Compare commits

..

2 Commits

Author SHA1 Message Date
Jedrzej Kosinski
44faa8378c Merge branch 'master' into jk/control-after-generate 2026-02-10 15:18:16 -06:00
Jedrzej Kosinski
d4b4cc49d3 Allow control_after_generate to be type ControlAfterGenerate in v3 schema 2026-01-30 20:58:33 -08:00
28 changed files with 378 additions and 1171 deletions

View File

@@ -7,8 +7,6 @@ on:
jobs:
send-webhook:
runs-on: ubuntu-latest
env:
DESKTOP_REPO_DISPATCH_TOKEN: ${{ secrets.DESKTOP_REPO_DISPATCH_TOKEN }}
steps:
- name: Send release webhook
env:
@@ -108,37 +106,3 @@ jobs:
--fail --silent --show-error
echo "✅ Release webhook sent successfully"
- name: Send repository dispatch to desktop
env:
DISPATCH_TOKEN: ${{ env.DESKTOP_REPO_DISPATCH_TOKEN }}
RELEASE_TAG: ${{ github.event.release.tag_name }}
RELEASE_URL: ${{ github.event.release.html_url }}
run: |
set -euo pipefail
if [ -z "${DISPATCH_TOKEN:-}" ]; then
echo "::error::DESKTOP_REPO_DISPATCH_TOKEN is required but not set."
exit 1
fi
PAYLOAD="$(jq -n \
--arg release_tag "$RELEASE_TAG" \
--arg release_url "$RELEASE_URL" \
'{
event_type: "comfyui_release_published",
client_payload: {
release_tag: $release_tag,
release_url: $release_url
}
}')"
curl -fsSL \
-X POST \
-H "Accept: application/vnd.github+json" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer ${DISPATCH_TOKEN}" \
https://api.github.com/repos/Comfy-Org/desktop/dispatches \
-d "$PAYLOAD"
echo "✅ Dispatched ComfyUI release ${RELEASE_TAG} to Comfy-Org/desktop"

View File

@@ -1,11 +1,12 @@
import math
import time
from functools import partial
from scipy import integrate
import torch
from torch import nn
import torchsde
from tqdm.auto import tqdm
from tqdm.auto import trange as trange_, tqdm
from . import utils
from . import deis
@@ -14,7 +15,34 @@ import comfy.model_patcher
import comfy.model_sampling
import comfy.memory_management
from comfy.utils import model_trange as trange
def trange(*args, **kwargs):
if comfy.memory_management.aimdo_allocator is None:
return trange_(*args, **kwargs)
pbar = trange_(*args, **kwargs, smoothing=1.0)
pbar._i = 0
pbar.set_postfix_str(" Model Initializing ... ")
_update = pbar.update
def warmup_update(n=1):
pbar._i += 1
if pbar._i == 1:
pbar.i1_time = time.time()
pbar.set_postfix_str(" Model Initialization complete! ")
elif pbar._i == 2:
#bring forward the effective start time based the the diff between first and second iteration
#to attempt to remove load overhead from the final step rate estimate.
pbar.start_t = pbar.i1_time - (time.time() - pbar.i1_time)
pbar.set_postfix_str("")
_update(n)
pbar.update = warmup_update
return pbar
def append_zero(x):
return torch.cat([x, x.new_zeros([1])])

View File

@@ -195,20 +195,8 @@ class Anima(MiniTrainDIT):
super().__init__(*args, **kwargs)
self.llm_adapter = LLMAdapter(device=kwargs.get("device"), dtype=kwargs.get("dtype"), operations=kwargs.get("operations"))
def preprocess_text_embeds(self, text_embeds, text_ids, t5xxl_weights=None):
def preprocess_text_embeds(self, text_embeds, text_ids):
if text_ids is not None:
out = self.llm_adapter(text_embeds, text_ids)
if t5xxl_weights is not None:
out = out * t5xxl_weights
if out.shape[1] < 512:
out = torch.nn.functional.pad(out, (0, 0, 0, 512 - out.shape[1]))
return out
return self.llm_adapter(text_embeds, text_ids)
else:
return text_embeds
def forward(self, x, timesteps, context, **kwargs):
t5xxl_ids = kwargs.pop("t5xxl_ids", None)
if t5xxl_ids is not None:
context = self.preprocess_text_embeds(context, t5xxl_ids, t5xxl_weights=kwargs.pop("t5xxl_weights", None))
return super().forward(x, timesteps, context, **kwargs)

View File

@@ -29,34 +29,19 @@ def rope(pos: Tensor, dim: int, theta: int) -> Tensor:
return out.to(dtype=torch.float32, device=pos.device)
def _apply_rope1(x: Tensor, freqs_cis: Tensor):
x_ = x.to(dtype=freqs_cis.dtype).reshape(*x.shape[:-1], -1, 1, 2)
x_out = freqs_cis[..., 0] * x_[..., 0]
x_out.addcmul_(freqs_cis[..., 1], x_[..., 1])
return x_out.reshape(*x.shape).type_as(x)
def _apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor):
return apply_rope1(xq, freqs_cis), apply_rope1(xk, freqs_cis)
try:
import comfy.quant_ops
q_apply_rope = comfy.quant_ops.ck.apply_rope
q_apply_rope1 = comfy.quant_ops.ck.apply_rope1
def apply_rope(xq, xk, freqs_cis):
if comfy.model_management.in_training:
return _apply_rope(xq, xk, freqs_cis)
else:
return apply_rope1(xq, freqs_cis), apply_rope1(xk, freqs_cis)
def apply_rope1(x, freqs_cis):
if comfy.model_management.in_training:
return _apply_rope1(x, freqs_cis)
else:
return q_apply_rope1(x, freqs_cis)
apply_rope = comfy.quant_ops.ck.apply_rope
apply_rope1 = comfy.quant_ops.ck.apply_rope1
except:
logging.warning("No comfy kitchen, using old apply_rope functions.")
apply_rope = _apply_rope
apply_rope1 = _apply_rope1
def apply_rope1(x: Tensor, freqs_cis: Tensor):
x_ = x.to(dtype=freqs_cis.dtype).reshape(*x.shape[:-1], -1, 1, 2)
x_out = freqs_cis[..., 0] * x_[..., 0]
x_out.addcmul_(freqs_cis[..., 1], x_[..., 1])
return x_out.reshape(*x.shape).type_as(x)
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor):
return apply_rope1(xq, freqs_cis), apply_rope1(xk, freqs_cis)

View File

@@ -1160,16 +1160,12 @@ class Anima(BaseModel):
device = kwargs["device"]
if cross_attn is not None:
if t5xxl_ids is not None:
cross_attn = self.diffusion_model.preprocess_text_embeds(cross_attn.to(device=device, dtype=self.get_dtype()), t5xxl_ids.unsqueeze(0).to(device=device))
if t5xxl_weights is not None:
t5xxl_weights = t5xxl_weights.unsqueeze(0).unsqueeze(-1).to(cross_attn)
t5xxl_ids = t5xxl_ids.unsqueeze(0)
if torch.is_inference_mode_enabled(): # if not we are training
cross_attn = self.diffusion_model.preprocess_text_embeds(cross_attn.to(device=device, dtype=self.get_dtype()), t5xxl_ids.to(device=device), t5xxl_weights=t5xxl_weights.to(device=device, dtype=self.get_dtype()))
else:
out['t5xxl_ids'] = comfy.conds.CONDRegular(t5xxl_ids)
out['t5xxl_weights'] = comfy.conds.CONDRegular(t5xxl_weights)
cross_attn *= t5xxl_weights.unsqueeze(0).unsqueeze(-1).to(cross_attn)
if cross_attn.shape[1] < 512:
cross_attn = torch.nn.functional.pad(cross_attn, (0, 0, 0, 512 - cross_attn.shape[1]))
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
return out

View File

@@ -55,11 +55,6 @@ cpu_state = CPUState.GPU
total_vram = 0
# Training Related State
in_training = False
def get_supported_float8_types():
float8_types = []
try:
@@ -1213,12 +1208,8 @@ def cast_to(weight, dtype=None, device=None, non_blocking=False, copy=False, str
signature = comfy_aimdo.model_vbar.vbar_fault(weight._v)
if signature is not None:
if comfy_aimdo.model_vbar.vbar_signature_compare(signature, weight._v_signature):
v_tensor = weight._v_tensor
else:
raw_tensor = comfy_aimdo.torch.aimdo_to_tensor(weight._v, device)
v_tensor = comfy.memory_management.interpret_gathered_like(cast_geometry, raw_tensor)[0]
weight._v_tensor = v_tensor
v_tensor = comfy.memory_management.interpret_gathered_like(cast_geometry, weight._v_tensor)[0]
if not comfy_aimdo.model_vbar.vbar_signature_compare(signature, weight._v_signature):
weight._v_signature = signature
#Send it over
v_tensor.copy_(weight, non_blocking=non_blocking)

View File

@@ -1525,7 +1525,7 @@ class ModelPatcherDynamic(ModelPatcher):
setattr(m, param_key + "_function", weight_function)
geometry = weight
if not isinstance(weight, QuantizedTensor):
model_dtype = getattr(m, param_key + "_comfy_model_dtype", None) or weight.dtype
model_dtype = getattr(m, param_key + "_comfy_model_dtype", weight.dtype)
weight._model_dtype = model_dtype
geometry = comfy.memory_management.TensorGeometry(shape=weight.shape, dtype=model_dtype)
return comfy.memory_management.vram_aligned_size(geometry)
@@ -1542,6 +1542,7 @@ class ModelPatcherDynamic(ModelPatcher):
if vbar is not None and not hasattr(m, "_v"):
m._v = vbar.alloc(v_weight_size)
m._v_tensor = comfy_aimdo.torch.aimdo_to_tensor(m._v, device_to)
allocated_size += v_weight_size
else:
@@ -1551,11 +1552,12 @@ class ModelPatcherDynamic(ModelPatcher):
weight.seed_key = key
set_dirty(weight, dirty)
geometry = weight
model_dtype = getattr(m, param + "_comfy_model_dtype", None) or weight.dtype
model_dtype = getattr(m, param + "_comfy_model_dtype", weight.dtype)
geometry = comfy.memory_management.TensorGeometry(shape=weight.shape, dtype=model_dtype)
weight_size = geometry.numel() * geometry.element_size()
if vbar is not None and not hasattr(weight, "_v"):
weight._v = vbar.alloc(weight_size)
weight._v_tensor = comfy_aimdo.torch.aimdo_to_tensor(weight._v, device_to)
weight._model_dtype = model_dtype
allocated_size += weight_size
vbar.set_watermark_limit(allocated_size)

