__()
self.conv = ops.Conv3d(n_channels, out_channels, kernel_size, stride=stride, dilation=dilation, **kwargs)
def forward(self, x):
return self.conv(x)
def conv_carry_causal_3d(xl, op, conv_carry_in=None, conv_carry_out=None):
x = xl[0]
xl.clear()
if isinstance(op, CarriedConv3d):
if conv_carry_in is None:
x = torch.nn.functional.pad(x, (1, 1, 1, 1, 2, 0), mode = 'replicate')
else:
carry_len = conv_carry_in[0].shape[2]
x = torch.nn.functional.pad(x, (1, 1, 1, 1, 2 - carry_len, 0), mode = 'replicate')
x = torch.cat([conv_carry_in.pop(0), x], dim=2)
if conv_carry_out is not None:
to_push = x[:, :, -2:, :, :].clone()
conv_carry_out.append(to_push)
out = op(x)
return out
class VideoConv3d(nn.Module):
def __init__(self, n_channels, out_channels, kernel_size, stride=1, dilation=1, padding_mode='replicate', padding=1, **kwargs):
super().__init__()
@@ -129,24 +89,29 @@ class Upsample(nn.Module):
stride=1,
padding=1)
def forward(self, x, conv_carry_in=None, conv_carry_out=None):
def forward(self, x):
scale_factor = self.scale_factor
if isinstance(scale_factor, (int, float)):
scale_factor = (scale_factor,) * (x.ndim - 2)
if x.ndim == 5 and scale_factor[0] > 1.0:
results = []
if conv_carry_in is None:
first = x[:, :, :1, :, :]
results.append(interpolate_up(first.squeeze(2), scale_factor=scale_factor[1:]).unsqueeze(2))
x = x[:, :, 1:, :, :]
if x.shape[2] > 0:
results.append(interpolate_up(x, scale_factor))
x = torch_cat_if_needed(results, dim=2)
t = x.shape[2]
if t > 1:
a, b = x.split((1, t - 1), dim=2)
del x
b = interpolate_up(b, scale_factor)
else:
a = x
a = interpolate_up(a.squeeze(2), scale_factor=scale_factor[1:]).unsqueeze(2)
if t > 1:
x = torch.cat((a, b), dim=2)
else:
x = a
else:
x = interpolate_up(x, scale_factor)
if self.with_conv:
x = conv_carry_causal_3d([x], self.conv, conv_carry_in, conv_carry_out)
x = self.conv(x)
return x
@@ -162,20 +127,17 @@ class Downsample(nn.Module):
stride=stride,
padding=0)
def forward(self, x, conv_carry_in=None, conv_carry_out=None):
def forward(self, x):
if self.with_conv:
if isinstance(self.conv, CarriedConv3d):
x = conv_carry_causal_3d([x], self.conv, conv_carry_in, conv_carry_out)
elif x.ndim == 4:
if x.ndim == 4:
pad = (0, 1, 0, 1)
mode = "constant"
x = torch.nn.functional.pad(x, pad, mode=mode, value=0)
x = self.conv(x)
elif x.ndim == 5:
pad = (1, 1, 1, 1, 2, 0)
mode = "replicate"
x = torch.nn.functional.pad(x, pad, mode=mode)
x = self.conv(x)
x = self.conv(x)
else:
x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2)
return x
@@ -221,23 +183,23 @@ class ResnetBlock(nn.Module):
stride=1,
padding=0)
def forward(self, x, temb=None, conv_carry_in=None, conv_carry_out=None):
def forward(self, x, temb=None):
h = x
h = self.norm1(h)
h = [ self.swish(h) ]
h = conv_carry_causal_3d(h, self.conv1, conv_carry_in=conv_carry_in, conv_carry_out=conv_carry_out)
h = self.swish(h)
h = self.conv1(h)
if temb is not None:
h = h + self.temb_proj(self.swish(temb))[:,:,None,None]
h = self.norm2(h)
h = self.swish(h)
h = [ self.dropout(h) ]
h = conv_carry_causal_3d(h, self.conv2, conv_carry_in=conv_carry_in, conv_carry_out=conv_carry_out)
h = self.dropout(h)
h = self.conv2(h)
if self.in_channels != self.out_channels:
if self.use_conv_shortcut:
x = conv_carry_causal_3d([x], self.conv_shortcut, conv_carry_in=conv_carry_in, conv_carry_out=conv_carry_out)
x = self.conv_shortcut(x)
else:
x = self.nin_shortcut(x)
@@ -317,7 +279,6 @@ def pytorch_attention(q, k, v):
orig_shape = q.shape
B = orig_shape[0]
C = orig_shape[1]
oom_fallback = False
q, k, v = map(
lambda t: t.view(B, 1, C, -1).transpose(2, 3).contiguous(),
(q, k, v),
@@ -328,8 +289,6 @@ def pytorch_attention(q, k, v):
out = out.transpose(2, 3).reshape(orig_shape)
except model_management.OOM_EXCEPTION:
logging.warning("scaled_dot_product_attention OOMed: switched to slice attention")
oom_fallback = True
if oom_fallback:
out = slice_attention(q.view(B, -1, C), k.view(B, -1, C).transpose(1, 2), v.view(B, -1, C).transpose(1, 2)).reshape(orig_shape)
return out
@@ -397,8 +356,7 @@ class Model(nn.Module):
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
resolution, use_timestep=True, use_linear_attn=False, attn_type="vanilla"):
super().__init__()
if use_linear_attn:
attn_type = "linear"
if use_linear_attn: attn_type = "linear"
self.ch = ch
self.temb_ch = self.ch*4
self.num_resolutions = len(ch_mult)
@@ -552,22 +510,16 @@ class Encoder(nn.Module):
conv3d=False, time_compress=None,
**ignore_kwargs):
super().__init__()
if use_linear_attn:
attn_type = "linear"
if use_linear_attn: attn_type = "linear"
self.ch = ch
self.temb_ch = 0
self.num_resolutions = len(ch_mult)
self.num_res_blocks = num_res_blocks
self.resolution = resolution
self.in_channels = in_channels
self.carried = False
if conv3d:
if not attn_resolutions:
conv_op = CarriedConv3d
self.carried = True
else:
conv_op = VideoConv3d
conv_op = VideoConv3d
mid_attn_conv_op = ops.Conv3d
else:
conv_op = ops.Conv2d
@@ -580,7 +532,6 @@ class Encoder(nn.Module):
stride=1,
padding=1)
self.time_compress = 1
curr_res = resolution
in_ch_mult = (1,)+tuple(ch_mult)
self.in_ch_mult = in_ch_mult
@@ -607,15 +558,10 @@ class Encoder(nn.Module):
if time_compress is not None:
if (self.num_resolutions - 1 - i_level) > math.log2(time_compress):
stride = (1, 2, 2)
else:
self.time_compress *= 2
down.downsample = Downsample(block_in, resamp_with_conv, stride=stride, conv_op=conv_op)
curr_res = curr_res // 2
self.down.append(down)
if time_compress is not None:
self.time_compress = time_compress
# middle
self.mid = nn.Module()
self.mid.block_1 = ResnetBlock(in_channels=block_in,
@@ -641,42 +587,15 @@ class Encoder(nn.Module):
def forward(self, x):
# timestep embedding
temb = None
if self.carried:
xl = [x[:, :, :1, :, :]]
if x.shape[2] > self.time_compress:
tc = self.time_compress
xl += torch.split(x[:, :, 1: 1 + ((x.shape[2] - 1) // tc) * tc, :, :], tc * 2, dim = 2)
x = xl
else:
x = [x]
out = []
conv_carry_in = None
for i, x1 in enumerate(x):
conv_carry_out = []
if i == len(x) - 1:
conv_carry_out = None
# downsampling
x1 = [ x1 ]
h1 = conv_carry_causal_3d(x1, self.conv_in, conv_carry_in, conv_carry_out)
for i_level in range(self.num_resolutions):
for i_block in range(self.num_res_blocks):
h1 = self.down[i_level].block[i_block](h1, temb, conv_carry_in, conv_carry_out)
if len(self.down[i_level].attn) > 0:
assert i == 0 #carried should not happen if attn exists
h1 = self.down[i_level].attn[i_block](h1)
if i_level != self.num_resolutions-1:
h1 = self.down[i_level].downsample(h1, conv_carry_in, conv_carry_out)
out.append(h1)
conv_carry_in = conv_carry_out
h = torch_cat_if_needed(out, dim=2)
del out
# downsampling
h = self.conv_in(x)
for i_level in range(self.num_resolutions):
for i_block in range(self.num_res_blocks):
h = self.down[i_level].block[i_block](h, temb)
if len(self.down[i_level].attn) > 0:
h = self.down[i_level].attn[i_block](h)
if i_level != self.num_resolutions-1:
h = self.down[i_level].downsample(h)
# middle
h = self.mid.block_1(h, temb)
@@ -685,15 +604,15 @@ class Encoder(nn.Module):
# end
h = self.norm_out(h)
h = [ nonlinearity(h) ]
h = conv_carry_causal_3d(h, self.conv_out)
h = nonlinearity(h)
h = self.conv_out(h)
return h
class Decoder(nn.Module):
def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), num_res_blocks,
attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels,
resolution, z_channels, tanh_out=False, use_linear_attn=False,
resolution, z_channels, give_pre_end=False, tanh_out=False, use_linear_attn=False,
conv_out_op=ops.Conv2d,
resnet_op=ResnetBlock,
attn_op=AttnBlock,
@@ -707,18 +626,12 @@ class Decoder(nn.Module):
self.num_res_blocks = num_res_blocks
self.resolution = resolution
self.in_channels = in_channels
self.give_pre_end = give_pre_end
self.tanh_out = tanh_out
self.carried = False
if conv3d:
if not attn_resolutions and resnet_op == ResnetBlock:
conv_op = CarriedConv3d
conv_out_op = CarriedConv3d
self.carried = True
else:
conv_op = VideoConv3d
conv_out_op = VideoConv3d
conv_op = VideoConv3d
conv_out_op = VideoConv3d
mid_attn_conv_op = ops.Conv3d
else:
conv_op = ops.Conv2d
@@ -793,43 +706,29 @@ class Decoder(nn.Module):
temb = None
# z to block_in
h = conv_carry_causal_3d([z], self.conv_in)
h = self.conv_in(z)
# middle
h = self.mid.block_1(h, temb, **kwargs)
h = self.mid.attn_1(h, **kwargs)
h = self.mid.block_2(h, temb, **kwargs)
if self.carried:
h = torch.split(h, 2, dim=2)
else:
h = [ h ]
out = []
conv_carry_in = None
# upsampling
for i, h1 in enumerate(h):
conv_carry_out = []
if i == len(h) - 1:
conv_carry_out = None
for i_level in reversed(range(self.num_resolutions)):
for i_block in range(self.num_res_blocks+1):
h1 = self.up[i_level].block[i_block](h1, temb, conv_carry_in, conv_carry_out, **kwargs)
if len(self.up[i_level].attn) > 0:
assert i == 0 #carried should not happen if attn exists
h1 = self.up[i_level].attn[i_block](h1, **kwargs)
if i_level != 0:
h1 = self.up[i_level].upsample(h1, conv_carry_in, conv_carry_out)
for i_level in reversed(range(self.num_resolutions)):
for i_block in range(self.num_res_blocks+1):
h = self.up[i_level].block[i_block](h, temb, **kwargs)
if len(self.up[i_level].attn) > 0:
h = self.up[i_level].attn[i_block](h, **kwargs)
if i_level != 0:
h = self.up[i_level].upsample(h)
h1 = self.norm_out(h1)
h1 = [ nonlinearity(h1) ]
h1 = conv_carry_causal_3d(h1, self.conv_out, conv_carry_in, conv_carry_out)
if self.tanh_out:
h1 = torch.tanh(h1)
out.append(h1)
conv_carry_in = conv_carry_out
# end
if self.give_pre_end:
return h
out = torch_cat_if_needed(out, dim=2)
return out
h = self.norm_out(h)
h = nonlinearity(h)
h = self.conv_out(h, **kwargs)
if self.tanh_out:
h = torch.tanh(h)
return h

View File

@@ -45,7 +45,7 @@ class LitEma(nn.Module):
shadow_params[sname] = shadow_params[sname].type_as(m_param[key])
shadow_params[sname].sub_(one_minus_decay * (shadow_params[sname] - m_param[key]))
else:
assert key not in self.m_name2s_name
assert not key in self.m_name2s_name
def copy_to(self, model):
m_param = dict(model.named_parameters())
@@ -54,7 +54,7 @@ class LitEma(nn.Module):
if m_param[key].requires_grad:
m_param[key].data.copy_(shadow_params[self.m_name2s_name[key]].data)
else:
assert key not in self.m_name2s_name
assert not key in self.m_name2s_name
def store(self, parameters):
"""

View File

@@ -44,7 +44,7 @@ class QwenImageControlNetModel(QwenImageTransformer2DModel):
txt_start = round(max(((x.shape[-1] + (self.patch_size // 2)) // self.patch_size) // 2, ((x.shape[-2] + (self.patch_size // 2)) // self.patch_size) // 2))
txt_ids = torch.arange(txt_start, txt_start + context.shape[1], device=x.device).reshape(1, -1, 1).repeat(x.shape[0], 1, 3)
ids = torch.cat((txt_ids, img_ids), dim=1)
image_rotary_emb = self.pe_embedder(ids).to(x.dtype).contiguous()
image_rotary_emb = self.pe_embedder(ids).squeeze(1).unsqueeze(2).to(x.dtype)
del ids, txt_ids, img_ids
hidden_states = self.img_in(hidden_states) + self.controlnet_x_embedder(hint)

View File

@@ -10,7 +10,6 @@ from comfy.ldm.modules.attention import optimized_attention_masked
from comfy.ldm.flux.layers import EmbedND
import comfy.ldm.common_dit
import comfy.patcher_extension
from comfy.ldm.flux.math import apply_rope1
class GELU(nn.Module):
def __init__(self, dim_in: int, dim_out: int, approximate: str = "none", bias: bool = True, dtype=None, device=None, operations=None):
@@ -61,7 +60,7 @@ def apply_rotary_emb(x, freqs_cis):
class QwenTimestepProjEmbeddings(nn.Module):
def __init__(self, embedding_dim, pooled_projection_dim, use_additional_t_cond=False, dtype=None, device=None, operations=None):
def __init__(self, embedding_dim, pooled_projection_dim, dtype=None, device=None, operations=None):
super().__init__()
self.time_proj = Timesteps(num_channels=256, flip_sin_to_cos=True, downscale_freq_shift=0, scale=1000)
self.timestep_embedder = TimestepEmbedding(
@@ -72,19 +71,9 @@ class QwenTimestepProjEmbeddings(nn.Module):
operations=operations
)
self.use_additional_t_cond = use_additional_t_cond
if self.use_additional_t_cond:
self.addition_t_embedding = operations.Embedding(2, embedding_dim, device=device, dtype=dtype)
def forward(self, timestep, hidden_states, addition_t_cond=None):
def forward(self, timestep, hidden_states):
timesteps_proj = self.time_proj(timestep)
timesteps_emb = self.timestep_embedder(timesteps_proj.to(dtype=hidden_states.dtype))
if self.use_additional_t_cond:
if addition_t_cond is None:
addition_t_cond = torch.zeros((timesteps_emb.shape[0]), device=timesteps_emb.device, dtype=torch.long)
timesteps_emb += self.addition_t_embedding(addition_t_cond, out_dtype=timesteps_emb.dtype)
return timesteps_emb
@@ -145,40 +134,33 @@ class Attention(nn.Module):
image_rotary_emb: Optional[torch.Tensor] = None,
transformer_options={},
) -> Tuple[torch.Tensor, torch.Tensor]:
batch_size = hidden_states.shape[0]
seq_img = hidden_states.shape[1]
seq_txt = encoder_hidden_states.shape[1]
# Project and reshape to BHND format (batch, heads, seq, dim)
img_query = self.to_q(hidden_states).view(batch_size, seq_img, self.heads, -1).transpose(1, 2).contiguous()
img_key = self.to_k(hidden_states).view(batch_size, seq_img, self.heads, -1).transpose(1, 2).contiguous()
img_value = self.to_v(hidden_states).view(batch_size, seq_img, self.heads, -1).transpose(1, 2)
img_query = self.to_q(hidden_states).unflatten(-1, (self.heads, -1))
img_key = self.to_k(hidden_states).unflatten(-1, (self.heads, -1))
img_value = self.to_v(hidden_states).unflatten(-1, (self.heads, -1))
txt_query = self.add_q_proj(encoder_hidden_states).view(batch_size, seq_txt, self.heads, -1).transpose(1, 2).contiguous()
txt_key = self.add_k_proj(encoder_hidden_states).view(batch_size, seq_txt, self.heads, -1).transpose(1, 2).contiguous()
txt_value = self.add_v_proj(encoder_hidden_states).view(batch_size, seq_txt, self.heads, -1).transpose(1, 2)
txt_query = self.add_q_proj(encoder_hidden_states).unflatten(-1, (self.heads, -1))
txt_key = self.add_k_proj(encoder_hidden_states).unflatten(-1, (self.heads, -1))
txt_value = self.add_v_proj(encoder_hidden_states).unflatten(-1, (self.heads, -1))
img_query = self.norm_q(img_query)
img_key = self.norm_k(img_key)
txt_query = self.norm_added_q(txt_query)
txt_key = self.norm_added_k(txt_key)
joint_query = torch.cat([txt_query, img_query], dim=2)
joint_key = torch.cat([txt_key, img_key], dim=2)
joint_value = torch.cat([txt_value, img_value], dim=2)
joint_query = torch.cat([txt_query, img_query], dim=1)
joint_key = torch.cat([txt_key, img_key], dim=1)
joint_value = torch.cat([txt_value, img_value], dim=1)
joint_query = apply_rope1(joint_query, image_rotary_emb)
joint_key = apply_rope1(joint_key, image_rotary_emb)
joint_query = apply_rotary_emb(joint_query, image_rotary_emb)
joint_key = apply_rotary_emb(joint_key, image_rotary_emb)
if encoder_hidden_states_mask is not None:
attn_mask = torch.zeros((batch_size, 1, seq_txt + seq_img), dtype=hidden_states.dtype, device=hidden_states.device)
attn_mask[:, 0, :seq_txt] = encoder_hidden_states_mask
else:
attn_mask = None
joint_query = joint_query.flatten(start_dim=2)
joint_key = joint_key.flatten(start_dim=2)
joint_value = joint_value.flatten(start_dim=2)
joint_hidden_states = optimized_attention_masked(joint_query, joint_key, joint_value, self.heads,
attn_mask, transformer_options=transformer_options,
skip_reshape=True)
joint_hidden_states = optimized_attention_masked(joint_query, joint_key, joint_value, self.heads, attention_mask, transformer_options=transformer_options)
txt_attn_output = joint_hidden_states[:, :seq_txt, :]
img_attn_output = joint_hidden_states[:, seq_txt:, :]
@@ -234,24 +216,9 @@ class QwenImageTransformerBlock(nn.Module):
operations=operations,
)
def _apply_gate(self, x, y, gate, timestep_zero_index=None):
if timestep_zero_index is not None:
return y + torch.cat((x[:, :timestep_zero_index] * gate[0], x[:, timestep_zero_index:] * gate[1]), dim=1)
else:
return torch.addcmul(y, gate, x)
def _modulate(self, x: torch.Tensor, mod_params: torch.Tensor, timestep_zero_index=None) -> Tuple[torch.Tensor, torch.Tensor]:
def _modulate(self, x: torch.Tensor, mod_params: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
shift, scale, gate = torch.chunk(mod_params, 3, dim=-1)
if timestep_zero_index is not None:
actual_batch = shift.size(0) // 2
shift, shift_0 = shift[:actual_batch], shift[actual_batch:]
scale, scale_0 = scale[:actual_batch], scale[actual_batch:]
gate, gate_0 = gate[:actual_batch], gate[actual_batch:]
reg = torch.addcmul(shift.unsqueeze(1), x[:, :timestep_zero_index], 1 + scale.unsqueeze(1))
zero = torch.addcmul(shift_0.unsqueeze(1), x[:, timestep_zero_index:], 1 + scale_0.unsqueeze(1))
return torch.cat((reg, zero), dim=1), (gate.unsqueeze(1), gate_0.unsqueeze(1))
else:
return torch.addcmul(shift.unsqueeze(1), x, 1 + scale.unsqueeze(1)), gate.unsqueeze(1)
return torch.addcmul(shift.unsqueeze(1), x, 1 + scale.unsqueeze(1)), gate.unsqueeze(1)
def forward(
self,
@@ -260,22 +227,17 @@ class QwenImageTransformerBlock(nn.Module):
encoder_hidden_states_mask: torch.Tensor,
temb: torch.Tensor,
image_rotary_emb: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
timestep_zero_index=None,
transformer_options={},
) -> Tuple[torch.Tensor, torch.Tensor]:
img_mod_params = self.img_mod(temb)
if timestep_zero_index is not None:
temb = temb.chunk(2, dim=0)[0]
txt_mod_params = self.txt_mod(temb)
img_mod1, img_mod2 = img_mod_params.chunk(2, dim=-1)
txt_mod1, txt_mod2 = txt_mod_params.chunk(2, dim=-1)
img_modulated, img_gate1 = self._modulate(self.img_norm1(hidden_states), img_mod1, timestep_zero_index)
del img_mod1
txt_modulated, txt_gate1 = self._modulate(self.txt_norm1(encoder_hidden_states), txt_mod1)
del txt_mod1
img_normed = self.img_norm1(hidden_states)
img_modulated, img_gate1 = self._modulate(img_normed, img_mod1)
txt_normed = self.txt_norm1(encoder_hidden_states)
txt_modulated, txt_gate1 = self._modulate(txt_normed, txt_mod1)
img_attn_output, txt_attn_output = self.attn(
hidden_states=img_modulated,
@@ -284,20 +246,16 @@ class QwenImageTransformerBlock(nn.Module):
image_rotary_emb=image_rotary_emb,
transformer_options=transformer_options,
)
del img_modulated
del txt_modulated
hidden_states = self._apply_gate(img_attn_output, hidden_states, img_gate1, timestep_zero_index)
hidden_states = hidden_states + img_gate1 * img_attn_output
encoder_hidden_states = encoder_hidden_states + txt_gate1 * txt_attn_output
del img_attn_output
del txt_attn_output
del img_gate1
del txt_gate1
img_modulated2, img_gate2 = self._modulate(self.img_norm2(hidden_states), img_mod2, timestep_zero_index)
hidden_states = self._apply_gate(self.img_mlp(img_modulated2), hidden_states, img_gate2, timestep_zero_index)
img_normed2 = self.img_norm2(hidden_states)
img_modulated2, img_gate2 = self._modulate(img_normed2, img_mod2)
hidden_states = torch.addcmul(hidden_states, img_gate2, self.img_mlp(img_modulated2))
txt_modulated2, txt_gate2 = self._modulate(self.txt_norm2(encoder_hidden_states), txt_mod2)
txt_normed2 = self.txt_norm2(encoder_hidden_states)
txt_modulated2, txt_gate2 = self._modulate(txt_normed2, txt_mod2)
encoder_hidden_states = torch.addcmul(encoder_hidden_states, txt_gate2, self.txt_mlp(txt_modulated2))
return encoder_hidden_states, hidden_states
@@ -336,11 +294,10 @@ class QwenImageTransformer2DModel(nn.Module):
num_attention_heads: int = 24,
joint_attention_dim: int = 3584,
pooled_projection_dim: int = 768,
guidance_embeds: bool = False,
axes_dims_rope: Tuple[int, int, int] = (16, 56, 56),
default_ref_method="index",
image_model=None,
final_layer=True,
use_additional_t_cond=False,
dtype=None,
device=None,
operations=None,
@@ -351,14 +308,12 @@ class QwenImageTransformer2DModel(nn.Module):
self.in_channels = in_channels
self.out_channels = out_channels or in_channels
self.inner_dim = num_attention_heads * attention_head_dim
self.default_ref_method = default_ref_method
self.pe_embedder = EmbedND(dim=attention_head_dim, theta=10000, axes_dim=list(axes_dims_rope))
self.time_text_embed = QwenTimestepProjEmbeddings(
embedding_dim=self.inner_dim,
pooled_projection_dim=pooled_projection_dim,
use_additional_t_cond=use_additional_t_cond,
dtype=dtype,
device=device,
operations=operations
@@ -380,9 +335,6 @@ class QwenImageTransformer2DModel(nn.Module):
for _ in range(num_layers)
])
if self.default_ref_method == "index_timestep_zero":
self.register_buffer("__index_timestep_zero__", torch.tensor([]))
if final_layer:
self.norm_out = LastLayer(self.inner_dim, self.inner_dim, dtype=dtype, device=device, operations=operations)
self.proj_out = operations.Linear(self.inner_dim, patch_size * patch_size * self.out_channels, bias=True, dtype=dtype, device=device)
@@ -392,33 +344,27 @@ class QwenImageTransformer2DModel(nn.Module):
patch_size = self.patch_size
hidden_states = comfy.ldm.common_dit.pad_to_patch_size(x, (1, self.patch_size, self.patch_size))
orig_shape = hidden_states.shape
hidden_states = hidden_states.view(orig_shape[0], orig_shape[1], orig_shape[-3], orig_shape[-2] // 2, 2, orig_shape[-1] // 2, 2)
hidden_states = hidden_states.permute(0, 2, 3, 5, 1, 4, 6)
hidden_states = hidden_states.reshape(orig_shape[0], orig_shape[-3] * (orig_shape[-2] // 2) * (orig_shape[-1] // 2), orig_shape[1] * 4)
t_len = t
hidden_states = hidden_states.view(orig_shape[0], orig_shape[1], orig_shape[-2] // 2, 2, orig_shape[-1] // 2, 2)
hidden_states = hidden_states.permute(0, 2, 4, 1, 3, 5)
hidden_states = hidden_states.reshape(orig_shape[0], (orig_shape[-2] // 2) * (orig_shape[-1] // 2), orig_shape[1] * 4)
h_len = ((h + (patch_size // 2)) // patch_size)
w_len = ((w + (patch_size // 2)) // patch_size)
h_offset = ((h_offset + (patch_size // 2)) // patch_size)
w_offset = ((w_offset + (patch_size // 2)) // patch_size)
img_ids = torch.zeros((t_len, h_len, w_len, 3), device=x.device)
img_ids = torch.zeros((h_len, w_len, 3), device=x.device)
img_ids[:, :, 0] = img_ids[:, :, 1] + index
img_ids[:, :, 1] = img_ids[:, :, 1] + torch.linspace(h_offset, h_len - 1 + h_offset, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1) - (h_len // 2)
img_ids[:, :, 2] = img_ids[:, :, 2] + torch.linspace(w_offset, w_len - 1 + w_offset, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0) - (w_len // 2)
return hidden_states, repeat(img_ids, "h w c -> b (h w) c", b=bs), orig_shape
if t_len > 1:
img_ids[:, :, :, 0] = img_ids[:, :, :, 0] + torch.linspace(0, t_len - 1, steps=t_len, device=x.device, dtype=x.dtype).unsqueeze(1).unsqueeze(1)
else:
img_ids[:, :, :, 0] = img_ids[:, :, :, 0] + index
img_ids[:, :, :, 1] = img_ids[:, :, :, 1] + torch.linspace(h_offset, h_len - 1 + h_offset, steps=h_len, device=x.device, dtype=x.dtype).unsqueeze(1).unsqueeze(0) - (h_len // 2)
img_ids[:, :, :, 2] = img_ids[:, :, :, 2] + torch.linspace(w_offset, w_len - 1 + w_offset, steps=w_len, device=x.device, dtype=x.dtype).unsqueeze(0).unsqueeze(0) - (w_len // 2)
return hidden_states, repeat(img_ids, "t h w c -> b (t h w) c", b=bs), orig_shape
def forward(self, x, timestep, context, attention_mask=None, ref_latents=None, additional_t_cond=None, transformer_options={}, **kwargs):
def forward(self, x, timestep, context, attention_mask=None, guidance=None, ref_latents=None, transformer_options={}, **kwargs):
return comfy.patcher_extension.WrapperExecutor.new_class_executor(
self._forward,
self,
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.DIFFUSION_MODEL, transformer_options)
).execute(x, timestep, context, attention_mask, ref_latents, additional_t_cond, transformer_options, **kwargs)
).execute(x, timestep, context, attention_mask, guidance, ref_latents, transformer_options, **kwargs)
def _forward(
self,
@@ -426,8 +372,8 @@ class QwenImageTransformer2DModel(nn.Module):
timesteps,
context,
attention_mask=None,
guidance: torch.Tensor = None,
ref_latents=None,
additional_t_cond=None,
transformer_options={},
control=None,
**kwargs
@@ -436,30 +382,19 @@ class QwenImageTransformer2DModel(nn.Module):
encoder_hidden_states = context
encoder_hidden_states_mask = attention_mask
if encoder_hidden_states_mask is not None and not torch.is_floating_point(encoder_hidden_states_mask):
encoder_hidden_states_mask = (encoder_hidden_states_mask - 1).to(x.dtype) * torch.finfo(x.dtype).max
hidden_states, img_ids, orig_shape = self.process_img(x)
num_embeds = hidden_states.shape[1]
timestep_zero_index = None
if ref_latents is not None:
h = 0
w = 0
index = 0
ref_method = kwargs.get("ref_latents_method", self.default_ref_method)
index_ref_method = (ref_method == "index") or (ref_method == "index_timestep_zero")
negative_ref_method = ref_method == "negative_index"
timestep_zero = ref_method == "index_timestep_zero"
index_ref_method = kwargs.get("ref_latents_method", "index") == "index"
for ref in ref_latents:
if index_ref_method:
index += 1
h_offset = 0
w_offset = 0
elif negative_ref_method:
index -= 1
h_offset = 0
w_offset = 0
else:
index = 1
h_offset = 0
@@ -474,35 +409,35 @@ class QwenImageTransformer2DModel(nn.Module):
kontext, kontext_ids, _ = self.process_img(ref, index=index, h_offset=h_offset, w_offset=w_offset)
hidden_states = torch.cat([hidden_states, kontext], dim=1)
img_ids = torch.cat([img_ids, kontext_ids], dim=1)
if timestep_zero:
if index > 0:
timestep = torch.cat([timestep, timestep * 0], dim=0)
timestep_zero_index = num_embeds
txt_start = round(max(((x.shape[-1] + (self.patch_size // 2)) // self.patch_size) // 2, ((x.shape[-2] + (self.patch_size // 2)) // self.patch_size) // 2))
txt_ids = torch.arange(txt_start, txt_start + context.shape[1], device=x.device).reshape(1, -1, 1).repeat(x.shape[0], 1, 3)
ids = torch.cat((txt_ids, img_ids), dim=1)
image_rotary_emb = self.pe_embedder(ids).to(x.dtype).contiguous()
image_rotary_emb = self.pe_embedder(ids).squeeze(1).unsqueeze(2).to(x.dtype)
del ids, txt_ids, img_ids
hidden_states = self.img_in(hidden_states)
encoder_hidden_states = self.txt_norm(encoder_hidden_states)
encoder_hidden_states = self.txt_in(encoder_hidden_states)
temb = self.time_text_embed(timestep, hidden_states, additional_t_cond)
if guidance is not None:
guidance = guidance * 1000
temb = (
self.time_text_embed(timestep, hidden_states)
if guidance is None
else self.time_text_embed(timestep, guidance, hidden_states)
)
patches_replace = transformer_options.get("patches_replace", {})
patches = transformer_options.get("patches", {})
blocks_replace = patches_replace.get("dit", {})
transformer_options["total_blocks"] = len(self.transformer_blocks)
transformer_options["block_type"] = "double"
for i, block in enumerate(self.transformer_blocks):
transformer_options["block_index"] = i
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["txt"], out["img"] = block(hidden_states=args["img"], encoder_hidden_states=args["txt"], encoder_hidden_states_mask=encoder_hidden_states_mask, temb=args["vec"], image_rotary_emb=args["pe"], timestep_zero_index=timestep_zero_index, transformer_options=args["transformer_options"])
out["txt"], out["img"] = block(hidden_states=args["img"], encoder_hidden_states=args["txt"], encoder_hidden_states_mask=encoder_hidden_states_mask, temb=args["vec"], image_rotary_emb=args["pe"], transformer_options=args["transformer_options"])
return out
out = blocks_replace[("double_block", i)]({"img": hidden_states, "txt": encoder_hidden_states, "vec": temb, "pe": image_rotary_emb, "transformer_options": transformer_options}, {"original_block": block_wrap})
hidden_states = out["img"]
@@ -514,7 +449,6 @@ class QwenImageTransformer2DModel(nn.Module):
encoder_hidden_states_mask=encoder_hidden_states_mask,
temb=temb,
image_rotary_emb=image_rotary_emb,
timestep_zero_index=timestep_zero_index,
transformer_options=transformer_options,
)
@@ -531,12 +465,9 @@ class QwenImageTransformer2DModel(nn.Module):
if add is not None:
hidden_states[:, :add.shape[1]] += add
if timestep_zero_index is not None:
temb = temb.chunk(2, dim=0)[0]
hidden_states = self.norm_out(hidden_states, temb)
hidden_states = self.proj_out(hidden_states)
hidden_states = hidden_states[:, :num_embeds].view(orig_shape[0], orig_shape[-3], orig_shape[-2] // 2, orig_shape[-1] // 2, orig_shape[1], 2, 2)
hidden_states = hidden_states.permute(0, 4, 1, 2, 5, 3, 6)
hidden_states = hidden_states[:, :num_embeds].view(orig_shape[0], orig_shape[-2] // 2, orig_shape[-1] // 2, orig_shape[1], 2, 2)
hidden_states = hidden_states.permute(0, 3, 1, 4, 2, 5)
return hidden_states.reshape(orig_shape)[:, :, :, :x.shape[-2], :x.shape[-1]]

