Compare commits

...

12 Commits

Author SHA1 Message Date
pythongosssss
aaea976f36 fix line endings 2026-01-28 11:02:17 -08:00
pythongosssss
cee092213e Merge remote-tracking branch 'origin/master' into pysssss/basic-glsl-shader-node 2026-01-28 10:50:12 -08:00
pythongosssss
3da0e9c367 fix casing 2026-01-28 10:47:36 -08:00
pythongosssss
9fa8202620 Try fix build 2026-01-28 10:47:36 -08:00
pythongosssss
b4438c9baf Support multiple outputs 2026-01-28 10:47:36 -08:00
ComfyUI Wiki
1711020904 chore: update workflow templates to v0.8.27 (#12141) 2026-01-28 12:48:02 -05:00
Dr.Lt.Data
d9b8567547 bump manager version to 4.1b1 (#12140) 2026-01-28 12:47:37 -05:00
Alexander Piskun
6c5f906bf2 feat(api-nodes): add Grok Imagine nodes (#12136) 2026-01-28 12:46:57 -05:00
comfyanonymous
4f5bd39b1c Update Python 3.14 compatibility notes in README (#12127) 2026-01-27 19:58:48 -05:00
guill
dcff27fe3f Add support for dev-only nodes. (#12106)
When a node is declared as dev-only, it doesn't show in the default UI
unless the dev mode is enabled in the settings. The intention is to
allow nodes related to unit testing to be included in ComfyUI
distributions without confusing the average user.
2026-01-27 13:03:29 -08:00
pythongosssss
cc30293d65 tidy 2026-01-23 10:38:26 -08:00
pythongosssss
866d863128 adds support for executing simple glsl shaders
using moderngl package
2026-01-23 10:37:52 -08:00
11 changed files with 952 additions and 3 deletions

View File

@@ -25,6 +25,10 @@ jobs:
uses: actions/setup-python@v4
with:
python-version: ${{ matrix.python-version }}
- name: Install system dependencies
run: |
sudo apt-get update
sudo apt-get install -y libx11-dev
- name: Install dependencies
run: |
python -m pip install --upgrade pip

View File

@@ -208,7 +208,7 @@ comfy install
## Manual Install (Windows, Linux)
Python 3.14 works but you may encounter issues with the torch compile node. The free threaded variant is still missing some dependencies.
Python 3.14 works but some custom nodes may have issues. The free threaded variant works but some dependencies will enable the GIL so it's not fully supported.
Python 3.13 is very well supported. If you have trouble with some custom node dependencies on 3.13 you can try 3.12

View File

@@ -236,6 +236,8 @@ class ComfyNodeABC(ABC):
"""Flags a node as experimental, informing users that it may change or not work as expected."""
DEPRECATED: bool
"""Flags a node as deprecated, indicating to users that they should find alternatives to this node."""
DEV_ONLY: bool
"""Flags a node as dev-only, hiding it from search/menus unless dev mode is enabled."""
API_NODE: Optional[bool]
"""Flags a node as an API node. See: https://docs.comfy.org/tutorials/api-nodes/overview."""