View File

@@ -83,18 +83,14 @@ def cast_to_input(weight, input, non_blocking=False, copy=True):
def cast_bias_weight_with_vbar(s, dtype, device, bias_dtype, non_blocking, compute_dtype):
offload_stream = None
xfer_dest = None
cast_geometry = comfy.memory_management.tensors_to_geometries([ s.weight, s.bias ])
signature = comfy_aimdo.model_vbar.vbar_fault(s._v)
resident = comfy_aimdo.model_vbar.vbar_signature_compare(signature, s._v_signature)
if signature is not None:
if resident:
weight = s._v_weight
bias = s._v_bias
else:
xfer_dest = comfy_aimdo.torch.aimdo_to_tensor(s._v, device)
xfer_dest = s._v_tensor
resident = comfy_aimdo.model_vbar.vbar_signature_compare(signature, s._v_signature)
if not resident:
cast_geometry = comfy.memory_management.tensors_to_geometries([ s.weight, s.bias ])
cast_dest = None
xfer_source = [ s.weight, s.bias ]
@@ -144,13 +140,9 @@ def cast_bias_weight_with_vbar(s, dtype, device, bias_dtype, non_blocking, compu
post_cast.copy_(pre_cast)
xfer_dest = cast_dest
params = comfy.memory_management.interpret_gathered_like(cast_geometry, xfer_dest)
weight = params[0]
bias = params[1]
if signature is not None:
s._v_weight = weight
s._v_bias = bias
s._v_signature=signature
params = comfy.memory_management.interpret_gathered_like(cast_geometry, xfer_dest)
weight = params[0]
bias = params[1]
def post_cast(s, param_key, x, dtype, resident, update_weight):
lowvram_fn = getattr(s, param_key + "_lowvram_function", None)
@@ -190,6 +182,7 @@ def cast_bias_weight_with_vbar(s, dtype, device, bias_dtype, non_blocking, compu
weight = post_cast(s, "weight", weight, dtype, resident, update_weight)
if s.bias is not None:
bias = post_cast(s, "bias", bias, bias_dtype, resident, update_weight)
s._v_signature=signature
#FIXME: weird offload return protocol
return weight, bias, (offload_stream, device if signature is not None else None, None)

View File

@@ -122,26 +122,20 @@ def estimate_memory(model, noise_shape, conds):
minimum_memory_required = model.model.memory_required([noise_shape[0]] + list(noise_shape[1:]), cond_shapes=cond_shapes_min)
return memory_required, minimum_memory_required
def prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None, force_full_load=False, force_offload=False):
def prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None, force_full_load=False):
executor = comfy.patcher_extension.WrapperExecutor.new_executor(
_prepare_sampling,
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.PREPARE_SAMPLING, model_options, is_model_options=True)
)
return executor.execute(model, noise_shape, conds, model_options=model_options, force_full_load=force_full_load, force_offload=force_offload)
return executor.execute(model, noise_shape, conds, model_options=model_options, force_full_load=force_full_load)
def _prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None, force_full_load=False, force_offload=False):
def _prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None, force_full_load=False):
real_model: BaseModel = None
models, inference_memory = get_additional_models(conds, model.model_dtype())
models += get_additional_models_from_model_options(model_options)
models += model.get_nested_additional_models() # TODO: does this require inference_memory update?
if force_offload: # In training + offload enabled, we want to force prepare sampling to trigger partial load
memory_required = 1e20
minimum_memory_required = None
else:
memory_required, minimum_memory_required = estimate_memory(model, noise_shape, conds)
memory_required += inference_memory
minimum_memory_required += inference_memory
comfy.model_management.load_models_gpu([model] + models, memory_required=memory_required, minimum_memory_required=minimum_memory_required, force_full_load=force_full_load)
memory_required, minimum_memory_required = estimate_memory(model, noise_shape, conds)
comfy.model_management.load_models_gpu([model] + models, memory_required=memory_required + inference_memory, minimum_memory_required=minimum_memory_required + inference_memory, force_full_load=force_full_load)
real_model = model.model
return real_model, conds, models

View File

@@ -3,6 +3,7 @@ import comfy.text_encoders.llama
from comfy import sd1_clip
import torch
import math
from tqdm.auto import trange
import yaml
import comfy.utils
@@ -16,7 +17,6 @@ def sample_manual_loop_no_classes(
temperature: float = 0.85,
top_p: float = 0.9,
top_k: int = None,
min_p: float = 0.000,
seed: int = 1,
min_tokens: int = 1,
max_new_tokens: int = 2048,
@@ -52,7 +52,7 @@ def sample_manual_loop_no_classes(
progress_bar = comfy.utils.ProgressBar(max_new_tokens)
for step in comfy.utils.model_trange(max_new_tokens, desc="LM sampling"):
for step in trange(max_new_tokens, desc="LM sampling"):
outputs = model.transformer(None, attention_mask, embeds=embeds.to(execution_dtype), num_tokens=num_tokens, intermediate_output=None, dtype=execution_dtype, embeds_info=embeds_info, past_key_values=past_key_values)
next_token_logits = model.transformer.logits(outputs[0])[:, -1]
past_key_values = outputs[2]
@@ -81,12 +81,6 @@ def sample_manual_loop_no_classes(
min_val = top_k_vals[..., -1, None]
cfg_logits[cfg_logits < min_val] = remove_logit_value
if min_p is not None and min_p > 0:
probs = torch.softmax(cfg_logits, dim=-1)
p_max = probs.max(dim=-1, keepdim=True).values
indices_to_remove = probs < (min_p * p_max)
cfg_logits[indices_to_remove] = remove_logit_value
if top_p is not None and top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(cfg_logits, descending=True)
cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
@@ -117,7 +111,7 @@ def sample_manual_loop_no_classes(
return output_audio_codes
def generate_audio_codes(model, positive, negative, min_tokens=1, max_tokens=1024, seed=0, cfg_scale=2.0, temperature=0.85, top_p=0.9, top_k=0, min_p=0.000):
def generate_audio_codes(model, positive, negative, min_tokens=1, max_tokens=1024, seed=0, cfg_scale=2.0, temperature=0.85, top_p=0.9, top_k=0):
positive = [[token for token, _ in inner_list] for inner_list in positive]
positive = positive[0]
@@ -141,7 +135,7 @@ def generate_audio_codes(model, positive, negative, min_tokens=1, max_tokens=102
paddings = []
ids = [positive]
return sample_manual_loop_no_classes(model, ids, paddings, cfg_scale=cfg_scale, temperature=temperature, top_p=top_p, top_k=top_k, min_p=min_p, seed=seed, min_tokens=min_tokens, max_new_tokens=max_tokens)
return sample_manual_loop_no_classes(model, ids, paddings, cfg_scale=cfg_scale, temperature=temperature, top_p=top_p, top_k=top_k, seed=seed, min_tokens=min_tokens, max_new_tokens=max_tokens)
class ACE15Tokenizer(sd1_clip.SD1Tokenizer):
@@ -199,7 +193,6 @@ class ACE15Tokenizer(sd1_clip.SD1Tokenizer):
temperature = kwargs.get("temperature", 0.85)
top_p = kwargs.get("top_p", 0.9)
top_k = kwargs.get("top_k", 0.0)
min_p = kwargs.get("min_p", 0.000)
duration = math.ceil(duration)
kwargs["duration"] = duration
@@ -247,7 +240,6 @@ class ACE15Tokenizer(sd1_clip.SD1Tokenizer):
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"min_p": min_p,
}
return out
@@ -308,7 +300,7 @@ class ACE15TEModel(torch.nn.Module):
lm_metadata = token_weight_pairs["lm_metadata"]
if lm_metadata["generate_audio_codes"]:
audio_codes = generate_audio_codes(getattr(self, self.lm_model, self.qwen3_06b), token_weight_pairs["lm_prompt"], token_weight_pairs["lm_prompt_negative"], min_tokens=lm_metadata["min_tokens"], max_tokens=lm_metadata["min_tokens"], seed=lm_metadata["seed"], cfg_scale=lm_metadata["cfg_scale"], temperature=lm_metadata["temperature"], top_p=lm_metadata["top_p"], top_k=lm_metadata["top_k"], min_p=lm_metadata["min_p"])
audio_codes = generate_audio_codes(getattr(self, self.lm_model, self.qwen3_06b), token_weight_pairs["lm_prompt"], token_weight_pairs["lm_prompt_negative"], min_tokens=lm_metadata["min_tokens"], max_tokens=lm_metadata["max_tokens"], seed=lm_metadata["seed"], cfg_scale=lm_metadata["cfg_scale"], temperature=lm_metadata["temperature"], top_p=lm_metadata["top_p"], top_k=lm_metadata["top_k"])
out["audio_codes"] = [audio_codes]
return base_out, None, out

View File

@@ -27,7 +27,6 @@ from PIL import Image
import logging
import itertools
from torch.nn.functional import interpolate
from tqdm.auto import trange
from einops import rearrange
from comfy.cli_args import args, enables_dynamic_vram
import json
@@ -1156,32 +1155,6 @@ def tiled_scale_multidim(samples, function, tile=(64, 64), overlap=8, upscale_am
def tiled_scale(samples, function, tile_x=64, tile_y=64, overlap = 8, upscale_amount = 4, out_channels = 3, output_device="cpu", pbar = None):
return tiled_scale_multidim(samples, function, (tile_y, tile_x), overlap=overlap, upscale_amount=upscale_amount, out_channels=out_channels, output_device=output_device, pbar=pbar)
def model_trange(*args, **kwargs):
if comfy.memory_management.aimdo_allocator is None:
return trange(*args, **kwargs)
pbar = trange(*args, **kwargs, smoothing=1.0)
pbar._i = 0
pbar.set_postfix_str(" Model Initializing ... ")
_update = pbar.update
def warmup_update(n=1):
pbar._i += 1
if pbar._i == 1:
pbar.i1_time = time.time()
pbar.set_postfix_str(" Model Initialization complete! ")
elif pbar._i == 2:
#bring forward the effective start time based the the diff between first and second iteration
#to attempt to remove load overhead from the final step rate estimate.
pbar.start_t = pbar.i1_time - (time.time() - pbar.i1_time)
pbar.set_postfix_str("")
_update(n)
pbar.update = warmup_update
return pbar
PROGRESS_BAR_ENABLED = True
def set_progress_bar_enabled(enabled):
global PROGRESS_BAR_ENABLED

View File

@@ -21,7 +21,6 @@ from typing import Optional, Union
import torch
import torch.nn as nn
import comfy.model_management
from .base import WeightAdapterBase, WeightAdapterTrainBase
from comfy.patcher_extension import PatcherInjection
@@ -182,21 +181,18 @@ class BypassForwardHook:
)
return # Already injected
# Move adapter weights to compute device (GPU)
# Use get_torch_device() instead of module.weight.device because
# with offloading, module weights may be on CPU while compute happens on GPU
device = comfy.model_management.get_torch_device()
# Get dtype from module weight if available
# Move adapter weights to module's device to avoid CPU-GPU transfer on every forward
device = None
dtype = None
if hasattr(self.module, "weight") and self.module.weight is not None:
device = self.module.weight.device
dtype = self.module.weight.dtype
elif hasattr(self.module, "W_q"): # Quantized layers might use different attr
device = self.module.W_q.device
dtype = self.module.W_q.dtype
# Only use dtype if it's a standard float type, not quantized
if dtype is not None and dtype not in (torch.float32, torch.float16, torch.bfloat16):
dtype = None
self._move_adapter_weights_to_device(device, dtype)
if device is not None:
self._move_adapter_weights_to_device(device, dtype)
self.original_forward = self.module.forward
self.module.forward = self._bypass_forward