View File

@@ -71,7 +71,7 @@ def count_params(model, verbose=False):
def instantiate_from_config(config):
if "target" not in config:
if not "target" in config:
if config == '__is_first_stage__':
return None
elif config == "__is_unconditional__":

View File

@@ -62,8 +62,6 @@ class WanSelfAttention(nn.Module):
x(Tensor): Shape [B, L, num_heads, C / num_heads]
freqs(Tensor): Rope freqs, shape [1024, C / num_heads / 2]
"""
patches = transformer_options.get("patches", {})
b, s, n, d = *x.shape[:2], self.num_heads, self.head_dim
def qkv_fn_q(x):
@@ -88,10 +86,6 @@ class WanSelfAttention(nn.Module):
transformer_options=transformer_options,
)
if "attn1_patch" in patches:
for p in patches["attn1_patch"]:
x = p({"x": x, "q": q, "k": k, "transformer_options": transformer_options})
x = self.o(x)
return x
@@ -231,8 +225,6 @@ class WanAttentionBlock(nn.Module):
"""
# assert e.dtype == torch.float32
patches = transformer_options.get("patches", {})
if e.ndim < 4:
e = (comfy.model_management.cast_to(self.modulation, dtype=x.dtype, device=x.device) + e).chunk(6, dim=1)
else:
@@ -240,7 +232,6 @@ class WanAttentionBlock(nn.Module):
# assert e[0].dtype == torch.float32
# self-attention
x = x.contiguous() # otherwise implicit in LayerNorm
y = self.self_attn(
torch.addcmul(repeat_e(e[0], x), self.norm1(x), 1 + repeat_e(e[1], x)),
freqs, transformer_options=transformer_options)
@@ -250,11 +241,6 @@ class WanAttentionBlock(nn.Module):
# cross-attention & ffn
x = x + self.cross_attn(self.norm3(x), context, context_img_len=context_img_len, transformer_options=transformer_options)
if "attn2_patch" in patches:
for p in patches["attn2_patch"]:
x = p({"x": x, "transformer_options": transformer_options})
y = self.ffn(torch.addcmul(repeat_e(e[3], x), self.norm2(x), 1 + repeat_e(e[4], x)))
x = torch.addcmul(x, y, repeat_e(e[5], x))
return x
@@ -501,7 +487,7 @@ class WanModel(torch.nn.Module):
self.blocks = nn.ModuleList([
wan_attn_block_class(cross_attn_type, dim, ffn_dim, num_heads,
window_size, qk_norm, cross_attn_norm, eps, operation_settings=operation_settings)
for i in range(num_layers)
for _ in range(num_layers)
])
# head
@@ -554,7 +540,6 @@ class WanModel(torch.nn.Module):
# embeddings
x = self.patch_embedding(x.float()).to(x.dtype)
grid_sizes = x.shape[2:]
transformer_options["grid_sizes"] = grid_sizes
x = x.flatten(2).transpose(1, 2)
# time embeddings
@@ -582,10 +567,7 @@ class WanModel(torch.nn.Module):
patches_replace = transformer_options.get("patches_replace", {})
blocks_replace = patches_replace.get("dit", {})
transformer_options["total_blocks"] = len(self.blocks)
transformer_options["block_type"] = "double"
for i, block in enumerate(self.blocks):
transformer_options["block_index"] = i
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
@@ -752,7 +734,6 @@ class VaceWanModel(WanModel):
# embeddings
x = self.patch_embedding(x.float()).to(x.dtype)
grid_sizes = x.shape[2:]
transformer_options["grid_sizes"] = grid_sizes
x = x.flatten(2).transpose(1, 2)
# time embeddings
@@ -781,10 +762,7 @@ class VaceWanModel(WanModel):
patches_replace = transformer_options.get("patches_replace", {})
blocks_replace = patches_replace.get("dit", {})
transformer_options["total_blocks"] = len(self.blocks)
transformer_options["block_type"] = "double"
for i, block in enumerate(self.blocks):
transformer_options["block_index"] = i
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
@@ -883,10 +861,7 @@ class CameraWanModel(WanModel):
patches_replace = transformer_options.get("patches_replace", {})
blocks_replace = patches_replace.get("dit", {})
transformer_options["total_blocks"] = len(self.blocks)
transformer_options["block_type"] = "double"
for i, block in enumerate(self.blocks):
transformer_options["block_index"] = i
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
@@ -1350,19 +1325,16 @@ class WanModel_S2V(WanModel):
patches_replace = transformer_options.get("patches_replace", {})
blocks_replace = patches_replace.get("dit", {})
transformer_options["total_blocks"] = len(self.blocks)
transformer_options["block_type"] = "double"
for i, block in enumerate(self.blocks):
transformer_options["block_index"] = i
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"], transformer_options=args["transformer_options"])
out["img"] = block(args["img"], context=args["txt"], e=args["vec"], freqs=args["pe"])
return out
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs, "transformer_options": transformer_options}, {"original_block": block_wrap})
out = blocks_replace[("double_block", i)]({"img": x, "txt": context, "vec": e0, "pe": freqs}, {"original_block": block_wrap})
x = out["img"]
else:
x = block(x, e=e0, freqs=freqs, context=context, transformer_options=transformer_options)
x = block(x, e=e0, freqs=freqs, context=context)
if audio_emb is not None:
x = self.audio_injector(x, i, audio_emb, audio_emb_global, seq_len)
# head
@@ -1601,10 +1573,7 @@ class HumoWanModel(WanModel):
patches_replace = transformer_options.get("patches_replace", {})
blocks_replace = patches_replace.get("dit", {})
transformer_options["total_blocks"] = len(self.blocks)
transformer_options["block_type"] = "double"
for i, block in enumerate(self.blocks):
transformer_options["block_index"] = i
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}

View File

@@ -523,10 +523,7 @@ class AnimateWanModel(WanModel):
patches_replace = transformer_options.get("patches_replace", {})
blocks_replace = patches_replace.get("dit", {})
transformer_options["total_blocks"] = len(self.blocks)
transformer_options["block_type"] = "double"
for i, block in enumerate(self.blocks):
transformer_options["block_index"] = i
if ("double_block", i) in blocks_replace:
def block_wrap(args):
out = {}

View File

@@ -1,500 +0,0 @@
import torch
from einops import rearrange, repeat
import comfy
from comfy.ldm.modules.attention import optimized_attention
def calculate_x_ref_attn_map(visual_q, ref_k, ref_target_masks, split_num=8):
scale = 1.0 / visual_q.shape[-1] ** 0.5
visual_q = visual_q.transpose(1, 2) * scale
B, H, x_seqlens, K = visual_q.shape
x_ref_attn_maps = []
for class_idx, ref_target_mask in enumerate(ref_target_masks):
ref_target_mask = ref_target_mask.view(1, 1, 1, -1)
x_ref_attnmap = torch.zeros(B, H, x_seqlens, device=visual_q.device, dtype=visual_q.dtype)
chunk_size = min(max(x_seqlens // split_num, 1), x_seqlens)
for i in range(0, x_seqlens, chunk_size):
end_i = min(i + chunk_size, x_seqlens)
attn_chunk = visual_q[:, :, i:end_i] @ ref_k.permute(0, 2, 3, 1) # B, H, chunk, ref_seqlens
# Apply softmax
attn_max = attn_chunk.max(dim=-1, keepdim=True).values
attn_chunk = (attn_chunk - attn_max).exp()
attn_sum = attn_chunk.sum(dim=-1, keepdim=True)
attn_chunk = attn_chunk / (attn_sum + 1e-8)
# Apply mask and sum
masked_attn = attn_chunk * ref_target_mask
x_ref_attnmap[:, :, i:end_i] = masked_attn.sum(-1) / (ref_target_mask.sum() + 1e-8)
del attn_chunk, masked_attn
# Average across heads
x_ref_attnmap = x_ref_attnmap.mean(dim=1) # B, x_seqlens
x_ref_attn_maps.append(x_ref_attnmap)
del visual_q, ref_k
return torch.cat(x_ref_attn_maps, dim=0)
def get_attn_map_with_target(visual_q, ref_k, shape, ref_target_masks=None, split_num=2):
"""Args:
query (torch.tensor): B M H K
key (torch.tensor): B M H K
shape (tuple): (N_t, N_h, N_w)
ref_target_masks: [B, N_h * N_w]
"""
N_t, N_h, N_w = shape
x_seqlens = N_h * N_w
ref_k = ref_k[:, :x_seqlens]
_, seq_lens, heads, _ = visual_q.shape
class_num, _ = ref_target_masks.shape
x_ref_attn_maps = torch.zeros(class_num, seq_lens).to(visual_q)
split_chunk = heads // split_num
for i in range(split_num):
x_ref_attn_maps_perhead = calculate_x_ref_attn_map(
visual_q[:, :, i*split_chunk:(i+1)*split_chunk, :],
ref_k[:, :, i*split_chunk:(i+1)*split_chunk, :],
ref_target_masks
)
x_ref_attn_maps += x_ref_attn_maps_perhead
return x_ref_attn_maps / split_num
def normalize_and_scale(column, source_range, target_range, epsilon=1e-8):
source_min, source_max = source_range
new_min, new_max = target_range
normalized = (column - source_min) / (source_max - source_min + epsilon)
scaled = normalized * (new_max - new_min) + new_min
return scaled
def rotate_half(x):
x = rearrange(x, "... (d r) -> ... d r", r=2)
x1, x2 = x.unbind(dim=-1)
x = torch.stack((-x2, x1), dim=-1)
return rearrange(x, "... d r -> ... (d r)")
def get_audio_embeds(encoded_audio, audio_start, audio_end):
audio_embs = []
human_num = len(encoded_audio)
audio_frames = encoded_audio[0].shape[0]
indices = (torch.arange(4 + 1) - 2) * 1
for human_idx in range(human_num):
if audio_end > audio_frames: # in case of not enough audio for current window, pad with first audio frame as that's most likely silence
pad_len = audio_end - audio_frames
pad_shape = list(encoded_audio[human_idx].shape)
pad_shape[0] = pad_len
pad_tensor = encoded_audio[human_idx][:1].repeat(pad_len, *([1] * (encoded_audio[human_idx].dim() - 1)))
encoded_audio_in = torch.cat([encoded_audio[human_idx], pad_tensor], dim=0)
else:
encoded_audio_in = encoded_audio[human_idx]
center_indices = torch.arange(audio_start, audio_end, 1).unsqueeze(1) + indices.unsqueeze(0)
center_indices = torch.clamp(center_indices, min=0, max=encoded_audio_in.shape[0] - 1)
audio_emb = encoded_audio_in[center_indices].unsqueeze(0)
audio_embs.append(audio_emb)
return torch.cat(audio_embs, dim=0)
def project_audio_features(audio_proj, encoded_audio, audio_start, audio_end):
audio_embs = get_audio_embeds(encoded_audio, audio_start, audio_end)
first_frame_audio_emb_s = audio_embs[:, :1, ...]
latter_frame_audio_emb = audio_embs[:, 1:, ...]
latter_frame_audio_emb = rearrange(latter_frame_audio_emb, "b (n_t n) w s c -> b n_t n w s c", n=4)
middle_index = audio_proj.seq_len // 2
latter_first_frame_audio_emb = latter_frame_audio_emb[:, :, :1, :middle_index+1, ...]
latter_first_frame_audio_emb = rearrange(latter_first_frame_audio_emb, "b n_t n w s c -> b n_t (n w) s c")
latter_last_frame_audio_emb = latter_frame_audio_emb[:, :, -1:, middle_index:, ...]
latter_last_frame_audio_emb = rearrange(latter_last_frame_audio_emb, "b n_t n w s c -> b n_t (n w) s c")
latter_middle_frame_audio_emb = latter_frame_audio_emb[:, :, 1:-1, middle_index:middle_index+1, ...]
latter_middle_frame_audio_emb = rearrange(latter_middle_frame_audio_emb, "b n_t n w s c -> b n_t (n w) s c")
latter_frame_audio_emb_s = torch.cat([latter_first_frame_audio_emb, latter_middle_frame_audio_emb, latter_last_frame_audio_emb], dim=2)
audio_emb = audio_proj(first_frame_audio_emb_s, latter_frame_audio_emb_s)
audio_emb = torch.cat(audio_emb.split(1), dim=2)
return audio_emb
class RotaryPositionalEmbedding1D(torch.nn.Module):
def __init__(self,
head_dim,
):
super().__init__()
self.head_dim = head_dim
self.base = 10000
def precompute_freqs_cis_1d(self, pos_indices):
freqs = 1.0 / (self.base ** (torch.arange(0, self.head_dim, 2)[: (self.head_dim // 2)].float() / self.head_dim))
freqs = freqs.to(pos_indices.device)
freqs = torch.einsum("..., f -> ... f", pos_indices.float(), freqs)
freqs = repeat(freqs, "... n -> ... (n r)", r=2)
return freqs
def forward(self, x, pos_indices):
freqs_cis = self.precompute_freqs_cis_1d(pos_indices)
x_ = x.float()
freqs_cis = freqs_cis.float().to(x.device)
cos, sin = freqs_cis.cos(), freqs_cis.sin()
cos, sin = rearrange(cos, 'n d -> 1 1 n d'), rearrange(sin, 'n d -> 1 1 n d')
x_ = (x_ * cos) + (rotate_half(x_) * sin)
return x_.type_as(x)
class SingleStreamAttention(torch.nn.Module):
def __init__(
self,
dim: int,
encoder_hidden_states_dim: int,
num_heads: int,
qkv_bias: bool,
device=None, dtype=None, operations=None
) -> None:
super().__init__()
self.dim = dim
self.encoder_hidden_states_dim = encoder_hidden_states_dim
self.num_heads = num_heads
self.head_dim = dim // num_heads
self.q_linear = operations.Linear(dim, dim, bias=qkv_bias, device=device, dtype=dtype)
self.proj = operations.Linear(dim, dim, device=device, dtype=dtype)
self.kv_linear = operations.Linear(encoder_hidden_states_dim, dim * 2, bias=qkv_bias, device=device, dtype=dtype)
def forward(self, x: torch.Tensor, encoder_hidden_states: torch.Tensor, shape=None) -> torch.Tensor:
N_t, N_h, N_w = shape
expected_tokens = N_t * N_h * N_w
actual_tokens = x.shape[1]
x_extra = None
if actual_tokens != expected_tokens:
x_extra = x[:, -N_h * N_w:, :]
x = x[:, :-N_h * N_w, :]
N_t = N_t - 1
B = x.shape[0]
S = N_h * N_w
x = x.view(B * N_t, S, self.dim)
# get q for hidden_state
q = self.q_linear(x).view(B * N_t, S, self.num_heads, self.head_dim)
# get kv from encoder_hidden_states # shape: (B, N, num_heads, head_dim)
kv = self.kv_linear(encoder_hidden_states)
encoder_k, encoder_v = kv.view(B * N_t, encoder_hidden_states.shape[1], 2, self.num_heads, self.head_dim).unbind(2)
#print("q.shape", q.shape) #torch.Size([21, 1024, 40, 128])
x = optimized_attention(
q.transpose(1, 2),
encoder_k.transpose(1, 2),
encoder_v.transpose(1, 2),
heads=self.num_heads, skip_reshape=True, skip_output_reshape=True).transpose(1, 2)
# linear transform
x = self.proj(x.reshape(B * N_t, S, self.dim))
x = x.view(B, N_t * S, self.dim)
if x_extra is not None:
x = torch.cat([x, torch.zeros_like(x_extra)], dim=1)
return x
class SingleStreamMultiAttention(SingleStreamAttention):
def __init__(
self,
dim: int,
encoder_hidden_states_dim: int,
num_heads: int,
qkv_bias: bool,
class_range: int = 24,
class_interval: int = 4,
device=None, dtype=None, operations=None
) -> None:
super().__init__(
dim=dim,
encoder_hidden_states_dim=encoder_hidden_states_dim,
num_heads=num_heads,
qkv_bias=qkv_bias,
device=device,
dtype=dtype,
operations=operations
)
# Rotary-embedding layout parameters
self.class_interval = class_interval
self.class_range = class_range
self.max_humans = self.class_range // self.class_interval
# Constant bucket used for background tokens
self.rope_bak = int(self.class_range // 2)
self.rope_1d = RotaryPositionalEmbedding1D(self.head_dim)
def forward(
self,
x: torch.Tensor,
encoder_hidden_states: torch.Tensor,
shape=None,
x_ref_attn_map=None
) -> torch.Tensor:
encoder_hidden_states = encoder_hidden_states.squeeze(0).to(x.device)
human_num = x_ref_attn_map.shape[0] if x_ref_attn_map is not None else 1
# Single-speaker fall-through
if human_num <= 1:
return super().forward(x, encoder_hidden_states, shape)
N_t, N_h, N_w = shape
x_extra = None
if x.shape[0] * N_t != encoder_hidden_states.shape[0]:
x_extra = x[:, -N_h * N_w:, :]
x = x[:, :-N_h * N_w, :]
N_t = N_t - 1
x = rearrange(x, "B (N_t S) C -> (B N_t) S C", N_t=N_t)
# Query projection
B, N, C = x.shape
q = self.q_linear(x)
q = q.view(B, N, self.num_heads, self.head_dim).permute(0, 2, 1, 3)
# Use `class_range` logic for 2 speakers
rope_h1 = (0, self.class_interval)
rope_h2 = (self.class_range - self.class_interval, self.class_range)
rope_bak = int(self.class_range // 2)
# Normalize and scale attention maps for each speaker
max_values = x_ref_attn_map.max(1).values[:, None, None]
min_values = x_ref_attn_map.min(1).values[:, None, None]
max_min_values = torch.cat([max_values, min_values], dim=2)
human1_max_value, human1_min_value = max_min_values[0, :, 0].max(), max_min_values[0, :, 1].min()
human2_max_value, human2_min_value = max_min_values[1, :, 0].max(), max_min_values[1, :, 1].min()
human1 = normalize_and_scale(x_ref_attn_map[0], (human1_min_value, human1_max_value), rope_h1)
human2 = normalize_and_scale(x_ref_attn_map[1], (human2_min_value, human2_max_value), rope_h2)
back = torch.full((x_ref_attn_map.size(1),), rope_bak, dtype=human1.dtype, device=human1.device)
# Token-wise speaker dominance
max_indices = x_ref_attn_map.argmax(dim=0)
normalized_map = torch.stack([human1, human2, back], dim=1)
normalized_pos = normalized_map[torch.arange(x_ref_attn_map.size(1)), max_indices]
# Apply rotary to Q
q = rearrange(q, "(B N_t) H S C -> B H (N_t S) C", N_t=N_t)
q = self.rope_1d(q, normalized_pos)
q = rearrange(q, "B H (N_t S) C -> (B N_t) H S C", N_t=N_t)
# Keys / Values
_, N_a, _ = encoder_hidden_states.shape
encoder_kv = self.kv_linear(encoder_hidden_states)
encoder_kv = encoder_kv.view(B, N_a, 2, self.num_heads, self.head_dim).permute(2, 0, 3, 1, 4)
encoder_k, encoder_v = encoder_kv.unbind(0)
# Rotary for keys assign centre of each speaker bucket to its context tokens
per_frame = torch.zeros(N_a, dtype=encoder_k.dtype, device=encoder_k.device)
per_frame[: per_frame.size(0) // 2] = (rope_h1[0] + rope_h1[1]) / 2
per_frame[per_frame.size(0) // 2 :] = (rope_h2[0] + rope_h2[1]) / 2
encoder_pos = torch.cat([per_frame] * N_t, dim=0)
encoder_k = rearrange(encoder_k, "(B N_t) H S C -> B H (N_t S) C", N_t=N_t)
encoder_k = self.rope_1d(encoder_k, encoder_pos)
encoder_k = rearrange(encoder_k, "B H (N_t S) C -> (B N_t) H S C", N_t=N_t)
# Final attention
q = rearrange(q, "B H M K -> B M H K")
encoder_k = rearrange(encoder_k, "B H M K -> B M H K")
encoder_v = rearrange(encoder_v, "B H M K -> B M H K")
x = optimized_attention(
q.transpose(1, 2),
encoder_k.transpose(1, 2),
encoder_v.transpose(1, 2),
heads=self.num_heads, skip_reshape=True, skip_output_reshape=True).transpose(1, 2)
# Linear projection
x = x.reshape(B, N, C)
x = self.proj(x)
# Restore original layout
x = rearrange(x, "(B N_t) S C -> B (N_t S) C", N_t=N_t)
if x_extra is not None:
x = torch.cat([x, torch.zeros_like(x_extra)], dim=1)
return x
class MultiTalkAudioProjModel(torch.nn.Module):
def __init__(
self,
seq_len: int = 5,
seq_len_vf: int = 12,
blocks: int = 12,
channels: int = 768,
intermediate_dim: int = 512,
out_dim: int = 768,
context_tokens: int = 32,
device=None, dtype=None, operations=None
):
super().__init__()
self.seq_len = seq_len
self.blocks = blocks
self.channels = channels
self.input_dim = seq_len * blocks * channels
self.input_dim_vf = seq_len_vf * blocks * channels
self.intermediate_dim = intermediate_dim
self.context_tokens = context_tokens
self.out_dim = out_dim
# define multiple linear layers
self.proj1 = operations.Linear(self.input_dim, intermediate_dim, device=device, dtype=dtype)
self.proj1_vf = operations.Linear(self.input_dim_vf, intermediate_dim, device=device, dtype=dtype)
self.proj2 = operations.Linear(intermediate_dim, intermediate_dim, device=device, dtype=dtype)
self.proj3 = operations.Linear(intermediate_dim, context_tokens * out_dim, device=device, dtype=dtype)
self.norm = operations.LayerNorm(out_dim, device=device, dtype=dtype)
def forward(self, audio_embeds, audio_embeds_vf):
video_length = audio_embeds.shape[1] + audio_embeds_vf.shape[1]
B, _, _, S, C = audio_embeds.shape
# process audio of first frame
audio_embeds = rearrange(audio_embeds, "bz f w b c -> (bz f) w b c")
batch_size, window_size, blocks, channels = audio_embeds.shape
audio_embeds = audio_embeds.view(batch_size, window_size * blocks * channels)
# process audio of latter frame
audio_embeds_vf = rearrange(audio_embeds_vf, "bz f w b c -> (bz f) w b c")
batch_size_vf, window_size_vf, blocks_vf, channels_vf = audio_embeds_vf.shape
audio_embeds_vf = audio_embeds_vf.view(batch_size_vf, window_size_vf * blocks_vf * channels_vf)
# first projection
audio_embeds = torch.relu(self.proj1(audio_embeds))
audio_embeds_vf = torch.relu(self.proj1_vf(audio_embeds_vf))
audio_embeds = rearrange(audio_embeds, "(bz f) c -> bz f c", bz=B)
audio_embeds_vf = rearrange(audio_embeds_vf, "(bz f) c -> bz f c", bz=B)
audio_embeds_c = torch.concat([audio_embeds, audio_embeds_vf], dim=1)
batch_size_c, N_t, C_a = audio_embeds_c.shape
audio_embeds_c = audio_embeds_c.view(batch_size_c*N_t, C_a)
# second projection
audio_embeds_c = torch.relu(self.proj2(audio_embeds_c))
context_tokens = self.proj3(audio_embeds_c).reshape(batch_size_c*N_t, self.context_tokens, self.out_dim)
# normalization and reshape
context_tokens = self.norm(context_tokens)
context_tokens = rearrange(context_tokens, "(bz f) m c -> bz f m c", f=video_length)
return context_tokens
class WanMultiTalkAttentionBlock(torch.nn.Module):
def __init__(self, in_dim=5120, out_dim=768, device=None, dtype=None, operations=None):
super().__init__()
self.audio_cross_attn = SingleStreamMultiAttention(in_dim, out_dim, num_heads=40, qkv_bias=True, device=device, dtype=dtype, operations=operations)
self.norm_x = operations.LayerNorm(in_dim, device=device, dtype=dtype, elementwise_affine=True)
class MultiTalkGetAttnMapPatch:
def __init__(self, ref_target_masks=None):
self.ref_target_masks = ref_target_masks
def __call__(self, kwargs):
transformer_options = kwargs.get("transformer_options", {})
x = kwargs["x"]
if self.ref_target_masks is not None:
x_ref_attn_map = get_attn_map_with_target(kwargs["q"], kwargs["k"], transformer_options["grid_sizes"], ref_target_masks=self.ref_target_masks.to(x.device))
transformer_options["x_ref_attn_map"] = x_ref_attn_map
return x
class MultiTalkCrossAttnPatch:
def __init__(self, model_patch, audio_scale=1.0, ref_target_masks=None):
self.model_patch = model_patch
self.audio_scale = audio_scale
self.ref_target_masks = ref_target_masks
def __call__(self, kwargs):
transformer_options = kwargs.get("transformer_options", {})
block_idx = transformer_options.get("block_index", None)
x = kwargs["x"]
if block_idx is None:
return torch.zeros_like(x)
audio_embeds = transformer_options.get("audio_embeds")
x_ref_attn_map = transformer_options.pop("x_ref_attn_map", None)
norm_x = self.model_patch.model.blocks[block_idx].norm_x(x)
x_audio = self.model_patch.model.blocks[block_idx].audio_cross_attn(
norm_x, audio_embeds.to(x.dtype),
shape=transformer_options["grid_sizes"],
x_ref_attn_map=x_ref_attn_map
)
x = x + x_audio * self.audio_scale
return x
def models(self):
return [self.model_patch]
class MultiTalkApplyModelWrapper:
def __init__(self, init_latents):
self.init_latents = init_latents
def __call__(self, executor, x, *args, **kwargs):
x[:, :, :self.init_latents.shape[2]] = self.init_latents.to(x)
samples = executor(x, *args, **kwargs)
return samples
class InfiniteTalkOuterSampleWrapper:
def __init__(self, motion_frames_latent, model_patch, is_extend=False):
self.motion_frames_latent = motion_frames_latent
self.model_patch = model_patch
self.is_extend = is_extend
def __call__(self, executor, *args, **kwargs):
model_patcher = executor.class_obj.model_patcher
model_options = executor.class_obj.model_options
process_latent_in = model_patcher.model.process_latent_in
# for InfiniteTalk, model input first latent(s) need to always be replaced on every step
if self.motion_frames_latent is not None:
wrappers = model_options["transformer_options"]["wrappers"]
w = wrappers.setdefault(comfy.patcher_extension.WrappersMP.APPLY_MODEL, {})
w["MultiTalk_apply_model"] = [MultiTalkApplyModelWrapper(process_latent_in(self.motion_frames_latent))]
# run the sampling process
result = executor(*args, **kwargs)
# insert motion frames before decoding
if self.is_extend:
overlap = self.motion_frames_latent.shape[2]
result = torch.cat([self.motion_frames_latent.to(result), result[:, :, overlap:]], dim=2)
return result
def to(self, device_or_dtype):
if isinstance(device_or_dtype, torch.device):
if self.motion_frames_latent is not None:
self.motion_frames_latent = self.motion_frames_latent.to(device_or_dtype)
return self