View File

@@ -1247,6 +1247,7 @@ class NodeInfoV1:
output_node: bool=None
deprecated: bool=None
experimental: bool=None
dev_only: bool=None
api_node: bool=None
price_badge: dict | None = None
search_aliases: list[str]=None
@@ -1264,6 +1265,7 @@ class NodeInfoV3:
output_node: bool=None
deprecated: bool=None
experimental: bool=None
dev_only: bool=None
api_node: bool=None
price_badge: dict | None = None
@@ -1375,6 +1377,8 @@ class Schema:
"""Flags a node as deprecated, indicating to users that they should find alternatives to this node."""
is_experimental: bool=False
"""Flags a node as experimental, informing users that it may change or not work as expected."""
is_dev_only: bool=False
"""Flags a node as dev-only, hiding it from search/menus unless dev mode is enabled."""
is_api_node: bool=False
"""Flags a node as an API node. See: https://docs.comfy.org/tutorials/api-nodes/overview."""
price_badge: PriceBadge | None = None
@@ -1485,6 +1489,7 @@ class Schema:
output_node=self.is_output_node,
deprecated=self.is_deprecated,
experimental=self.is_experimental,
dev_only=self.is_dev_only,
api_node=self.is_api_node,
python_module=getattr(cls, "RELATIVE_PYTHON_MODULE", "nodes"),
price_badge=self.price_badge.as_dict(self.inputs) if self.price_badge is not None else None,
@@ -1519,6 +1524,7 @@ class Schema:
output_node=self.is_output_node,
deprecated=self.is_deprecated,
experimental=self.is_experimental,
dev_only=self.is_dev_only,
api_node=self.is_api_node,
python_module=getattr(cls, "RELATIVE_PYTHON_MODULE", "nodes"),
price_badge=self.price_badge.as_dict(self.inputs) if self.price_badge is not None else None,
@@ -1791,6 +1797,14 @@ class _ComfyNodeBaseInternal(_ComfyNodeInternal):
cls.GET_SCHEMA()
return cls._DEPRECATED
_DEV_ONLY = None
@final
@classproperty
def DEV_ONLY(cls): # noqa
if cls._DEV_ONLY is None:
cls.GET_SCHEMA()
return cls._DEV_ONLY
_API_NODE = None
@final
@classproperty
@@ -1893,6 +1907,8 @@ class _ComfyNodeBaseInternal(_ComfyNodeInternal):
cls._EXPERIMENTAL = schema.is_experimental
if cls._DEPRECATED is None:
cls._DEPRECATED = schema.is_deprecated
if cls._DEV_ONLY is None:
cls._DEV_ONLY = schema.is_dev_only
if cls._API_NODE is None:
cls._API_NODE = schema.is_api_node
if cls._OUTPUT_NODE is None:

View File

@@ -0,0 +1,67 @@
from pydantic import BaseModel, Field
class ImageGenerationRequest(BaseModel):
model: str = Field(...)
prompt: str = Field(...)
aspect_ratio: str = Field(...)
n: int = Field(...)
seed: int = Field(...)
response_for: str = Field("url")
class InputUrlObject(BaseModel):
url: str = Field(...)
class ImageEditRequest(BaseModel):
model: str = Field(...)
image: InputUrlObject = Field(...)
prompt: str = Field(...)
resolution: str = Field(...)
n: int = Field(...)
seed: int = Field(...)
response_for: str = Field("url")
class VideoGenerationRequest(BaseModel):
model: str = Field(...)
prompt: str = Field(...)
image: InputUrlObject | None = Field(...)
duration: int = Field(...)
aspect_ratio: str | None = Field(...)
resolution: str = Field(...)
seed: int = Field(...)
class VideoEditRequest(BaseModel):
model: str = Field(...)
prompt: str = Field(...)
video: InputUrlObject = Field(...)
seed: int = Field(...)
class ImageResponseObject(BaseModel):
url: str | None = Field(None)
b64_json: str | None = Field(None)
revised_prompt: str | None = Field(None)
class ImageGenerationResponse(BaseModel):
data: list[ImageResponseObject] = Field(...)
class VideoGenerationResponse(BaseModel):
request_id: str = Field(...)
class VideoResponseObject(BaseModel):
url: str = Field(...)
upsampled_prompt: str | None = Field(None)
duration: int = Field(...)
class VideoStatusResponse(BaseModel):
status: str | None = Field(None)
video: VideoResponseObject | None = Field(None)
model: str | None = Field(None)