View File

@@ -34,21 +34,6 @@ class VideoInput(ABC):
"""
pass
@abstractmethod
def as_trimmed(
self,
start_time: float | None = None,
duration: float | None = None,
strict_duration: bool = False,
) -> VideoInput | None:
"""
Create a new VideoInput which is trimmed to have the corresponding start_time and duration
Returns:
A new VideoInput, or None if the result would have negative duration
"""
pass
def get_stream_source(self) -> Union[str, io.BytesIO]:
"""
Get a streamable source for the video. This allows processing without

View File

@@ -6,7 +6,6 @@ from typing import Optional
from .._input import AudioInput, VideoInput
import av
import io
import itertools
import json
import numpy as np
import math
@@ -30,6 +29,7 @@ def container_to_output_format(container_format: str | None) -> str | None:
formats = container_format.split(",")
return formats[0]
def get_open_write_kwargs(
dest: str | io.BytesIO, container_format: str, to_format: str | None
) -> dict:
@@ -57,14 +57,12 @@ class VideoFromFile(VideoInput):
Class representing video input from a file.
"""
def __init__(self, file: str | io.BytesIO, *, start_time: float=0, duration: float=0):
def __init__(self, file: str | io.BytesIO):
"""
Initialize the VideoFromFile object based off of either a path on disk or a BytesIO object
containing the file contents.
"""
self.__file = file
self.__start_time = start_time
self.__duration = duration
def get_stream_source(self) -> str | io.BytesIO:
"""
@@ -98,16 +96,6 @@ class VideoFromFile(VideoInput):
Returns:
Duration in seconds
"""
raw_duration = self._get_raw_duration()
if self.__start_time < 0:
duration_from_start = min(raw_duration, -self.__start_time)
else:
duration_from_start = raw_duration - self.__start_time
if self.__duration:
return min(self.__duration, duration_from_start)
return duration_from_start
def _get_raw_duration(self) -> float:
if isinstance(self.__file, io.BytesIO):
self.__file.seek(0)
with av.open(self.__file, mode="r") as container:
@@ -125,13 +113,9 @@ class VideoFromFile(VideoInput):
if video_stream and video_stream.average_rate:
frame_count = 0
container.seek(0)
frame_iterator = (
container.decode(video_stream)
if video_stream.codec.capabilities & 0x100
else container.demux(video_stream)
)
for packet in frame_iterator:
frame_count += 1
for packet in container.demux(video_stream):
for _ in packet.decode():
frame_count += 1
if frame_count > 0:
return float(frame_count / video_stream.average_rate)
@@ -147,54 +131,36 @@ class VideoFromFile(VideoInput):
with av.open(self.__file, mode="r") as container:
video_stream = self._get_first_video_stream(container)
# 1. Prefer the frames field if available and usable
if (
video_stream.frames
and video_stream.frames > 0
and not self.__start_time
and not self.__duration
):
# 1. Prefer the frames field if available
if video_stream.frames and video_stream.frames > 0:
return int(video_stream.frames)
# 2. Try to estimate from duration and average_rate using only metadata
if container.duration is not None and video_stream.average_rate:
duration_seconds = float(container.duration / av.time_base)
estimated_frames = int(round(duration_seconds * float(video_stream.average_rate)))
if estimated_frames > 0:
return estimated_frames
if (
getattr(video_stream, "duration", None) is not None
and getattr(video_stream, "time_base", None) is not None
and video_stream.average_rate
):
raw_duration = float(video_stream.duration * video_stream.time_base)
if self.__start_time < 0:
duration_from_start = min(raw_duration, -self.__start_time)
else:
duration_from_start = raw_duration - self.__start_time
duration_seconds = min(self.__duration, duration_from_start)
duration_seconds = float(video_stream.duration * video_stream.time_base)
estimated_frames = int(round(duration_seconds * float(video_stream.average_rate)))
if estimated_frames > 0:
return estimated_frames
# 3. Last resort: decode frames and count them (streaming)
if self.__start_time < 0:
start_time = max(self._get_raw_duration() + self.__start_time, 0)
else:
start_time = self.__start_time
frame_count = 1
start_pts = int(start_time / video_stream.time_base)
end_pts = int((start_time + self.__duration) / video_stream.time_base)
container.seek(start_pts, stream=video_stream)
frame_iterator = (
container.decode(video_stream)
if video_stream.codec.capabilities & 0x100
else container.demux(video_stream)
)
for frame in frame_iterator:
if frame.pts >= start_pts:
break
else:
raise ValueError(f"Could not determine frame count for file '{self.__file}'\nNo frames exist for start_time {self.__start_time}")
for frame in frame_iterator:
if frame.pts >= end_pts:
break
frame_count += 1
frame_count = 0
container.seek(0)
for packet in container.demux(video_stream):
for _ in packet.decode():
frame_count += 1
if frame_count == 0:
raise ValueError(f"Could not determine frame count for file '{self.__file}'")
return frame_count
def get_frame_rate(self) -> Fraction:
@@ -233,21 +199,9 @@ class VideoFromFile(VideoInput):
return container.format.name
def get_components_internal(self, container: InputContainer) -> VideoComponents:
video_stream = self._get_first_video_stream(container)
if self.__start_time < 0:
start_time = max(self._get_raw_duration() + self.__start_time, 0)
else:
start_time = self.__start_time
# Get video frames
frames = []
start_pts = int(start_time / video_stream.time_base)
end_pts = int((start_time + self.__duration) / video_stream.time_base)
container.seek(start_pts, stream=video_stream)
for frame in container.decode(video_stream):
if frame.pts < start_pts:
continue
if self.__duration and frame.pts >= end_pts:
break
for frame in container.decode(video=0):
img = frame.to_ndarray(format='rgb24') # shape: (H, W, 3)
img = torch.from_numpy(img) / 255.0 # shape: (H, W, 3)
frames.append(img)
@@ -255,44 +209,31 @@ class VideoFromFile(VideoInput):
images = torch.stack(frames) if len(frames) > 0 else torch.zeros(0, 3, 0, 0)
# Get frame rate
frame_rate = Fraction(video_stream.average_rate) if video_stream.average_rate else Fraction(1)
video_stream = next(s for s in container.streams if s.type == 'video')
frame_rate = Fraction(video_stream.average_rate) if video_stream and video_stream.average_rate else Fraction(1)
# Get audio if available
audio = None
container.seek(start_pts, stream=video_stream)
# Use last stream for consistency
if len(container.streams.audio):
audio_stream = container.streams.audio[-1]
audio_frames = []
resample = av.audio.resampler.AudioResampler(format='fltp').resample
frames = itertools.chain.from_iterable(
map(resample, container.decode(audio_stream))
)
has_first_frame = False
for frame in frames:
offset_seconds = start_time - frame.pts * audio_stream.time_base
to_skip = int(offset_seconds * audio_stream.sample_rate)
if to_skip < frame.samples:
has_first_frame = True
break
if has_first_frame:
audio_frames.append(frame.to_ndarray()[..., to_skip:])
for frame in frames:
if frame.time > start_time + self.__duration:
break
audio_frames.append(frame.to_ndarray()) # shape: (channels, samples)
if len(audio_frames) > 0:
audio_data = np.concatenate(audio_frames, axis=1) # shape: (channels, total_samples)
if self.__duration:
audio_data = audio_data[..., :int(self.__duration * audio_stream.sample_rate)]
audio_tensor = torch.from_numpy(audio_data).unsqueeze(0) # shape: (1, channels, total_samples)
audio = AudioInput({
"waveform": audio_tensor,
"sample_rate": int(audio_stream.sample_rate) if audio_stream.sample_rate else 1,
})
try:
container.seek(0) # Reset the container to the beginning
for stream in container.streams:
if stream.type != 'audio':
continue
assert isinstance(stream, av.AudioStream)
audio_frames = []
for packet in container.demux(stream):
for frame in packet.decode():
assert isinstance(frame, av.AudioFrame)
audio_frames.append(frame.to_ndarray()) # shape: (channels, samples)
if len(audio_frames) > 0:
audio_data = np.concatenate(audio_frames, axis=1) # shape: (channels, total_samples)
audio_tensor = torch.from_numpy(audio_data).unsqueeze(0) # shape: (1, channels, total_samples)
audio = AudioInput({
"waveform": audio_tensor,
"sample_rate": int(stream.sample_rate) if stream.sample_rate else 1,
})
except StopIteration:
pass # No audio stream
metadata = container.metadata
return VideoComponents(images=images, audio=audio, frame_rate=frame_rate, metadata=metadata)
@@ -309,7 +250,7 @@ class VideoFromFile(VideoInput):
path: str | io.BytesIO,
format: VideoContainer = VideoContainer.AUTO,
codec: VideoCodec = VideoCodec.AUTO,
metadata: Optional[dict] = None,
metadata: Optional[dict] = None
):
if isinstance(self.__file, io.BytesIO):
self.__file.seek(0) # Reset the BytesIO object to the beginning
@@ -321,14 +262,15 @@ class VideoFromFile(VideoInput):
reuse_streams = False
if codec != VideoCodec.AUTO and codec != video_encoding and video_encoding is not None:
reuse_streams = False
if self.__start_time or self.__duration:
reuse_streams = False
if not reuse_streams:
components = self.get_components_internal(container)
video = VideoFromComponents(components)
return video.save_to(
path, format=format, codec=codec, metadata=metadata
path,
format=format,
codec=codec,
metadata=metadata
)
streams = container.streams
@@ -362,21 +304,10 @@ class VideoFromFile(VideoInput):
output_container.mux(packet)
def _get_first_video_stream(self, container: InputContainer):
if len(container.streams.video):
return container.streams.video[0]
raise ValueError(f"No video stream found in file '{self.__file}'")
def as_trimmed(
self, start_time: float = 0, duration: float = 0, strict_duration: bool = True
) -> VideoInput | None:
trimmed = VideoFromFile(
self.get_stream_source(),
start_time=start_time + self.__start_time,
duration=duration,
)
if trimmed.get_duration() < duration and strict_duration:
return None
return trimmed
video_stream = next((s for s in container.streams if s.type == "video"), None)
if video_stream is None:
raise ValueError(f"No video stream found in file '{self.__file}'")
return video_stream
class VideoFromComponents(VideoInput):
@@ -391,7 +322,7 @@ class VideoFromComponents(VideoInput):
return VideoComponents(
images=self.__components.images,
audio=self.__components.audio,
frame_rate=self.__components.frame_rate,
frame_rate=self.__components.frame_rate
)
def save_to(
@@ -399,7 +330,7 @@ class VideoFromComponents(VideoInput):
path: str,
format: VideoContainer = VideoContainer.AUTO,
codec: VideoCodec = VideoCodec.AUTO,
metadata: Optional[dict] = None,
metadata: Optional[dict] = None
):
if format != VideoContainer.AUTO and format != VideoContainer.MP4:
raise ValueError("Only MP4 format is supported for now")
@@ -426,10 +357,7 @@ class VideoFromComponents(VideoInput):
audio_stream: Optional[av.AudioStream] = None
if self.__components.audio:
audio_sample_rate = int(self.__components.audio['sample_rate'])
waveform = self.__components.audio['waveform']
waveform = waveform[0, :, :math.ceil((audio_sample_rate / frame_rate) * self.__components.images.shape[0])]
layout = {1: 'mono', 2: 'stereo', 6: '5.1'}.get(waveform.shape[0], 'stereo')
audio_stream = output.add_stream('aac', rate=audio_sample_rate, layout=layout)
audio_stream = output.add_stream('aac', rate=audio_sample_rate)
# Encode video
for i, frame in enumerate(self.__components.images):
@@ -444,21 +372,12 @@ class VideoFromComponents(VideoInput):
output.mux(packet)
if audio_stream and self.__components.audio:
frame = av.AudioFrame.from_ndarray(waveform.float().cpu().numpy(), format='fltp', layout=layout)
waveform = self.__components.audio['waveform']
waveform = waveform[:, :, :math.ceil((audio_sample_rate / frame_rate) * self.__components.images.shape[0])]
frame = av.AudioFrame.from_ndarray(waveform.movedim(2, 1).reshape(1, -1).float().cpu().numpy(), format='flt', layout='mono' if waveform.shape[1] == 1 else 'stereo')
frame.sample_rate = audio_sample_rate
frame.pts = 0
output.mux(audio_stream.encode(frame))
# Flush encoder
output.mux(audio_stream.encode(None))
def as_trimmed(
self,
start_time: float | None = None,
duration: float | None = None,
strict_duration: bool = True,
) -> VideoInput | None:
if self.get_duration() < start_time + duration:
return None
#TODO Consider tracking duration and trimming at time of save?
return VideoFromFile(self.get_stream_source(), start_time=start_time, duration=duration)