View File

@@ -5,7 +5,7 @@ import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from comfy.ldm.modules.diffusionmodules.model import vae_attention, torch_cat_if_needed
from comfy.ldm.modules.diffusionmodules.model import vae_attention
import comfy.ops
ops = comfy.ops.disable_weight_init
@@ -20,29 +20,22 @@ class CausalConv3d(ops.Conv3d):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._padding = 2 * self.padding[0]
self.padding = (0, self.padding[1], self.padding[2])
self._padding = (self.padding[2], self.padding[2], self.padding[1],
self.padding[1], 2 * self.padding[0], 0)
self.padding = (0, 0, 0)
def forward(self, x, cache_x=None, cache_list=None, cache_idx=None):
if cache_list is not None:
cache_x = cache_list[cache_idx]
cache_list[cache_idx] = None
if cache_x is None and x.shape[2] == 1:
#Fast path - the op will pad for use by truncating the weight
#and save math on a pile of zeros.
return super().forward(x, autopad="causal_zero")
if self._padding > 0:
padding_needed = self._padding
if cache_x is not None:
cache_x = cache_x.to(x.device)
padding_needed = max(0, padding_needed - cache_x.shape[2])
padding_shape = list(x.shape)
padding_shape[2] = padding_needed
padding = torch.zeros(padding_shape, device=x.device, dtype=x.dtype)
x = torch_cat_if_needed([padding, cache_x, x], dim=2)
padding = list(self._padding)
if cache_x is not None and self._padding[4] > 0:
cache_x = cache_x.to(x.device)
x = torch.cat([cache_x, x], dim=2)
padding[4] -= cache_x.shape[2]
del cache_x
x = F.pad(x, padding)
return super().forward(x)
@@ -234,7 +227,6 @@ class Encoder3d(nn.Module):
def __init__(self,
dim=128,
z_dim=4,
input_channels=3,
dim_mult=[1, 2, 4, 4],
num_res_blocks=2,
attn_scales=[],
@@ -253,7 +245,7 @@ class Encoder3d(nn.Module):
scale = 1.0
# init block
self.conv1 = CausalConv3d(input_channels, dims[0], 3, padding=1)
self.conv1 = CausalConv3d(3, dims[0], 3, padding=1)
# downsample blocks
downsamples = []
@@ -339,7 +331,6 @@ class Decoder3d(nn.Module):
def __init__(self,
dim=128,
z_dim=4,
output_channels=3,
dim_mult=[1, 2, 4, 4],
num_res_blocks=2,
attn_scales=[],
@@ -387,7 +378,7 @@ class Decoder3d(nn.Module):
# output blocks
self.head = nn.Sequential(
RMS_norm(out_dim, images=False), nn.SiLU(),
CausalConv3d(out_dim, output_channels, 3, padding=1))
CausalConv3d(out_dim, 3, 3, padding=1))
def forward(self, x, feat_cache=None, feat_idx=[0]):
## conv1
@@ -458,7 +449,6 @@ class WanVAE(nn.Module):
num_res_blocks=2,
attn_scales=[],
temperal_downsample=[True, True, False],
image_channels=3,
dropout=0.0):
super().__init__()
self.dim = dim
@@ -470,21 +460,19 @@ class WanVAE(nn.Module):
self.temperal_upsample = temperal_downsample[::-1]
# modules
self.encoder = Encoder3d(dim, z_dim * 2, image_channels, dim_mult, num_res_blocks,
self.encoder = Encoder3d(dim, z_dim * 2, dim_mult, num_res_blocks,
attn_scales, self.temperal_downsample, dropout)
self.conv1 = CausalConv3d(z_dim * 2, z_dim * 2, 1)
self.conv2 = CausalConv3d(z_dim, z_dim, 1)
self.decoder = Decoder3d(dim, z_dim, image_channels, dim_mult, num_res_blocks,
self.decoder = Decoder3d(dim, z_dim, dim_mult, num_res_blocks,
attn_scales, self.temperal_upsample, dropout)
def encode(self, x):
conv_idx = [0]
feat_map = [None] * count_conv3d(self.decoder)
## cache
t = x.shape[2]
iter_ = 1 + (t - 1) // 4
feat_map = None
if iter_ > 1:
feat_map = [None] * count_conv3d(self.decoder)
## 对encode输入的x按时间拆分为1、4、4、4....
for i in range(iter_):
conv_idx = [0]
@@ -504,11 +492,10 @@ class WanVAE(nn.Module):
def decode(self, z):
conv_idx = [0]
feat_map = [None] * count_conv3d(self.decoder)
# z: [b,c,t,h,w]
iter_ = z.shape[2]
feat_map = None
if iter_ > 1:
feat_map = [None] * count_conv3d(self.decoder)
x = self.conv2(z)
for i in range(iter_):
conv_idx = [0]

View File

@@ -260,7 +260,6 @@ def model_lora_keys_unet(model, key_map={}):
key_map["transformer.{}".format(k[:-len(".weight")])] = to #simpletrainer and probably regular diffusers flux lora format
key_map["lycoris_{}".format(k[:-len(".weight")].replace(".", "_"))] = to #simpletrainer lycoris
key_map["lora_transformer_{}".format(k[:-len(".weight")].replace(".", "_"))] = to #onetrainer
key_map[k[:-len(".weight")]] = to #DiffSynth lora format
for k in sdk:
hidden_size = model.model_config.unet_config.get("hidden_size", 0)
if k.endswith(".weight") and ".linear1." in k:
@@ -314,24 +313,6 @@ def model_lora_keys_unet(model, key_map={}):
key_map["transformer.{}".format(key_lora)] = k
key_map["lycoris_{}".format(key_lora.replace(".", "_"))] = k #SimpleTuner lycoris format
if isinstance(model, comfy.model_base.Lumina2):
diffusers_keys = comfy.utils.z_image_to_diffusers(model.model_config.unet_config, output_prefix="diffusion_model.")
for k in diffusers_keys:
if k.endswith(".weight"):
to = diffusers_keys[k]
key_lora = k[:-len(".weight")]
key_map["diffusion_model.{}".format(key_lora)] = to
key_map["transformer.{}".format(key_lora)] = to
key_map["lycoris_{}".format(key_lora.replace(".", "_"))] = to
key_map[key_lora] = to
if isinstance(model, comfy.model_base.Kandinsky5):
for k in sdk:
if k.startswith("diffusion_model.") and k.endswith(".weight"):
key_lora = k[len("diffusion_model."):-len(".weight")]
key_map["{}".format(key_lora)] = k
key_map["transformer.{}".format(key_lora)] = k
return key_map

View File

@@ -20,7 +20,6 @@ import comfy.ldm.hunyuan3dv2_1
import comfy.ldm.hunyuan3dv2_1.hunyuandit
import torch
import logging
import comfy.ldm.lightricks.av_model
from comfy.ldm.modules.diffusionmodules.openaimodel import UNetModel, Timestep
from comfy.ldm.cascade.stage_c import StageC
from comfy.ldm.cascade.stage_b import StageB
@@ -48,8 +47,6 @@ import comfy.ldm.chroma_radiance.model
import comfy.ldm.ace.model
import comfy.ldm.omnigen.omnigen2
import comfy.ldm.qwen_image.model
import comfy.ldm.kandinsky5.model
import comfy.ldm.anima.model
import comfy.model_management
import comfy.patcher_extension
@@ -137,7 +134,7 @@ class BaseModel(torch.nn.Module):
if not unet_config.get("disable_unet_model_creation", False):
if model_config.custom_operations is None:
fp8 = model_config.optimizations.get("fp8", False)
operations = comfy.ops.pick_operations(unet_config.get("dtype", None), self.manual_cast_dtype, fp8_optimizations=fp8, model_config=model_config)
operations = comfy.ops.pick_operations(unet_config.get("dtype", None), self.manual_cast_dtype, fp8_optimizations=fp8, scaled_fp8=model_config.scaled_fp8, model_config=model_config)
else:
operations = model_config.custom_operations
self.diffusion_model = unet_model(**unet_config, device=device, operations=operations)
@@ -332,6 +329,18 @@ class BaseModel(torch.nn.Module):
extra_sds.append(self.model_config.process_clip_vision_state_dict_for_saving(clip_vision_state_dict))
unet_state_dict = self.diffusion_model.state_dict()
if self.model_config.scaled_fp8 is not None:
unet_state_dict["scaled_fp8"] = torch.tensor([], dtype=self.model_config.scaled_fp8)
# Save mixed precision metadata
if hasattr(self.model_config, 'layer_quant_config') and self.model_config.layer_quant_config:
metadata = {
"format_version": "1.0",
"layers": self.model_config.layer_quant_config
}
unet_state_dict["_quantization_metadata"] = metadata
unet_state_dict = self.model_config.process_unet_state_dict_for_saving(unet_state_dict)
if self.model_type == ModelType.V_PREDICTION:
@@ -889,13 +898,12 @@ class Flux(BaseModel):
attention_mask = kwargs.get("attention_mask", None)
if attention_mask is not None:
shape = kwargs["noise"].shape
mask_ref_size = kwargs.get("attention_mask_img_shape", None)
if mask_ref_size is not None:
# the model will pad to the patch size, and then divide
# essentially dividing and rounding up
(h_tok, w_tok) = (math.ceil(shape[2] / self.diffusion_model.patch_size), math.ceil(shape[3] / self.diffusion_model.patch_size))
attention_mask = utils.upscale_dit_mask(attention_mask, mask_ref_size, (h_tok, w_tok))
out['attention_mask'] = comfy.conds.CONDRegular(attention_mask)
mask_ref_size = kwargs["attention_mask_img_shape"]
# the model will pad to the patch size, and then divide
# essentially dividing and rounding up
(h_tok, w_tok) = (math.ceil(shape[2] / self.diffusion_model.patch_size), math.ceil(shape[3] / self.diffusion_model.patch_size))
attention_mask = utils.upscale_dit_mask(attention_mask, mask_ref_size, (h_tok, w_tok))
out['attention_mask'] = comfy.conds.CONDRegular(attention_mask)
guidance = kwargs.get("guidance", 3.5)
if guidance is not None:
@@ -917,19 +925,9 @@ class Flux(BaseModel):
out = {}
ref_latents = kwargs.get("reference_latents", None)
if ref_latents is not None:
out['ref_latents'] = list([1, 16, sum(map(lambda a: math.prod(a.size()[2:]), ref_latents))])
out['ref_latents'] = list([1, 16, sum(map(lambda a: math.prod(a.size()), ref_latents)) // 16])
return out
class Flux2(Flux):
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
target_text_len = 512
if cross_attn.shape[1] < target_text_len:
cross_attn = torch.nn.functional.pad(cross_attn, (0, 0, target_text_len - cross_attn.shape[1], 0))
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
return out
class GenmoMochi(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
@@ -948,7 +946,7 @@ class GenmoMochi(BaseModel):
class LTXV(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLUX, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.lightricks.model.LTXVModel)
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.lightricks.model.LTXVModel) #TODO
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
@@ -979,60 +977,6 @@ class LTXV(BaseModel):
def scale_latent_inpaint(self, sigma, noise, latent_image, **kwargs):
return latent_image
class LTXAV(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLUX, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.lightricks.av_model.LTXAVModel) #TODO
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
attention_mask = kwargs.get("attention_mask", None)
if attention_mask is not None:
out['attention_mask'] = comfy.conds.CONDRegular(attention_mask)
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
out['frame_rate'] = comfy.conds.CONDConstant(kwargs.get("frame_rate", 25))
denoise_mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None))
audio_denoise_mask = None
if denoise_mask is not None and "latent_shapes" in kwargs:
denoise_mask = utils.unpack_latents(denoise_mask, kwargs["latent_shapes"])
if len(denoise_mask) > 1:
audio_denoise_mask = denoise_mask[1]
denoise_mask = denoise_mask[0]
if denoise_mask is not None:
out["denoise_mask"] = comfy.conds.CONDRegular(denoise_mask)
if audio_denoise_mask is not None:
out["audio_denoise_mask"] = comfy.conds.CONDRegular(audio_denoise_mask)
keyframe_idxs = kwargs.get("keyframe_idxs", None)
if keyframe_idxs is not None:
out['keyframe_idxs'] = comfy.conds.CONDRegular(keyframe_idxs)
latent_shapes = kwargs.get("latent_shapes", None)
if latent_shapes is not None:
out['latent_shapes'] = comfy.conds.CONDConstant(latent_shapes)
return out
def process_timestep(self, timestep, x, denoise_mask=None, audio_denoise_mask=None, **kwargs):
v_timestep = timestep
a_timestep = timestep
if denoise_mask is not None:
v_timestep = self.diffusion_model.patchifier.patchify(((denoise_mask) * timestep.view([timestep.shape[0]] + [1] * (denoise_mask.ndim - 1)))[:, :1])[0]
if audio_denoise_mask is not None:
a_timestep = self.diffusion_model.a_patchifier.patchify(((audio_denoise_mask) * timestep.view([timestep.shape[0]] + [1] * (audio_denoise_mask.ndim - 1)))[:, :1, :, :1])[0]
return v_timestep, a_timestep
def scale_latent_inpaint(self, sigma, noise, latent_image, **kwargs):
return latent_image
class HunyuanVideo(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.hunyuan_video.model.HunyuanVideo)
@@ -1148,31 +1092,9 @@ class CosmosPredict2(BaseModel):
sigma = (sigma / (sigma + 1))
return latent_image / (1.0 - sigma)
class Anima(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.anima.model.Anima)
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
cross_attn = kwargs.get("cross_attn", None)
t5xxl_ids = kwargs.get("t5xxl_ids", None)
t5xxl_weights = kwargs.get("t5xxl_weights", None)
device = kwargs["device"]
if cross_attn is not None:
if t5xxl_ids is not None:
cross_attn = self.diffusion_model.preprocess_text_embeds(cross_attn.to(device=device, dtype=self.get_dtype()), t5xxl_ids.unsqueeze(0).to(device=device))
if t5xxl_weights is not None:
cross_attn *= t5xxl_weights.unsqueeze(0).unsqueeze(-1).to(cross_attn)
if cross_attn.shape[1] < 512:
cross_attn = torch.nn.functional.pad(cross_attn, (0, 0, 0, 512 - cross_attn.shape[1]))
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
return out
class Lumina2(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.lumina.model.NextDiT)
self.memory_usage_factor_conds = ("ref_latents",)
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
@@ -1181,46 +1103,9 @@ class Lumina2(BaseModel):
if torch.numel(attention_mask) != attention_mask.sum():
out['attention_mask'] = comfy.conds.CONDRegular(attention_mask)
out['num_tokens'] = comfy.conds.CONDConstant(max(1, torch.sum(attention_mask).item()))
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
if 'num_tokens' not in out:
out['num_tokens'] = comfy.conds.CONDConstant(cross_attn.shape[1])
clip_text_pooled = kwargs.get("pooled_output", None) # NewBie
if clip_text_pooled is not None:
out['clip_text_pooled'] = comfy.conds.CONDRegular(clip_text_pooled)
clip_vision_outputs = kwargs.get("clip_vision_outputs", list(map(lambda a: a.get("clip_vision_output"), kwargs.get("unclip_conditioning", [{}])))) # Z Image omni
if clip_vision_outputs is not None and len(clip_vision_outputs) > 0:
sigfeats = []
for clip_vision_output in clip_vision_outputs:
if clip_vision_output is not None:
image_size = clip_vision_output.image_sizes[0]
shape = clip_vision_output.last_hidden_state.shape
sigfeats.append(clip_vision_output.last_hidden_state.reshape(shape[0], image_size[1] // 16, image_size[2] // 16, shape[-1]))
if len(sigfeats) > 0:
out['siglip_feats'] = comfy.conds.CONDList(sigfeats)
ref_latents = kwargs.get("reference_latents", None)
if ref_latents is not None:
latents = []
for lat in ref_latents:
latents.append(self.process_latent_in(lat))
out['ref_latents'] = comfy.conds.CONDList(latents)
ref_contexts = kwargs.get("reference_latents_text_embeds", None)
if ref_contexts is not None:
out['ref_contexts'] = comfy.conds.CONDList(ref_contexts)
return out
def extra_conds_shapes(self, **kwargs):
out = {}
ref_latents = kwargs.get("reference_latents", None)
if ref_latents is not None:
out['ref_latents'] = list([1, 16, sum(map(lambda a: math.prod(a.size()[2:]), ref_latents))])
return out
class WAN21(BaseModel):
@@ -1578,9 +1463,6 @@ class QwenImage(BaseModel):
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
attention_mask = kwargs.get("attention_mask", None)
if attention_mask is not None:
out['attention_mask'] = comfy.conds.CONDRegular(attention_mask)
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
@@ -1654,140 +1536,3 @@ class HunyuanImage21Refiner(HunyuanImage21):
out = super().extra_conds(**kwargs)
out['disable_time_r'] = comfy.conds.CONDConstant(True)
return out
class HunyuanVideo15(HunyuanVideo):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device)
def concat_cond(self, **kwargs):
noise = kwargs.get("noise", None)
extra_channels = self.diffusion_model.img_in.proj.weight.shape[1] - noise.shape[1] - 1 #noise 32 img cond 32 + mask 1
if extra_channels == 0:
return None
image = kwargs.get("concat_latent_image", None)
device = kwargs["device"]
if image is None:
shape_image = list(noise.shape)
shape_image[1] = extra_channels
image = torch.zeros(shape_image, dtype=noise.dtype, layout=noise.layout, device=noise.device)
else:
latent_dim = self.latent_format.latent_channels
image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
for i in range(0, image.shape[1], latent_dim):
image[:, i: i + latent_dim] = self.process_latent_in(image[:, i: i + latent_dim])
image = utils.resize_to_batch_size(image, noise.shape[0])
mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None))
if mask is None:
mask = torch.zeros_like(noise)[:, :1]
else:
mask = 1.0 - mask
mask = utils.common_upscale(mask.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
if mask.shape[-3] < noise.shape[-3]:
mask = torch.nn.functional.pad(mask, (0, 0, 0, 0, 0, noise.shape[-3] - mask.shape[-3]), mode='constant', value=0)
mask = utils.resize_to_batch_size(mask, noise.shape[0])
return torch.cat((image, mask), dim=1)
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
attention_mask = kwargs.get("attention_mask", None)
if attention_mask is not None:
if torch.numel(attention_mask) != attention_mask.sum():
out['attention_mask'] = comfy.conds.CONDRegular(attention_mask)
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
conditioning_byt5small = kwargs.get("conditioning_byt5small", None)
if conditioning_byt5small is not None:
out['txt_byt5'] = comfy.conds.CONDRegular(conditioning_byt5small)
guidance = kwargs.get("guidance", 6.0)
if guidance is not None:
out['guidance'] = comfy.conds.CONDRegular(torch.FloatTensor([guidance]))
clip_vision_output = kwargs.get("clip_vision_output", None)
if clip_vision_output is not None:
out['clip_fea'] = comfy.conds.CONDRegular(clip_vision_output.last_hidden_state)
return out
class HunyuanVideo15_SR_Distilled(HunyuanVideo15):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device)
def concat_cond(self, **kwargs):
noise = kwargs.get("noise", None)
image = kwargs.get("concat_latent_image", None)
noise_augmentation = kwargs.get("noise_augmentation", 0.0)
device = kwargs["device"]
if image is None:
image = torch.zeros([noise.shape[0], noise.shape[1] * 2 + 2, noise.shape[-3], noise.shape[-2], noise.shape[-1]], device=comfy.model_management.intermediate_device())
else:
image = utils.common_upscale(image.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
#image = self.process_latent_in(image) # scaling wasn't applied in reference code
image = utils.resize_to_batch_size(image, noise.shape[0])
lq_image_slice = slice(noise.shape[1] + 1, 2 * noise.shape[1] + 1)
if noise_augmentation > 0:
generator = torch.Generator(device="cpu")
generator.manual_seed(kwargs.get("seed", 0) - 10)
noise = torch.randn(image[:, lq_image_slice].shape, generator=generator, dtype=image.dtype, device="cpu").to(image.device)
image[:, lq_image_slice] = noise_augmentation * noise + min(1.0 - noise_augmentation, 0.75) * image[:, lq_image_slice]
else:
image[:, lq_image_slice] = 0.75 * image[:, lq_image_slice]
return image
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
out['disable_time_r'] = comfy.conds.CONDConstant(False)
return out
class Kandinsky5(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.kandinsky5.model.Kandinsky5)
def encode_adm(self, **kwargs):
return kwargs["pooled_output"]
def concat_cond(self, **kwargs):
noise = kwargs.get("noise", None)
device = kwargs["device"]
image = torch.zeros_like(noise)
mask = kwargs.get("concat_mask", kwargs.get("denoise_mask", None))
if mask is None:
mask = torch.zeros_like(noise)[:, :1]
else:
mask = 1.0 - mask
mask = utils.common_upscale(mask.to(device), noise.shape[-1], noise.shape[-2], "bilinear", "center")
if mask.shape[-3] < noise.shape[-3]:
mask = torch.nn.functional.pad(mask, (0, 0, 0, 0, 0, noise.shape[-3] - mask.shape[-3]), mode='constant', value=0)
mask = utils.resize_to_batch_size(mask, noise.shape[0])
return torch.cat((image, mask), dim=1)
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
attention_mask = kwargs.get("attention_mask", None)
if attention_mask is not None:
out['attention_mask'] = comfy.conds.CONDRegular(attention_mask)
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
time_dim_replace = kwargs.get("time_dim_replace", None)
if time_dim_replace is not None:
out['time_dim_replace'] = comfy.conds.CONDRegular(self.process_latent_in(time_dim_replace))
return out
class Kandinsky5Image(Kandinsky5):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device)
def concat_cond(self, **kwargs):
return None