View File

@@ -0,0 +1,417 @@
import torch
from typing_extensions import override
from comfy_api.latest import IO, ComfyExtension, Input
from comfy_api_nodes.apis.grok import (
ImageEditRequest,
ImageGenerationRequest,
ImageGenerationResponse,
InputUrlObject,
VideoEditRequest,
VideoGenerationRequest,
VideoGenerationResponse,
VideoStatusResponse,
)
from comfy_api_nodes.util import (
ApiEndpoint,
download_url_to_image_tensor,
download_url_to_video_output,
get_fs_object_size,
get_number_of_images,
poll_op,
sync_op,
tensor_to_base64_string,
upload_video_to_comfyapi,
validate_string,
validate_video_duration,
)
class GrokImageNode(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="GrokImageNode",
display_name="Grok Image",
category="api node/image/Grok",
description="Generate images using Grok based on a text prompt",
inputs=[
IO.Combo.Input("model", options=["grok-imagine-image-beta"]),
IO.String.Input(
"prompt",
multiline=True,
tooltip="The text prompt used to generate the image",
),
IO.Combo.Input(
"aspect_ratio",
options=[
"1:1",
"2:3",
"3:2",
"3:4",
"4:3",
"9:16",
"16:9",
"9:19.5",
"19.5:9",
"9:20",
"20:9",
"1:2",
"2:1",
],
),
IO.Int.Input(
"number_of_images",
default=1,
min=1,
max=10,
step=1,
tooltip="Number of images to generate",
display_mode=IO.NumberDisplay.number,
),
IO.Int.Input(
"seed",
default=0,
min=0,
max=2147483647,
step=1,
display_mode=IO.NumberDisplay.number,
control_after_generate=True,
tooltip="Seed to determine if node should re-run; "
"actual results are nondeterministic regardless of seed.",
),
],
outputs=[
IO.Image.Output(),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
price_badge=IO.PriceBadge(
depends_on=IO.PriceBadgeDepends(widgets=["number_of_images"]),
expr="""{"type":"usd","usd":0.033 * widgets.number_of_images}""",
),
)
@classmethod
async def execute(
cls,
model: str,
prompt: str,
aspect_ratio: str,
number_of_images: int,
seed: int,
) -> IO.NodeOutput:
validate_string(prompt, strip_whitespace=True, min_length=1)
response = await sync_op(
cls,
ApiEndpoint(path="/proxy/xai/v1/images/generations", method="POST"),
data=ImageGenerationRequest(
model=model,
prompt=prompt,
aspect_ratio=aspect_ratio,
n=number_of_images,
seed=seed,
),
response_model=ImageGenerationResponse,
)
if len(response.data) == 1:
return IO.NodeOutput(await download_url_to_image_tensor(response.data[0].url))
return IO.NodeOutput(
torch.cat(
[await download_url_to_image_tensor(i) for i in [str(d.url) for d in response.data if d.url]],
)
)
class GrokImageEditNode(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="GrokImageEditNode",
display_name="Grok Image Edit",
category="api node/image/Grok",
description="Modify an existing image based on a text prompt",
inputs=[
IO.Combo.Input("model", options=["grok-imagine-image-beta"]),
IO.Image.Input("image"),
IO.String.Input(
"prompt",
multiline=True,
tooltip="The text prompt used to generate the image",
),
IO.Combo.Input("resolution", options=["1K"]),
IO.Int.Input(
"number_of_images",
default=1,
min=1,
max=10,
step=1,
tooltip="Number of edited images to generate",
display_mode=IO.NumberDisplay.number,
),
IO.Int.Input(
"seed",
default=0,
min=0,
max=2147483647,
step=1,
display_mode=IO.NumberDisplay.number,
control_after_generate=True,
tooltip="Seed to determine if node should re-run; "
"actual results are nondeterministic regardless of seed.",
),
],
outputs=[
IO.Image.Output(),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
price_badge=IO.PriceBadge(
depends_on=IO.PriceBadgeDepends(widgets=["number_of_images"]),
expr="""{"type":"usd","usd":0.002 + 0.033 * widgets.number_of_images}""",
),
)
@classmethod
async def execute(
cls,
model: str,
image: Input.Image,
prompt: str,
resolution: str,
number_of_images: int,
seed: int,
) -> IO.NodeOutput:
validate_string(prompt, strip_whitespace=True, min_length=1)
if get_number_of_images(image) != 1:
raise ValueError("Only one input image is supported.")
response = await sync_op(
cls,
ApiEndpoint(path="/proxy/xai/v1/images/edits", method="POST"),
data=ImageEditRequest(
model=model,
image=InputUrlObject(url=f"data:image/png;base64,{tensor_to_base64_string(image)}"),
prompt=prompt,
resolution=resolution.lower(),
n=number_of_images,
seed=seed,
),
response_model=ImageGenerationResponse,
)
if len(response.data) == 1:
return IO.NodeOutput(await download_url_to_image_tensor(response.data[0].url))
return IO.NodeOutput(
torch.cat(
[await download_url_to_image_tensor(i) for i in [str(d.url) for d in response.data if d.url]],
)
)
class GrokVideoNode(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="GrokVideoNode",
display_name="Grok Video",