View File

@@ -75,6 +75,12 @@ class NumberDisplay(str, Enum):
slider = "slider"
class ControlAfterGenerate(str, Enum):
fixed = "fixed"
increment = "increment"
decrement = "decrement"
randomize = "randomize"
class _ComfyType(ABC):
Type = Any
io_type: str = None
@@ -263,7 +269,7 @@ class Int(ComfyTypeIO):
class Input(WidgetInput):
'''Integer input.'''
def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None,
default: int=None, min: int=None, max: int=None, step: int=None, control_after_generate: bool=None,
default: int=None, min: int=None, max: int=None, step: int=None, control_after_generate: bool | ControlAfterGenerate=None,
display_mode: NumberDisplay=None, socketless: bool=None, force_input: bool=None, extra_dict=None, raw_link: bool=None, advanced: bool=None):
super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, None, force_input, extra_dict, raw_link, advanced)
self.min = min
@@ -345,7 +351,7 @@ class Combo(ComfyTypeIO):
tooltip: str=None,
lazy: bool=None,
default: str | int | Enum = None,
control_after_generate: bool=None,
control_after_generate: bool | ControlAfterGenerate=None,
upload: UploadType=None,
image_folder: FolderType=None,
remote: RemoteOptions=None,
@@ -389,7 +395,7 @@ class MultiCombo(ComfyTypeI):
Type = list[str]
class Input(Combo.Input):
def __init__(self, id: str, options: list[str], display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None,
default: list[str]=None, placeholder: str=None, chip: bool=None, control_after_generate: bool=None,
default: list[str]=None, placeholder: str=None, chip: bool=None, control_after_generate: bool | ControlAfterGenerate=None,
socketless: bool=None, extra_dict=None, raw_link: bool=None, advanced: bool=None):
super().__init__(id, options, display_name, optional, tooltip, lazy, default, control_after_generate, socketless=socketless, extra_dict=extra_dict, raw_link=raw_link, advanced=advanced)
self.multiselect = True
@@ -2035,6 +2041,7 @@ __all__ = [
"UploadType",
"RemoteOptions",
"NumberDisplay",
"ControlAfterGenerate",
"comfytype",
"Custom",

View File

@@ -30,30 +30,6 @@ from comfy_api_nodes.util import (
validate_image_dimensions,
)
_EUR_TO_USD = 1.19
def _tier_price_eur(megapixels: float) -> float:
"""Price in EUR for a single Magnific upscaling step based on input megapixels."""
if megapixels <= 1.3:
return 0.143
if megapixels <= 3.0:
return 0.286
if megapixels <= 6.4:
return 0.429
return 1.716
def _calculate_magnific_upscale_price_usd(width: int, height: int, scale: int) -> float:
"""Calculate total Magnific upscale price in USD for given input dimensions and scale factor."""
num_steps = int(math.log2(scale))
total_eur = 0.0
pixels = width * height
for _ in range(num_steps):
total_eur += _tier_price_eur(pixels / 1_000_000)
pixels *= 4
return round(total_eur * _EUR_TO_USD, 2)
class MagnificImageUpscalerCreativeNode(IO.ComfyNode):
@classmethod
@@ -127,20 +103,11 @@ class MagnificImageUpscalerCreativeNode(IO.ComfyNode):
],
is_api_node=True,
price_badge=IO.PriceBadge(
depends_on=IO.PriceBadgeDepends(widgets=["scale_factor", "auto_downscale"]),
depends_on=IO.PriceBadgeDepends(widgets=["scale_factor"]),
expr="""
(
$ad := widgets.auto_downscale;
$mins := $ad
? {"2x": 0.172, "4x": 0.343, "8x": 0.515, "16x": 0.515}
: {"2x": 0.172, "4x": 0.343, "8x": 0.515, "16x": 0.844};
$maxs := {"2x": 0.515, "4x": 0.844, "8x": 1.015, "16x": 1.187};
{
"type": "range_usd",
"min_usd": $lookup($mins, widgets.scale_factor),
"max_usd": $lookup($maxs, widgets.scale_factor),
"format": { "approximate": true }
}
$max := widgets.scale_factor = "2x" ? 1.326 : 1.657;
{"type": "range_usd", "min_usd": 0.11, "max_usd": $max}
)
""",
),
@@ -201,10 +168,6 @@ class MagnificImageUpscalerCreativeNode(IO.ComfyNode):
f"Use a smaller input image or lower scale factor."
)
final_height, final_width = get_image_dimensions(image)
actual_scale = int(scale_factor.rstrip("x"))
price_usd = _calculate_magnific_upscale_price_usd(final_width, final_height, actual_scale)
initial_res = await sync_op(
cls,
ApiEndpoint(path="/proxy/freepik/v1/ai/image-upscaler", method="POST"),
@@ -226,7 +189,6 @@ class MagnificImageUpscalerCreativeNode(IO.ComfyNode):
ApiEndpoint(path=f"/proxy/freepik/v1/ai/image-upscaler/{initial_res.task_id}"),
response_model=TaskResponse,
status_extractor=lambda x: x.status,
price_extractor=lambda _: price_usd,
poll_interval=10.0,
max_poll_attempts=480,
)
@@ -295,14 +257,8 @@ class MagnificImageUpscalerPreciseV2Node(IO.ComfyNode):
depends_on=IO.PriceBadgeDepends(widgets=["scale_factor"]),
expr="""
(
$mins := {"2x": 0.172, "4x": 0.343, "8x": 0.515, "16x": 0.844};
$maxs := {"2x": 2.045, "4x": 2.545, "8x": 2.889, "16x": 3.06};
{
"type": "range_usd",
"min_usd": $lookup($mins, widgets.scale_factor),
"max_usd": $lookup($maxs, widgets.scale_factor),
"format": { "approximate": true }
}
$max := widgets.scale_factor = "2x" ? 1.326 : 1.657;
{"type": "range_usd", "min_usd": 0.11, "max_usd": $max}
)
""",
),
@@ -365,9 +321,6 @@ class MagnificImageUpscalerPreciseV2Node(IO.ComfyNode):
f"Use a smaller input image or lower scale factor."
)
final_height, final_width = get_image_dimensions(image)
price_usd = _calculate_magnific_upscale_price_usd(final_width, final_height, requested_scale)
initial_res = await sync_op(
cls,
ApiEndpoint(path="/proxy/freepik/v1/ai/image-upscaler-precision-v2", method="POST"),
@@ -386,7 +339,6 @@ class MagnificImageUpscalerPreciseV2Node(IO.ComfyNode):
ApiEndpoint(path=f"/proxy/freepik/v1/ai/image-upscaler-precision-v2/{initial_res.task_id}"),
response_model=TaskResponse,
status_extractor=lambda x: x.status,
price_extractor=lambda _: price_usd,
poll_interval=10.0,
max_poll_attempts=480,
)
@@ -925,8 +877,8 @@ class MagnificExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
return [
MagnificImageUpscalerCreativeNode,
MagnificImageUpscalerPreciseV2Node,
# MagnificImageUpscalerCreativeNode,
# MagnificImageUpscalerPreciseV2Node,
MagnificImageStyleTransferNode,
MagnificImageRelightNode,
MagnificImageSkinEnhancerNode,