View File

@@ -6,6 +6,20 @@ import math
import logging
import torch
def detect_layer_quantization(metadata):
quant_key = "_quantization_metadata"
if metadata is not None and quant_key in metadata:
quant_metadata = metadata.pop(quant_key)
quant_metadata = json.loads(quant_metadata)
if isinstance(quant_metadata, dict) and "layers" in quant_metadata:
logging.info(f"Found quantization metadata (version {quant_metadata.get('format_version', 'unknown')})")
return quant_metadata["layers"]
else:
raise ValueError("Invalid quantization metadata format")
return None
def count_blocks(state_dict_keys, prefix_string):
count = 0
while True:
@@ -172,75 +186,30 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
guidance_keys = list(filter(lambda a: a.startswith("{}guidance_in.".format(key_prefix)), state_dict_keys))
dit_config["guidance_embed"] = len(guidance_keys) > 0
# HunyuanVideo 1.5
if '{}cond_type_embedding.weight'.format(key_prefix) in state_dict_keys:
dit_config["use_cond_type_embedding"] = True
else:
dit_config["use_cond_type_embedding"] = False
if '{}vision_in.proj.0.weight'.format(key_prefix) in state_dict_keys:
dit_config["vision_in_dim"] = state_dict['{}vision_in.proj.0.weight'.format(key_prefix)].shape[0]
dit_config["meanflow_sum"] = True
else:
dit_config["vision_in_dim"] = None
dit_config["meanflow_sum"] = False
return dit_config
if '{}double_blocks.0.img_attn.norm.key_norm.scale'.format(key_prefix) in state_dict_keys and ('{}img_in.weight'.format(key_prefix) in state_dict_keys or f"{key_prefix}distilled_guidance_layer.norms.0.scale" in state_dict_keys): #Flux, Chroma or Chroma Radiance (has no img_in.weight)
dit_config = {}
if '{}double_stream_modulation_img.lin.weight'.format(key_prefix) in state_dict_keys:
dit_config["image_model"] = "flux2"
dit_config["axes_dim"] = [32, 32, 32, 32]
dit_config["num_heads"] = 48
dit_config["mlp_ratio"] = 3.0
dit_config["theta"] = 2000
dit_config["out_channels"] = 128
dit_config["global_modulation"] = True
dit_config["mlp_silu_act"] = True
dit_config["qkv_bias"] = False
dit_config["ops_bias"] = False
dit_config["default_ref_method"] = "index"
dit_config["ref_index_scale"] = 10.0
dit_config["txt_ids_dims"] = [3]
patch_size = 1
else:
dit_config["image_model"] = "flux"
dit_config["axes_dim"] = [16, 56, 56]
dit_config["num_heads"] = 24
dit_config["mlp_ratio"] = 4.0
dit_config["theta"] = 10000
dit_config["out_channels"] = 16
dit_config["qkv_bias"] = True
dit_config["txt_ids_dims"] = []
patch_size = 2
dit_config["image_model"] = "flux"
dit_config["in_channels"] = 16
dit_config["hidden_size"] = 3072
dit_config["context_in_dim"] = 4096
patch_size = 2
dit_config["patch_size"] = patch_size
in_key = "{}img_in.weight".format(key_prefix)
if in_key in state_dict_keys:
w = state_dict[in_key]
dit_config["in_channels"] = w.shape[1] // (patch_size * patch_size)
dit_config["hidden_size"] = w.shape[0]
txt_in_key = "{}txt_in.weight".format(key_prefix)
if txt_in_key in state_dict_keys:
w = state_dict[txt_in_key]
dit_config["context_in_dim"] = w.shape[1]
dit_config["hidden_size"] = w.shape[0]
dit_config["in_channels"] = state_dict[in_key].shape[1] // (patch_size * patch_size)
dit_config["out_channels"] = 16
vec_in_key = '{}vector_in.in_layer.weight'.format(key_prefix)
if vec_in_key in state_dict_keys:
dit_config["vec_in_dim"] = state_dict[vec_in_key].shape[1]
else:
dit_config["vec_in_dim"] = None
dit_config["num_heads"] = dit_config["hidden_size"] // sum(dit_config["axes_dim"])
dit_config["context_in_dim"] = 4096
dit_config["hidden_size"] = 3072
dit_config["mlp_ratio"] = 4.0
dit_config["num_heads"] = 24
dit_config["depth"] = count_blocks(state_dict_keys, '{}double_blocks.'.format(key_prefix) + '{}.')
dit_config["depth_single_blocks"] = count_blocks(state_dict_keys, '{}single_blocks.'.format(key_prefix) + '{}.')
dit_config["axes_dim"] = [16, 56, 56]
dit_config["theta"] = 10000
dit_config["qkv_bias"] = True
if '{}distilled_guidance_layer.0.norms.0.scale'.format(key_prefix) in state_dict_keys or '{}distilled_guidance_layer.norms.0.scale'.format(key_prefix) in state_dict_keys: #Chroma
dit_config["image_model"] = "chroma"
dit_config["in_channels"] = 64
@@ -253,7 +222,7 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
dit_config["image_model"] = "chroma_radiance"
dit_config["in_channels"] = 3
dit_config["out_channels"] = 3
dit_config["patch_size"] = state_dict.get('{}img_in_patch.weight'.format(key_prefix)).size(dim=-1)
dit_config["patch_size"] = 16
dit_config["nerf_hidden_size"] = 64
dit_config["nerf_mlp_ratio"] = 4
dit_config["nerf_depth"] = 4
@@ -261,17 +230,8 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
dit_config["nerf_tile_size"] = 512
dit_config["nerf_final_head_type"] = "conv" if f"{key_prefix}nerf_final_layer_conv.norm.scale" in state_dict_keys else "linear"
dit_config["nerf_embedder_dtype"] = torch.float32
if "{}__x0__".format(key_prefix) in state_dict_keys: # x0 pred
dit_config["use_x0"] = True
else:
dit_config["use_x0"] = False
else:
dit_config["guidance_embed"] = "{}guidance_in.in_layer.weight".format(key_prefix) in state_dict_keys
dit_config["yak_mlp"] = '{}double_blocks.0.img_mlp.gate_proj.weight'.format(key_prefix) in state_dict_keys
dit_config["txt_norm"] = "{}txt_norm.scale".format(key_prefix) in state_dict_keys
if dit_config["yak_mlp"] and dit_config["txt_norm"]: # Ovis model
dit_config["txt_ids_dims"] = [1, 2]
return dit_config
if '{}t5_yproj.weight'.format(key_prefix) in state_dict_keys: #Genmo mochi preview
@@ -307,7 +267,7 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
if '{}adaln_single.emb.timestep_embedder.linear_1.bias'.format(key_prefix) in state_dict_keys: #Lightricks ltxv
dit_config = {}
dit_config["image_model"] = "ltxav" if f'{key_prefix}audio_adaln_single.linear.weight' in state_dict_keys else "ltxv"
dit_config["image_model"] = "ltxv"
dit_config["num_layers"] = count_blocks(state_dict_keys, '{}transformer_blocks.'.format(key_prefix) + '{}.')
shape = state_dict['{}transformer_blocks.0.attn2.to_k.weight'.format(key_prefix)].shape
dit_config["attention_head_dim"] = shape[0] // 32
@@ -418,42 +378,14 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
dit_config["image_model"] = "lumina2"
dit_config["patch_size"] = 2
dit_config["in_channels"] = 16
w = state_dict['{}cap_embedder.1.weight'.format(key_prefix)]
dit_config["dim"] = w.shape[0]
dit_config["cap_feat_dim"] = w.shape[1]
dit_config["dim"] = 2304
dit_config["cap_feat_dim"] = state_dict['{}cap_embedder.1.weight'.format(key_prefix)].shape[1]
dit_config["n_layers"] = count_blocks(state_dict_keys, '{}layers.'.format(key_prefix) + '{}.')
dit_config["n_heads"] = 24
dit_config["n_kv_heads"] = 8
dit_config["qk_norm"] = True
if dit_config["dim"] == 2304: # Original Lumina 2
dit_config["n_heads"] = 24
dit_config["n_kv_heads"] = 8
dit_config["axes_dims"] = [32, 32, 32]
dit_config["axes_lens"] = [300, 512, 512]
dit_config["rope_theta"] = 10000.0
dit_config["ffn_dim_multiplier"] = 4.0
ctd_weight = state_dict.get('{}clip_text_pooled_proj.0.weight'.format(key_prefix), None)
if ctd_weight is not None: # NewBie
dit_config["clip_text_dim"] = ctd_weight.shape[0]
# NewBie also sets axes_lens = [1024, 512, 512] but it's not used in ComfyUI
elif dit_config["dim"] == 3840: # Z image
dit_config["n_heads"] = 30
dit_config["n_kv_heads"] = 30
dit_config["axes_dims"] = [32, 48, 48]
dit_config["axes_lens"] = [1536, 512, 512]
dit_config["rope_theta"] = 256.0
dit_config["ffn_dim_multiplier"] = (8.0 / 3.0)
dit_config["z_image_modulation"] = True
dit_config["time_scale"] = 1000.0
try:
dit_config["allow_fp16"] = torch.std(state_dict['{}layers.{}.ffn_norm1.weight'.format(key_prefix, dit_config["n_layers"] - 2)], unbiased=False).item() < 0.42
except Exception:
pass
if '{}cap_pad_token'.format(key_prefix) in state_dict_keys:
dit_config["pad_tokens_multiple"] = 32
sig_weight = state_dict.get('{}siglip_embedder.0.weight'.format(key_prefix), None)
if sig_weight is not None:
dit_config["siglip_feat_dim"] = sig_weight.shape[0]
dit_config["axes_dims"] = [32, 32, 32]
dit_config["axes_lens"] = [300, 512, 512]
return dit_config
if '{}head.modulation'.format(key_prefix) in state_dict_keys: # Wan 2.1
@@ -554,8 +486,6 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
if '{}blocks.0.mlp.layer1.weight'.format(key_prefix) in state_dict_keys: # Cosmos predict2
dit_config = {}
dit_config["image_model"] = "cosmos_predict2"
if "{}llm_adapter.blocks.0.cross_attn.q_proj.weight".format(key_prefix) in state_dict_keys:
dit_config["image_model"] = "anima"
dit_config["max_img_h"] = 240
dit_config["max_img_w"] = 240
dit_config["max_frames"] = 128
@@ -630,29 +560,6 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
dit_config["image_model"] = "qwen_image"
dit_config["in_channels"] = state_dict['{}img_in.weight'.format(key_prefix)].shape[1]
dit_config["num_layers"] = count_blocks(state_dict_keys, '{}transformer_blocks.'.format(key_prefix) + '{}.')
if "{}__index_timestep_zero__".format(key_prefix) in state_dict_keys: # 2511
dit_config["default_ref_method"] = "index_timestep_zero"
if "{}time_text_embed.addition_t_embedding.weight".format(key_prefix) in state_dict_keys: # Layered
dit_config["use_additional_t_cond"] = True
dit_config["default_ref_method"] = "negative_index"
return dit_config
if '{}visual_transformer_blocks.0.cross_attention.key_norm.weight'.format(key_prefix) in state_dict_keys: # Kandinsky 5
dit_config = {}
model_dim = state_dict['{}visual_embeddings.in_layer.bias'.format(key_prefix)].shape[0]
dit_config["model_dim"] = model_dim
if model_dim in [4096, 2560]: # pro video and lite image
dit_config["axes_dims"] = (32, 48, 48)
if model_dim == 2560: # lite image
dit_config["rope_scale_factor"] = (1.0, 1.0, 1.0)
elif model_dim == 1792: # lite video
dit_config["axes_dims"] = (16, 24, 24)
dit_config["time_dim"] = state_dict['{}time_embeddings.in_layer.bias'.format(key_prefix)].shape[0]
dit_config["image_model"] = "kandinsky5"
dit_config["ff_dim"] = state_dict['{}visual_transformer_blocks.0.feed_forward.in_layer.weight'.format(key_prefix)].shape[0]
dit_config["visual_embed_dim"] = state_dict['{}visual_embeddings.in_layer.weight'.format(key_prefix)].shape[1]
dit_config["num_text_blocks"] = count_blocks(state_dict_keys, '{}text_transformer_blocks.'.format(key_prefix) + '{}.')
dit_config["num_visual_blocks"] = count_blocks(state_dict_keys, '{}visual_transformer_blocks.'.format(key_prefix) + '{}.')
return dit_config
if '{}input_blocks.0.0.weight'.format(key_prefix) not in state_dict_keys:
@@ -797,11 +704,22 @@ def model_config_from_unet(state_dict, unet_key_prefix, use_base_if_no_match=Fal
if model_config is None and use_base_if_no_match:
model_config = comfy.supported_models_base.BASE(unet_config)
scaled_fp8_key = "{}scaled_fp8".format(unet_key_prefix)
if scaled_fp8_key in state_dict:
scaled_fp8_weight = state_dict.pop(scaled_fp8_key)
model_config.scaled_fp8 = scaled_fp8_weight.dtype
if model_config.scaled_fp8 == torch.float32:
model_config.scaled_fp8 = torch.float8_e4m3fn
if scaled_fp8_weight.nelement() == 2:
model_config.optimizations["fp8"] = False
else:
model_config.optimizations["fp8"] = True
# Detect per-layer quantization (mixed precision)
quant_config = comfy.utils.detect_layer_quantization(state_dict, unet_key_prefix)
if quant_config:
model_config.quant_config = quant_config
logging.info("Detected mixed precision quantization")
layer_quant_config = detect_layer_quantization(metadata)
if layer_quant_config:
model_config.layer_quant_config = layer_quant_config
logging.info(f"Detected mixed precision quantization: {len(layer_quant_config)} layers quantized")
return model_config

View File

@@ -22,10 +22,10 @@ from enum import Enum
from comfy.cli_args import args, PerformanceFeature
import torch
import sys
import importlib
import platform
import weakref
import gc
import os
class VRAMState(Enum):
DISABLED = 0 #No vram present: no need to move models to vram
@@ -333,42 +333,28 @@ except:
SUPPORT_FP8_OPS = args.supports_fp8_compute
AMD_RDNA2_AND_OLDER_ARCH = ["gfx1030", "gfx1031", "gfx1010", "gfx1011", "gfx1012", "gfx906", "gfx900", "gfx803"]
AMD_ENABLE_MIOPEN_ENV = 'COMFYUI_ENABLE_MIOPEN'
try:
if is_amd():
arch = torch.cuda.get_device_properties(get_torch_device()).gcnArchName
if not (any((a in arch) for a in AMD_RDNA2_AND_OLDER_ARCH)):
if os.getenv(AMD_ENABLE_MIOPEN_ENV) != '1':
torch.backends.cudnn.enabled = False # Seems to improve things a lot on AMD
logging.info("Set: torch.backends.cudnn.enabled = False for better AMD performance.")
torch.backends.cudnn.enabled = False # Seems to improve things a lot on AMD
logging.info("Set: torch.backends.cudnn.enabled = False for better AMD performance.")
try:
rocm_version = tuple(map(int, str(torch.version.hip).split(".")[:2]))
except:
rocm_version = (6, -1)
def aotriton_supported(gpu_arch):
path = torch.__path__[0]
path = os.path.join(os.path.join(path, "lib"), "aotriton.images")
gfx = set(map(lambda a: a[4:], filter(lambda a: a.startswith("amd-gfx"), os.listdir(path))))
if gpu_arch in gfx:
return True
if "{}x".format(gpu_arch[:-1]) in gfx:
return True
if "{}xx".format(gpu_arch[:-2]) in gfx:
return True
return False
logging.info("AMD arch: {}".format(arch))
logging.info("ROCm version: {}".format(rocm_version))
if args.use_split_cross_attention == False and args.use_quad_cross_attention == False:
if aotriton_supported(arch): # AMD efficient attention implementation depends on aotriton.
if importlib.util.find_spec('triton') is not None: # AMD efficient attention implementation depends on triton. TODO: better way of detecting if it's compiled in or not.
if torch_version_numeric >= (2, 7): # works on 2.6 but doesn't actually seem to improve much
if any((a in arch) for a in ["gfx90a", "gfx942", "gfx1100", "gfx1101", "gfx1151"]): # TODO: more arches, TODO: gfx950
ENABLE_PYTORCH_ATTENTION = True
if rocm_version >= (7, 0):
if any((a in arch) for a in ["gfx1200", "gfx1201"]):
if any((a in arch) for a in ["gfx1201"]):
ENABLE_PYTORCH_ATTENTION = True
if torch_version_numeric >= (2, 7) and rocm_version >= (6, 4):
if any((a in arch) for a in ["gfx1200", "gfx1201", "gfx950"]): # TODO: more arches, "gfx942" gives error on pytorch nightly 2.10 1013 rocm7.0
@@ -467,7 +453,7 @@ def module_size(module):
sd = module.state_dict()
for k in sd:
t = sd[k]
module_mem += t.nbytes
module_mem += t.nelement() * t.element_size()
return module_mem
class LoadedModel:
@@ -518,7 +504,6 @@ class LoadedModel:
if use_more_vram == 0:
use_more_vram = 1e32
self.model_use_more_vram(use_more_vram, force_patch_weights=force_patch_weights)
real_model = self.model.model
if is_intel_xpu() and not args.disable_ipex_optimize and 'ipex' in globals() and real_model is not None:
@@ -703,11 +688,8 @@ def load_models_gpu(models, memory_required=0, force_patch_weights=False, minimu
loaded_memory = loaded_model.model_loaded_memory()
current_free_mem = get_free_memory(torch_dev) + loaded_memory
lowvram_model_memory = max(0, (current_free_mem - minimum_memory_required), min(current_free_mem * MIN_WEIGHT_MEMORY_RATIO, current_free_mem - minimum_inference_memory()))
lowvram_model_memory = lowvram_model_memory - loaded_memory
if lowvram_model_memory == 0:
lowvram_model_memory = 0.1
lowvram_model_memory = max(128 * 1024 * 1024, (current_free_mem - minimum_memory_required), min(current_free_mem * MIN_WEIGHT_MEMORY_RATIO, current_free_mem - minimum_inference_memory()))
lowvram_model_memory = max(0.1, lowvram_model_memory - loaded_memory)
if vram_set_state == VRAMState.NO_VRAM:
lowvram_model_memory = 0.1
@@ -1026,18 +1008,9 @@ def force_channels_last():
STREAMS = {}
NUM_STREAMS = 0
if args.async_offload is not None:
NUM_STREAMS = args.async_offload
else:
# Enable by default on Nvidia and AMD
if is_nvidia() or is_amd():
NUM_STREAMS = 2
if args.disable_async_offload:
NUM_STREAMS = 0
if NUM_STREAMS > 0:
NUM_STREAMS = 1
if args.async_offload:
NUM_STREAMS = 2
logging.info("Using async weight offloading with {} streams".format(NUM_STREAMS))
def current_stream(device):
@@ -1053,10 +1026,7 @@ def current_stream(device):
stream_counters = {}
def get_offload_stream(device):
stream_counter = stream_counters.get(device, 0)
if NUM_STREAMS == 0:
return None
if torch.compiler.is_compiling():
if NUM_STREAMS <= 1:
return None
if device in STREAMS:
@@ -1069,9 +1039,7 @@ def get_offload_stream(device):
elif is_device_cuda(device):
ss = []
for k in range(NUM_STREAMS):
s1 = torch.cuda.Stream(device=device, priority=0)
s1.as_context = torch.cuda.stream
ss.append(s1)
ss.append(torch.cuda.Stream(device=device, priority=0))
STREAMS[device] = ss
s = ss[stream_counter]
stream_counters[device] = stream_counter
@@ -1079,9 +1047,7 @@ def get_offload_stream(device):
elif is_device_xpu(device):
ss = []
for k in range(NUM_STREAMS):
s1 = torch.xpu.Stream(device=device, priority=0)
s1.as_context = torch.xpu.stream
ss.append(s1)
ss.append(torch.xpu.Stream(device=device, priority=0))
STREAMS[device] = ss
s = ss[stream_counter]
stream_counters[device] = stream_counter
@@ -1099,19 +1065,12 @@ def cast_to(weight, dtype=None, device=None, non_blocking=False, copy=False, str
if dtype is None or weight.dtype == dtype:
return weight
if stream is not None:
wf_context = stream
if hasattr(wf_context, "as_context"):
wf_context = wf_context.as_context(stream)
with wf_context:
with stream:
return weight.to(dtype=dtype, copy=copy)
return weight.to(dtype=dtype, copy=copy)
if stream is not None:
wf_context = stream
if hasattr(wf_context, "as_context"):
wf_context = wf_context.as_context(stream)
with wf_context:
with stream:
r = torch.empty_like(weight, dtype=dtype, device=device)
r.copy_(weight, non_blocking=non_blocking)
else:
@@ -1123,96 +1082,33 @@ def cast_to_device(tensor, device, dtype, copy=False):
non_blocking = device_supports_non_blocking(device)
return cast_to(tensor, dtype=dtype, device=device, non_blocking=non_blocking, copy=copy)
PINNED_MEMORY = {}
TOTAL_PINNED_MEMORY = 0
MAX_PINNED_MEMORY = -1
if not args.disable_pinned_memory:
if is_nvidia() or is_amd():
if WINDOWS:
MAX_PINNED_MEMORY = get_total_memory(torch.device("cpu")) * 0.45 # Windows limit is apparently 50%
else:
MAX_PINNED_MEMORY = get_total_memory(torch.device("cpu")) * 0.95
logging.info("Enabled pinned memory {}".format(MAX_PINNED_MEMORY // (1024 * 1024)))
PINNING_ALLOWED_TYPES = set(["Parameter", "QuantizedTensor"])
def discard_cuda_async_error():
try:
a = torch.tensor([1], dtype=torch.uint8, device=get_torch_device())
b = torch.tensor([1], dtype=torch.uint8, device=get_torch_device())
_ = a + b
torch.cuda.synchronize()
except torch.AcceleratorError:
#Dump it! We already know about it from the synchronous return
pass
def pin_memory(tensor):
global TOTAL_PINNED_MEMORY
if MAX_PINNED_MEMORY <= 0:
if PerformanceFeature.PinnedMem not in args.fast:
return False
if type(tensor).__name__ not in PINNING_ALLOWED_TYPES:
if not is_nvidia():
return False
if not is_device_cpu(tensor.device):
return False
if tensor.is_pinned():
#NOTE: Cuda does detect when a tensor is already pinned and would
#error below, but there are proven cases where this also queues an error
#on the GPU async. So dont trust the CUDA API and guard here
return False
if not tensor.is_contiguous():
return False
size = tensor.nbytes
if (TOTAL_PINNED_MEMORY + size) > MAX_PINNED_MEMORY:
return False
ptr = tensor.data_ptr()
if ptr == 0:
return False
if torch.cuda.cudart().cudaHostRegister(ptr, size, 1) == 0:
PINNED_MEMORY[ptr] = size
TOTAL_PINNED_MEMORY += size
if torch.cuda.cudart().cudaHostRegister(tensor.data_ptr(), tensor.numel() * tensor.element_size(), 1) == 0:
return True
else:
logging.warning("Pin error.")
discard_cuda_async_error()
return False
def unpin_memory(tensor):
global TOTAL_PINNED_MEMORY
if MAX_PINNED_MEMORY <= 0:
if PerformanceFeature.PinnedMem not in args.fast:
return False
if not is_nvidia():
return False
if not is_device_cpu(tensor.device):
return False
ptr = tensor.data_ptr()
size = tensor.nbytes
size_stored = PINNED_MEMORY.get(ptr, None)
if size_stored is None:
logging.warning("Tried to unpin tensor not pinned by ComfyUI")
return False
if size != size_stored:
logging.warning("Size of pinned tensor changed")
return False
if torch.cuda.cudart().cudaHostUnregister(ptr) == 0:
TOTAL_PINNED_MEMORY -= PINNED_MEMORY.pop(ptr)
if len(PINNED_MEMORY) == 0:
TOTAL_PINNED_MEMORY = 0
if torch.cuda.cudart().cudaHostUnregister(tensor.data_ptr()) == 0:
return True
else:
logging.warning("Unpin error.")
discard_cuda_async_error()
return False
@@ -1515,16 +1411,6 @@ def supports_fp8_compute(device=None):
return True
def supports_nvfp4_compute(device=None):
if not is_nvidia():
return False
props = torch.cuda.get_device_properties(device)
if props.major < 10:
return False
return True
def extended_fp16_support():
# TODO: check why some models work with fp16 on newer torch versions but not on older
if torch_version_numeric < (2, 7):
@@ -1532,20 +1418,6 @@ def extended_fp16_support():
return True
LORA_COMPUTE_DTYPES = {}
def lora_compute_dtype(device):
dtype = LORA_COMPUTE_DTYPES.get(device, None)
if dtype is not None:
return dtype
if should_use_fp16(device):
dtype = torch.float16
else:
dtype = torch.float32
LORA_COMPUTE_DTYPES[device] = dtype
return dtype
def soft_empty_cache(force=False):
global cpu_state
if cpu_state == CPUState.MPS:
@@ -1563,10 +1435,6 @@ def soft_empty_cache(force=False):
def unload_all_models():
free_memory(1e30, get_torch_device())
def debug_memory_summary():
if is_amd() or is_nvidia():
return torch.cuda.memory.memory_summary()
return ""
#TODO: might be cleaner to put this somewhere else
import threading

View File

@@ -35,7 +35,6 @@ import comfy.model_management
import comfy.patcher_extension
import comfy.utils
from comfy.comfy_types import UnetWrapperFunction
from comfy.quant_ops import QuantizedTensor
from comfy.patcher_extension import CallbacksMP, PatcherInjection, WrappersMP
@@ -127,23 +126,27 @@ class LowVramPatch:
def __init__(self, key, patches, convert_func=None, set_func=None):
self.key = key
self.patches = patches
self.convert_func = convert_func # TODO: remove
self.convert_func = convert_func
self.set_func = set_func
def __call__(self, weight):
return comfy.lora.calculate_weight(self.patches[self.key], weight, self.key, intermediate_dtype=weight.dtype)
intermediate_dtype = weight.dtype
if self.convert_func is not None:
weight = self.convert_func(weight.to(dtype=torch.float32, copy=True), inplace=True)
LOWVRAM_PATCH_ESTIMATE_MATH_FACTOR = 2
if intermediate_dtype not in [torch.float32, torch.float16, torch.bfloat16]: #intermediate_dtype has to be one that is supported in math ops
intermediate_dtype = torch.float32
out = comfy.lora.calculate_weight(self.patches[self.key], weight.to(intermediate_dtype), self.key, intermediate_dtype=intermediate_dtype)
if self.set_func is None:
return comfy.float.stochastic_rounding(out, weight.dtype, seed=string_to_seed(self.key))
else:
return self.set_func(out, seed=string_to_seed(self.key), return_weight=True)
def low_vram_patch_estimate_vram(model, key):
weight, set_func, convert_func = get_key_weight(model, key)
if weight is None:
return 0
model_dtype = getattr(model, "manual_cast_dtype", torch.float32)
if model_dtype is None:
model_dtype = weight.dtype
return weight.numel() * model_dtype.itemsize * LOWVRAM_PATCH_ESTIMATE_MATH_FACTOR
out = comfy.lora.calculate_weight(self.patches[self.key], weight, self.key, intermediate_dtype=intermediate_dtype)
if self.set_func is not None:
return self.set_func(out, seed=string_to_seed(self.key), return_weight=True).to(dtype=intermediate_dtype)
else:
return out
def get_key_weight(model, key):
set_func = None
@@ -228,6 +231,7 @@ class ModelPatcher:
self.object_patches_backup = {}
self.weight_wrapper_patches = {}
self.model_options = {"transformer_options":{}}
self.model_size()
self.load_device = load_device
self.offload_device = offload_device
self.weight_inplace_update = weight_inplace_update
@@ -266,9 +270,6 @@ class ModelPatcher:
if not hasattr(self.model, 'current_weight_patches_uuid'):
self.model.current_weight_patches_uuid = None
if not hasattr(self.model, 'model_offload_buffer_memory'):
self.model.model_offload_buffer_memory = 0
def model_size(self):
if self.size > 0:
return self.size
@@ -285,7 +286,7 @@ class ModelPatcher:
return self.model.lowvram_patch_counter
def clone(self):
n = self.__class__(self.model, self.load_device, self.offload_device, self.model_size(), weight_inplace_update=self.weight_inplace_update)
n = self.__class__(self.model, self.load_device, self.offload_device, self.size, weight_inplace_update=self.weight_inplace_update)
n.patches = {}
for k in self.patches:
n.patches[k] = self.patches[k][:]
@@ -454,9 +455,6 @@ class ModelPatcher:
def set_model_post_input_patch(self, patch):
self.set_model_patch(patch, "post_input")
def set_model_noise_refiner_patch(self, patch):
self.set_model_patch(patch, "noise_refiner")
def set_model_rope_options(self, scale_x, shift_x, scale_y, shift_y, scale_t, shift_t, **kwargs):
rope_options = self.model_options["transformer_options"].get("rope_options", {})
rope_options["scale_x"] = scale_x
@@ -621,11 +619,10 @@ class ModelPatcher:
if key not in self.backup:
self.backup[key] = collections.namedtuple('Dimension', ['weight', 'inplace_update'])(weight.to(device=self.offload_device, copy=inplace_update), inplace_update)
temp_dtype = comfy.model_management.lora_compute_dtype(device_to)
if device_to is not None:
temp_weight = comfy.model_management.cast_to_device(weight, device_to, temp_dtype, copy=True)
temp_weight = comfy.model_management.cast_to_device(weight, device_to, torch.float32, copy=True)
else:
temp_weight = weight.to(temp_dtype, copy=True)
temp_weight = weight.to(torch.float32, copy=True)
if convert_func is not None:
temp_weight = convert_func(temp_weight, inplace=True)
@@ -666,22 +663,7 @@ class ModelPatcher:
skip = True # skip random weights in non leaf modules
break
if not skip and (hasattr(m, "comfy_cast_weights") or len(params) > 0):
module_mem = comfy.model_management.module_size(m)
module_offload_mem = module_mem
if hasattr(m, "comfy_cast_weights"):
def check_module_offload_mem(key):
if key in self.patches:
return low_vram_patch_estimate_vram(self.model, key)
model_dtype = getattr(self.model, "manual_cast_dtype", None)
weight, _, _ = get_key_weight(self.model, key)
if model_dtype is None or weight is None:
return 0
if (weight.dtype != model_dtype or isinstance(weight, QuantizedTensor)):
return weight.numel() * model_dtype.itemsize
return 0
module_offload_mem += check_module_offload_mem("{}.weight".format(n))
module_offload_mem += check_module_offload_mem("{}.bias".format(n))
loading.append((module_offload_mem, module_mem, n, m, params))
loading.append((comfy.model_management.module_size(m), n, m, params))
return loading
def load(self, device_to=None, lowvram_model_memory=0, force_patch_weights=False, full_load=False):
@@ -695,22 +677,20 @@ class ModelPatcher:
load_completely = []
offloaded = []
offload_buffer = 0
loading.sort(reverse=True)
for i, x in enumerate(loading):
module_offload_mem, module_mem, n, m, params = x
for x in loading:
n = x[1]
m = x[2]
params = x[3]
module_mem = x[0]
lowvram_weight = False
potential_offload = max(offload_buffer, module_offload_mem + sum([ x1[1] for x1 in loading[i+1:i+1+comfy.model_management.NUM_STREAMS]]))
lowvram_fits = mem_counter + module_mem + potential_offload < lowvram_model_memory
weight_key = "{}.weight".format(n)
bias_key = "{}.bias".format(n)
if not full_load and hasattr(m, "comfy_cast_weights"):
if not lowvram_fits:
offload_buffer = potential_offload
if mem_counter + module_mem >= lowvram_model_memory:
lowvram_weight = True
lowvram_counter += 1
lowvram_mem_counter += module_mem
@@ -718,7 +698,6 @@ class ModelPatcher:
continue
cast_weight = self.force_cast_weights
m.comfy_force_cast_weights = self.force_cast_weights
if lowvram_weight:
if hasattr(m, "comfy_cast_weights"):
m.weight_function = []
@@ -745,11 +724,9 @@ class ModelPatcher:
if hasattr(m, "comfy_cast_weights"):
wipe_lowvram_weight(m)
if full_load or lowvram_fits:
if full_load or mem_counter + module_mem < lowvram_model_memory:
mem_counter += module_mem
load_completely.append((module_mem, n, m, params))
else:
offload_buffer = potential_offload
if cast_weight and hasattr(m, "comfy_cast_weights"):
m.prev_comfy_cast_weights = m.comfy_cast_weights
@@ -776,8 +753,6 @@ class ModelPatcher:
key = "{}.{}".format(n, param)
self.unpin_weight(key)
self.patch_weight_to_device(key, device_to=device_to)
if comfy.model_management.is_device_cuda(device_to):
torch.cuda.synchronize()
logging.debug("lowvram: loaded module regularly {} {}".format(n, m))
m.comfy_patched_weights = True
@@ -791,12 +766,11 @@ class ModelPatcher:
for param in params:
self.pin_weight_to_device("{}.{}".format(n, param))
usable_stat = "{:.2f} MB usable,".format(lowvram_model_memory / (1024 * 1024)) if lowvram_model_memory < 1e32 else ""
if lowvram_counter > 0:
logging.info("loaded partially; {} {:.2f} MB loaded, {:.2f} MB offloaded, {:.2f} MB buffer reserved, lowvram patches: {}".format(usable_stat, mem_counter / (1024 * 1024), lowvram_mem_counter / (1024 * 1024), offload_buffer / (1024 * 1024), patch_counter))
logging.info("loaded partially; {:.2f} MB usable, {:.2f} MB loaded, {:.2f} MB offloaded, lowvram patches: {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), lowvram_mem_counter / (1024 * 1024), patch_counter))
self.model.model_lowvram = True
else:
logging.info("loaded completely; {} {:.2f} MB loaded, full load: {}".format(usable_stat, mem_counter / (1024 * 1024), full_load))
logging.info("loaded completely; {:.2f} MB usable, {:.2f} MB loaded, full load: {}".format(lowvram_model_memory / (1024 * 1024), mem_counter / (1024 * 1024), full_load))
self.model.model_lowvram = False
if full_load:
self.model.to(device_to)
@@ -805,7 +779,6 @@ class ModelPatcher:
self.model.lowvram_patch_counter += patch_counter
self.model.device = device_to
self.model.model_loaded_weight_memory = mem_counter
self.model.model_offload_buffer_memory = offload_buffer
self.model.current_weight_patches_uuid = self.patches_uuid
for callback in self.get_all_callbacks(CallbacksMP.ON_LOAD):
@@ -859,7 +832,6 @@ class ModelPatcher:
self.model.to(device_to)
self.model.device = device_to
self.model.model_loaded_weight_memory = 0
self.model.model_offload_buffer_memory = 0
for m in self.model.modules():
if hasattr(m, "comfy_patched_weights"):
@@ -871,25 +843,20 @@ class ModelPatcher:
self.object_patches_backup.clear()
def partially_unload(self, device_to, memory_to_free=0, force_patch_weights=False):
def partially_unload(self, device_to, memory_to_free=0):
with self.use_ejected():
hooks_unpatched = False
memory_freed = 0
patch_counter = 0
unload_list = self._load_list()
unload_list.sort()
offload_buffer = self.model.model_offload_buffer_memory
if len(unload_list) > 0:
NS = comfy.model_management.NUM_STREAMS
offload_weight_factor = [ min(offload_buffer / (NS + 1), unload_list[0][1]) ] * NS
for unload in unload_list:
if memory_to_free + offload_buffer - self.model.model_offload_buffer_memory < memory_freed:
if memory_to_free < memory_freed:
break
module_offload_mem, module_mem, n, m, params = unload
potential_offload = module_offload_mem + sum(offload_weight_factor)
module_mem = unload[0]
n = unload[1]
m = unload[2]
params = unload[3]
lowvram_possible = hasattr(m, "comfy_cast_weights")
if hasattr(m, "comfy_patched_weights") and m.comfy_patched_weights == True:
@@ -920,40 +887,28 @@ class ModelPatcher:
module_mem += move_weight_functions(m, device_to)
if lowvram_possible:
if weight_key in self.patches:
if force_patch_weights:
self.patch_weight_to_device(weight_key)
else:
_, set_func, convert_func = get_key_weight(self.model, weight_key)
m.weight_function.append(LowVramPatch(weight_key, self.patches, convert_func, set_func))
patch_counter += 1
_, set_func, convert_func = get_key_weight(self.model, weight_key)
m.weight_function.append(LowVramPatch(weight_key, self.patches, convert_func, set_func))
patch_counter += 1
if bias_key in self.patches:
if force_patch_weights:
self.patch_weight_to_device(bias_key)
else:
_, set_func, convert_func = get_key_weight(self.model, bias_key)
m.bias_function.append(LowVramPatch(bias_key, self.patches, convert_func, set_func))
patch_counter += 1
_, set_func, convert_func = get_key_weight(self.model, bias_key)
m.bias_function.append(LowVramPatch(bias_key, self.patches, convert_func, set_func))
patch_counter += 1
cast_weight = True
if cast_weight and hasattr(m, "comfy_cast_weights"):
if cast_weight:
m.prev_comfy_cast_weights = m.comfy_cast_weights
m.comfy_cast_weights = True
m.comfy_patched_weights = False
memory_freed += module_mem
offload_buffer = max(offload_buffer, potential_offload)
offload_weight_factor.append(module_mem)
offload_weight_factor.pop(0)
logging.debug("freed {}".format(n))
for param in params:
self.pin_weight_to_device("{}.{}".format(n, param))
self.model.model_lowvram = True
self.model.lowvram_patch_counter += patch_counter
self.model.model_loaded_weight_memory -= memory_freed
self.model.model_offload_buffer_memory = offload_buffer
logging.info("Unloaded partially: {:.2f} MB freed, {:.2f} MB remains loaded, {:.2f} MB buffer reserved, lowvram patches: {}".format(memory_freed / (1024 * 1024), self.model.model_loaded_weight_memory / (1024 * 1024), offload_buffer / (1024 * 1024), self.model.lowvram_patch_counter))
return memory_freed
def partially_load(self, device_to, extra_memory=0, force_patch_weights=False):
@@ -966,9 +921,6 @@ class ModelPatcher:
extra_memory += (used - self.model.model_loaded_weight_memory)
self.patch_model(load_weights=False)
if extra_memory < 0 and not unpatch_weights:
self.partially_unload(self.offload_device, -extra_memory, force_patch_weights=force_patch_weights)
return 0
full_load = False
if self.model.model_lowvram == False and self.model.model_loaded_weight_memory > 0:
self.apply_hooks(self.forced_hooks, force_apply=True)