category="api node/video/Grok",
description="Generate video from a prompt or an image",
inputs=[
IO.Combo.Input("model", options=["grok-imagine-video-beta"]),
IO.String.Input(
"prompt",
multiline=True,
tooltip="Text description of the desired video.",
),
IO.Combo.Input(
"resolution",
options=["480p", "720p"],
tooltip="The resolution of the output video.",
),
IO.Combo.Input(
"aspect_ratio",
options=["auto", "16:9", "4:3", "3:2", "1:1", "2:3", "3:4", "9:16"],
tooltip="The aspect ratio of the output video.",
),
IO.Int.Input(
"duration",
default=6,
min=1,
max=15,
step=1,
tooltip="The duration of the output video in seconds.",
display_mode=IO.NumberDisplay.slider,
),
IO.Int.Input(
"seed",
default=0,
min=0,
max=2147483647,
step=1,
display_mode=IO.NumberDisplay.number,
control_after_generate=True,
tooltip="Seed to determine if node should re-run; "
"actual results are nondeterministic regardless of seed.",
),
IO.Image.Input("image", optional=True),
],
outputs=[
IO.Video.Output(),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
price_badge=IO.PriceBadge(
depends_on=IO.PriceBadgeDepends(widgets=["duration"], inputs=["image"]),
expr="""
(
$base := 0.181 * widgets.duration;
{"type":"usd","usd": inputs.image.connected ? $base + 0.002 : $base}
)
""",
),
)
@classmethod
async def execute(
cls,
model: str,
prompt: str,
resolution: str,
aspect_ratio: str,
duration: int,
seed: int,
image: Input.Image | None = None,
) -> IO.NodeOutput:
image_url = None
if image is not None:
if get_number_of_images(image) != 1:
raise ValueError("Only one input image is supported.")
image_url = InputUrlObject(url=f"data:image/png;base64,{tensor_to_base64_string(image)}")
validate_string(prompt, strip_whitespace=True, min_length=1)
initial_response = await sync_op(
cls,
ApiEndpoint(path="/proxy/xai/v1/videos/generations", method="POST"),
data=VideoGenerationRequest(
model=model,
image=image_url,
prompt=prompt,
resolution=resolution,
duration=duration,
aspect_ratio=None if aspect_ratio == "auto" else aspect_ratio,
seed=seed,
),
response_model=VideoGenerationResponse,
)
response = await poll_op(
cls,
ApiEndpoint(path=f"/proxy/xai/v1/videos/{initial_response.request_id}"),
status_extractor=lambda r: r.status if r.status is not None else "complete",
response_model=VideoStatusResponse,
)
return IO.NodeOutput(await download_url_to_video_output(response.video.url))
class GrokVideoEditNode(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="GrokVideoEditNode",
display_name="Grok Video Edit",
category="api node/video/Grok",
description="Edit an existing video based on a text prompt.",
inputs=[
IO.Combo.Input("model", options=["grok-imagine-video-beta"]),
IO.String.Input(
"prompt",
multiline=True,
tooltip="Text description of the desired video.",
),
IO.Video.Input("video", tooltip="Maximum supported duration is 8.7 seconds and 50MB file size."),
IO.Int.Input(
"seed",
default=0,
min=0,
max=2147483647,
step=1,
display_mode=IO.NumberDisplay.number,
control_after_generate=True,
tooltip="Seed to determine if node should re-run; "
"actual results are nondeterministic regardless of seed.",
),
],
outputs=[
IO.Video.Output(),
],
hidden=[
IO.Hidden.auth_token_comfy_org,
IO.Hidden.api_key_comfy_org,
IO.Hidden.unique_id,
],
is_api_node=True,
price_badge=IO.PriceBadge(
expr="""{"type":"usd","usd": 0.191, "format": {"suffix": "/sec", "approximate": true}}""",
),
)
@classmethod
async def execute(
cls,
model: str,
prompt: str,
video: Input.Video,
seed: int,
) -> IO.NodeOutput:
validate_string(prompt, strip_whitespace=True, min_length=1)
validate_video_duration(video, min_duration=1, max_duration=8.7)
video_stream = video.get_stream_source()
video_size = get_fs_object_size(video_stream)
if video_size > 50 * 1024 * 1024:
raise ValueError(f"Video size ({video_size / 1024 / 1024:.1f}MB) exceeds 50MB limit.")
initial_response = await sync_op(
cls,
ApiEndpoint(path="/proxy/xai/v1/videos/edits", method="POST"),
data=VideoEditRequest(
model=model,
video=InputUrlObject(url=await upload_video_to_comfyapi(cls, video)),
prompt=prompt,
seed=seed,
),
response_model=VideoGenerationResponse,
)
response = await poll_op(
cls,
ApiEndpoint(path=f"/proxy/xai/v1/videos/{initial_response.request_id}"),
status_extractor=lambda r: r.status if r.status is not None else "complete",
response_model=VideoStatusResponse,
)
return IO.NodeOutput(await download_url_to_video_output(response.video.url))
class GrokExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
return [
GrokImageNode,
GrokImageEditNode,
GrokVideoNode,
GrokVideoEditNode,
]
async def comfy_entrypoint() -> GrokExtension:
return GrokExtension()