View File

@@ -57,7 +57,6 @@ class _RequestConfig:
files: dict[str, Any] | list[tuple[str, Any]] | None
multipart_parser: Callable | None
max_retries: int
max_retries_on_rate_limit: int
retry_delay: float
retry_backoff: float
wait_label: str = "Waiting"
@@ -66,7 +65,6 @@ class _RequestConfig:
final_label_on_success: str | None = "Completed"
progress_origin_ts: float | None = None
price_extractor: Callable[[dict[str, Any]], float | None] | None = None
is_rate_limited: Callable[[int, Any], bool] | None = None
@dataclass
@@ -80,7 +78,7 @@ class _PollUIState:
active_since: float | None = None # start time of current active interval (None if queued)
_RETRY_STATUS = {408, 500, 502, 503, 504} # status 429 is handled separately
_RETRY_STATUS = {408, 429, 500, 502, 503, 504}
COMPLETED_STATUSES = ["succeeded", "succeed", "success", "completed", "finished", "done", "complete"]
FAILED_STATUSES = ["cancelled", "canceled", "canceling", "fail", "failed", "error"]
QUEUED_STATUSES = ["created", "queued", "queueing", "submitted", "initializing"]
@@ -105,8 +103,6 @@ async def sync_op(
final_label_on_success: str | None = "Completed",
progress_origin_ts: float | None = None,
monitor_progress: bool = True,
max_retries_on_rate_limit: int = 16,
is_rate_limited: Callable[[int, Any], bool] | None = None,
) -> M:
raw = await sync_op_raw(
cls,
@@ -126,8 +122,6 @@ async def sync_op(
final_label_on_success=final_label_on_success,
progress_origin_ts=progress_origin_ts,
monitor_progress=monitor_progress,
max_retries_on_rate_limit=max_retries_on_rate_limit,
is_rate_limited=is_rate_limited,
)
if not isinstance(raw, dict):
raise Exception("Expected JSON response to validate into a Pydantic model, got non-JSON (binary or text).")
@@ -149,9 +143,9 @@ async def poll_op(
poll_interval: float = 5.0,
max_poll_attempts: int = 160,
timeout_per_poll: float = 120.0,
max_retries_per_poll: int = 10,
max_retries_per_poll: int = 3,
retry_delay_per_poll: float = 1.0,
retry_backoff_per_poll: float = 1.4,
retry_backoff_per_poll: float = 2.0,
estimated_duration: int | None = None,
cancel_endpoint: ApiEndpoint | None = None,
cancel_timeout: float = 10.0,
@@ -200,8 +194,6 @@ async def sync_op_raw(
final_label_on_success: str | None = "Completed",
progress_origin_ts: float | None = None,
monitor_progress: bool = True,
max_retries_on_rate_limit: int = 16,
is_rate_limited: Callable[[int, Any], bool] | None = None,
) -> dict[str, Any] | bytes:
"""
Make a single network request.
@@ -230,8 +222,6 @@ async def sync_op_raw(
final_label_on_success=final_label_on_success,
progress_origin_ts=progress_origin_ts,
price_extractor=price_extractor,
max_retries_on_rate_limit=max_retries_on_rate_limit,
is_rate_limited=is_rate_limited,
)
return await _request_base(cfg, expect_binary=as_binary)
@@ -250,9 +240,9 @@ async def poll_op_raw(
poll_interval: float = 5.0,
max_poll_attempts: int = 160,
timeout_per_poll: float = 120.0,
max_retries_per_poll: int = 10,
max_retries_per_poll: int = 3,
retry_delay_per_poll: float = 1.0,
retry_backoff_per_poll: float = 1.4,
retry_backoff_per_poll: float = 2.0,
estimated_duration: int | None = None,
cancel_endpoint: ApiEndpoint | None = None,
cancel_timeout: float = 10.0,
@@ -516,7 +506,7 @@ def _friendly_http_message(status: int, body: Any) -> str:
if status == 409:
return "There is a problem with your account. Please contact support@comfy.org."
if status == 429:
return "Rate Limit Exceeded: The server returned 429 after all retry attempts. Please wait and try again."
return "Rate Limit Exceeded: Please try again later."
try:
if isinstance(body, dict):
err = body.get("error")
@@ -596,8 +586,6 @@ async def _request_base(cfg: _RequestConfig, expect_binary: bool):
start_time = cfg.progress_origin_ts if cfg.progress_origin_ts is not None else time.monotonic()
attempt = 0
delay = cfg.retry_delay
rate_limit_attempts = 0
rate_limit_delay = cfg.retry_delay
operation_succeeded: bool = False
final_elapsed_seconds: int | None = None
extracted_price: float | None = None
@@ -665,14 +653,17 @@ async def _request_base(cfg: _RequestConfig, expect_binary: bool):
payload_headers["Content-Type"] = "application/json"
payload_kw["json"] = cfg.data or {}
request_logger.log_request_response(
operation_id=operation_id,
request_method=method,
request_url=url,
request_headers=dict(payload_headers) if payload_headers else None,
request_params=dict(params) if params else None,
request_data=request_body_log,
)
try:
request_logger.log_request_response(
operation_id=operation_id,
request_method=method,
request_url=url,
request_headers=dict(payload_headers) if payload_headers else None,
request_params=dict(params) if params else None,
request_data=request_body_log,
)
except Exception as _log_e:
logging.debug("[DEBUG] request logging failed: %s", _log_e)
req_coro = sess.request(method, url, params=params, **payload_kw)
req_task = asyncio.create_task(req_coro)
@@ -697,33 +688,41 @@ async def _request_base(cfg: _RequestConfig, expect_binary: bool):
body = await resp.json()
except (ContentTypeError, json.JSONDecodeError):
body = await resp.text()
should_retry = False
wait_time = 0.0
retry_label = ""
is_rl = resp.status == 429 or (
cfg.is_rate_limited is not None and cfg.is_rate_limited(resp.status, body)
)
if is_rl and rate_limit_attempts < cfg.max_retries_on_rate_limit:
rate_limit_attempts += 1
wait_time = min(rate_limit_delay, 30.0)
rate_limit_delay *= cfg.retry_backoff
retry_label = f"rate-limit retry {rate_limit_attempts} of {cfg.max_retries_on_rate_limit}"
should_retry = True
elif resp.status in _RETRY_STATUS and (attempt - rate_limit_attempts) <= cfg.max_retries:
wait_time = delay
delay *= cfg.retry_backoff
retry_label = f"retry {attempt - rate_limit_attempts} of {cfg.max_retries}"
should_retry = True
if should_retry:
if resp.status in _RETRY_STATUS and attempt <= cfg.max_retries:
logging.warning(
"HTTP %s %s -> %s. Waiting %.2fs (%s).",
"HTTP %s %s -> %s. Retrying in %.2fs (retry %d of %d).",
method,
url,
resp.status,
wait_time,
retry_label,
delay,
attempt,
cfg.max_retries,
)
try:
request_logger.log_request_response(
operation_id=operation_id,
request_method=method,
request_url=url,
response_status_code=resp.status,
response_headers=dict(resp.headers),
response_content=body,
error_message=_friendly_http_message(resp.status, body),
)
except Exception as _log_e:
logging.debug("[DEBUG] response logging failed: %s", _log_e)
await sleep_with_interrupt(
delay,
cfg.node_cls,
cfg.wait_label if cfg.monitor_progress else None,
start_time if cfg.monitor_progress else None,
cfg.estimated_total,
display_callback=_display_time_progress if cfg.monitor_progress else None,
)
delay *= cfg.retry_backoff
continue
msg = _friendly_http_message(resp.status, body)
try:
request_logger.log_request_response(
operation_id=operation_id,
request_method=method,
@@ -731,27 +730,10 @@ async def _request_base(cfg: _RequestConfig, expect_binary: bool):
response_status_code=resp.status,
response_headers=dict(resp.headers),
response_content=body,
error_message=f"HTTP {resp.status} ({retry_label}, will retry in {wait_time:.1f}s)",
error_message=msg,
)
await sleep_with_interrupt(
wait_time,
cfg.node_cls,
cfg.wait_label if cfg.monitor_progress else None,
start_time if cfg.monitor_progress else None,
cfg.estimated_total,
display_callback=_display_time_progress if cfg.monitor_progress else None,
)
continue
msg = _friendly_http_message(resp.status, body)
request_logger.log_request_response(
operation_id=operation_id,
request_method=method,
request_url=url,
response_status_code=resp.status,
response_headers=dict(resp.headers),
response_content=body,
error_message=msg,
)
except Exception as _log_e:
logging.debug("[DEBUG] response logging failed: %s", _log_e)
raise Exception(msg)
if expect_binary:
@@ -771,14 +753,17 @@ async def _request_base(cfg: _RequestConfig, expect_binary: bool):
bytes_payload = bytes(buff)
operation_succeeded = True
final_elapsed_seconds = int(time.monotonic() - start_time)
request_logger.log_request_response(
operation_id=operation_id,
request_method=method,
request_url=url,
response_status_code=resp.status,
response_headers=dict(resp.headers),
response_content=bytes_payload,
)
try:
request_logger.log_request_response(
operation_id=operation_id,
request_method=method,
request_url=url,
response_status_code=resp.status,
response_headers=dict(resp.headers),
response_content=bytes_payload,
)
except Exception as _log_e:
logging.debug("[DEBUG] response logging failed: %s", _log_e)
return bytes_payload
else:
try:
@@ -795,39 +780,45 @@ async def _request_base(cfg: _RequestConfig, expect_binary: bool):
extracted_price = cfg.price_extractor(payload) if cfg.price_extractor else None
operation_succeeded = True
final_elapsed_seconds = int(time.monotonic() - start_time)
request_logger.log_request_response(
operation_id=operation_id,
request_method=method,
request_url=url,
response_status_code=resp.status,
response_headers=dict(resp.headers),
response_content=response_content_to_log,
)
try:
request_logger.log_request_response(
operation_id=operation_id,
request_method=method,
request_url=url,
response_status_code=resp.status,
response_headers=dict(resp.headers),
response_content=response_content_to_log,
)
except Exception as _log_e:
logging.debug("[DEBUG] response logging failed: %s", _log_e)
return payload
except ProcessingInterrupted:
logging.debug("Polling was interrupted by user")
raise
except (ClientError, OSError) as e:
if (attempt - rate_limit_attempts) <= cfg.max_retries:
if attempt <= cfg.max_retries:
logging.warning(
"Connection error calling %s %s. Retrying in %.2fs (%d/%d): %s",
method,
url,
delay,
attempt - rate_limit_attempts,
attempt,
cfg.max_retries,
str(e),
)
request_logger.log_request_response(
operation_id=operation_id,
request_method=method,
request_url=url,
request_headers=dict(payload_headers) if payload_headers else None,
request_params=dict(params) if params else None,
request_data=request_body_log,
error_message=f"{type(e).__name__}: {str(e)} (will retry)",
)
try:
request_logger.log_request_response(
operation_id=operation_id,
request_method=method,
request_url=url,
request_headers=dict(payload_headers) if payload_headers else None,
request_params=dict(params) if params else None,
request_data=request_body_log,
error_message=f"{type(e).__name__}: {str(e)} (will retry)",
)
except Exception as _log_e:
logging.debug("[DEBUG] request error logging failed: %s", _log_e)
await sleep_with_interrupt(
delay,
cfg.node_cls,
@@ -840,6 +831,23 @@ async def _request_base(cfg: _RequestConfig, expect_binary: bool):
continue
diag = await _diagnose_connectivity()
if not diag["internet_accessible"]:
try:
request_logger.log_request_response(
operation_id=operation_id,
request_method=method,
request_url=url,
request_headers=dict(payload_headers) if payload_headers else None,
request_params=dict(params) if params else None,
request_data=request_body_log,
error_message=f"LocalNetworkError: {str(e)}",
)
except Exception as _log_e:
logging.debug("[DEBUG] final error logging failed: %s", _log_e)
raise LocalNetworkError(
"Unable to connect to the API server due to local network issues. "
"Please check your internet connection and try again."
) from e
try:
request_logger.log_request_response(
operation_id=operation_id,
request_method=method,
@@ -847,21 +855,10 @@ async def _request_base(cfg: _RequestConfig, expect_binary: bool):
request_headers=dict(payload_headers) if payload_headers else None,
request_params=dict(params) if params else None,
request_data=request_body_log,
error_message=f"LocalNetworkError: {str(e)}",
error_message=f"ApiServerError: {str(e)}",
)
raise LocalNetworkError(
"Unable to connect to the API server due to local network issues. "
"Please check your internet connection and try again."
) from e
request_logger.log_request_response(
operation_id=operation_id,
request_method=method,
request_url=url,
request_headers=dict(payload_headers) if payload_headers else None,
request_params=dict(params) if params else None,
request_data=request_body_log,
error_message=f"ApiServerError: {str(e)}",
)
except Exception as _log_e:
logging.debug("[DEBUG] final error logging failed: %s", _log_e)
raise ApiServerError(
f"The API server at {default_base_url()} is currently unreachable. "
f"The service may be experiencing issues."