View File

@@ -22,7 +22,7 @@ import comfy.model_management
from comfy.cli_args import args, PerformanceFeature
import comfy.float
import comfy.rmsnorm
import json
import contextlib
def run_every_op():
if torch.compiler.is_compiling():
@@ -58,8 +58,7 @@ except (ModuleNotFoundError, TypeError):
NVIDIA_MEMORY_CONV_BUG_WORKAROUND = False
try:
if comfy.model_management.is_nvidia():
cudnn_version = torch.backends.cudnn.version()
if (cudnn_version >= 91002 and cudnn_version < 91500) and comfy.model_management.torch_version_numeric >= (2, 9) and comfy.model_management.torch_version_numeric <= (2, 10):
if torch.backends.cudnn.version() >= 91002 and comfy.model_management.torch_version_numeric >= (2, 9) and comfy.model_management.torch_version_numeric <= (2, 10):
#TODO: change upper bound version once it's fixed'
NVIDIA_MEMORY_CONV_BUG_WORKAROUND = True
logging.info("working around nvidia conv3d memory bug.")
@@ -78,10 +77,7 @@ def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None, of
# will add async-offload support to your cast and improve performance.
if input is not None:
if dtype is None:
if isinstance(input, QuantizedTensor):
dtype = input.params.orig_dtype
else:
dtype = input.dtype
dtype = input.dtype
if bias_dtype is None:
bias_dtype = dtype
if device is None:
@@ -93,6 +89,11 @@ def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None, of
else:
offload_stream = None
if offload_stream is not None:
wf_context = offload_stream
else:
wf_context = contextlib.nullcontext()
non_blocking = comfy.model_management.device_supports_non_blocking(device)
weight_has_function = len(s.weight_function) > 0
@@ -104,24 +105,20 @@ def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None, of
if s.bias is not None:
bias = comfy.model_management.cast_to(s.bias, bias_dtype, device, non_blocking=non_blocking, copy=bias_has_function, stream=offload_stream)
if bias_has_function:
with wf_context:
for f in s.bias_function:
bias = f(bias)
weight = weight.to(dtype=dtype)
if weight_has_function:
with wf_context:
for f in s.weight_function:
weight = f(weight)
comfy.model_management.sync_stream(device, offload_stream)
bias_a = bias
weight_a = weight
if s.bias is not None:
for f in s.bias_function:
bias = f(bias)
if weight_has_function or weight.dtype != dtype:
weight = weight.to(dtype=dtype)
if isinstance(weight, QuantizedTensor):
weight = weight.dequantize()
for f in s.weight_function:
weight = f(weight)
if offloadable:
return weight, bias, (offload_stream, weight_a, bias_a)
return weight, bias, offload_stream
else:
#Legacy function signature
return weight, bias
@@ -130,16 +127,13 @@ def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None, of
def uncast_bias_weight(s, weight, bias, offload_stream):
if offload_stream is None:
return
os, weight_a, bias_a = offload_stream
if os is None:
return
if weight_a is not None:
device = weight_a.device
if weight is not None:
device = weight.device
else:
if bias_a is None:
if bias is None:
return
device = bias_a.device
os.wait_stream(comfy.model_management.current_stream(device))
device = bias.device
offload_stream.wait_stream(comfy.model_management.current_stream(device))
class CastWeightBiasOp:
@@ -203,9 +197,7 @@ class disable_weight_init:
def reset_parameters(self):
return None
def _conv_forward(self, input, weight, bias, autopad=None, *args, **kwargs):
if autopad == "causal_zero":
weight = weight[:, :, -input.shape[2]:, :, :]
def _conv_forward(self, input, weight, bias, *args, **kwargs):
if NVIDIA_MEMORY_CONV_BUG_WORKAROUND and weight.dtype in (torch.float16, torch.bfloat16):
out = torch.cudnn_convolution(input, weight, self.padding, self.stride, self.dilation, self.groups, benchmark=False, deterministic=False, allow_tf32=True)
if bias is not None:
@@ -214,15 +206,15 @@ class disable_weight_init:
else:
return super()._conv_forward(input, weight, bias, *args, **kwargs)
def forward_comfy_cast_weights(self, input, autopad=None):
def forward_comfy_cast_weights(self, input):
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
x = self._conv_forward(input, weight, bias, autopad=autopad)
x = self._conv_forward(input, weight, bias)
uncast_bias_weight(self, weight, bias, offload_stream)
return x
def forward(self, *args, **kwargs):
run_every_op()
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0 or "autopad" in kwargs:
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
return self.forward_comfy_cast_weights(*args, **kwargs)
else:
return super().forward(*args, **kwargs)
@@ -414,34 +406,36 @@ def fp8_linear(self, input):
return None
input_dtype = input.dtype
input_shape = input.shape
tensor_3d = input.ndim == 3
if tensor_3d:
input = input.reshape(-1, input_shape[2])
if input.ndim == 3 or input.ndim == 2:
w, bias, offload_stream = cast_bias_weight(self, input, dtype=dtype, bias_dtype=input_dtype, offloadable=True)
if input.ndim != 2:
return None
w, bias, offload_stream = cast_bias_weight(self, input, dtype=dtype, bias_dtype=input_dtype, offloadable=True)
scale_weight = torch.ones((), device=input.device, dtype=torch.float32)
scale_weight = self.scale_weight
scale_input = self.scale_input
if scale_weight is None:
scale_weight = torch.ones((), device=input.device, dtype=torch.float32)
else:
scale_weight = scale_weight.to(input.device)
scale_input = torch.ones((), device=input.device, dtype=torch.float32)
input = torch.clamp(input, min=-448, max=448, out=input)
input_fp8 = input.to(dtype).contiguous()
layout_params_input = TensorCoreFP8Layout.Params(scale=scale_input, orig_dtype=input_dtype, orig_shape=tuple(input_fp8.shape))
quantized_input = QuantizedTensor(input_fp8, "TensorCoreFP8Layout", layout_params_input)
if scale_input is None:
scale_input = torch.ones((), device=input.device, dtype=torch.float32)
input = torch.clamp(input, min=-448, max=448, out=input)
layout_params_weight = {'scale': scale_input, 'orig_dtype': input_dtype}
quantized_input = QuantizedTensor(input.to(dtype).contiguous(), "TensorCoreFP8Layout", layout_params_weight)
else:
scale_input = scale_input.to(input.device)
quantized_input = QuantizedTensor.from_float(input, "TensorCoreFP8Layout", scale=scale_input, dtype=dtype)
# Wrap weight in QuantizedTensor - this enables unified dispatch
# Call F.linear - __torch_dispatch__ routes to fp8_linear handler in quant_ops.py!
layout_params_weight = TensorCoreFP8Layout.Params(scale=scale_weight, orig_dtype=input_dtype, orig_shape=tuple(w.shape))
quantized_weight = QuantizedTensor(w, "TensorCoreFP8Layout", layout_params_weight)
o = torch.nn.functional.linear(quantized_input, quantized_weight, bias)
# Wrap weight in QuantizedTensor - this enables unified dispatch
# Call F.linear - __torch_dispatch__ routes to fp8_linear handler in quant_ops.py!
layout_params_weight = {'scale': scale_weight, 'orig_dtype': input_dtype}
quantized_weight = QuantizedTensor(w, "TensorCoreFP8Layout", layout_params_weight)
o = torch.nn.functional.linear(quantized_input, quantized_weight, bias)
uncast_bias_weight(self, w, bias, offload_stream)
if tensor_3d:
o = o.reshape((input_shape[0], input_shape[1], w.shape[0]))
uncast_bias_weight(self, w, bias, offload_stream)
return o
return o
return None
class fp8_ops(manual_cast):
class Linear(manual_cast.Linear):
@@ -451,7 +445,7 @@ class fp8_ops(manual_cast):
return None
def forward_comfy_cast_weights(self, input):
if len(self.weight_function) == 0 and len(self.bias_function) == 0:
if not self.training:
try:
out = fp8_linear(self, input)
if out is not None:
@@ -464,6 +458,59 @@ class fp8_ops(manual_cast):
uncast_bias_weight(self, weight, bias, offload_stream)
return x
def scaled_fp8_ops(fp8_matrix_mult=False, scale_input=False, override_dtype=None):
logging.info("Using scaled fp8: fp8 matrix mult: {}, scale input: {}".format(fp8_matrix_mult, scale_input))
class scaled_fp8_op(manual_cast):
class Linear(manual_cast.Linear):
def __init__(self, *args, **kwargs):
if override_dtype is not None:
kwargs['dtype'] = override_dtype
super().__init__(*args, **kwargs)
def reset_parameters(self):
if not hasattr(self, 'scale_weight'):
self.scale_weight = torch.nn.parameter.Parameter(data=torch.ones((), device=self.weight.device, dtype=torch.float32), requires_grad=False)
if not scale_input:
self.scale_input = None
if not hasattr(self, 'scale_input'):
self.scale_input = torch.nn.parameter.Parameter(data=torch.ones((), device=self.weight.device, dtype=torch.float32), requires_grad=False)
return None
def forward_comfy_cast_weights(self, input):
if fp8_matrix_mult:
out = fp8_linear(self, input)
if out is not None:
return out
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
if weight.numel() < input.numel(): #TODO: optimize
x = torch.nn.functional.linear(input, weight * self.scale_weight.to(device=weight.device, dtype=weight.dtype), bias)
else:
x = torch.nn.functional.linear(input * self.scale_weight.to(device=weight.device, dtype=weight.dtype), weight, bias)
uncast_bias_weight(self, weight, bias, offload_stream)
return x
def convert_weight(self, weight, inplace=False, **kwargs):
if inplace:
weight *= self.scale_weight.to(device=weight.device, dtype=weight.dtype)
return weight
else:
return weight * self.scale_weight.to(device=weight.device, dtype=weight.dtype)
def set_weight(self, weight, inplace_update=False, seed=None, return_weight=False, **kwargs):
weight = comfy.float.stochastic_rounding(weight / self.scale_weight.to(device=weight.device, dtype=weight.dtype), self.weight.dtype, seed=seed)
if return_weight:
return weight
if inplace_update:
self.weight.data.copy_(weight)
else:
self.weight = torch.nn.Parameter(weight, requires_grad=False)
return scaled_fp8_op
CUBLAS_IS_AVAILABLE = False
try:
from cublas_ops import CublasLinear
@@ -487,258 +534,129 @@ if CUBLAS_IS_AVAILABLE:
# ==============================================================================
# Mixed Precision Operations
# ==============================================================================
from .quant_ops import (
QuantizedTensor,
QUANT_ALGOS,
TensorCoreFP8Layout,
get_layout_class,
)
from .quant_ops import QuantizedTensor
QUANT_FORMAT_MIXINS = {
"float8_e4m3fn": {
"dtype": torch.float8_e4m3fn,
"layout_type": "TensorCoreFP8Layout",
"parameters": {
"weight_scale": torch.nn.Parameter(torch.zeros((), dtype=torch.float32), requires_grad=False),
"input_scale": torch.nn.Parameter(torch.zeros((), dtype=torch.float32), requires_grad=False),
}
}
}
def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_precision_mm=False, disabled=[]):
class MixedPrecisionOps(manual_cast):
_quant_config = quant_config
_compute_dtype = compute_dtype
_full_precision_mm = full_precision_mm
_disabled = disabled
class MixedPrecisionOps(disable_weight_init):
_layer_quant_config = {}
_compute_dtype = torch.bfloat16
class Linear(torch.nn.Module, CastWeightBiasOp):
def __init__(
self,
in_features: int,
out_features: int,
bias: bool = True,
device=None,
dtype=None,
) -> None:
super().__init__()
class Linear(torch.nn.Module, CastWeightBiasOp):
def __init__(
self,
in_features: int,
out_features: int,
bias: bool = True,
device=None,
dtype=None,
) -> None:
super().__init__()
self.factory_kwargs = {"device": device, "dtype": MixedPrecisionOps._compute_dtype}
# self.factory_kwargs = {"device": device, "dtype": dtype}
self.factory_kwargs = {"device": device, "dtype": MixedPrecisionOps._compute_dtype}
# self.factory_kwargs = {"device": device, "dtype": dtype}
self.in_features = in_features
self.out_features = out_features
if bias:
self.bias = torch.nn.Parameter(torch.empty(out_features, **self.factory_kwargs))
else:
self.register_parameter("bias", None)
self.in_features = in_features
self.out_features = out_features
if bias:
self.bias = torch.nn.Parameter(torch.empty(out_features, **self.factory_kwargs))
else:
self.register_parameter("bias", None)
self.tensor_class = None
self._full_precision_mm = MixedPrecisionOps._full_precision_mm
self._full_precision_mm_config = False
self.tensor_class = None
def reset_parameters(self):
return None
def reset_parameters(self):
return None
def _load_scale_param(self, state_dict, prefix, param_name, device, manually_loaded_keys, dtype=None):
key = f"{prefix}{param_name}"
value = state_dict.pop(key, None)
if value is not None:
value = value.to(device=device)
if dtype is not None:
value = value.view(dtype=dtype)
manually_loaded_keys.append(key)
return value
def _load_from_state_dict(self, state_dict, prefix, local_metadata,
strict, missing_keys, unexpected_keys, error_msgs):
def _load_from_state_dict(self, state_dict, prefix, local_metadata,
strict, missing_keys, unexpected_keys, error_msgs):
device = self.factory_kwargs["device"]
layer_name = prefix.rstrip('.')
weight_key = f"{prefix}weight"
weight = state_dict.pop(weight_key, None)
if weight is None:
raise ValueError(f"Missing weight for layer {layer_name}")
device = self.factory_kwargs["device"]
layer_name = prefix.rstrip('.')
weight_key = f"{prefix}weight"
weight = state_dict.pop(weight_key, None)
if weight is None:
logging.warning(f"Missing weight for layer {layer_name}")
return
manually_loaded_keys = [weight_key]
manually_loaded_keys = [weight_key]
if layer_name not in MixedPrecisionOps._layer_quant_config:
self.weight = torch.nn.Parameter(weight.to(device=device, dtype=MixedPrecisionOps._compute_dtype), requires_grad=False)
else:
quant_format = MixedPrecisionOps._layer_quant_config[layer_name].get("format", None)
if quant_format is None:
raise ValueError(f"Unknown quantization format for layer {layer_name}")
layer_conf = state_dict.pop(f"{prefix}comfy_quant", None)
if layer_conf is not None:
layer_conf = json.loads(layer_conf.numpy().tobytes())
mixin = QUANT_FORMAT_MIXINS[quant_format]
self.layout_type = mixin["layout_type"]
if layer_conf is None:
self.weight = torch.nn.Parameter(weight.to(device=device, dtype=MixedPrecisionOps._compute_dtype), requires_grad=False)
else:
self.quant_format = layer_conf.get("format", None)
self._full_precision_mm_config = layer_conf.get("full_precision_matrix_mult", False)
if not self._full_precision_mm:
self._full_precision_mm = self._full_precision_mm_config
scale_key = f"{prefix}weight_scale"
layout_params = {
'scale': state_dict.pop(scale_key, None),
'orig_dtype': MixedPrecisionOps._compute_dtype
}
if layout_params['scale'] is not None:
manually_loaded_keys.append(scale_key)
if self.quant_format in MixedPrecisionOps._disabled:
self._full_precision_mm = True
self.weight = torch.nn.Parameter(
QuantizedTensor(weight.to(device=device, dtype=mixin["dtype"]), self.layout_type, layout_params),
requires_grad=False
)
if self.quant_format is None:
raise ValueError(f"Unknown quantization format for layer {layer_name}")
qconfig = QUANT_ALGOS[self.quant_format]
self.layout_type = qconfig["comfy_tensor_layout"]
layout_cls = get_layout_class(self.layout_type)
# Load format-specific parameters
if self.quant_format in ["float8_e4m3fn", "float8_e5m2"]:
# FP8: single tensor scale
scale = self._load_scale_param(state_dict, prefix, "weight_scale", device, manually_loaded_keys)
params = layout_cls.Params(
scale=scale,
orig_dtype=MixedPrecisionOps._compute_dtype,
orig_shape=(self.out_features, self.in_features),
)
elif self.quant_format == "nvfp4":
# NVFP4: tensor_scale (weight_scale_2) + block_scale (weight_scale)
tensor_scale = self._load_scale_param(state_dict, prefix, "weight_scale_2", device, manually_loaded_keys)
block_scale = self._load_scale_param(state_dict, prefix, "weight_scale", device, manually_loaded_keys,
dtype=torch.float8_e4m3fn)
if tensor_scale is None or block_scale is None:
raise ValueError(f"Missing NVFP4 scales for layer {layer_name}")
params = layout_cls.Params(
scale=tensor_scale,
block_scale=block_scale,
orig_dtype=MixedPrecisionOps._compute_dtype,
orig_shape=(self.out_features, self.in_features),
)
else:
raise ValueError(f"Unsupported quantization format: {self.quant_format}")
self.weight = torch.nn.Parameter(
QuantizedTensor(weight.to(device=device, dtype=qconfig["storage_t"]), self.layout_type, params),
requires_grad=False
)
for param_name in qconfig["parameters"]:
if param_name in {"weight_scale", "weight_scale_2"}:
continue # Already handled above
param_key = f"{prefix}{param_name}"
_v = state_dict.pop(param_key, None)
if _v is None:
continue
self.register_parameter(param_name, torch.nn.Parameter(_v.to(device=device), requires_grad=False))
manually_loaded_keys.append(param_key)
super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
for key in manually_loaded_keys:
if key in missing_keys:
missing_keys.remove(key)
def state_dict(self, *args, destination=None, prefix="", **kwargs):
if destination is not None:
sd = destination
else:
sd = {}
if self.bias is not None:
sd["{}bias".format(prefix)] = self.bias
if isinstance(self.weight, QuantizedTensor):
sd_out = self.weight.state_dict("{}weight".format(prefix))
for k in sd_out:
sd[k] = sd_out[k]
quant_conf = {"format": self.quant_format}
if self._full_precision_mm_config:
quant_conf["full_precision_matrix_mult"] = True
sd["{}comfy_quant".format(prefix)] = torch.tensor(list(json.dumps(quant_conf).encode('utf-8')), dtype=torch.uint8)
input_scale = getattr(self, 'input_scale', None)
if input_scale is not None:
sd["{}input_scale".format(prefix)] = input_scale
else:
sd["{}weight".format(prefix)] = self.weight
return sd
def _forward(self, input, weight, bias):
return torch.nn.functional.linear(input, weight, bias)
def forward_comfy_cast_weights(self, input):
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
x = self._forward(input, weight, bias)
uncast_bias_weight(self, weight, bias, offload_stream)
return x
def forward(self, input, *args, **kwargs):
run_every_op()
input_shape = input.shape
reshaped_3d = False
if (getattr(self, 'layout_type', None) is not None and
not isinstance(input, QuantizedTensor) and not self._full_precision_mm and
not getattr(self, 'comfy_force_cast_weights', False) and
len(self.weight_function) == 0 and len(self.bias_function) == 0):
# Reshape 3D tensors to 2D for quantization (needed for NVFP4 and others)
input_reshaped = input.reshape(-1, input_shape[2]) if input.ndim == 3 else input
# Fall back to non-quantized for non-2D tensors
if input_reshaped.ndim == 2:
reshaped_3d = input.ndim == 3
# dtype is now implicit in the layout class
scale = getattr(self, 'input_scale', None)
if scale is not None:
scale = comfy.model_management.cast_to_device(scale, input.device, None)
input = QuantizedTensor.from_float(input_reshaped, self.layout_type, scale=scale)
output = self.forward_comfy_cast_weights(input)
# Reshape output back to 3D if input was 3D
if reshaped_3d:
output = output.reshape((input_shape[0], input_shape[1], self.weight.shape[0]))
return output
def convert_weight(self, weight, inplace=False, **kwargs):
if isinstance(weight, QuantizedTensor):
return weight.dequantize()
else:
return weight
def set_weight(self, weight, inplace_update=False, seed=None, return_weight=False, **kwargs):
if getattr(self, 'layout_type', None) is not None:
# dtype is now implicit in the layout class
weight = QuantizedTensor.from_float(weight, self.layout_type, scale="recalculate", stochastic_rounding=seed, inplace_ops=True).to(self.weight.dtype)
else:
weight = weight.to(self.weight.dtype)
if return_weight:
return weight
assert inplace_update is False # TODO: eventually remove the inplace_update stuff
self.weight = torch.nn.Parameter(weight, requires_grad=False)
def _apply(self, fn, recurse=True): # This is to get torch.compile + moving weights to another device working
if recurse:
for module in self.children():
module._apply(fn)
for key, param in self._parameters.items():
if param is None:
for param_name, param_value in mixin["parameters"].items():
param_key = f"{prefix}{param_name}"
_v = state_dict.pop(param_key, None)
if _v is None:
continue
self.register_parameter(key, torch.nn.Parameter(fn(param), requires_grad=False))
for key, buf in self._buffers.items():
if buf is not None:
self._buffers[key] = fn(buf)
return self
setattr(self, param_name, torch.nn.Parameter(_v.to(device=device), requires_grad=False))
manually_loaded_keys.append(param_key)
return MixedPrecisionOps
super()._load_from_state_dict(state_dict, prefix, local_metadata, strict, missing_keys, unexpected_keys, error_msgs)
def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_fp8=False, fp8_optimizations=False, model_config=None):
fp8_compute = comfy.model_management.supports_fp8_compute(load_device) # TODO: if we support more ops this needs to be more granular
nvfp4_compute = comfy.model_management.supports_nvfp4_compute(load_device)
for key in manually_loaded_keys:
if key in missing_keys:
missing_keys.remove(key)
if model_config and hasattr(model_config, 'quant_config') and model_config.quant_config:
logging.info("Using mixed precision operations")
disabled = set()
if not nvfp4_compute:
disabled.add("nvfp4")
if not fp8_compute:
disabled.add("float8_e4m3fn")
disabled.add("float8_e5m2")
return mixed_precision_ops(model_config.quant_config, compute_dtype, disabled=disabled)
def _forward(self, input, weight, bias):
return torch.nn.functional.linear(input, weight, bias)
def forward_comfy_cast_weights(self, input):
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
x = self._forward(input, weight, bias)
uncast_bias_weight(self, weight, bias, offload_stream)
return x
def forward(self, input, *args, **kwargs):
run_every_op()
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
return self.forward_comfy_cast_weights(input, *args, **kwargs)
if (getattr(self, 'layout_type', None) is not None and
getattr(self, 'input_scale', None) is not None and
not isinstance(input, QuantizedTensor)):
input = QuantizedTensor.from_float(input, self.layout_type, scale=self.input_scale, fp8_dtype=self.weight.dtype)
return self._forward(input, self.weight, self.bias)
def pick_operations(weight_dtype, compute_dtype, load_device=None, disable_fast_fp8=False, fp8_optimizations=False, scaled_fp8=None, model_config=None):
if model_config and hasattr(model_config, 'layer_quant_config') and model_config.layer_quant_config:
MixedPrecisionOps._layer_quant_config = model_config.layer_quant_config
MixedPrecisionOps._compute_dtype = compute_dtype
logging.info(f"Using mixed precision operations: {len(model_config.layer_quant_config)} quantized layers")
return MixedPrecisionOps
fp8_compute = comfy.model_management.supports_fp8_compute(load_device)
if scaled_fp8 is not None:
return scaled_fp8_ops(fp8_matrix_mult=fp8_compute and fp8_optimizations, scale_input=fp8_optimizations, override_dtype=scaled_fp8)
if (
fp8_compute and