439
comfy_extras/nodes_glsl.py Normal file
View File

@@ -0,0 +1,439 @@
import os
import re
import logging
from contextlib import contextmanager
from typing import TypedDict, Generator
import numpy as np
import torch
import nodes
from comfy_api.latest import ComfyExtension, io, ui
from comfy.cli_args import args
from typing_extensions import override
from utils.install_util import get_missing_requirements_message
class SizeModeInput(TypedDict):
size_mode: str
width: int
height: int
MAX_IMAGES = 5 # u_image0-4
MAX_UNIFORMS = 5 # u_float0-4, u_int0-4
MAX_OUTPUTS = 4 # fragColor0-3 (MRT)
logger = logging.getLogger(__name__)
try:
import moderngl
except ImportError as e:
raise RuntimeError(f"ModernGL is not available.\n{get_missing_requirements_message()}") from e
# Default NOOP fragment shader that passes through the input image unchanged
# For multiple outputs, use: layout(location = 0) out vec4 fragColor0; etc.
DEFAULT_FRAGMENT_SHADER = """#version 300 es
precision highp float;
uniform sampler2D u_image0;
uniform vec2 u_resolution;
in vec2 v_texCoord;
layout(location = 0) out vec4 fragColor0;
void main() {
fragColor0 = texture(u_image0, v_texCoord);
}
"""
# Simple vertex shader for full-screen quad
VERTEX_SHADER = """#version 330
in vec2 in_position;
in vec2 in_texcoord;
out vec2 v_texCoord;
void main() {
gl_Position = vec4(in_position, 0.0, 1.0);
v_texCoord = in_texcoord;
}
"""
def _convert_es_to_desktop_glsl(source: str) -> str:
"""Convert GLSL ES 3.00 shader to desktop GLSL 3.30 for ModernGL compatibility."""
return re.sub(r'#version\s+300\s+es', '#version 330', source)
def _create_software_gl_context() -> moderngl.Context:
original_env = os.environ.get("LIBGL_ALWAYS_SOFTWARE")
os.environ["LIBGL_ALWAYS_SOFTWARE"] = "1"
try:
ctx = moderngl.create_standalone_context(require=330)
logger.info(f"Created software-rendered OpenGL context: {ctx.info['GL_RENDERER']}")
return ctx
finally:
if original_env is None:
os.environ.pop("LIBGL_ALWAYS_SOFTWARE", None)
else:
os.environ["LIBGL_ALWAYS_SOFTWARE"] = original_env
def _create_gl_context(force_software: bool = False) -> moderngl.Context:
if force_software:
try:
return _create_software_gl_context()
except Exception as e:
raise RuntimeError(
"Failed to create software-rendered OpenGL context.\n"
"Ensure Mesa/llvmpipe is installed for software rendering support."
) from e
# Try hardware rendering first, fall back to software
try:
ctx = moderngl.create_standalone_context(require=330)
logger.info(f"Created OpenGL context: {ctx.info['GL_RENDERER']}")
return ctx
except Exception as hw_error:
logger.warning(f"Hardware OpenGL context creation failed: {hw_error}")
logger.info("Attempting software rendering fallback...")
try:
return _create_software_gl_context()
except Exception as sw_error:
raise RuntimeError(
f"Failed to create OpenGL context.\n"
f"Hardware error: {hw_error}\n\n"
f"Possible solutions:\n"
f"1. Install GPU drivers with OpenGL 3.3+ support\n"
f"2. Install Mesa for software rendering (Linux: apt install libgl1-mesa-dri)\n"
f"3. On headless servers, ensure virtual framebuffer (Xvfb) or EGL is available"
) from sw_error
def _image_to_texture(ctx: moderngl.Context, image: np.ndarray) -> moderngl.Texture:
height, width = image.shape[:2]
channels = image.shape[2] if len(image.shape) > 2 else 1
components = min(channels, 4)
image_uint8 = (np.clip(image, 0, 1) * 255).astype(np.uint8)
# Flip vertically for OpenGL coordinate system (origin at bottom-left)
image_uint8 = np.ascontiguousarray(np.flipud(image_uint8))
texture = ctx.texture((width, height), components, image_uint8.tobytes())
texture.filter = (moderngl.LINEAR, moderngl.LINEAR)
texture.repeat_x = False
texture.repeat_y = False
return texture
def _texture_to_image(fbo: moderngl.Framebuffer, attachment: int = 0, channels: int = 4) -> np.ndarray:
width, height = fbo.size
data = fbo.read(components=channels, attachment=attachment)
image = np.frombuffer(data, dtype=np.uint8).reshape((height, width, channels))
image = np.ascontiguousarray(np.flipud(image))
return image.astype(np.float32) / 255.0
def _compile_shader(ctx: moderngl.Context, fragment_source: str) -> moderngl.Program:
# Convert user's GLSL ES 3.00 fragment shader to desktop GLSL 3.30 for ModernGL
fragment_source = _convert_es_to_desktop_glsl(fragment_source)
try:
program = ctx.program(
vertex_shader=VERTEX_SHADER,
fragment_shader=fragment_source,
)
return program
except Exception as e:
raise RuntimeError(
"Fragment shader compilation failed.\n\n"
"Make sure your shader:\n"
"1. Uses #version 300 es (WebGL 2.0 compatible)\n"
"2. Has valid GLSL ES 3.00 syntax\n"
"3. Includes 'precision highp float;' after version\n"
"4. Uses 'out vec4 fragColor' instead of gl_FragColor\n"
"5. Declares uniforms correctly (e.g., uniform sampler2D u_image0;)"
) from e
def _render_shader(
ctx: moderngl.Context,
program: moderngl.Program,
width: int,
height: int,
textures: list[moderngl.Texture],
uniforms: dict[str, int | float],
) -> list[np.ndarray]:
# Create output textures
output_textures = []
for _ in range(MAX_OUTPUTS):
tex = ctx.texture((width, height), 4)
tex.filter = (moderngl.LINEAR, moderngl.LINEAR)
output_textures.append(tex)
fbo = ctx.framebuffer(color_attachments=output_textures)
# Full-screen quad vertices (position + texcoord)
vertices = np.array([
# Position (x, y), Texcoord (u, v)
-1.0, -1.0, 0.0, 0.0,
1.0, -1.0, 1.0, 0.0,
-1.0, 1.0, 0.0, 1.0,
1.0, 1.0, 1.0, 1.0,
], dtype='f4')
vbo = ctx.buffer(vertices.tobytes())
vao = ctx.vertex_array(
program,
[(vbo, '2f 2f', 'in_position', 'in_texcoord')],
)
try:
# Bind textures
for i, texture in enumerate(textures):
texture.use(i)
uniform_name = f'u_image{i}'
if uniform_name in program:
program[uniform_name].value = i
# Set uniforms
if 'u_resolution' in program:
program['u_resolution'].value = (float(width), float(height))
for name, value in uniforms.items():
if name in program:
program[name].value = value
# Render
fbo.use()
fbo.clear(0.0, 0.0, 0.0, 1.0)
vao.render(moderngl.TRIANGLE_STRIP)
# Read results from all attachments
results = []
for i in range(MAX_OUTPUTS):
results.append(_texture_to_image(fbo, attachment=i, channels=4))
return results
finally:
vao.release()
vbo.release()
for tex in output_textures:
tex.release()
fbo.release()
def _prepare_textures(
ctx: moderngl.Context,
image_list: list[torch.Tensor],
batch_idx: int,
