Compare commits

...

4 Commits

Author SHA1 Message Date
Hunter
83dd65f23a fix: use glob matching for Gemini image MIME types (#12511)
gemini-3-pro-image-preview nondeterministically returns image/jpeg
instead of image/png. get_image_from_response() hardcoded
get_parts_by_type(response, "image/png"), silently dropping JPEG
responses and falling back to torch.zeros (all-black output).

Add _mime_matches() helper using fnmatch for glob-style MIME matching.
Change get_image_from_response() to request "image/*" so any image
format returned by the API is correctly captured.
2026-02-18 00:03:54 -05:00
Terry Jia
8ad38d2073 BBox widget (#11594)
* Boundingbox widget

* code improve

---------

Co-authored-by: Jedrzej Kosinski <kosinkadink1@gmail.com>
Co-authored-by: Christian Byrne <cbyrne@comfy.org>
2026-02-17 17:13:39 -08:00
Comfy Org PR Bot
6c14f129af Bump comfyui-frontend-package to 1.39.14 (#12494)
* Bump comfyui-frontend-package to 1.39.13

* Update requirements.txt

---------

Co-authored-by: Christian Byrne <cbyrne@comfy.org>
2026-02-17 13:41:34 -08:00
rattus
58dcc97dcf ops: limit return of requants (#12506)
This check was far too broad and the dtype is not a reliable indicator
of wanting the requant (as QT returns the compute dtype as the dtype).
So explictly plumb whether fp8mm wants the requant or not.
2026-02-17 15:32:27 -05:00
5 changed files with 100 additions and 14 deletions

View File

@@ -79,7 +79,7 @@ def cast_to_input(weight, input, non_blocking=False, copy=True):
return comfy.model_management.cast_to(weight, input.dtype, input.device, non_blocking=non_blocking, copy=copy)
def cast_bias_weight_with_vbar(s, dtype, device, bias_dtype, non_blocking, compute_dtype):
def cast_bias_weight_with_vbar(s, dtype, device, bias_dtype, non_blocking, compute_dtype, want_requant):
offload_stream = None
xfer_dest = None
@@ -170,10 +170,10 @@ def cast_bias_weight_with_vbar(s, dtype, device, bias_dtype, non_blocking, compu
#FIXME: this is not accurate, we need to be sensitive to the compute dtype
x = lowvram_fn(x)
if (isinstance(orig, QuantizedTensor) and
(orig.dtype == dtype and len(fns) == 0 or update_weight)):
(want_requant and len(fns) == 0 or update_weight)):
seed = comfy.utils.string_to_seed(s.seed_key)
y = QuantizedTensor.from_float(x, s.layout_type, scale="recalculate", stochastic_rounding=seed)
if orig.dtype == dtype and len(fns) == 0:
if want_requant and len(fns) == 0:
#The layer actually wants our freshly saved QT
x = y
elif update_weight:
@@ -194,7 +194,7 @@ def cast_bias_weight_with_vbar(s, dtype, device, bias_dtype, non_blocking, compu
return weight, bias, (offload_stream, device if signature is not None else None, None)
def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None, offloadable=False, compute_dtype=None):
def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None, offloadable=False, compute_dtype=None, want_requant=False):
# NOTE: offloadable=False is a a legacy and if you are a custom node author reading this please pass
# offloadable=True and call uncast_bias_weight() after your last usage of the weight/bias. This
# will add async-offload support to your cast and improve performance.
@@ -212,7 +212,7 @@ def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None, of
non_blocking = comfy.model_management.device_supports_non_blocking(device)
if hasattr(s, "_v"):
return cast_bias_weight_with_vbar(s, dtype, device, bias_dtype, non_blocking, compute_dtype)
return cast_bias_weight_with_vbar(s, dtype, device, bias_dtype, non_blocking, compute_dtype, want_requant)
if offloadable and (device != s.weight.device or
(s.bias is not None and device != s.bias.device)):
@@ -850,8 +850,8 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec
def _forward(self, input, weight, bias):
return torch.nn.functional.linear(input, weight, bias)
def forward_comfy_cast_weights(self, input, compute_dtype=None):
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True, compute_dtype=compute_dtype)
def forward_comfy_cast_weights(self, input, compute_dtype=None, want_requant=False):
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True, compute_dtype=compute_dtype, want_requant=want_requant)
x = self._forward(input, weight, bias)
uncast_bias_weight(self, weight, bias, offload_stream)
return x
@@ -881,8 +881,7 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec
scale = comfy.model_management.cast_to_device(scale, input.device, None)
input = QuantizedTensor.from_float(input_reshaped, self.layout_type, scale=scale)
output = self.forward_comfy_cast_weights(input, compute_dtype)
output = self.forward_comfy_cast_weights(input, compute_dtype, want_requant=isinstance(input, QuantizedTensor))
# Reshape output back to 3D if input was 3D
if reshaped_3d:

View File

@@ -1209,6 +1209,30 @@ class Color(ComfyTypeIO):
def as_dict(self):
return super().as_dict()
@comfytype(io_type="BOUNDING_BOX")
class BoundingBox(ComfyTypeIO):
class BoundingBoxDict(TypedDict):
x: int
y: int
width: int
height: int
Type = BoundingBoxDict
class Input(WidgetInput):
def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None,
socketless: bool=True, default: dict=None, component: str=None):
super().__init__(id, display_name, optional, tooltip, None, default, socketless)
self.component = component
if default is None:
self.default = {"x": 0, "y": 0, "width": 512, "height": 512}
def as_dict(self):
d = super().as_dict()
if self.component:
d["component"] = self.component
return d
DYNAMIC_INPUT_LOOKUP: dict[str, Callable[[dict[str, Any], dict[str, Any], tuple[str, dict[str, Any]], str, list[str] | None], None]] = {}
def register_dynamic_input_func(io_type: str, func: Callable[[dict[str, Any], dict[str, Any], tuple[str, dict[str, Any]], str, list[str] | None], None]):
DYNAMIC_INPUT_LOOKUP[io_type] = func
@@ -2190,5 +2214,6 @@ __all__ = [
"ImageCompare",
"PriceBadgeDepends",
"PriceBadge",
"BoundingBox",
"NodeReplace",
]

View File

@@ -6,6 +6,7 @@ See: https://cloud.google.com/vertex-ai/generative-ai/docs/model-reference/infer
import base64
import os
from enum import Enum
from fnmatch import fnmatch
from io import BytesIO
from typing import Literal
@@ -119,6 +120,13 @@ async def create_image_parts(
return image_parts
def _mime_matches(mime: GeminiMimeType | None, pattern: str) -> bool:
"""Check if a MIME type matches a pattern. Supports fnmatch globs (e.g. 'image/*')."""
if mime is None:
return False
return fnmatch(mime.value, pattern)
def get_parts_by_type(response: GeminiGenerateContentResponse, part_type: Literal["text"] | str) -> list[GeminiPart]:
"""
Filter response parts by their type.
@@ -151,9 +159,9 @@ def get_parts_by_type(response: GeminiGenerateContentResponse, part_type: Litera
for part in candidate.content.parts:
if part_type == "text" and part.text:
parts.append(part)
elif part.inlineData and part.inlineData.mimeType == part_type:
elif part.inlineData and _mime_matches(part.inlineData.mimeType, part_type):
parts.append(part)
elif part.fileData and part.fileData.mimeType == part_type:
elif part.fileData and _mime_matches(part.fileData.mimeType, part_type):
parts.append(part)
if not parts and blocked_reasons:
@@ -178,7 +186,7 @@ def get_text_from_response(response: GeminiGenerateContentResponse) -> str:
async def get_image_from_response(response: GeminiGenerateContentResponse) -> Input.Image:
image_tensors: list[Input.Image] = []
parts = get_parts_by_type(response, "image/png")
parts = get_parts_by_type(response, "image/*")
for part in parts:
if part.inlineData:
image_data = base64.b64decode(part.inlineData.data)

View File

@@ -23,8 +23,9 @@ class ImageCrop(IO.ComfyNode):
return IO.Schema(
node_id="ImageCrop",
search_aliases=["trim"],
display_name="Image Crop",
display_name="Image Crop (Deprecated)",
category="image/transform",
is_deprecated=True,
inputs=[
IO.Image.Input("image"),
IO.Int.Input("width", default=512, min=1, max=nodes.MAX_RESOLUTION, step=1),
@@ -47,6 +48,57 @@ class ImageCrop(IO.ComfyNode):
crop = execute # TODO: remove
class ImageCropV2(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="ImageCropV2",
search_aliases=["trim"],
display_name="Image Crop",
category="image/transform",
inputs=[
IO.Image.Input("image"),
IO.BoundingBox.Input("crop_region", component="ImageCrop"),
],
outputs=[IO.Image.Output()],
)
@classmethod
def execute(cls, image, crop_region) -> IO.NodeOutput:
x = crop_region.get("x", 0)
y = crop_region.get("y", 0)
width = crop_region.get("width", 512)
height = crop_region.get("height", 512)
x = min(x, image.shape[2] - 1)
y = min(y, image.shape[1] - 1)
to_x = width + x
to_y = height + y
img = image[:,y:to_y, x:to_x, :]
return IO.NodeOutput(img, ui=UI.PreviewImage(img))
class BoundingBox(IO.ComfyNode):
@classmethod
def define_schema(cls):
return IO.Schema(
node_id="PrimitiveBoundingBox",
display_name="Bounding Box",
category="utils/primitive",
inputs=[
IO.Int.Input("x", default=0, min=0, max=MAX_RESOLUTION),
IO.Int.Input("y", default=0, min=0, max=MAX_RESOLUTION),
IO.Int.Input("width", default=512, min=1, max=MAX_RESOLUTION),
IO.Int.Input("height", default=512, min=1, max=MAX_RESOLUTION),
],
outputs=[IO.BoundingBox.Output()],
)
@classmethod
def execute(cls, x, y, width, height) -> IO.NodeOutput:
return IO.NodeOutput({"x": x, "y": y, "width": width, "height": height})
class RepeatImageBatch(IO.ComfyNode):
@classmethod
def define_schema(cls):
@@ -632,6 +684,8 @@ class ImagesExtension(ComfyExtension):
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
return [
ImageCrop,
ImageCropV2,
BoundingBox,
RepeatImageBatch,
ImageFromBatch,
ImageAddNoise,

View File

@@ -1,4 +1,4 @@
comfyui-frontend-package==1.38.14
comfyui-frontend-package==1.39.14
comfyui-workflow-templates==0.8.43
comfyui-embedded-docs==0.4.1
torch