View File

@@ -1,174 +1,512 @@
import torch
import logging
from typing import Tuple, Dict
try:
import comfy_kitchen as ck
from comfy_kitchen.tensor import (
QuantizedTensor,
QuantizedLayout,
TensorCoreFP8Layout as _CKFp8Layout,
TensorCoreNVFP4Layout as _CKNvfp4Layout,
register_layout_op,
register_layout_class,
get_layout_class,
)
_CK_AVAILABLE = True
if torch.version.cuda is None:
ck.registry.disable("cuda")
else:
cuda_version = tuple(map(int, str(torch.version.cuda).split('.')))
if cuda_version < (13,):
ck.registry.disable("cuda")
logging.warning("WARNING: You need pytorch with cu130 or higher to use optimized CUDA operations.")
_LAYOUT_REGISTRY = {}
_GENERIC_UTILS = {}
ck.registry.disable("triton")
for k, v in ck.list_backends().items():
logging.info(f"Found comfy_kitchen backend {k}: {v}")
except ImportError as e:
logging.error(f"Failed to import comfy_kitchen, Error: {e}, fp8 and fp4 support will not be available.")
_CK_AVAILABLE = False
class QuantizedTensor:
pass
def register_layout_op(torch_op, layout_type):
"""
Decorator to register a layout-specific operation handler.
Args:
torch_op: PyTorch operation (e.g., torch.ops.aten.linear.default)
layout_type: Layout class (e.g., TensorCoreFP8Layout)
Example:
@register_layout_op(torch.ops.aten.linear.default, TensorCoreFP8Layout)
def fp8_linear(func, args, kwargs):
# FP8-specific linear implementation
...
"""
def decorator(handler_func):
if torch_op not in _LAYOUT_REGISTRY:
_LAYOUT_REGISTRY[torch_op] = {}
_LAYOUT_REGISTRY[torch_op][layout_type] = handler_func
return handler_func
return decorator
class _CKFp8Layout:
pass
class _CKNvfp4Layout:
pass
def register_generic_util(torch_op):
"""
Decorator to register a generic utility that works for all layouts.
Args:
torch_op: PyTorch operation (e.g., torch.ops.aten.detach.default)
def register_layout_class(name, cls):
pass
Example:
@register_generic_util(torch.ops.aten.detach.default)
def generic_detach(func, args, kwargs):
# Works for any layout
...
"""
def decorator(handler_func):
_GENERIC_UTILS[torch_op] = handler_func
return handler_func
return decorator
def get_layout_class(name):
return None
import comfy.float
def _get_layout_from_args(args):
for arg in args:
if isinstance(arg, QuantizedTensor):
return arg._layout_type
elif isinstance(arg, (list, tuple)):
for item in arg:
if isinstance(item, QuantizedTensor):
return item._layout_type
return None
# ==============================================================================
# FP8 Layouts with Comfy-Specific Extensions
# ==============================================================================
class _TensorCoreFP8LayoutBase(_CKFp8Layout):
FP8_DTYPE = None # Must be overridden in subclass
def _move_layout_params_to_device(params, device):
new_params = {}
for k, v in params.items():
if isinstance(v, torch.Tensor):
new_params[k] = v.to(device=device)
else:
new_params[k] = v
return new_params
def _copy_layout_params(params):
new_params = {}
for k, v in params.items():
if isinstance(v, torch.Tensor):
new_params[k] = v.clone()
else:
new_params[k] = v
return new_params
class QuantizedLayout:
"""
Base class for quantization layouts.
A layout encapsulates the format-specific logic for quantization/dequantization
and provides a uniform interface for extracting raw tensors needed for computation.
New quantization formats should subclass this and implement the required methods.
"""
@classmethod
def quantize(cls, tensor, **kwargs) -> Tuple[torch.Tensor, Dict]:
raise NotImplementedError(f"{cls.__name__} must implement quantize()")
@staticmethod
def dequantize(qdata, **layout_params) -> torch.Tensor:
raise NotImplementedError("TensorLayout must implement dequantize()")
@classmethod
def quantize(cls, tensor, scale=None, stochastic_rounding=0, inplace_ops=False):
if cls.FP8_DTYPE is None:
raise NotImplementedError(f"{cls.__name__} must define FP8_DTYPE")
def get_plain_tensors(cls, qtensor) -> torch.Tensor:
raise NotImplementedError(f"{cls.__name__} must implement get_plain_tensors()")
class QuantizedTensor(torch.Tensor):
"""
Universal quantized tensor that works with any layout.
This tensor subclass uses a pluggable layout system to support multiple
quantization formats (FP8, INT4, INT8, etc.) without code duplication.
The layout_type determines format-specific behavior, while common operations
(detach, clone, to) are handled generically.
Attributes:
_qdata: The quantized tensor data
_layout_type: Layout class (e.g., TensorCoreFP8Layout)
_layout_params: Dict with layout-specific params (scale, zero_point, etc.)
"""
@staticmethod
def __new__(cls, qdata, layout_type, layout_params):
"""
Create a quantized tensor.
Args:
qdata: The quantized data tensor
layout_type: Layout class (subclass of QuantizedLayout)
layout_params: Dict with layout-specific parameters
"""
return torch.Tensor._make_wrapper_subclass(cls, qdata.shape, device=qdata.device, dtype=qdata.dtype, requires_grad=False)
def __init__(self, qdata, layout_type, layout_params):
self._qdata = qdata
self._layout_type = layout_type
self._layout_params = layout_params
def __repr__(self):
layout_name = self._layout_type
param_str = ", ".join(f"{k}={v}" for k, v in list(self._layout_params.items())[:2])
return f"QuantizedTensor(shape={self.shape}, layout={layout_name}, {param_str})"
@property
def layout_type(self):
return self._layout_type
def __tensor_flatten__(self):
"""
Tensor flattening protocol for proper device movement.
"""
inner_tensors = ["_qdata"]
ctx = {
"layout_type": self._layout_type,
}
tensor_params = {}
non_tensor_params = {}
for k, v in self._layout_params.items():
if isinstance(v, torch.Tensor):
tensor_params[k] = v
else:
non_tensor_params[k] = v
ctx["tensor_param_keys"] = list(tensor_params.keys())
ctx["non_tensor_params"] = non_tensor_params
for k, v in tensor_params.items():
attr_name = f"_layout_param_{k}"
object.__setattr__(self, attr_name, v)
inner_tensors.append(attr_name)
return inner_tensors, ctx
@staticmethod
def __tensor_unflatten__(inner_tensors, ctx, outer_size, outer_stride):
"""
Tensor unflattening protocol for proper device movement.
Reconstructs the QuantizedTensor after device movement.
"""
layout_type = ctx["layout_type"]
layout_params = dict(ctx["non_tensor_params"])
for key in ctx["tensor_param_keys"]:
attr_name = f"_layout_param_{key}"
layout_params[key] = inner_tensors[attr_name]
return QuantizedTensor(inner_tensors["_qdata"], layout_type, layout_params)
@classmethod
def from_float(cls, tensor, layout_type, **quantize_kwargs) -> 'QuantizedTensor':
qdata, layout_params = LAYOUTS[layout_type].quantize(tensor, **quantize_kwargs)
return cls(qdata, layout_type, layout_params)
def dequantize(self) -> torch.Tensor:
return LAYOUTS[self._layout_type].dequantize(self._qdata, **self._layout_params)
@classmethod
def __torch_dispatch__(cls, func, types, args=(), kwargs=None):
kwargs = kwargs or {}
# Step 1: Check generic utilities first (detach, clone, to, etc.)
if func in _GENERIC_UTILS:
return _GENERIC_UTILS[func](func, args, kwargs)
# Step 2: Check layout-specific handlers (linear, matmul, etc.)
layout_type = _get_layout_from_args(args)
if layout_type and func in _LAYOUT_REGISTRY:
handler = _LAYOUT_REGISTRY[func].get(layout_type)
if handler:
return handler(func, args, kwargs)
# Step 3: Fallback to dequantization
if isinstance(args[0] if args else None, QuantizedTensor):
logging.info(f"QuantizedTensor: Unhandled operation {func}, falling back to dequantization. kwargs={kwargs}")
return cls._dequant_and_fallback(func, args, kwargs)
@classmethod
def _dequant_and_fallback(cls, func, args, kwargs):
def dequant_arg(arg):
if isinstance(arg, QuantizedTensor):
return arg.dequantize()
elif isinstance(arg, (list, tuple)):
return type(arg)(dequant_arg(a) for a in arg)
return arg
new_args = dequant_arg(args)
new_kwargs = dequant_arg(kwargs)
return func(*new_args, **new_kwargs)
# ==============================================================================
# Generic Utilities (Layout-Agnostic Operations)
# ==============================================================================
def _create_transformed_qtensor(qt, transform_fn):
new_data = transform_fn(qt._qdata)
new_params = _copy_layout_params(qt._layout_params)
return QuantizedTensor(new_data, qt._layout_type, new_params)
def _handle_device_transfer(qt, target_device, target_dtype=None, target_layout=None, op_name="to"):
if target_dtype is not None and target_dtype != qt.dtype:
logging.warning(
f"QuantizedTensor: dtype conversion requested to {target_dtype}, "
f"but not supported for quantized tensors. Ignoring dtype."
)
if target_layout is not None and target_layout != torch.strided:
logging.warning(
f"QuantizedTensor: layout change requested to {target_layout}, "
f"but not supported. Ignoring layout."
)
# Handle device transfer
current_device = qt._qdata.device
if target_device is not None:
# Normalize device for comparison
if isinstance(target_device, str):
target_device = torch.device(target_device)
if isinstance(current_device, str):
current_device = torch.device(current_device)
if target_device != current_device:
logging.debug(f"QuantizedTensor.{op_name}: Moving from {current_device} to {target_device}")
new_q_data = qt._qdata.to(device=target_device)
new_params = _move_layout_params_to_device(qt._layout_params, target_device)
new_qt = QuantizedTensor(new_q_data, qt._layout_type, new_params)
logging.debug(f"QuantizedTensor.{op_name}: Created new tensor on {target_device}")
return new_qt
logging.debug(f"QuantizedTensor.{op_name}: No device change needed, returning original")
return qt
@register_generic_util(torch.ops.aten.detach.default)
def generic_detach(func, args, kwargs):
"""Detach operation - creates a detached copy of the quantized tensor."""
qt = args[0]
if isinstance(qt, QuantizedTensor):
return _create_transformed_qtensor(qt, lambda x: x.detach())
return func(*args, **kwargs)
@register_generic_util(torch.ops.aten.clone.default)
def generic_clone(func, args, kwargs):
"""Clone operation - creates a deep copy of the quantized tensor."""
qt = args[0]
if isinstance(qt, QuantizedTensor):
return _create_transformed_qtensor(qt, lambda x: x.clone())
return func(*args, **kwargs)
@register_generic_util(torch.ops.aten._to_copy.default)
def generic_to_copy(func, args, kwargs):
"""Device/dtype transfer operation - handles .to(device) calls."""
qt = args[0]
if isinstance(qt, QuantizedTensor):
return _handle_device_transfer(
qt,
target_device=kwargs.get('device', None),
target_dtype=kwargs.get('dtype', None),
op_name="_to_copy"
)
return func(*args, **kwargs)
@register_generic_util(torch.ops.aten.to.dtype_layout)
def generic_to_dtype_layout(func, args, kwargs):
"""Handle .to(device) calls using the dtype_layout variant."""
qt = args[0]
if isinstance(qt, QuantizedTensor):
return _handle_device_transfer(
qt,
target_device=kwargs.get('device', None),
target_dtype=kwargs.get('dtype', None),
target_layout=kwargs.get('layout', None),
op_name="to"
)
return func(*args, **kwargs)
@register_generic_util(torch.ops.aten.copy_.default)
def generic_copy_(func, args, kwargs):
qt_dest = args[0]
src = args[1]
if isinstance(qt_dest, QuantizedTensor):
if isinstance(src, QuantizedTensor):
# Copy from another quantized tensor
qt_dest._qdata.copy_(src._qdata)
qt_dest._layout_type = src._layout_type
qt_dest._layout_params = _copy_layout_params(src._layout_params)
else:
# Copy from regular tensor - just copy raw data
qt_dest._qdata.copy_(src)
return qt_dest
return func(*args, **kwargs)
@register_generic_util(torch.ops.aten._has_compatible_shallow_copy_type.default)
def generic_has_compatible_shallow_copy_type(func, args, kwargs):
return True
# ==============================================================================
# FP8 Layout + Operation Handlers
# ==============================================================================
class TensorCoreFP8Layout(QuantizedLayout):
"""
Storage format:
- qdata: FP8 tensor (torch.float8_e4m3fn or torch.float8_e5m2)
- scale: Scalar tensor (float32) for dequantization
- orig_dtype: Original dtype before quantization (for casting back)
"""
@classmethod
def quantize(cls, tensor, scale=None, dtype=torch.float8_e4m3fn):
orig_dtype = tensor.dtype
orig_shape = tuple(tensor.shape)
if isinstance(scale, str) and scale == "recalculate":
scale = torch.amax(tensor.abs()).to(dtype=torch.float32) / torch.finfo(cls.FP8_DTYPE).max
if tensor.dtype not in [torch.float32, torch.bfloat16]: # Prevent scale from being too small
tensor_info = torch.finfo(tensor.dtype)
scale = (1.0 / torch.clamp((1.0 / scale), min=tensor_info.min, max=tensor_info.max))
if scale is None:
scale = torch.ones((), device=tensor.device, dtype=torch.float32)
if not isinstance(scale, torch.Tensor):
scale = torch.tensor(scale, device=tensor.device, dtype=torch.float32)
if stochastic_rounding > 0:
if inplace_ops:
tensor *= (1.0 / scale).to(tensor.dtype)
else:
tensor = tensor * (1.0 / scale).to(tensor.dtype)
qdata = comfy.float.stochastic_rounding(tensor, dtype=cls.FP8_DTYPE, seed=stochastic_rounding)
else:
qdata = ck.quantize_per_tensor_fp8(tensor, scale, cls.FP8_DTYPE)
params = cls.Params(scale=scale.float(), orig_dtype=orig_dtype, orig_shape=orig_shape)
return qdata, params
class TensorCoreNVFP4Layout(_CKNvfp4Layout):
@classmethod
def quantize(cls, tensor, scale=None, stochastic_rounding=0, inplace_ops=False):
if tensor.dim() != 2:
raise ValueError(f"NVFP4 requires 2D tensor, got {tensor.dim()}D")
orig_dtype = tensor.dtype
orig_shape = tuple(tensor.shape)
if scale is None or (isinstance(scale, str) and scale == "recalculate"):
scale = torch.amax(tensor.abs()) / (ck.float_utils.F8_E4M3_MAX * ck.float_utils.F4_E2M1_MAX)
scale = torch.amax(tensor.abs()) / torch.finfo(dtype).max
if not isinstance(scale, torch.Tensor):
scale = torch.tensor(scale)
scale = scale.to(device=tensor.device, dtype=torch.float32)
padded_shape = cls.get_padded_shape(orig_shape)
needs_padding = padded_shape != orig_shape
tensor_scaled = tensor * (1.0 / scale).to(tensor.dtype)
# TODO: uncomment this if it's actually needed because the clamp has a small performance penality'
# lp_amax = torch.finfo(dtype).max
# torch.clamp(tensor_scaled, min=-lp_amax, max=lp_amax, out=tensor_scaled)
qdata = tensor_scaled.to(dtype, memory_format=torch.contiguous_format)
if stochastic_rounding > 0:
qdata, block_scale = comfy.float.stochastic_round_quantize_nvfp4_by_block(tensor, scale, pad_16x=needs_padding, seed=stochastic_rounding)
else:
qdata, block_scale = ck.quantize_nvfp4(tensor, scale, pad_16x=needs_padding)
layout_params = {
'scale': scale,
'orig_dtype': orig_dtype
}
return qdata, layout_params
params = cls.Params(
scale=scale,
orig_dtype=orig_dtype,
orig_shape=orig_shape,
block_scale=block_scale,
)
return qdata, params
@staticmethod
def dequantize(qdata, scale, orig_dtype, **kwargs):
plain_tensor = torch.ops.aten._to_copy.default(qdata, dtype=orig_dtype)
return plain_tensor * scale
@classmethod
def get_plain_tensors(cls, qtensor):
return qtensor._qdata, qtensor._layout_params['scale']
class TensorCoreFP8E4M3Layout(_TensorCoreFP8LayoutBase):
FP8_DTYPE = torch.float8_e4m3fn
class TensorCoreFP8E5M2Layout(_TensorCoreFP8LayoutBase):
FP8_DTYPE = torch.float8_e5m2
# Backward compatibility alias - default to E4M3
TensorCoreFP8Layout = TensorCoreFP8E4M3Layout
# ==============================================================================
# Registry
# ==============================================================================
register_layout_class("TensorCoreFP8Layout", TensorCoreFP8Layout)
register_layout_class("TensorCoreFP8E4M3Layout", TensorCoreFP8E4M3Layout)
register_layout_class("TensorCoreFP8E5M2Layout", TensorCoreFP8E5M2Layout)
register_layout_class("TensorCoreNVFP4Layout", TensorCoreNVFP4Layout)
QUANT_ALGOS = {
"float8_e4m3fn": {
"storage_t": torch.float8_e4m3fn,
"parameters": {"weight_scale", "input_scale"},
"comfy_tensor_layout": "TensorCoreFP8E4M3Layout",
},
"float8_e5m2": {
"storage_t": torch.float8_e5m2,
"parameters": {"weight_scale", "input_scale"},
"comfy_tensor_layout": "TensorCoreFP8E5M2Layout",
},
"nvfp4": {
"storage_t": torch.uint8,
"parameters": {"weight_scale", "weight_scale_2", "input_scale"},
"comfy_tensor_layout": "TensorCoreNVFP4Layout",
"group_size": 16,
},
LAYOUTS = {
"TensorCoreFP8Layout": TensorCoreFP8Layout,
}
# ==============================================================================
# Re-exports for backward compatibility
# ==============================================================================
@register_layout_op(torch.ops.aten.linear.default, "TensorCoreFP8Layout")
def fp8_linear(func, args, kwargs):
input_tensor = args[0]
weight = args[1]
bias = args[2] if len(args) > 2 else None
__all__ = [
"QuantizedTensor",
"QuantizedLayout",
"TensorCoreFP8Layout",
"TensorCoreFP8E4M3Layout",
"TensorCoreFP8E5M2Layout",
"TensorCoreNVFP4Layout",
"QUANT_ALGOS",
"register_layout_op",
]
if isinstance(input_tensor, QuantizedTensor) and isinstance(weight, QuantizedTensor):
plain_input, scale_a = TensorCoreFP8Layout.get_plain_tensors(input_tensor)
plain_weight, scale_b = TensorCoreFP8Layout.get_plain_tensors(weight)
out_dtype = kwargs.get("out_dtype")
if out_dtype is None:
out_dtype = input_tensor._layout_params['orig_dtype']
weight_t = plain_weight.t()
tensor_2d = False
if len(plain_input.shape) == 2:
tensor_2d = True
plain_input = plain_input.unsqueeze(1)
input_shape = plain_input.shape
if len(input_shape) != 3:
return None
try:
output = torch._scaled_mm(
plain_input.reshape(-1, input_shape[2]).contiguous(),
weight_t,
bias=bias,
scale_a=scale_a,
scale_b=scale_b,
out_dtype=out_dtype,
)
if isinstance(output, tuple): # TODO: remove when we drop support for torch 2.4
output = output[0]
if not tensor_2d:
output = output.reshape((-1, input_shape[1], weight.shape[0]))
if output.dtype in [torch.float8_e4m3fn, torch.float8_e5m2]:
output_scale = scale_a * scale_b
output_params = {
'scale': output_scale,
'orig_dtype': input_tensor._layout_params['orig_dtype']
}
return QuantizedTensor(output, "TensorCoreFP8Layout", output_params)
else:
return output
except Exception as e:
raise RuntimeError(f"FP8 _scaled_mm failed, falling back to dequantization: {e}")
# Case 2: DQ Fallback
if isinstance(weight, QuantizedTensor):
weight = weight.dequantize()
if isinstance(input_tensor, QuantizedTensor):
input_tensor = input_tensor.dequantize()
return torch.nn.functional.linear(input_tensor, weight, bias)
def fp8_mm_(input_tensor, weight, bias=None, out_dtype=None):
if out_dtype is None:
out_dtype = input_tensor._layout_params['orig_dtype']
plain_input, scale_a = TensorCoreFP8Layout.get_plain_tensors(input_tensor)
plain_weight, scale_b = TensorCoreFP8Layout.get_plain_tensors(weight)
output = torch._scaled_mm(
plain_input.contiguous(),
plain_weight,
bias=bias,
scale_a=scale_a,
scale_b=scale_b,
out_dtype=out_dtype,
)
if isinstance(output, tuple): # TODO: remove when we drop support for torch 2.4
output = output[0]
return output
@register_layout_op(torch.ops.aten.addmm.default, "TensorCoreFP8Layout")
def fp8_addmm(func, args, kwargs):
input_tensor = args[1]
weight = args[2]
bias = args[0]
if isinstance(input_tensor, QuantizedTensor) and isinstance(weight, QuantizedTensor):
return fp8_mm_(input_tensor, weight, bias=bias, out_dtype=kwargs.get("out_dtype", None))
a = list(args)
if isinstance(args[0], QuantizedTensor):
a[0] = args[0].dequantize()
if isinstance(args[1], QuantizedTensor):
a[1] = args[1].dequantize()
if isinstance(args[2], QuantizedTensor):
a[2] = args[2].dequantize()
return func(*a, **kwargs)
@register_layout_op(torch.ops.aten.mm.default, "TensorCoreFP8Layout")
def fp8_mm(func, args, kwargs):
input_tensor = args[0]
weight = args[1]
if isinstance(input_tensor, QuantizedTensor) and isinstance(weight, QuantizedTensor):
return fp8_mm_(input_tensor, weight, bias=None, out_dtype=kwargs.get("out_dtype", None))
a = list(args)
if isinstance(args[0], QuantizedTensor):
a[0] = args[0].dequantize()
if isinstance(args[1], QuantizedTensor):
a[1] = args[1].dequantize()
return func(*a, **kwargs)
@register_layout_op(torch.ops.aten.view.default, "TensorCoreFP8Layout")
@register_layout_op(torch.ops.aten.t.default, "TensorCoreFP8Layout")
def fp8_func(func, args, kwargs):
input_tensor = args[0]
if isinstance(input_tensor, QuantizedTensor):
plain_input, scale_a = TensorCoreFP8Layout.get_plain_tensors(input_tensor)
ar = list(args)
ar[0] = plain_input
return QuantizedTensor(func(*ar, **kwargs), "TensorCoreFP8Layout", input_tensor._layout_params)
return func(*args, **kwargs)

View File

@@ -37,18 +37,12 @@ def prepare_noise(latent_image, seed, noise_inds=None):
return noises
def fix_empty_latent_channels(model, latent_image, downscale_ratio_spacial=None):
def fix_empty_latent_channels(model, latent_image):
if latent_image.is_nested:
return latent_image
latent_format = model.get_model_object("latent_format") #Resize the empty latent image so it has the right number of channels
if torch.count_nonzero(latent_image) == 0:
if latent_format.latent_channels != latent_image.shape[1]:
latent_image = comfy.utils.repeat_to_batch_size(latent_image, latent_format.latent_channels, dim=1)
if downscale_ratio_spacial is not None:
if downscale_ratio_spacial != latent_format.spacial_downscale_ratio:
ratio = downscale_ratio_spacial / latent_format.spacial_downscale_ratio
latent_image = comfy.utils.common_upscale(latent_image, round(latent_image.shape[-1] * ratio), round(latent_image.shape[-2] * ratio), "nearest-exact", crop="disabled")
if latent_format.latent_channels != latent_image.shape[1] and torch.count_nonzero(latent_image) == 0:
latent_image = comfy.utils.repeat_to_batch_size(latent_image, latent_format.latent_channels, dim=1)
if latent_format.latent_dimensions == 3 and latent_image.ndim == 4:
latent_image = latent_image.unsqueeze(2)
return latent_image

View File

@@ -122,20 +122,20 @@ def estimate_memory(model, noise_shape, conds):
minimum_memory_required = model.model.memory_required([noise_shape[0]] + list(noise_shape[1:]), cond_shapes=cond_shapes_min)
return memory_required, minimum_memory_required
def prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None, force_full_load=False):
def prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None):
executor = comfy.patcher_extension.WrapperExecutor.new_executor(
_prepare_sampling,
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.PREPARE_SAMPLING, model_options, is_model_options=True)
)
return executor.execute(model, noise_shape, conds, model_options=model_options, force_full_load=force_full_load)
return executor.execute(model, noise_shape, conds, model_options=model_options)
def _prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None, force_full_load=False):
def _prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None):
real_model: BaseModel = None
models, inference_memory = get_additional_models(conds, model.model_dtype())
models += get_additional_models_from_model_options(model_options)
models += model.get_nested_additional_models() # TODO: does this require inference_memory update?
memory_required, minimum_memory_required = estimate_memory(model, noise_shape, conds)
comfy.model_management.load_models_gpu([model] + models, memory_required=memory_required + inference_memory, minimum_memory_required=minimum_memory_required + inference_memory, force_full_load=force_full_load)
comfy.model_management.load_models_gpu([model] + models, memory_required=memory_required + inference_memory, minimum_memory_required=minimum_memory_required + inference_memory)
real_model = model.model
return real_model, conds, models

View File

@@ -720,7 +720,7 @@ class Sampler:
sigma = float(sigmas[0])
return math.isclose(max_sigma, sigma, rel_tol=1e-05) or sigma > max_sigma
KSAMPLER_NAMES = ["euler", "euler_cfg_pp", "euler_ancestral", "euler_ancestral_cfg_pp", "heun", "heunpp2", "exp_heun_2_x0", "exp_heun_2_x0_sde", "dpm_2", "dpm_2_ancestral",
KSAMPLER_NAMES = ["euler", "euler_cfg_pp", "euler_ancestral", "euler_ancestral_cfg_pp", "heun", "heunpp2","dpm_2", "dpm_2_ancestral",
"lms", "dpm_fast", "dpm_adaptive", "dpmpp_2s_ancestral", "dpmpp_2s_ancestral_cfg_pp", "dpmpp_sde", "dpmpp_sde_gpu",
"dpmpp_2m", "dpmpp_2m_cfg_pp", "dpmpp_2m_sde", "dpmpp_2m_sde_gpu", "dpmpp_2m_sde_heun", "dpmpp_2m_sde_heun_gpu", "dpmpp_3m_sde", "dpmpp_3m_sde_gpu", "ddpm", "lcm",
"ipndm", "ipndm_v", "deis", "res_multistep", "res_multistep_cfg_pp", "res_multistep_ancestral", "res_multistep_ancestral_cfg_pp",
@@ -984,6 +984,9 @@ class CFGGuider:
self.inner_model, self.conds, self.loaded_models = comfy.sampler_helpers.prepare_sampling(self.model_patcher, noise.shape, self.conds, self.model_options)
device = self.model_patcher.load_device
if denoise_mask is not None:
denoise_mask = comfy.sampler_helpers.prepare_mask(denoise_mask, noise.shape, device)
noise = noise.to(device)
latent_image = latent_image.to(device)
sigmas = sigmas.to(device)
@@ -1010,24 +1013,6 @@ class CFGGuider:
else:
latent_shapes = [latent_image.shape]
if denoise_mask is not None:
if denoise_mask.is_nested:
denoise_masks = denoise_mask.unbind()
denoise_masks = denoise_masks[:len(latent_shapes)]
else:
denoise_masks = [denoise_mask]
for i in range(len(denoise_masks), len(latent_shapes)):
denoise_masks.append(torch.ones(latent_shapes[i]))
for i in range(len(denoise_masks)):
denoise_masks[i] = comfy.sampler_helpers.prepare_mask(denoise_masks[i], latent_shapes[i], self.model_patcher.load_device)
if len(denoise_masks) > 1:
denoise_mask, _ = comfy.utils.pack_latents(denoise_masks)
else:
denoise_mask = denoise_masks[0]
self.conds = {}
for k in self.original_conds:
self.conds[k] = list(map(lambda a: a.copy(), self.original_conds[k]))