) -> list[moderngl.Texture]:
textures = []
for img_tensor in image_list[:MAX_IMAGES]:
img_idx = min(batch_idx, img_tensor.shape[0] - 1)
img_np = img_tensor[img_idx].cpu().numpy()
textures.append(_image_to_texture(ctx, img_np))
return textures
def _prepare_uniforms(int_list: list[int], float_list: list[float]) -> dict[str, int | float]:
uniforms: dict[str, int | float] = {}
for i, val in enumerate(int_list[:MAX_UNIFORMS]):
uniforms[f'u_int{i}'] = int(val)
for i, val in enumerate(float_list[:MAX_UNIFORMS]):
uniforms[f'u_float{i}'] = float(val)
return uniforms
def _release_textures(textures: list[moderngl.Texture]) -> None:
for texture in textures:
texture.release()
@contextmanager
def _gl_context(force_software: bool = False) -> Generator[moderngl.Context, None, None]:
ctx = _create_gl_context(force_software)
try:
yield ctx
finally:
ctx.release()
@contextmanager
def _shader_program(ctx: moderngl.Context, fragment_source: str) -> Generator[moderngl.Program, None, None]:
program = _compile_shader(ctx, fragment_source)
try:
yield program
finally:
program.release()
@contextmanager
def _textures_context(
ctx: moderngl.Context,
image_list: list[torch.Tensor],
batch_idx: int,
) -> Generator[list[moderngl.Texture], None, None]:
textures = _prepare_textures(ctx, image_list, batch_idx)
try:
yield textures
finally:
_release_textures(textures)
class GLSLShader(io.ComfyNode):
@classmethod
def define_schema(cls) -> io.Schema:
# Create autogrow templates
image_template = io.Autogrow.TemplatePrefix(
io.Image.Input("image"),
prefix="image",
min=1,
max=MAX_IMAGES,
)
float_template = io.Autogrow.TemplatePrefix(
io.Float.Input("float", default=0.0),
prefix="u_float",
min=0,
max=MAX_UNIFORMS,
)
int_template = io.Autogrow.TemplatePrefix(
io.Int.Input("int", default=0),
prefix="u_int",
min=0,
max=MAX_UNIFORMS,
)
return io.Schema(
node_id="GLSLShader",
display_name="GLSL Shader",
category="image/shader",
description=(
f"Apply GLSL fragment shaders to images. "
f"Inputs: u_image0-{MAX_IMAGES-1} (sampler2D), u_resolution (vec2), "
f"u_float0-{MAX_UNIFORMS-1}, u_int0-{MAX_UNIFORMS-1}. "
f"Outputs: layout(location = 0-{MAX_OUTPUTS-1}) out vec4 fragColor0-{MAX_OUTPUTS-1}."
),
inputs=[
io.String.Input(
"fragment_shader",
default=DEFAULT_FRAGMENT_SHADER,
multiline=True,
tooltip="GLSL fragment shader source code (GLSL ES 3.00 / WebGL 2.0 compatible)",
),
io.DynamicCombo.Input(
"size_mode",
options=[
io.DynamicCombo.Option(
"from_input",
[], # No extra inputs - uses first input image dimensions
),
io.DynamicCombo.Option(
"custom",
[
io.Int.Input("width", default=512, min=1, max=nodes.MAX_RESOLUTION),
io.Int.Input("height", default=512, min=1, max=nodes.MAX_RESOLUTION),
],
),
],
tooltip="Output size: 'from_input' uses first input image dimensions, 'custom' allows manual size",
),
io.Autogrow.Input("images", template=image_template),
io.Autogrow.Input("floats", template=float_template),
io.Autogrow.Input("ints", template=int_template),
],
outputs=[
io.Image.Output(display_name="IMAGE0"),
io.Image.Output(display_name="IMAGE1"),
io.Image.Output(display_name="IMAGE2"),
io.Image.Output(display_name="IMAGE3"),
],
)
@classmethod
def execute(