View File

@@ -167,25 +167,27 @@ async def download_url_to_bytesio(
with contextlib.suppress(Exception):
dest.seek(0)
request_logger.log_request_response(
operation_id=op_id,
request_method="GET",
request_url=url,
response_status_code=resp.status,
response_headers=dict(resp.headers),
response_content=f"[streamed {written} bytes to dest]",
)
with contextlib.suppress(Exception):
request_logger.log_request_response(
operation_id=op_id,
request_method="GET",
request_url=url,
response_status_code=resp.status,
response_headers=dict(resp.headers),
response_content=f"[streamed {written} bytes to dest]",
)
return
except asyncio.CancelledError:
raise ProcessingInterrupted("Task cancelled") from None
except (ClientError, OSError) as e:
if attempt <= max_retries:
request_logger.log_request_response(
operation_id=op_id,
request_method="GET",
request_url=url,
error_message=f"{type(e).__name__}: {str(e)} (will retry)",
)
with contextlib.suppress(Exception):
request_logger.log_request_response(
operation_id=op_id,
request_method="GET",
request_url=url,
error_message=f"{type(e).__name__}: {str(e)} (will retry)",
)
await sleep_with_interrupt(delay, cls, None, None, None)
delay *= retry_backoff
continue

View File

@@ -8,6 +8,7 @@ from typing import Any
import folder_paths
# Get the logger instance
logger = logging.getLogger(__name__)
@@ -90,41 +91,38 @@ def log_request_response(
Filenames are sanitized and length-limited for cross-platform safety.
If we still fail to write, we fall back to appending into api.log.
"""
log_dir = get_log_directory()
filepath = _build_log_filepath(log_dir, operation_id, request_url)
log_content: list[str] = []
log_content.append(f"Timestamp: {datetime.datetime.now().isoformat()}")
log_content.append(f"Operation ID: {operation_id}")
log_content.append("-" * 30 + " REQUEST " + "-" * 30)
log_content.append(f"Method: {request_method}")
log_content.append(f"URL: {request_url}")
if request_headers:
log_content.append(f"Headers:\n{_format_data_for_logging(request_headers)}")
if request_params:
log_content.append(f"Params:\n{_format_data_for_logging(request_params)}")
if request_data is not None:
log_content.append(f"Data/Body:\n{_format_data_for_logging(request_data)}")
log_content.append("\n" + "-" * 30 + " RESPONSE " + "-" * 30)
if response_status_code is not None:
log_content.append(f"Status Code: {response_status_code}")
if response_headers:
log_content.append(f"Headers:\n{_format_data_for_logging(response_headers)}")
if response_content is not None:
log_content.append(f"Content:\n{_format_data_for_logging(response_content)}")
if error_message:
log_content.append(f"Error:\n{error_message}")
try:
log_dir = get_log_directory()
filepath = _build_log_filepath(log_dir, operation_id, request_url)
log_content: list[str] = []
log_content.append(f"Timestamp: {datetime.datetime.now().isoformat()}")
log_content.append(f"Operation ID: {operation_id}")
log_content.append("-" * 30 + " REQUEST " + "-" * 30)
log_content.append(f"Method: {request_method}")
log_content.append(f"URL: {request_url}")
if request_headers:
log_content.append(f"Headers:\n{_format_data_for_logging(request_headers)}")
if request_params:
log_content.append(f"Params:\n{_format_data_for_logging(request_params)}")
if request_data is not None:
log_content.append(f"Data/Body:\n{_format_data_for_logging(request_data)}")
log_content.append("\n" + "-" * 30 + " RESPONSE " + "-" * 30)
if response_status_code is not None:
log_content.append(f"Status Code: {response_status_code}")
if response_headers:
log_content.append(f"Headers:\n{_format_data_for_logging(response_headers)}")
if response_content is not None:
log_content.append(f"Content:\n{_format_data_for_logging(response_content)}")
if error_message:
log_content.append(f"Error:\n{error_message}")
try:
with open(filepath, "w", encoding="utf-8") as f:
f.write("\n".join(log_content))
logger.debug("API log saved to: %s", filepath)
except Exception as e:
logger.error("Error writing API log to %s: %s", filepath, str(e))
except Exception as _log_e:
logging.debug("[DEBUG] log_request_response failed: %s", _log_e)
with open(filepath, "w", encoding="utf-8") as f:
f.write("\n".join(log_content))
logger.debug("API log saved to: %s", filepath)
except Exception as e:
logger.error("Error writing API log to %s: %s", filepath, str(e))
if __name__ == '__main__':

View File

@@ -255,14 +255,17 @@ async def upload_file(
monitor_task = asyncio.create_task(_monitor())
sess: aiohttp.ClientSession | None = None
try:
request_logger.log_request_response(
operation_id=operation_id,
request_method="PUT",
request_url=upload_url,
request_headers=headers or None,
request_params=None,
request_data=f"[File data {len(data)} bytes]",
)
try:
request_logger.log_request_response(
operation_id=operation_id,
request_method="PUT",
request_url=upload_url,
request_headers=headers or None,
request_params=None,
request_data=f"[File data {len(data)} bytes]",
)
except Exception as e:
logging.debug("[DEBUG] upload request logging failed: %s", e)
sess = aiohttp.ClientSession(timeout=timeout)
req = sess.put(upload_url, data=data, headers=headers, skip_auto_headers=skip_auto_headers)
@@ -308,27 +311,31 @@ async def upload_file(
delay *= retry_backoff
continue
raise Exception(f"Failed to upload (HTTP {resp.status}).")
request_logger.log_request_response(
operation_id=operation_id,
request_method="PUT",
request_url=upload_url,
response_status_code=resp.status,
response_headers=dict(resp.headers),
response_content="File uploaded successfully.",
)
try:
request_logger.log_request_response(
operation_id=operation_id,
request_method="PUT",
request_url=upload_url,
response_status_code=resp.status,
response_headers=dict(resp.headers),
response_content="File uploaded successfully.",
)
except Exception as e:
logging.debug("[DEBUG] upload response logging failed: %s", e)
return
except asyncio.CancelledError:
raise ProcessingInterrupted("Task cancelled") from None
except (aiohttp.ClientError, OSError) as e:
if attempt <= max_retries:
request_logger.log_request_response(
operation_id=operation_id,
request_method="PUT",
request_url=upload_url,
request_headers=headers or None,
request_data=f"[File data {len(data)} bytes]",
error_message=f"{type(e).__name__}: {str(e)} (will retry)",
)
with contextlib.suppress(Exception):
request_logger.log_request_response(
operation_id=operation_id,
request_method="PUT",
request_url=upload_url,
request_headers=headers or None,
request_data=f"[File data {len(data)} bytes]",
error_message=f"{type(e).__name__}: {str(e)} (will retry)",
)
await sleep_with_interrupt(
delay,
cls,

View File

@@ -20,60 +20,10 @@ class JobStatus:
# Media types that can be previewed in the frontend
PREVIEWABLE_MEDIA_TYPES = frozenset({'images', 'video', 'audio', '3d'})
PREVIEWABLE_MEDIA_TYPES = frozenset({'images', 'video', 'audio'})
# 3D file extensions for preview fallback (no dedicated media_type exists)
THREE_D_EXTENSIONS = frozenset({'.obj', '.fbx', '.gltf', '.glb', '.usdz'})
def has_3d_extension(filename: str) -> bool:
lower = filename.lower()
return any(lower.endswith(ext) for ext in THREE_D_EXTENSIONS)
def normalize_output_item(item):
"""Normalize a single output list item for the jobs API.
Returns the normalized item, or None to exclude it.
String items with 3D extensions become {filename, type, subfolder} dicts.
"""
if item is None:
return None
if isinstance(item, str):
if has_3d_extension(item):
return {'filename': item, 'type': 'output', 'subfolder': '', 'mediaType': '3d'}
return None
if isinstance(item, dict):
return item
return None
def normalize_outputs(outputs: dict) -> dict:
"""Normalize raw node outputs for the jobs API.
Transforms string 3D filenames into file output dicts and removes
None items. All other items (non-3D strings, dicts, etc.) are
preserved as-is.
"""
normalized = {}
for node_id, node_outputs in outputs.items():
if not isinstance(node_outputs, dict):
normalized[node_id] = node_outputs
continue
normalized_node = {}
for media_type, items in node_outputs.items():
if media_type == 'animated' or not isinstance(items, list):
normalized_node[media_type] = items
continue
normalized_items = []
for item in items:
if item is None:
continue
norm = normalize_output_item(item)
normalized_items.append(norm if norm is not None else item)
normalized_node[media_type] = normalized_items
normalized[node_id] = normalized_node
return normalized
THREE_D_EXTENSIONS = frozenset({'.obj', '.fbx', '.gltf', '.glb'})
def _extract_job_metadata(extra_data: dict) -> tuple[Optional[int], Optional[str]]:
@@ -95,9 +45,9 @@ def is_previewable(media_type: str, item: dict) -> bool:
Maintains backwards compatibility with existing logic.
Priority:
1. media_type is 'images', 'video', 'audio', or '3d'
1. media_type is 'images', 'video', or 'audio'
2. format field starts with 'video/' or 'audio/'
3. filename has a 3D extension (.obj, .fbx, .gltf, .glb, .usdz)
3. filename has a 3D extension (.obj, .fbx, .gltf, .glb)
"""
if media_type in PREVIEWABLE_MEDIA_TYPES:
return True
@@ -189,7 +139,7 @@ def normalize_history_item(prompt_id: str, history_item: dict, include_outputs:
})
if include_outputs:
job['outputs'] = normalize_outputs(outputs)
job['outputs'] = outputs
job['execution_status'] = status_info
job['workflow'] = {
'prompt': prompt,
@@ -221,23 +171,18 @@ def get_outputs_summary(outputs: dict) -> tuple[int, Optional[dict]]:
continue
for item in items:
normalized = normalize_output_item(item)
if normalized is None:
continue
count += 1
if preview_output is not None:
if not isinstance(item, dict):
continue
if isinstance(normalized, dict) and is_previewable(media_type, normalized):
if preview_output is None and is_previewable(media_type, item):
enriched = {
**normalized,
**item,
'nodeId': node_id,
'mediaType': media_type
}
if 'mediaType' not in normalized:
enriched['mediaType'] = media_type
if normalized.get('type') == 'output':
if item.get('type') == 'output':
preview_output = enriched
elif fallback_preview is None:
fallback_preview = enriched

View File

@@ -49,14 +49,13 @@ class TextEncodeAceStepAudio15(io.ComfyNode):
io.Float.Input("temperature", default=0.85, min=0.0, max=2.0, step=0.01, advanced=True),
io.Float.Input("top_p", default=0.9, min=0.0, max=2000.0, step=0.01, advanced=True),
io.Int.Input("top_k", default=0, min=0, max=100, advanced=True),
io.Float.Input("min_p", default=0.000, min=0.0, max=1.0, step=0.001, advanced=True),
],
outputs=[io.Conditioning.Output()],
)
@classmethod
def execute(cls, clip, tags, lyrics, seed, bpm, duration, timesignature, language, keyscale, generate_audio_codes, cfg_scale, temperature, top_p, top_k, min_p) -> io.NodeOutput:
tokens = clip.tokenize(tags, lyrics=lyrics, bpm=bpm, duration=duration, timesignature=int(timesignature), language=language, keyscale=keyscale, seed=seed, generate_audio_codes=generate_audio_codes, cfg_scale=cfg_scale, temperature=temperature, top_p=top_p, top_k=top_k, min_p=min_p)
def execute(cls, clip, tags, lyrics, seed, bpm, duration, timesignature, language, keyscale, generate_audio_codes, cfg_scale, temperature, top_p, top_k) -> io.NodeOutput:
tokens = clip.tokenize(tags, lyrics=lyrics, bpm=bpm, duration=duration, timesignature=int(timesignature), language=language, keyscale=keyscale, seed=seed, generate_audio_codes=generate_audio_codes, cfg_scale=cfg_scale, temperature=temperature, top_p=top_p, top_k=top_k)
conditioning = clip.encode_from_tokens_scheduled(tokens)
return io.NodeOutput(conditioning)