View File

@@ -20,7 +20,6 @@ import comfy.ldm.ace.vae.music_dcae_pipeline
import comfy.ldm.hunyuan_video.vae
import comfy.ldm.mmaudio.vae.autoencoder
import comfy.pixel_space_convert
import comfy.weight_adapter
import yaml
import math
import os
@@ -53,12 +52,6 @@ import comfy.text_encoders.ace
import comfy.text_encoders.omnigen2
import comfy.text_encoders.qwen_image
import comfy.text_encoders.hunyuan_image
import comfy.text_encoders.z_image
import comfy.text_encoders.ovis
import comfy.text_encoders.kandinsky5
import comfy.text_encoders.jina_clip_2
import comfy.text_encoders.newbie
import comfy.text_encoders.anima
import comfy.model_patcher
import comfy.lora
@@ -66,8 +59,6 @@ import comfy.lora_convert
import comfy.hooks
import comfy.t2i_adapter.adapter
import comfy.taesd.taesd
import comfy.taesd.taehv
import comfy.latent_formats
import comfy.ldm.flux.redux
@@ -102,107 +93,8 @@ def load_lora_for_models(model, clip, lora, strength_model, strength_clip):
return (new_modelpatcher, new_clip)
def load_bypass_lora_for_models(model, clip, lora, strength_model, strength_clip):
"""
Load LoRA in bypass mode without modifying base model weights.
Instead of patching weights, this injects the LoRA computation into the
forward pass: output = base_forward(x) + lora_path(x)
Non-adapter patches (bias diff, weight diff, etc.) are applied as regular patches.
This is useful for training and when model weights are offloaded.
"""
key_map = {}
if model is not None:
key_map = comfy.lora.model_lora_keys_unet(model.model, key_map)
if clip is not None:
key_map = comfy.lora.model_lora_keys_clip(clip.cond_stage_model, key_map)
logging.debug(f"[BypassLoRA] key_map has {len(key_map)} entries")
lora = comfy.lora_convert.convert_lora(lora)
loaded = comfy.lora.load_lora(lora, key_map)
logging.debug(f"[BypassLoRA] loaded has {len(loaded)} entries")
# Separate adapters (for bypass) from other patches (for regular patching)
bypass_patches = {} # WeightAdapterBase instances -> bypass mode
regular_patches = {} # diff, set, bias patches -> regular weight patching
for key, patch_data in loaded.items():
if isinstance(patch_data, comfy.weight_adapter.WeightAdapterBase):
bypass_patches[key] = patch_data
else:
regular_patches[key] = patch_data
logging.debug(f"[BypassLoRA] {len(bypass_patches)} bypass adapters, {len(regular_patches)} regular patches")
k = set()
k1 = set()
if model is not None:
new_modelpatcher = model.clone()
# Apply regular patches (bias diff, weight diff, etc.) via normal patching
if regular_patches:
patched_keys = new_modelpatcher.add_patches(regular_patches, strength_model)
k.update(patched_keys)
# Apply adapter patches via bypass injection
manager = comfy.weight_adapter.BypassInjectionManager()
model_sd_keys = set(new_modelpatcher.model.state_dict().keys())
for key, adapter in bypass_patches.items():
if key in model_sd_keys:
manager.add_adapter(key, adapter, strength=strength_model)
k.add(key)
else:
logging.warning(f"[BypassLoRA] Adapter key not in model state_dict: {key}")
injections = manager.create_injections(new_modelpatcher.model)
if manager.get_hook_count() > 0:
new_modelpatcher.set_injections("bypass_lora", injections)
else:
new_modelpatcher = None
if clip is not None:
new_clip = clip.clone()
# Apply regular patches to clip
if regular_patches:
patched_keys = new_clip.add_patches(regular_patches, strength_clip)
k1.update(patched_keys)
# Apply adapter patches via bypass injection
clip_manager = comfy.weight_adapter.BypassInjectionManager()
clip_sd_keys = set(new_clip.cond_stage_model.state_dict().keys())
for key, adapter in bypass_patches.items():
if key in clip_sd_keys:
clip_manager.add_adapter(key, adapter, strength=strength_clip)
k1.add(key)
clip_injections = clip_manager.create_injections(new_clip.cond_stage_model)
if clip_manager.get_hook_count() > 0:
new_clip.patcher.set_injections("bypass_lora", clip_injections)
else:
new_clip = None
for x in loaded:
if (x not in k) and (x not in k1):
patch_data = loaded[x]
patch_type = type(patch_data).__name__
if isinstance(patch_data, tuple):
patch_type = f"tuple({patch_data[0]})"
logging.warning(f"NOT LOADED: {x} (type={patch_type})")
return (new_modelpatcher, new_clip)
class CLIP:
def __init__(self, target=None, embedding_directory=None, no_init=False, tokenizer_data={}, parameters=0, state_dict=[], model_options={}):
def __init__(self, target=None, embedding_directory=None, no_init=False, tokenizer_data={}, parameters=0, model_options={}):
if no_init:
return
params = target.params.copy()
@@ -230,32 +122,9 @@ class CLIP:
self.tokenizer = tokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
self.patcher = comfy.model_patcher.ModelPatcher(self.cond_stage_model, load_device=load_device, offload_device=offload_device)
#Match torch.float32 hardcode upcast in TE implemention
self.patcher.set_model_compute_dtype(torch.float32)
self.patcher.hook_mode = comfy.hooks.EnumHookMode.MinVram
self.patcher.is_clip = True
self.apply_hooks_to_conds = None
if len(state_dict) > 0:
if isinstance(state_dict, list):
for c in state_dict:
m, u = self.load_sd(c)
if len(m) > 0:
logging.warning("clip missing: {}".format(m))
if len(u) > 0:
logging.debug("clip unexpected: {}".format(u))
else:
m, u = self.load_sd(state_dict, full_model=True)
if len(m) > 0:
m_filter = list(filter(lambda a: ".logit_scale" not in a and ".transformer.text_projection.weight" not in a, m))
if len(m_filter) > 0:
logging.warning("clip missing: {}".format(m))
else:
logging.debug("clip missing: {}".format(m))
if len(u) > 0:
logging.debug("clip unexpected {}:".format(u))
if params['device'] == load_device:
model_management.load_models_gpu([self.patcher], force_full_load=True)
self.layer_idx = None
@@ -319,8 +188,7 @@ class CLIP:
if unprojected:
self.cond_stage_model.set_clip_options({"projected_pooled": False})
self.load_model(tokens)
self.cond_stage_model.set_clip_options({"execution_device": self.patcher.load_device})
self.load_model()
all_hooks.reset()
self.patcher.patch_hooks(None)
if show_pbar:
@@ -367,8 +235,7 @@ class CLIP:
if return_pooled == "unprojected":
self.cond_stage_model.set_clip_options({"projected_pooled": False})
self.load_model(tokens)
self.cond_stage_model.set_clip_options({"execution_device": self.patcher.load_device})
self.load_model()
o = self.cond_stage_model.encode_token_weights(tokens)
cond, pooled = o[:2]
if return_dict:
@@ -400,11 +267,8 @@ class CLIP:
sd_clip[k] = sd_tokenizer[k]
return sd_clip
def load_model(self, tokens={}):
memory_used = 0
if hasattr(self.cond_stage_model, "memory_estimation_function"):
memory_used = self.cond_stage_model.memory_estimation_function(tokens, device=self.patcher.load_device)
model_management.load_models_gpu([self.patcher], memory_required=memory_used)
def load_model(self):
model_management.load_model_gpu(self.patcher)
return self.patcher
def get_key_patches(self):
@@ -427,7 +291,6 @@ class VAE:
self.latent_channels = 4
self.latent_dim = 2
self.output_channels = 3
self.pad_channel_value = None
self.process_input = lambda image: image * 2.0 - 1.0
self.process_output = lambda image: torch.clamp((image + 1.0) / 2.0, min=0.0, max=1.0)
self.working_dtypes = [torch.bfloat16, torch.float32]
@@ -493,7 +356,7 @@ class VAE:
self.memory_used_encode = lambda shape, dtype: (700 * shape[2] * shape[3]) * model_management.dtype_size(dtype)
self.memory_used_decode = lambda shape, dtype: (700 * shape[2] * shape[3] * 32 * 32) * model_management.dtype_size(dtype)
elif sd['decoder.conv_in.weight'].shape[1] == 32 and sd['decoder.conv_in.weight'].ndim == 5:
elif sd['decoder.conv_in.weight'].shape[1] == 32:
ddconfig = {"block_out_channels": [128, 256, 512, 1024, 1024], "in_channels": 3, "out_channels": 3, "num_res_blocks": 2, "ffactor_spatial": 16, "ffactor_temporal": 4, "downsample_match_channel": True, "upsample_match_channel": True, "refiner_vae": False}
self.latent_channels = ddconfig['z_channels'] = sd["decoder.conv_in.weight"].shape[1]
self.working_dtypes = [torch.float16, torch.bfloat16, torch.float32]
@@ -519,17 +382,6 @@ class VAE:
self.upscale_ratio = 4
self.latent_channels = ddconfig['z_channels'] = sd["decoder.conv_in.weight"].shape[1]
if 'decoder.post_quant_conv.weight' in sd:
sd = comfy.utils.state_dict_prefix_replace(sd, {"decoder.post_quant_conv.": "post_quant_conv.", "encoder.quant_conv.": "quant_conv."})
if 'bn.running_mean' in sd:
ddconfig["batch_norm_latent"] = True
self.downscale_ratio *= 2
self.upscale_ratio *= 2
self.latent_channels *= 4
old_memory_used_decode = self.memory_used_decode
self.memory_used_decode = lambda shape, dtype: old_memory_used_decode(shape, dtype) * 4.0
if 'post_quant_conv.weight' in sd:
self.first_stage_model = AutoencoderKL(ddconfig=ddconfig, embed_dim=sd['post_quant_conv.weight'].shape[1])
else:
@@ -542,7 +394,6 @@ class VAE:
self.memory_used_decode = lambda shape, dtype: (1000 * shape[2] * 2048) * model_management.dtype_size(dtype)
self.latent_channels = 64
self.output_channels = 2
self.pad_channel_value = "replicate"
self.upscale_ratio = 2048
self.downscale_ratio = 2048
self.latent_dim = 1
@@ -580,8 +431,8 @@ class VAE:
self.first_stage_model = comfy.ldm.lightricks.vae.causal_video_autoencoder.VideoVAE(version=version, config=vae_config)
self.latent_channels = 128
self.latent_dim = 3
self.memory_used_decode = lambda shape, dtype: (1200 * shape[2] * shape[3] * shape[4] * (8 * 8 * 8)) * model_management.dtype_size(dtype)
self.memory_used_encode = lambda shape, dtype: (80 * max(shape[2], 7) * shape[3] * shape[4]) * model_management.dtype_size(dtype)
self.memory_used_decode = lambda shape, dtype: (900 * shape[2] * shape[3] * shape[4] * (8 * 8 * 8)) * model_management.dtype_size(dtype)
self.memory_used_encode = lambda shape, dtype: (70 * max(shape[2], 7) * shape[3] * shape[4]) * model_management.dtype_size(dtype)
self.upscale_ratio = (lambda a: max(0, a * 8 - 7), 32, 32)
self.upscale_index_formula = (8, 32, 32)
self.downscale_ratio = (lambda a: max(0, math.floor((a + 7) / 8)), 32, 32)
@@ -590,20 +441,20 @@ class VAE:
elif "decoder.conv_in.conv.weight" in sd and sd['decoder.conv_in.conv.weight'].shape[1] == 32:
ddconfig = {"block_out_channels": [128, 256, 512, 1024, 1024], "in_channels": 3, "out_channels": 3, "num_res_blocks": 2, "ffactor_spatial": 16, "ffactor_temporal": 4, "downsample_match_channel": True, "upsample_match_channel": True}
ddconfig['z_channels'] = sd["decoder.conv_in.conv.weight"].shape[1]
self.latent_channels = 32
self.latent_channels = 64
self.upscale_ratio = (lambda a: max(0, a * 4 - 3), 16, 16)
self.upscale_index_formula = (4, 16, 16)
self.downscale_ratio = (lambda a: max(0, math.floor((a + 3) / 4)), 16, 16)
self.downscale_index_formula = (4, 16, 16)
self.latent_dim = 3
self.not_video = False
self.not_video = True
self.working_dtypes = [torch.float16, torch.bfloat16, torch.float32]
self.first_stage_model = AutoencodingEngine(regularizer_config={'target': "comfy.ldm.models.autoencoder.EmptyRegularizer"},
encoder_config={'target': "comfy.ldm.hunyuan_video.vae_refiner.Encoder", 'params': ddconfig},
decoder_config={'target': "comfy.ldm.hunyuan_video.vae_refiner.Decoder", 'params': ddconfig})
self.memory_used_encode = lambda shape, dtype: (1400 * 9 * shape[-2] * shape[-1]) * model_management.dtype_size(dtype)
self.memory_used_decode = lambda shape, dtype: (3600 * 4 * shape[-2] * shape[-1] * 16 * 16) * model_management.dtype_size(dtype)
self.memory_used_encode = lambda shape, dtype: (1400 * shape[-2] * shape[-1]) * model_management.dtype_size(dtype)
self.memory_used_decode = lambda shape, dtype: (1400 * shape[-3] * shape[-2] * shape[-1] * 16 * 16) * model_management.dtype_size(dtype)
elif "decoder.conv_in.conv.weight" in sd:
ddconfig = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
ddconfig["conv3d"] = True
@@ -615,10 +466,8 @@ class VAE:
self.latent_dim = 3
self.latent_channels = ddconfig['z_channels'] = sd["decoder.conv_in.conv.weight"].shape[1]
self.first_stage_model = AutoencoderKL(ddconfig=ddconfig, embed_dim=sd['post_quant_conv.weight'].shape[1])
#This is likely to significantly over-estimate with single image or low frame counts as the
#implementation is able to completely skip caching. Rework if used as an image only VAE
self.memory_used_decode = lambda shape, dtype: (2800 * min(8, ((shape[2] - 1) * 4) + 1) * shape[3] * shape[4] * (8 * 8)) * model_management.dtype_size(dtype)
self.memory_used_encode = lambda shape, dtype: (1400 * min(9, shape[2]) * shape[3] * shape[4]) * model_management.dtype_size(dtype)
self.memory_used_decode = lambda shape, dtype: (1500 * shape[2] * shape[3] * shape[4] * (4 * 8 * 8)) * model_management.dtype_size(dtype)
self.memory_used_encode = lambda shape, dtype: (900 * max(shape[2], 2) * shape[3] * shape[4]) * model_management.dtype_size(dtype)
self.working_dtypes = [torch.bfloat16, torch.float16, torch.float32]
elif "decoder.unpatcher3d.wavelets" in sd:
self.upscale_ratio = (lambda a: max(0, a * 8 - 7), 8, 8)
@@ -647,22 +496,17 @@ class VAE:
self.memory_used_encode = lambda shape, dtype: 3300 * shape[3] * shape[4] * model_management.dtype_size(dtype)
self.memory_used_decode = lambda shape, dtype: 8000 * shape[3] * shape[4] * (16 * 16) * model_management.dtype_size(dtype)
else: # Wan 2.1 VAE
dim = sd["decoder.head.0.gamma"].shape[0]
self.upscale_ratio = (lambda a: max(0, a * 4 - 3), 8, 8)
self.upscale_index_formula = (4, 8, 8)
self.downscale_ratio = (lambda a: max(0, math.floor((a + 3) / 4)), 8, 8)
self.downscale_index_formula = (4, 8, 8)
self.latent_dim = 3
self.latent_channels = 16
self.output_channels = sd["encoder.conv1.weight"].shape[1]
self.pad_channel_value = 1.0
ddconfig = {"dim": dim, "z_dim": self.latent_channels, "dim_mult": [1, 2, 4, 4], "num_res_blocks": 2, "attn_scales": [], "temperal_downsample": [False, True, True], "image_channels": self.output_channels, "dropout": 0.0}
ddconfig = {"dim": 96, "z_dim": self.latent_channels, "dim_mult": [1, 2, 4, 4], "num_res_blocks": 2, "attn_scales": [], "temperal_downsample": [False, True, True], "dropout": 0.0}
self.first_stage_model = comfy.ldm.wan.vae.WanVAE(**ddconfig)
self.working_dtypes = [torch.bfloat16, torch.float16, torch.float32]
self.memory_used_encode = lambda shape, dtype: (1500 if shape[2]<=4 else 6000) * shape[3] * shape[4] * model_management.dtype_size(dtype)
self.memory_used_decode = lambda shape, dtype: (2200 if shape[2]<=4 else 7000) * shape[3] * shape[4] * (8*8) * model_management.dtype_size(dtype)
self.memory_used_encode = lambda shape, dtype: 6000 * shape[3] * shape[4] * model_management.dtype_size(dtype)
self.memory_used_decode = lambda shape, dtype: 7000 * shape[3] * shape[4] * (8 * 8) * model_management.dtype_size(dtype)
# Hunyuan 3d v2 2.0 & 2.1
elif "geo_decoder.cross_attn_decoder.ln_1.bias" in sd:
@@ -692,7 +536,6 @@ class VAE:
self.memory_used_decode = lambda shape, dtype: (shape[2] * shape[3] * 87000) * model_management.dtype_size(dtype)
self.latent_channels = 8
self.output_channels = 2
self.pad_channel_value = "replicate"
self.upscale_ratio = 4096
self.downscale_ratio = 4096
self.latent_dim = 2
@@ -729,34 +572,6 @@ class VAE:
self.process_input = lambda audio: audio
self.working_dtypes = [torch.float32]
self.crop_input = False
elif "decoder.22.bias" in sd: # taehv, taew and lighttae
self.latent_channels = sd["decoder.1.weight"].shape[1]
self.latent_dim = 3
self.upscale_ratio = (lambda a: max(0, a * 4 - 3), 16, 16)
self.upscale_index_formula = (4, 16, 16)
self.downscale_ratio = (lambda a: max(0, math.floor((a + 3) / 4)), 16, 16)
self.downscale_index_formula = (4, 16, 16)
if self.latent_channels in [48, 128]: # Wan 2.2 and LTX2
self.first_stage_model = comfy.taesd.taehv.TAEHV(latent_channels=self.latent_channels, latent_format=None) # taehv doesn't need scaling
self.process_input = self.process_output = lambda image: image
self.process_output = lambda image: image
self.memory_used_decode = lambda shape, dtype: (1800 * (max(1, (shape[-3] ** 0.7 * 0.1)) * shape[-2] * shape[-1] * 16 * 16) * model_management.dtype_size(dtype))
elif self.latent_channels == 32 and sd["decoder.22.bias"].shape[0] == 12: # lighttae_hv15
self.first_stage_model = comfy.taesd.taehv.TAEHV(latent_channels=self.latent_channels, latent_format=comfy.latent_formats.HunyuanVideo15)
self.memory_used_decode = lambda shape, dtype: (1200 * (max(1, (shape[-3] ** 0.7 * 0.05)) * shape[-2] * shape[-1] * 32 * 32) * model_management.dtype_size(dtype))
else:
if sd["decoder.1.weight"].dtype == torch.float16: # taehv currently only available in float16, so assume it's not lighttaew2_1 as otherwise state dicts are identical
latent_format=comfy.latent_formats.HunyuanVideo
else:
latent_format=None # lighttaew2_1 doesn't need scaling
self.first_stage_model = comfy.taesd.taehv.TAEHV(latent_channels=self.latent_channels, latent_format=latent_format)
self.process_input = self.process_output = lambda image: image
self.upscale_ratio = (lambda a: max(0, a * 4 - 3), 8, 8)
self.upscale_index_formula = (4, 8, 8)
self.downscale_ratio = (lambda a: max(0, math.floor((a + 3) / 4)), 8, 8)
self.downscale_index_formula = (4, 8, 8)
self.memory_used_encode = lambda shape, dtype: (700 * (max(1, (shape[-3] ** 0.66 * 0.11)) * shape[-2] * shape[-1]) * model_management.dtype_size(dtype))
self.memory_used_decode = lambda shape, dtype: (50 * (max(1, (shape[-3] ** 0.65 * 0.26)) * shape[-2] * shape[-1] * 32 * 32) * model_management.dtype_size(dtype))
else:
logging.warning("WARNING: No VAE weights detected, VAE not initalized.")
self.first_stage_model = None
@@ -800,28 +615,17 @@ class VAE:
raise RuntimeError("ERROR: VAE is invalid: None\n\nIf the VAE is from a checkpoint loader node your checkpoint does not contain a valid VAE.")
def vae_encode_crop_pixels(self, pixels):
if self.crop_input:
downscale_ratio = self.spacial_compression_encode()
if not self.crop_input:
return pixels
dims = pixels.shape[1:-1]
for d in range(len(dims)):
x = (dims[d] // downscale_ratio) * downscale_ratio
x_offset = (dims[d] % downscale_ratio) // 2
if x != dims[d]:
pixels = pixels.narrow(d + 1, x_offset, x)
downscale_ratio = self.spacial_compression_encode()
if pixels.shape[-1] > self.output_channels:
pixels = pixels[..., :self.output_channels]
elif pixels.shape[-1] < self.output_channels:
if self.pad_channel_value is not None:
if isinstance(self.pad_channel_value, str):
mode = self.pad_channel_value
value = None
else:
mode = "constant"
value = self.pad_channel_value
pixels = torch.nn.functional.pad(pixels, (0, self.output_channels - pixels.shape[-1]), mode=mode, value=value)
dims = pixels.shape[1:-1]
for d in range(len(dims)):
x = (dims[d] // downscale_ratio) * downscale_ratio
x_offset = (dims[d] % downscale_ratio) // 2
if x != dims[d]:
pixels = pixels.narrow(d + 1, x_offset, x)
return pixels
def decode_tiled_(self, samples, tile_x=64, tile_y=64, overlap = 16):
@@ -892,8 +696,6 @@ class VAE:
self.throw_exception_if_invalid()
pixel_samples = None
do_tile = False
if self.latent_dim == 2 and samples_in.ndim == 5:
samples_in = samples_in[:, :, 0]
try:
memory_used = self.memory_used_decode(samples_in.shape, self.vae_dtype)
model_management.load_models_gpu([self.patcher], memory_required=memory_used, force_full_load=self.disable_offload)
@@ -1109,21 +911,12 @@ class CLIPType(Enum):
OMNIGEN2 = 17
QWEN_IMAGE = 18
HUNYUAN_IMAGE = 19
HUNYUAN_VIDEO_15 = 20
OVIS = 21
KANDINSKY5 = 22
KANDINSKY5_IMAGE = 23
NEWBIE = 24
FLUX2 = 25
def load_clip(ckpt_paths, embedding_directory=None, clip_type=CLIPType.STABLE_DIFFUSION, model_options={}):
clip_data = []
for p in ckpt_paths:
sd, metadata = comfy.utils.load_torch_file(p, safe_load=True, return_metadata=True)
if model_options.get("custom_operations", None) is None:
sd, metadata = comfy.utils.convert_old_quants(sd, model_prefix="", metadata=metadata)
clip_data.append(sd)
clip_data.append(comfy.utils.load_torch_file(p, safe_load=True))
return load_text_encoder_state_dicts(clip_data, embedding_directory=embedding_directory, clip_type=clip_type, model_options=model_options)
@@ -1141,15 +934,6 @@ class TEModel(Enum):
QWEN25_7B = 11
BYT5_SMALL_GLYPH = 12
GEMMA_3_4B = 13
MISTRAL3_24B = 14
MISTRAL3_24B_PRUNED_FLUX2 = 15
QWEN3_4B = 16
QWEN3_2B = 17
GEMMA_3_12B = 18
JINA_CLIP_2 = 19
QWEN3_8B = 20
QWEN3_06B = 21
def detect_te_model(sd):
if "text_model.encoder.layers.30.mlp.fc1.weight" in sd:
@@ -1158,13 +942,11 @@ def detect_te_model(sd):
return TEModel.CLIP_H
if "text_model.encoder.layers.0.mlp.fc1.weight" in sd:
return TEModel.CLIP_L
if "model.encoder.layers.0.mixer.Wqkv.weight" in sd:
return TEModel.JINA_CLIP_2
if "encoder.block.23.layer.1.DenseReluDense.wi_1.weight" in sd:
weight = sd["encoder.block.23.layer.1.DenseReluDense.wi_1.weight"]
if weight.shape[0] == 10240:
if weight.shape[-1] == 4096:
return TEModel.T5_XXL
elif weight.shape[0] == 5120:
elif weight.shape[-1] == 2048:
return TEModel.T5_XL
if 'encoder.block.23.layer.1.DenseReluDense.wi.weight' in sd:
return TEModel.T5_XXL_OLD
@@ -1174,8 +956,6 @@ def detect_te_model(sd):
return TEModel.BYT5_SMALL_GLYPH
return TEModel.T5_BASE
if 'model.layers.0.post_feedforward_layernorm.weight' in sd:
if 'model.layers.47.self_attn.q_norm.weight' in sd:
return TEModel.GEMMA_3_12B
if 'model.layers.0.self_attn.q_norm.weight' in sd:
return TEModel.GEMMA_3_4B
return TEModel.GEMMA_2_2B
@@ -1186,22 +966,6 @@ def detect_te_model(sd):
if weight.shape[0] == 512:
return TEModel.QWEN25_7B
if "model.layers.0.post_attention_layernorm.weight" in sd:
weight = sd['model.layers.0.post_attention_layernorm.weight']
if 'model.layers.0.self_attn.q_norm.weight' in sd:
if weight.shape[0] == 2560:
return TEModel.QWEN3_4B
elif weight.shape[0] == 2048:
return TEModel.QWEN3_2B
elif weight.shape[0] == 4096:
return TEModel.QWEN3_8B
elif weight.shape[0] == 1024:
return TEModel.QWEN3_06B
if weight.shape[0] == 5120:
if "model.layers.39.post_attention_layernorm.weight" in sd:
return TEModel.MISTRAL3_24B
else:
return TEModel.MISTRAL3_24B_PRUNED_FLUX2
return TEModel.LLAMA3_8
return None
@@ -1251,7 +1015,7 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=False, clip_g=True, t5=False)
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
elif clip_type == CLIPType.HIDREAM:
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(clip_l=False, clip_g=True, t5=False, llama=False, dtype_t5=None, dtype_llama=None)
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(clip_l=False, clip_g=True, t5=False, llama=False, dtype_t5=None, dtype_llama=None, t5xxl_scaled_fp8=None, llama_scaled_fp8=None)
clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer
else:
clip_target.clip = sdxl_clip.SDXLRefinerClipModel
@@ -1275,7 +1039,7 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
tokenizer_data["spiece_model"] = clip_data[0].get("spiece_model", None)
elif clip_type == CLIPType.HIDREAM:
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(**t5xxl_detect(clip_data),
clip_l=False, clip_g=False, t5=True, llama=False, dtype_llama=None)
clip_l=False, clip_g=False, t5=True, llama=False, dtype_llama=None, llama_scaled_fp8=None)
clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer
else: #CLIPType.MOCHI
clip_target.clip = comfy.text_encoders.genmo.mochi_te(**t5xxl_detect(clip_data))
@@ -1304,7 +1068,7 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
tokenizer_data["spiece_model"] = clip_data[0].get("spiece_model", None)
elif te_model == TEModel.LLAMA3_8:
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(**llama_detect(clip_data),
clip_l=False, clip_g=False, t5=False, llama=True, dtype_t5=None)
clip_l=False, clip_g=False, t5=False, llama=True, dtype_t5=None, t5xxl_scaled_fp8=None)
clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer
elif te_model == TEModel.QWEN25_3B:
clip_target.clip = comfy.text_encoders.omnigen2.te(**llama_detect(clip_data))
@@ -1316,36 +1080,13 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
else:
clip_target.clip = comfy.text_encoders.qwen_image.te(**llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.qwen_image.QwenImageTokenizer
elif te_model == TEModel.MISTRAL3_24B or te_model == TEModel.MISTRAL3_24B_PRUNED_FLUX2:
clip_target.clip = comfy.text_encoders.flux.flux2_te(**llama_detect(clip_data), pruned=te_model == TEModel.MISTRAL3_24B_PRUNED_FLUX2)
clip_target.tokenizer = comfy.text_encoders.flux.Flux2Tokenizer
tokenizer_data["tekken_model"] = clip_data[0].get("tekken_model", None)
elif te_model == TEModel.QWEN3_4B:
if clip_type == CLIPType.FLUX or clip_type == CLIPType.FLUX2:
clip_target.clip = comfy.text_encoders.flux.klein_te(**llama_detect(clip_data), model_type="qwen3_4b")
clip_target.tokenizer = comfy.text_encoders.flux.KleinTokenizer
else:
clip_target.clip = comfy.text_encoders.z_image.te(**llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.z_image.ZImageTokenizer
elif te_model == TEModel.QWEN3_2B:
clip_target.clip = comfy.text_encoders.ovis.te(**llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.ovis.OvisTokenizer
elif te_model == TEModel.QWEN3_8B:
clip_target.clip = comfy.text_encoders.flux.klein_te(**llama_detect(clip_data), model_type="qwen3_8b")
clip_target.tokenizer = comfy.text_encoders.flux.KleinTokenizer8B
elif te_model == TEModel.JINA_CLIP_2:
clip_target.clip = comfy.text_encoders.jina_clip_2.JinaClip2TextModelWrapper
clip_target.tokenizer = comfy.text_encoders.jina_clip_2.JinaClip2TokenizerWrapper
elif te_model == TEModel.QWEN3_06B:
clip_target.clip = comfy.text_encoders.anima.te(**llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.anima.AnimaTokenizer
else:
# clip_l
if clip_type == CLIPType.SD3:
clip_target.clip = comfy.text_encoders.sd3_clip.sd3_clip(clip_l=True, clip_g=False, t5=False)
clip_target.tokenizer = comfy.text_encoders.sd3_clip.SD3Tokenizer
elif clip_type == CLIPType.HIDREAM:
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(clip_l=True, clip_g=False, t5=False, llama=False, dtype_t5=None, dtype_llama=None)
clip_target.clip = comfy.text_encoders.hidream.hidream_clip(clip_l=True, clip_g=False, t5=False, llama=False, dtype_t5=None, dtype_llama=None, t5xxl_scaled_fp8=None, llama_scaled_fp8=None)
clip_target.tokenizer = comfy.text_encoders.hidream.HiDreamTokenizer
else:
clip_target.clip = sd1_clip.SD1ClipModel
@@ -1385,30 +1126,6 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
elif clip_type == CLIPType.HUNYUAN_IMAGE:
clip_target.clip = comfy.text_encoders.hunyuan_image.te(**llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.hunyuan_image.HunyuanImageTokenizer
elif clip_type == CLIPType.HUNYUAN_VIDEO_15:
clip_target.clip = comfy.text_encoders.hunyuan_image.te(**llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.hunyuan_video.HunyuanVideo15Tokenizer
elif clip_type == CLIPType.KANDINSKY5:
clip_target.clip = comfy.text_encoders.kandinsky5.te(**llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.kandinsky5.Kandinsky5Tokenizer
elif clip_type == CLIPType.KANDINSKY5_IMAGE:
clip_target.clip = comfy.text_encoders.kandinsky5.te(**llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.kandinsky5.Kandinsky5TokenizerImage
elif clip_type == CLIPType.LTXV:
clip_target.clip = comfy.text_encoders.lt.ltxav_te(**llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.lt.LTXAVGemmaTokenizer
tokenizer_data["spiece_model"] = clip_data[0].get("spiece_model", None)
elif clip_type == CLIPType.NEWBIE:
clip_target.clip = comfy.text_encoders.newbie.te(**llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.newbie.NewBieTokenizer
if "model.layers.0.self_attn.q_norm.weight" in clip_data[0]:
clip_data_gemma = clip_data[0]
clip_data_jina = clip_data[1]
else:
clip_data_gemma = clip_data[1]
clip_data_jina = clip_data[0]
tokenizer_data["gemma_spiece_model"] = clip_data_gemma.get("spiece_model", None)
tokenizer_data["jina_spiece_model"] = clip_data_jina.get("spiece_model", None)
else:
clip_target.clip = sdxl_clip.SDXLClipModel
clip_target.tokenizer = sdxl_clip.SDXLTokenizer
@@ -1424,7 +1141,14 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
parameters += comfy.utils.calculate_parameters(c)
tokenizer_data, model_options = comfy.text_encoders.long_clipl.model_options_long_clip(c, tokenizer_data, model_options)
clip = CLIP(clip_target, embedding_directory=embedding_directory, parameters=parameters, tokenizer_data=tokenizer_data, state_dict=clip_data, model_options=model_options)
clip = CLIP(clip_target, embedding_directory=embedding_directory, parameters=parameters, tokenizer_data=tokenizer_data, model_options=model_options)
for c in clip_data:
m, u = clip.load_sd(c)
if len(m) > 0:
logging.warning("clip missing: {}".format(m))
if len(u) > 0:
logging.debug("clip unexpected: {}".format(u))
return clip
def load_gligen(ckpt_path):
@@ -1483,10 +1207,6 @@ def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_c
weight_dtype = comfy.utils.weight_dtype(sd, diffusion_model_prefix)
load_device = model_management.get_torch_device()
custom_operations = model_options.get("custom_operations", None)
if custom_operations is None:
sd, metadata = comfy.utils.convert_old_quants(sd, diffusion_model_prefix, metadata=metadata)
model_config = model_detection.model_config_from_unet(sd, diffusion_model_prefix, metadata=metadata)
if model_config is None:
logging.warning("Warning, This is not a checkpoint file, trying to load it as a diffusion model only.")
@@ -1495,22 +1215,18 @@ def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_c
return None
return (diffusion_model, None, VAE(sd={}), None) # The VAE object is there to throw an exception if it's actually used'
unet_weight_dtype = list(model_config.supported_inference_dtypes)
if model_config.quant_config is not None:
if model_config.scaled_fp8 is not None:
weight_dtype = None
if custom_operations is not None:
model_config.custom_operations = custom_operations
model_config.custom_operations = model_options.get("custom_operations", None)
unet_dtype = model_options.get("dtype", model_options.get("weight_dtype", None))
if unet_dtype is None:
unet_dtype = model_management.unet_dtype(model_params=parameters, supported_dtypes=unet_weight_dtype, weight_dtype=weight_dtype)
if model_config.quant_config is not None:
manual_cast_dtype = model_management.unet_manual_cast(None, load_device, model_config.supported_inference_dtypes)
else:
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes)
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes)
model_config.set_inference_dtype(unet_dtype, manual_cast_dtype)
if model_config.clip_vision_prefix is not None:
@@ -1528,33 +1244,22 @@ def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_c
vae = VAE(sd=vae_sd, metadata=metadata)
if output_clip:
if te_model_options.get("custom_operations", None) is None:
scaled_fp8_list = []
for k in list(sd.keys()): # Convert scaled fp8 to mixed ops
if k.endswith(".scaled_fp8"):
scaled_fp8_list.append(k[:-len("scaled_fp8")])
if len(scaled_fp8_list) > 0:
out_sd = {}
for k in sd:
skip = False
for pref in scaled_fp8_list:
skip = skip or k.startswith(pref)
if not skip:
out_sd[k] = sd[k]
for pref in scaled_fp8_list:
quant_sd, qmetadata = comfy.utils.convert_old_quants(sd, pref, metadata={})
for k in quant_sd:
out_sd[k] = quant_sd[k]
sd = out_sd
clip_target = model_config.clip_target(state_dict=sd)
if clip_target is not None:
clip_sd = model_config.process_clip_state_dict(sd)
if len(clip_sd) > 0:
parameters = comfy.utils.calculate_parameters(clip_sd)
clip = CLIP(clip_target, embedding_directory=embedding_directory, tokenizer_data=clip_sd, parameters=parameters, state_dict=clip_sd, model_options=te_model_options)
clip = CLIP(clip_target, embedding_directory=embedding_directory, tokenizer_data=clip_sd, parameters=parameters, model_options=te_model_options)
m, u = clip.load_sd(clip_sd, full_model=True)
if len(m) > 0:
m_filter = list(filter(lambda a: ".logit_scale" not in a and ".transformer.text_projection.weight" not in a, m))
if len(m_filter) > 0:
logging.warning("clip missing: {}".format(m))
else:
logging.debug("clip missing: {}".format(m))
if len(u) > 0:
logging.debug("clip unexpected {}:".format(u))
else:
logging.warning("no CLIP/text encoder weights in checkpoint, the text encoder model will not be loaded.")
@@ -1601,9 +1306,6 @@ def load_diffusion_model_state_dict(sd, model_options={}, metadata=None):
if len(temp_sd) > 0:
sd = temp_sd
custom_operations = model_options.get("custom_operations", None)
if custom_operations is None:
sd, metadata = comfy.utils.convert_old_quants(sd, "", metadata=metadata)
parameters = comfy.utils.calculate_parameters(sd)
weight_dtype = comfy.utils.weight_dtype(sd)
@@ -1634,7 +1336,7 @@ def load_diffusion_model_state_dict(sd, model_options={}, metadata=None):
offload_device = model_management.unet_offload_device()
unet_weight_dtype = list(model_config.supported_inference_dtypes)
if model_config.quant_config is not None:
if model_config.scaled_fp8 is not None:
weight_dtype = None
if dtype is None:
@@ -1642,15 +1344,12 @@ def load_diffusion_model_state_dict(sd, model_options={}, metadata=None):
else:
unet_dtype = dtype
if model_config.quant_config is not None:
if model_config.layer_quant_config is not None:
manual_cast_dtype = model_management.unet_manual_cast(None, load_device, model_config.supported_inference_dtypes)
else:
manual_cast_dtype = model_management.unet_manual_cast(unet_dtype, load_device, model_config.supported_inference_dtypes)
model_config.set_inference_dtype(unet_dtype, manual_cast_dtype)
if custom_operations is not None:
model_config.custom_operations = custom_operations
model_config.custom_operations = model_options.get("custom_operations", model_config.custom_operations)
if model_options.get("fp8_optimizations", False):
model_config.optimizations["fp8"] = True
@@ -1689,9 +1388,6 @@ def save_checkpoint(output_path, model, clip=None, vae=None, clip_vision=None, m
if vae is not None:
vae_sd = vae.get_sd()
if metadata is None:
metadata = {}
model_management.load_models_gpu(load_models, force_patch_weights=True)
clip_vision_sd = clip_vision.get_sd() if clip_vision is not None else None
sd = model.model.state_dict_for_saving(clip_sd, vae_sd, clip_vision_sd)