cls,
fragment_shader: str,
size_mode: SizeModeInput,
images: io.Autogrow.Type,
floats: io.Autogrow.Type = None,
ints: io.Autogrow.Type = None,
**kwargs,
) -> io.NodeOutput:
image_list = [v for v in images.values() if v is not None]
float_list = [v if v is not None else 0.0 for v in floats.values()] if floats else []
int_list = [v if v is not None else 0 for v in ints.values()] if ints else []
if not image_list:
raise ValueError("At least one input image is required")
# Determine output dimensions
if size_mode["size_mode"] == "custom":
out_width, out_height = size_mode["width"], size_mode["height"]
else:
out_height, out_width = image_list[0].shape[1], image_list[0].shape[2]
batch_size = image_list[0].shape[0]
uniforms = _prepare_uniforms(int_list, float_list)
with _gl_context(force_software=args.cpu) as ctx:
with _shader_program(ctx, fragment_shader) as program:
# Collect outputs for each render target across all batches
all_outputs: list[list[torch.Tensor]] = [[] for _ in range(MAX_OUTPUTS)]
for b in range(batch_size):
with _textures_context(ctx, image_list, b) as textures:
results = _render_shader(ctx, program, out_width, out_height, textures, uniforms)
for i, result in enumerate(results):
all_outputs[i].append(torch.from_numpy(result))
# Stack batches for each output
output_values = []
for i in range(MAX_OUTPUTS):
output_batch = torch.stack(all_outputs[i], dim=0)
output_values.append(output_batch)
return io.NodeOutput(*output_values, ui=cls._build_ui_output(image_list, output_values[0]))
@classmethod
def _build_ui_output(cls, image_list: list[torch.Tensor], output_batch: torch.Tensor) -> dict[str, list]:
"""Build UI output with input and output images for client-side shader execution."""
combined_inputs = torch.cat(image_list, dim=0)
input_images_ui = ui.ImageSaveHelper.save_images(
combined_inputs,
filename_prefix="GLSLShader_input",
folder_type=io.FolderType.temp,
cls=None,
compress_level=1,
)
output_images_ui = ui.ImageSaveHelper.save_images(
output_batch,
filename_prefix="GLSLShader_output",
folder_type=io.FolderType.temp,
cls=None,
compress_level=1,
)
return {"input_images": input_images_ui, "images": output_images_ui}
class GLSLExtension(ComfyExtension):
@override
async def get_node_list(self) -> list[type[io.ComfyNode]]:
return [GLSLShader]
async def comfy_entrypoint() -> GLSLExtension:
return GLSLExtension()

View File

@@ -1 +1 @@
comfyui_manager==4.0.5
comfyui_manager==4.1b1

View File

@@ -2432,6 +2432,7 @@ async def init_builtin_extra_nodes():
"nodes_wanmove.py",
"nodes_image_compare.py",
"nodes_zimage.py",
"nodes_glsl.py",
"nodes_lora_debug.py"
]

View File

@@ -1,5 +1,5 @@
comfyui-frontend-package==1.37.11
comfyui-workflow-templates==0.8.24
comfyui-workflow-templates==0.8.27
comfyui-embedded-docs==0.4.0
torch
torchsde
@@ -29,3 +29,4 @@ kornia>=0.7.1
spandrel
pydantic~=2.0
pydantic-settings~=2.0
moderngl

View File

@@ -679,6 +679,8 @@ class PromptServer():
info['deprecated'] = True
if getattr(obj_class, "EXPERIMENTAL", False):
info['experimental'] = True
if getattr(obj_class, "DEV_ONLY", False):
info['dev_only'] = True
if hasattr(obj_class, 'API_NODE'):
info['api_node'] = obj_class.API_NODE