View File

@@ -1,132 +0,0 @@
from __future__ import annotations
import hashlib
import os
import numpy as np
import torch
from PIL import Image
import folder_paths
import node_helpers
from comfy_api.latest import ComfyExtension, io
from typing_extensions import override
def hex_to_rgb(hex_color: str) -> tuple[float, float, float]:
hex_color = hex_color.lstrip("#")
if len(hex_color) != 6:
return (0.0, 0.0, 0.0)
r = int(hex_color[0:2], 16) / 255.0
g = int(hex_color[2:4], 16) / 255.0
b = int(hex_color[4:6], 16) / 255.0
return (r, g, b)
class PainterNode(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="Painter",
display_name="Painter",
category="image",
inputs=[
io.Image.Input(
"image",
optional=True,
tooltip="Optional base image to paint over",
),
io.String.Input(
"mask",
default="",
socketless=True,
extra_dict={"widgetType": "PAINTER", "image_upload": True},
),
io.Int.Input(
"width",
default=512,
min=64,
max=4096,
step=64,
socketless=True,
extra_dict={"hidden": True},
),
io.Int.Input(
"height",
default=512,
min=64,
max=4096,
step=64,
socketless=True,
extra_dict={"hidden": True},
),
io.String.Input(
"bg_color",
default="#000000",
socketless=True,
extra_dict={"hidden": True, "widgetType": "COLOR"},
),
],
outputs=[
io.Image.Output("IMAGE"),
io.Mask.Output("MASK"),
],
)
@classmethod
def execute(cls, mask, width, height, bg_color="#000000", image=None) -> io.NodeOutput:
if image is not None:
h, w = image.shape[1], image.shape[2]
base_image = image
else:
h, w = height, width
r, g, b = hex_to_rgb(bg_color)
base_image = torch.zeros((1, h, w, 3), dtype=torch.float32)
base_image[0, :, :, 0] = r
base_image[0, :, :, 1] = g
base_image[0, :, :, 2] = b
if mask and mask.strip():
mask_path = folder_paths.get_annotated_filepath(mask)
painter_img = node_helpers.pillow(Image.open, mask_path)
painter_img = painter_img.convert("RGBA")
if painter_img.size != (w, h):
painter_img = painter_img.resize((w, h), Image.LANCZOS)
painter_np = np.array(painter_img).astype(np.float32) / 255.0
painter_rgb = painter_np[:, :, :3]
painter_alpha = painter_np[:, :, 3:4]
mask_tensor = torch.from_numpy(painter_np[:, :, 3]).unsqueeze(0)
base_np = base_image[0].cpu().numpy()
composited = painter_rgb * painter_alpha + base_np * (1.0 - painter_alpha)
out_image = torch.from_numpy(composited).unsqueeze(0)
else:
mask_tensor = torch.zeros((1, h, w), dtype=torch.float32)
out_image = base_image
return io.NodeOutput(out_image, mask_tensor)
@classmethod
def fingerprint_inputs(cls, mask, width, height, bg_color="#000000", image=None):
if mask and mask.strip():
mask_path = folder_paths.get_annotated_filepath(mask)
if os.path.exists(mask_path):
m = hashlib.sha256()
with open(mask_path, "rb") as f:
m.update(f.read())
return m.digest().hex()
return ""
class PainterExtension(ComfyExtension):
@override
async def get_node_list(self):
return [PainterNode]
async def comfy_entrypoint():
return PainterExtension()

View File

@@ -4,7 +4,6 @@ import os
import numpy as np
import safetensors
import torch
import torch.nn as nn
import torch.utils.checkpoint
from tqdm.auto import trange
from PIL import Image, ImageDraw, ImageFont
@@ -28,11 +27,6 @@ class TrainGuider(comfy_extras.nodes_custom_sampler.Guider_Basic):
"""
CFGGuider with modifications for training specific logic
"""
def __init__(self, *args, offloading=False, **kwargs):
super().__init__(*args, **kwargs)
self.offloading = offloading
def outer_sample(
self,
noise,
@@ -51,11 +45,9 @@ class TrainGuider(comfy_extras.nodes_custom_sampler.Guider_Basic):
noise.shape,
self.conds,
self.model_options,
force_full_load=not self.offloading,
force_offload=self.offloading,
force_full_load=True, # mirror behavior in TrainLoraNode.execute() to keep model loaded
)
)
torch.cuda.empty_cache()
device = self.model_patcher.load_device
if denoise_mask is not None:
@@ -412,97 +404,16 @@ def find_all_highest_child_module_with_forward(
return result
def find_modules_at_depth(
model: nn.Module, depth: int = 1, result=None, current_depth=0, name=None
) -> list[nn.Module]:
"""
Find modules at a specific depth level for gradient checkpointing.
Args:
model: The model to search
depth: Target depth level (1 = top-level blocks, 2 = their children, etc.)
result: Accumulator for results
current_depth: Current recursion depth
name: Current module name for logging
Returns:
List of modules at the target depth
"""
if result is None:
result = []
name = name or "root"
# Skip container modules (they don't have meaningful forward)
is_container = isinstance(model, (nn.ModuleList, nn.Sequential, nn.ModuleDict))
has_forward = hasattr(model, "forward") and not is_container
if has_forward:
current_depth += 1
if current_depth == depth:
result.append(model)
logging.debug(f"Found module at depth {depth}: {name} ({model.__class__.__name__})")
return result
# Recurse into children
for next_name, child in model.named_children():
find_modules_at_depth(child, depth, result, current_depth, f"{name}.{next_name}")
return result
class OffloadCheckpointFunction(torch.autograd.Function):
"""
Gradient checkpointing that works with weight offloading.
Forward: no_grad -> compute -> weights can be freed
Backward: enable_grad -> recompute -> backward -> weights can be freed
For single input, single output modules (Linear, Conv*).
"""
@staticmethod
def forward(ctx, x: torch.Tensor, forward_fn):
ctx.save_for_backward(x)
ctx.forward_fn = forward_fn
with torch.no_grad():
return forward_fn(x)
@staticmethod
def backward(ctx, grad_out: torch.Tensor):
x, = ctx.saved_tensors
forward_fn = ctx.forward_fn
# Clear context early
ctx.forward_fn = None
with torch.enable_grad():
x_detached = x.detach().requires_grad_(True)
y = forward_fn(x_detached)
y.backward(grad_out)
grad_x = x_detached.grad
# Explicit cleanup
del y, x_detached, forward_fn
return grad_x, None
def patch(m, offloading=False):
def patch(m):
if not hasattr(m, "forward"):
return
org_forward = m.forward
# Branch 1: Linear/Conv* -> offload-compatible checkpoint (single input/output)
if offloading and isinstance(m, (nn.Linear, nn.Conv1d, nn.Conv2d, nn.Conv3d)):
def checkpointing_fwd(x):
return OffloadCheckpointFunction.apply(x, org_forward)
# Branch 2: Others -> standard checkpoint
else:
def fwd(args, kwargs):
return org_forward(*args, **kwargs)
def fwd(args, kwargs):
return org_forward(*args, **kwargs)
def checkpointing_fwd(*args, **kwargs):
return torch.utils.checkpoint.checkpoint(fwd, args, kwargs, use_reentrant=False)
def checkpointing_fwd(*args, **kwargs):
return torch.utils.checkpoint.checkpoint(fwd, args, kwargs, use_reentrant=False)
m.org_forward = org_forward
m.forward = checkpointing_fwd
@@ -1025,18 +936,6 @@ class TrainLoraNode(io.ComfyNode):
default=True,
tooltip="Use gradient checkpointing for training.",
),
io.Int.Input(
"checkpoint_depth",
default=1,
min=1,
max=5,
tooltip="Depth level for gradient checkpointing.",
),
io.Boolean.Input(
"offloading",
default=False,
tooltip="Depth level for gradient checkpointing.",
),
io.Combo.Input(
"existing_lora",
options=folder_paths.get_filename_list("loras") + ["[None]"],
@@ -1083,8 +982,6 @@ class TrainLoraNode(io.ComfyNode):
lora_dtype,
algorithm,
gradient_checkpointing,
checkpoint_depth,
offloading,
existing_lora,
bucket_mode,
bypass_mode,
@@ -1103,8 +1000,6 @@ class TrainLoraNode(io.ComfyNode):
lora_dtype = lora_dtype[0]
algorithm = algorithm[0]
gradient_checkpointing = gradient_checkpointing[0]
offloading = offloading[0]
checkpoint_depth = checkpoint_depth[0]
existing_lora = existing_lora[0]
bucket_mode = bucket_mode[0]
bypass_mode = bypass_mode[0]
@@ -1159,18 +1054,16 @@ class TrainLoraNode(io.ComfyNode):
# Setup gradient checkpointing
if gradient_checkpointing:
modules_to_patch = find_modules_at_depth(
mp.model.diffusion_model, depth=checkpoint_depth
)
logging.info(f"Gradient checkpointing: patching {len(modules_to_patch)} modules at depth {checkpoint_depth}")
for m in modules_to_patch:
patch(m, offloading=offloading)
for m in find_all_highest_child_module_with_forward(
mp.model.diffusion_model
):
patch(m)
torch.cuda.empty_cache()
# With force_full_load=False we should be able to have offloading
# But for offloading in training we need custom AutoGrad hooks for fwd/bwd
comfy.model_management.load_models_gpu(
[mp], memory_required=1e20, force_full_load=not offloading
[mp], memory_required=1e20, force_full_load=True
)
torch.cuda.empty_cache()
@@ -1207,7 +1100,7 @@ class TrainLoraNode(io.ComfyNode):
)
# Setup guider
guider = TrainGuider(mp, offloading=offloading)
guider = TrainGuider(mp)
guider.set_conds(positive)
# Inject bypass hooks if bypass mode is enabled
@@ -1220,7 +1113,6 @@ class TrainLoraNode(io.ComfyNode):
# Run training loop
try:
comfy.model_management.in_training = True
_run_training_loop(
guider,
train_sampler,
@@ -1231,7 +1123,6 @@ class TrainLoraNode(io.ComfyNode):
multi_res,
)
finally:
comfy.model_management.in_training = False
# Eject bypass hooks if they were injected
if bypass_injections is not None:
for injection in bypass_injections:
@@ -1241,20 +1132,19 @@ class TrainLoraNode(io.ComfyNode):
unpatch(m)
del train_sampler, optimizer
for param in lora_sd:
lora_sd[param] = lora_sd[param].to(lora_dtype).detach()
# Finalize adapters
for adapter in all_weight_adapters:
adapter.requires_grad_(False)
del adapter
del all_weight_adapters
for param in lora_sd:
lora_sd[param] = lora_sd[param].to(lora_dtype)
# mp in train node is highly specialized for training
# use it in inference will result in bad behavior so we don't return it
return io.NodeOutput(lora_sd, loss_map, steps + existing_steps)
class LoraModelLoader(io.ComfyNode):
class LoraModelLoader(io.ComfyNode):#
@classmethod
def define_schema(cls):
return io.Schema(
@@ -1276,11 +1166,6 @@ class LoraModelLoader(io.ComfyNode):
max=100.0,
tooltip="How strongly to modify the diffusion model. This value can be negative.",
),
io.Boolean.Input(
"bypass",
default=False,
tooltip="When enabled, applies LoRA in bypass mode without modifying base model weights. Useful for training and when model weights are offloaded.",
),
],
outputs=[
io.Model.Output(
@@ -1290,18 +1175,13 @@ class LoraModelLoader(io.ComfyNode):
)
@classmethod
def execute(cls, model, lora, strength_model, bypass=False):
def execute(cls, model, lora, strength_model):
if strength_model == 0:
return io.NodeOutput(model)
if bypass:
model_lora, _ = comfy.sd.load_bypass_lora_for_models(
model, None, lora, strength_model, 0
)
else:
model_lora, _ = comfy.sd.load_lora_for_models(
model, None, lora, strength_model, 0
)
model_lora, _ = comfy.sd.load_lora_for_models(
model, None, lora, strength_model, 0
)
return io.NodeOutput(model_lora)