View File

@@ -90,6 +90,7 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
special_tokens={"start": 49406, "end": 49407, "pad": 49407}, layer_norm_hidden_state=True, enable_attention_masks=False, zero_out_masked=False,
return_projected_pooled=True, return_attention_masks=False, model_options={}): # clip-vit-base-patch32
super().__init__()
assert layer in self.LAYERS
if textmodel_json_config is None:
textmodel_json_config = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_clip_config.json")
@@ -107,17 +108,19 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
config[k] = v
operations = model_options.get("custom_operations", None)
quant_config = model_options.get("quantization_metadata", None)
scaled_fp8 = None
if operations is None:
if quant_config is not None:
operations = comfy.ops.mixed_precision_ops(quant_config, dtype, full_precision_mm=True)
logging.info("Using MixedPrecisionOps for text encoder")
scaled_fp8 = model_options.get("scaled_fp8", None)
if scaled_fp8 is not None:
operations = comfy.ops.scaled_fp8_ops(fp8_matrix_mult=False, override_dtype=scaled_fp8)
else:
operations = comfy.ops.manual_cast
self.operations = operations
self.transformer = model_class(config, dtype, device, self.operations)
if scaled_fp8 is not None:
self.transformer.scaled_fp8 = torch.nn.Parameter(torch.tensor([], dtype=scaled_fp8))
self.num_layers = self.transformer.num_layers
@@ -135,7 +138,6 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
self.layer_norm_hidden_state = layer_norm_hidden_state
self.return_projected_pooled = return_projected_pooled
self.return_attention_masks = return_attention_masks
self.execution_device = None
if layer == "hidden":
assert layer_idx is not None
@@ -152,8 +154,7 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
def set_clip_options(self, options):
layer_idx = options.get("layer", self.layer_idx)
self.return_projected_pooled = options.get("projected_pooled", self.return_projected_pooled)
self.execution_device = options.get("execution_device", self.execution_device)
if isinstance(self.layer, list) or self.layer == "all":
if self.layer == "all":
pass
elif layer_idx is None or abs(layer_idx) > self.num_layers:
self.layer = "last"
@@ -165,7 +166,6 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
self.layer = self.options_default[0]
self.layer_idx = self.options_default[1]
self.return_projected_pooled = self.options_default[2]
self.execution_device = None
def process_tokens(self, tokens, device):
end_token = self.special_tokens.get("end", None)
@@ -249,20 +249,14 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
return torch.cat(embeds_out), torch.tensor(attention_masks, device=device, dtype=torch.long), num_tokens, embeds_info
def forward(self, tokens):
if self.execution_device is None:
device = self.transformer.get_input_embeddings().weight.device
else:
device = self.execution_device
device = self.transformer.get_input_embeddings().weight.device
embeds, attention_mask, num_tokens, embeds_info = self.process_tokens(tokens, device)
attention_mask_model = None
if self.enable_attention_masks:
attention_mask_model = attention_mask
if isinstance(self.layer, list):
intermediate_output = self.layer
elif self.layer == "all":
if self.layer == "all":
intermediate_output = "all"
else:
intermediate_output = self.layer_idx
@@ -466,7 +460,7 @@ def load_embed(embedding_name, embedding_directory, embedding_size, embed_key=No
return embed_out
class SDTokenizer:
def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, has_end_token=True, pad_to_max_length=True, min_length=None, pad_token=None, end_token=None, start_token=None, min_padding=None, pad_left=False, disable_weights=False, tokenizer_data={}, tokenizer_args={}):
def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, has_end_token=True, pad_to_max_length=True, min_length=None, pad_token=None, end_token=None, min_padding=None, tokenizer_data={}, tokenizer_args={}):
if tokenizer_path is None:
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer")
self.tokenizer = tokenizer_class.from_pretrained(tokenizer_path, **tokenizer_args)
@@ -474,20 +468,12 @@ class SDTokenizer:
self.min_length = tokenizer_data.get("{}_min_length".format(embedding_key), min_length)
self.end_token = None
self.min_padding = min_padding
self.pad_left = pad_left
empty = self.tokenizer('')["input_ids"]
self.tokenizer_adds_end_token = has_end_token
if has_start_token:
if len(empty) > 0:
self.tokens_start = 1
self.start_token = empty[0]
else:
self.tokens_start = 0
self.start_token = start_token
if start_token is None:
logging.warning("WARNING: There's something wrong with your tokenizers.'")
self.tokens_start = 1
self.start_token = empty[0]
if end_token is not None:
self.end_token = end_token
else:
@@ -495,7 +481,7 @@ class SDTokenizer:
self.end_token = empty[1]
else:
self.tokens_start = 0
self.start_token = start_token
self.start_token = None
if end_token is not None:
self.end_token = end_token
else:
@@ -520,8 +506,6 @@ class SDTokenizer:
self.embedding_size = embedding_size
self.embedding_key = embedding_key
self.disable_weights = disable_weights
def _try_get_embedding(self, embedding_name:str):
'''
Takes a potential embedding name and tries to retrieve it.
@@ -538,12 +522,6 @@ class SDTokenizer:
return (embed, "{} {}".format(embedding_name[len(stripped):], leftover))
return (embed, leftover)
def pad_tokens(self, tokens, amount):
if self.pad_left:
for i in range(amount):
tokens.insert(0, (self.pad_token, 1.0, 0))
else:
tokens.extend([(self.pad_token, 1.0, 0)] * amount)
def tokenize_with_weights(self, text:str, return_word_ids=False, tokenizer_options={}, **kwargs):
'''
@@ -556,7 +534,7 @@ class SDTokenizer:
min_padding = tokenizer_options.get("{}_min_padding".format(self.embedding_key), self.min_padding)
text = escape_important(text)
if kwargs.get("disable_weights", self.disable_weights):
if kwargs.get("disable_weights", False):
parsed_weights = [(text, 1.0)]
else:
parsed_weights = token_weights(text, 1.0)
@@ -622,7 +600,7 @@ class SDTokenizer:
if self.end_token is not None:
batch.append((self.end_token, 1.0, 0))
if self.pad_to_max_length:
self.pad_tokens(batch, remaining_length)
batch.extend([(self.pad_token, 1.0, 0)] * (remaining_length))
#start new batch
batch = []
if self.start_token is not None:
@@ -636,11 +614,11 @@ class SDTokenizer:
if self.end_token is not None:
batch.append((self.end_token, 1.0, 0))
if min_padding is not None:
self.pad_tokens(batch, min_padding)
batch.extend([(self.pad_token, 1.0, 0)] * min_padding)
if self.pad_to_max_length and len(batch) < self.max_length:
self.pad_tokens(batch, self.max_length - len(batch))
batch.extend([(self.pad_token, 1.0, 0)] * (self.max_length - len(batch)))
if min_length is not None and len(batch) < min_length:
self.pad_tokens(batch, min_length - len(batch))
batch.extend([(self.pad_token, 1.0, 0)] * (min_length - len(batch)))
if not return_word_ids:
batched_tokens = [[(t, w) for t, w,_ in x] for x in batched_tokens]

View File

@@ -21,15 +21,11 @@ import comfy.text_encoders.ace
import comfy.text_encoders.omnigen2
import comfy.text_encoders.qwen_image
import comfy.text_encoders.hunyuan_image
import comfy.text_encoders.kandinsky5
import comfy.text_encoders.z_image
import comfy.text_encoders.anima
from . import supported_models_base
from . import latent_formats
from . import diffusers_convert
import comfy.model_management
class SD15(supported_models_base.BASE):
unet_config = {
@@ -543,7 +539,7 @@ class SD3(supported_models_base.BASE):
unet_extra_config = {}
latent_format = latent_formats.SD3
memory_usage_factor = 1.6
memory_usage_factor = 1.2
text_encoder_key_prefix = ["text_encoders."]
@@ -745,51 +741,6 @@ class FluxSchnell(Flux):
out = model_base.Flux(self, model_type=model_base.ModelType.FLOW, device=device)
return out
class Flux2(Flux):
unet_config = {
"image_model": "flux2",
}
sampling_settings = {
"shift": 2.02,
}
unet_extra_config = {}
latent_format = latent_formats.Flux2
supported_inference_dtypes = [torch.bfloat16, torch.float16, torch.float32]
vae_key_prefix = ["vae."]
text_encoder_key_prefix = ["text_encoders."]
def __init__(self, unet_config):
super().__init__(unet_config)
self.memory_usage_factor = self.memory_usage_factor * (2.0 * 2.0) * (unet_config['hidden_size'] / 2604)
def get_model(self, state_dict, prefix="", device=None):
out = model_base.Flux2(self, device=device)
return out
def clip_target(self, state_dict={}):
pref = self.text_encoder_key_prefix[0]
detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen3_4b.transformer.".format(pref))
if len(detect) > 0:
detect["model_type"] = "qwen3_4b"
return supported_models_base.ClipTarget(comfy.text_encoders.flux.KleinTokenizer, comfy.text_encoders.flux.klein_te(**detect))
detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen3_8b.transformer.".format(pref))
if len(detect) > 0:
detect["model_type"] = "qwen3_8b"
return supported_models_base.ClipTarget(comfy.text_encoders.flux.KleinTokenizer8B, comfy.text_encoders.flux.klein_te(**detect))
detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}mistral3_24b.transformer.".format(pref))
if len(detect) > 0:
if "{}mistral3_24b.transformer.model.layers.39.post_attention_layernorm.weight".format(pref) not in state_dict:
detect["pruned"] = True
return supported_models_base.ClipTarget(comfy.text_encoders.flux.Flux2Tokenizer, comfy.text_encoders.flux.flux2_te(**detect))
return None
class GenmoMochi(supported_models_base.BASE):
unet_config = {
"image_model": "mochi_preview",
@@ -851,21 +802,6 @@ class LTXV(supported_models_base.BASE):
t5_detect = comfy.text_encoders.sd3_clip.t5_xxl_detect(state_dict, "{}t5xxl.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.lt.LTXVT5Tokenizer, comfy.text_encoders.lt.ltxv_te(**t5_detect))
class LTXAV(LTXV):
unet_config = {
"image_model": "ltxav",
}
latent_format = latent_formats.LTXAV
def __init__(self, unet_config):
super().__init__(unet_config)
self.memory_usage_factor = 0.077 # TODO
def get_model(self, state_dict, prefix="", device=None):
out = model_base.LTXAV(self, device=device)
return out
class HunyuanVideo(supported_models_base.BASE):
unet_config = {
"image_model": "hunyuan_video",
@@ -996,7 +932,7 @@ class CosmosT2IPredict2(supported_models_base.BASE):
def __init__(self, unet_config):
super().__init__(unet_config)
self.memory_usage_factor = (unet_config.get("model_channels", 2048) / 2048) * 0.95
self.memory_usage_factor = (unet_config.get("model_channels", 2048) / 2048) * 0.9
def get_model(self, state_dict, prefix="", device=None):
out = model_base.CosmosPredict2(self, device=device)
@@ -1007,36 +943,6 @@ class CosmosT2IPredict2(supported_models_base.BASE):
t5_detect = comfy.text_encoders.sd3_clip.t5_xxl_detect(state_dict, "{}t5xxl.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.cosmos.CosmosT5Tokenizer, comfy.text_encoders.cosmos.te(**t5_detect))
class Anima(supported_models_base.BASE):
unet_config = {
"image_model": "anima",
}
sampling_settings = {
"multiplier": 1.0,
"shift": 3.0,
}
unet_extra_config = {}
latent_format = latent_formats.Wan21
memory_usage_factor = 1.0
supported_inference_dtypes = [torch.bfloat16, torch.float32]
def __init__(self, unet_config):
super().__init__(unet_config)
self.memory_usage_factor = (unet_config.get("model_channels", 2048) / 2048) * 0.95
def get_model(self, state_dict, prefix="", device=None):
out = model_base.Anima(self, device=device)
return out
def clip_target(self, state_dict={}):
pref = self.text_encoder_key_prefix[0]
detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen3_06b.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.anima.AnimaTokenizer, comfy.text_encoders.anima.te(**detect))
class CosmosI2VPredict2(CosmosT2IPredict2):
unet_config = {
"image_model": "cosmos_predict2",
@@ -1057,7 +963,7 @@ class Lumina2(supported_models_base.BASE):
"shift": 6.0,
}
memory_usage_factor = 1.4
memory_usage_factor = 1.2
unet_extra_config = {}
latent_format = latent_formats.Flux
@@ -1076,32 +982,6 @@ class Lumina2(supported_models_base.BASE):
hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}gemma2_2b.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.lumina2.LuminaTokenizer, comfy.text_encoders.lumina2.te(**hunyuan_detect))
class ZImage(Lumina2):
unet_config = {
"image_model": "lumina2",
"dim": 3840,
}
sampling_settings = {
"multiplier": 1.0,
"shift": 3.0,
}
memory_usage_factor = 2.8
supported_inference_dtypes = [torch.bfloat16, torch.float32]
def __init__(self, unet_config):
super().__init__(unet_config)
if comfy.model_management.extended_fp16_support() and unet_config.get("allow_fp16", False):
self.supported_inference_dtypes = self.supported_inference_dtypes.copy()
self.supported_inference_dtypes.insert(1, torch.float16)
def clip_target(self, state_dict={}):
pref = self.text_encoder_key_prefix[0]
hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen3_4b.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.z_image.ZImageTokenizer, comfy.text_encoders.z_image.te(**hunyuan_detect))
class WAN21_T2V(supported_models_base.BASE):
unet_config = {
"image_model": "wan2.1",
@@ -1356,7 +1236,7 @@ class ChromaRadiance(Chroma):
latent_format = comfy.latent_formats.ChromaRadiance
# Pixel-space model, no spatial compression for model input.
memory_usage_factor = 0.044
memory_usage_factor = 0.038
def get_model(self, state_dict, prefix="", device=None):
return model_base.ChromaRadiance(self, device=device)
@@ -1399,7 +1279,7 @@ class Omnigen2(supported_models_base.BASE):
"shift": 2.6,
}
memory_usage_factor = 1.95 #TODO
memory_usage_factor = 1.65 #TODO
unet_extra_config = {}
latent_format = latent_formats.Flux
@@ -1464,7 +1344,7 @@ class HunyuanImage21(HunyuanVideo):
latent_format = latent_formats.HunyuanImage21
memory_usage_factor = 8.7
memory_usage_factor = 7.7
supported_inference_dtypes = [torch.bfloat16, torch.float32]
@@ -1494,108 +1374,6 @@ class HunyuanImage21Refiner(HunyuanVideo):
out = model_base.HunyuanImage21Refiner(self, device=device)
return out
class HunyuanVideo15(HunyuanVideo):
unet_config = {
"image_model": "hunyuan_video",
"vision_in_dim": 1152,
}
sampling_settings = {
"shift": 7.0,
}
memory_usage_factor = 4.0 #TODO
supported_inference_dtypes = [torch.float16, torch.bfloat16, torch.float32]
latent_format = latent_formats.HunyuanVideo15
def get_model(self, state_dict, prefix="", device=None):
out = model_base.HunyuanVideo15(self, device=device)
return out
def clip_target(self, state_dict={}):
pref = self.text_encoder_key_prefix[0]
hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen25_7b.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.hunyuan_video.HunyuanVideo15Tokenizer, comfy.text_encoders.hunyuan_image.te(**hunyuan_detect))
class HunyuanVideo15_SR_Distilled(HunyuanVideo):
unet_config = {
"image_model": "hunyuan_video",
"vision_in_dim": 1152,
"in_channels": 98,
}
sampling_settings = {
"shift": 2.0,
}
memory_usage_factor = 4.0 #TODO
supported_inference_dtypes = [torch.float16, torch.bfloat16, torch.float32]
latent_format = latent_formats.HunyuanVideo15
def get_model(self, state_dict, prefix="", device=None):
out = model_base.HunyuanVideo15_SR_Distilled(self, device=device)
return out
def clip_target(self, state_dict={}):
pref = self.text_encoder_key_prefix[0]
hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen25_7b.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.hunyuan_video.HunyuanVideo15Tokenizer, comfy.text_encoders.hunyuan_image.te(**hunyuan_detect))
class Kandinsky5(supported_models_base.BASE):
unet_config = {
"image_model": "kandinsky5",
}
sampling_settings = {
"shift": 10.0,
}
unet_extra_config = {}
latent_format = latent_formats.HunyuanVideo
memory_usage_factor = 1.25 #TODO
supported_inference_dtypes = [torch.bfloat16, torch.float32]
vae_key_prefix = ["vae."]
text_encoder_key_prefix = ["text_encoders."]
def get_model(self, state_dict, prefix="", device=None):
out = model_base.Kandinsky5(self, device=device)
return out
def clip_target(self, state_dict={}):
pref = self.text_encoder_key_prefix[0]
hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen25_7b.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.kandinsky5.Kandinsky5Tokenizer, comfy.text_encoders.kandinsky5.te(**hunyuan_detect))
class Kandinsky5Image(Kandinsky5):
unet_config = {
"image_model": "kandinsky5",
"model_dim": 2560,
"visual_embed_dim": 64,
}
sampling_settings = {
"shift": 3.0,
}
latent_format = latent_formats.Flux
memory_usage_factor = 1.25 #TODO
def get_model(self, state_dict, prefix="", device=None):
out = model_base.Kandinsky5Image(self, device=device)
return out
def clip_target(self, state_dict={}):
pref = self.text_encoder_key_prefix[0]
hunyuan_detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen25_7b.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.kandinsky5.Kandinsky5TokenizerImage, comfy.text_encoders.kandinsky5.te(**hunyuan_detect))
models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, LTXAV, HunyuanVideo15_SR_Distilled, HunyuanVideo15, HunyuanImage21Refiner, HunyuanImage21, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, CosmosT2IPredict2, CosmosI2VPredict2, ZImage, Lumina2, WAN22_T2V, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, WAN21_Camera, WAN22_Camera, WAN22_S2V, WAN21_HuMo, WAN22_Animate, Hunyuan3Dv2mini, Hunyuan3Dv2, Hunyuan3Dv2_1, HiDream, Chroma, ChromaRadiance, ACEStep, Omnigen2, QwenImage, Flux2, Kandinsky5Image, Kandinsky5, Anima]
models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, HunyuanImage21Refiner, HunyuanImage21, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, CosmosT2IPredict2, CosmosI2VPredict2, Lumina2, WAN22_T2V, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, WAN21_Camera, WAN22_Camera, WAN22_S2V, WAN21_HuMo, WAN22_Animate, Hunyuan3Dv2mini, Hunyuan3Dv2, Hunyuan3Dv2_1, HiDream, Chroma, ChromaRadiance, ACEStep, Omnigen2, QwenImage]
models += [SVD_img2vid]

Some files were not shown because too many files have changed in this diff Show More