View File

@@ -202,56 +202,6 @@ class LoadVideo(io.ComfyNode):
return True
class VideoSlice(io.ComfyNode):
@classmethod
def define_schema(cls):
return io.Schema(
node_id="Video Slice",
display_name="Video Slice",
search_aliases=[
"trim video duration",
"skip first frames",
"frame load cap",
"start time",
],
category="image/video",
inputs=[
io.Video.Input("video"),
io.Float.Input(
"start_time",
default=0.0,
max=1e5,
min=-1e5,
step=0.001,
tooltip="Start time in seconds",
),
io.Float.Input(
"duration",
default=0.0,
min=0.0,
step=0.001,
tooltip="Duration in seconds, or 0 for unlimited duration",
),
io.Boolean.Input(
"strict_duration",
default=False,
tooltip="If True, when the specified duration is not possible, an error will be raised.",
),
],
outputs=[
io.Video.Output(),
],
)
@classmethod
def execute(cls, video: io.Video.Type, start_time: float, duration: float, strict_duration: bool) -> io.NodeOutput:
trimmed = video.as_trimmed(start_time, duration, strict_duration=strict_duration)
if trimmed is not None:
return io.NodeOutput(trimmed)
raise ValueError(
f"Failed to slice video:\nSource duration: {video.get_duration()}\nStart time: {start_time}\nTarget duration: {duration}"
)
class VideoExtension(ComfyExtension):
@override
@@ -262,7 +212,6 @@ class VideoExtension(ComfyExtension):
CreateVideo,
GetVideoComponents,
LoadVideo,
VideoSlice,
]
async def comfy_entrypoint() -> VideoExtension:

View File

@@ -623,8 +623,6 @@ async def execute(server, dynprompt, caches, current_item, extra_data, executed,
logging.info("Memory summary: {}".format(comfy.model_management.debug_memory_summary()))
logging.error("Got an OOM, unloading all loaded models.")
comfy.model_management.unload_all_models()
elif isinstance(ex, RuntimeError) and ("mat1 and mat2 shapes" in str(ex)) and "Sampler" in class_type:
tips = "\n\nTIPS: If you have any \"Load CLIP\" or \"*CLIP Loader\" nodes in your workflow connected to this sampler node make sure the correct file(s) and type is selected."
error_details = {
"node_id": real_node_id,

View File

@@ -2435,7 +2435,6 @@ async def init_builtin_extra_nodes():
"nodes_lora_debug.py",
"nodes_color.py",
"nodes_toolkit.py",
"nodes_painter.py",
]
import_failed = []

View File

@@ -5,11 +5,8 @@ from comfy_execution.jobs import (
is_previewable,
normalize_queue_item,
normalize_history_item,
normalize_output_item,
normalize_outputs,
get_outputs_summary,
apply_sorting,
has_3d_extension,
)
@@ -38,8 +35,8 @@ class TestIsPreviewable:
"""Unit tests for is_previewable()"""
def test_previewable_media_types(self):
"""Images, video, audio, 3d media types should be previewable."""
for media_type in ['images', 'video', 'audio', '3d']:
"""Images, video, audio media types should be previewable."""
for media_type in ['images', 'video', 'audio']:
assert is_previewable(media_type, {}) is True
def test_non_previewable_media_types(self):
@@ -49,7 +46,7 @@ class TestIsPreviewable:
def test_3d_extensions_previewable(self):
"""3D file extensions should be previewable regardless of media_type."""
for ext in ['.obj', '.fbx', '.gltf', '.glb', '.usdz']:
for ext in ['.obj', '.fbx', '.gltf', '.glb']:
item = {'filename': f'model{ext}'}
assert is_previewable('files', item) is True
@@ -163,7 +160,7 @@ class TestGetOutputsSummary:
def test_3d_files_previewable(self):
"""3D file extensions should be previewable."""
for ext in ['.obj', '.fbx', '.gltf', '.glb', '.usdz']:
for ext in ['.obj', '.fbx', '.gltf', '.glb']:
outputs = {
'node1': {
'files': [{'filename': f'model{ext}', 'type': 'output'}]
@@ -195,64 +192,6 @@ class TestGetOutputsSummary:
assert preview['mediaType'] == 'images'
assert preview['subfolder'] == 'outputs'
def test_string_3d_filename_creates_preview(self):
"""String items with 3D extensions should synthesize a preview (Preview3D node output).
Only the .glb counts — nulls and non-file strings are excluded."""
outputs = {
'node1': {
'result': ['preview3d_abc123.glb', None, None]
}
}
count, preview = get_outputs_summary(outputs)
assert count == 1
assert preview is not None
assert preview['filename'] == 'preview3d_abc123.glb'
assert preview['mediaType'] == '3d'
assert preview['nodeId'] == 'node1'
assert preview['type'] == 'output'
def test_string_non_3d_filename_no_preview(self):
"""String items without 3D extensions should not create a preview."""
outputs = {
'node1': {
'result': ['data.json', None]
}
}
count, preview = get_outputs_summary(outputs)
assert count == 0
assert preview is None
def test_string_3d_filename_used_as_fallback(self):
"""String 3D preview should be used when no dict items are previewable."""
outputs = {
'node1': {
'latents': [{'filename': 'latent.safetensors'}],
},
'node2': {
'result': ['model.glb', None]
}
}
count, preview = get_outputs_summary(outputs)
assert preview is not None
assert preview['filename'] == 'model.glb'
assert preview['mediaType'] == '3d'
class TestHas3DExtension:
"""Unit tests for has_3d_extension()"""
def test_recognized_extensions(self):
for ext in ['.obj', '.fbx', '.gltf', '.glb', '.usdz']:
assert has_3d_extension(f'model{ext}') is True
def test_case_insensitive(self):
assert has_3d_extension('MODEL.GLB') is True
assert has_3d_extension('Scene.GLTF') is True
def test_non_3d_extensions(self):
for name in ['photo.png', 'video.mp4', 'data.json', 'model']:
assert has_3d_extension(name) is False
class TestApplySorting:
"""Unit tests for apply_sorting()"""
@@ -456,142 +395,3 @@ class TestNormalizeHistoryItem:
'prompt': {'nodes': {'1': {}}},
'extra_data': {'create_time': 1234567890, 'client_id': 'abc'},
}
def test_include_outputs_normalizes_3d_strings(self):
"""Detail view should transform string 3D filenames into file output dicts."""
history_item = {
'prompt': (
5,
'prompt-3d',
{'nodes': {}},
{'create_time': 1234567890},
['node1'],
),
'status': {'status_str': 'success', 'completed': True, 'messages': []},
'outputs': {
'node1': {
'result': ['preview3d_abc123.glb', None, None]
}
},
}
job = normalize_history_item('prompt-3d', history_item, include_outputs=True)
assert job['outputs_count'] == 1
result_items = job['outputs']['node1']['result']
assert len(result_items) == 1
assert result_items[0] == {
'filename': 'preview3d_abc123.glb',
'type': 'output',
'subfolder': '',
'mediaType': '3d',
}
def test_include_outputs_preserves_dict_items(self):
"""Detail view normalization should pass dict items through unchanged."""
history_item = {
'prompt': (
5,
'prompt-img',
{'nodes': {}},
{'create_time': 1234567890},
['node1'],
),
'status': {'status_str': 'success', 'completed': True, 'messages': []},
'outputs': {
'node1': {
'images': [
{'filename': 'photo.png', 'type': 'output', 'subfolder': ''},
]
}
},
}
job = normalize_history_item('prompt-img', history_item, include_outputs=True)
assert job['outputs_count'] == 1
assert job['outputs']['node1']['images'] == [
{'filename': 'photo.png', 'type': 'output', 'subfolder': ''},
]
class TestNormalizeOutputItem:
"""Unit tests for normalize_output_item()"""
def test_none_returns_none(self):
assert normalize_output_item(None) is None
def test_string_3d_extension_synthesizes_dict(self):
result = normalize_output_item('model.glb')
assert result == {'filename': 'model.glb', 'type': 'output', 'subfolder': '', 'mediaType': '3d'}
def test_string_non_3d_extension_returns_none(self):
assert normalize_output_item('data.json') is None
def test_string_no_extension_returns_none(self):
assert normalize_output_item('camera_info_string') is None
def test_dict_passes_through(self):
item = {'filename': 'test.png', 'type': 'output'}
assert normalize_output_item(item) is item
def test_other_types_return_none(self):
assert normalize_output_item(42) is None
assert normalize_output_item(True) is None
class TestNormalizeOutputs:
"""Unit tests for normalize_outputs()"""
def test_empty_outputs(self):
assert normalize_outputs({}) == {}
def test_dict_items_pass_through(self):
outputs = {
'node1': {
'images': [{'filename': 'a.png', 'type': 'output'}],
}
}
result = normalize_outputs(outputs)
assert result == outputs
def test_3d_string_synthesized(self):
outputs = {
'node1': {
'result': ['model.glb', None, None],
}
}
result = normalize_outputs(outputs)
assert result == {
'node1': {
'result': [
{'filename': 'model.glb', 'type': 'output', 'subfolder': '', 'mediaType': '3d'},
],
}
}
def test_animated_key_preserved(self):
outputs = {
'node1': {
'images': [{'filename': 'a.png', 'type': 'output'}],
'animated': [True],
}
}
result = normalize_outputs(outputs)
assert result['node1']['animated'] == [True]
def test_non_dict_node_outputs_preserved(self):
outputs = {'node1': 'unexpected_value'}
result = normalize_outputs(outputs)
assert result == {'node1': 'unexpected_value'}
def test_none_items_filtered_but_other_types_preserved(self):
outputs = {
'node1': {
'result': ['data.json', None, [1, 2, 3]],
}
}
result = normalize_outputs(outputs)
assert result == {
'node1': {
'result': ['data.json', [1, 2, 3]],
}
}