Copy reduce result to other GPUs if necessary

This commit is contained in:
Kawrakow
2026-01-18 07:00:06 +00:00
parent 6dfbef27ec
commit fb5c340e17
3 changed files with 91 additions and 49 deletions

View File

@@ -1973,6 +1973,7 @@ static void ggml_backend_sched_copy_inputs(ggml_backend_sched_t sched, ggml_back
int split_backend_id = split->backend_id;
ggml_backend_t split_backend = sched->backends[split_backend_id];
ggml_backend_t last_input_backend = nullptr;
bool synced_on_input = false;
for (int j = 0; j < split->n_inputs; j++) {
ggml_backend_t input_backend = ggml_backend_sched_get_tensor_backend(sched, split->inputs[j]);
struct ggml_tensor * input = split->inputs[j];
@@ -1980,10 +1981,14 @@ static void ggml_backend_sched_copy_inputs(ggml_backend_sched_t sched, ggml_back
if (input->flags & GGML_TENSOR_FLAG_INPUT) {
// inputs from the user must be copied immediately to prevent the user overwriting the data before the copy is done
if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
ggml_backend_event_synchronize(sched->events[split_backend_id][sched->cur_copy]);
} else {
ggml_backend_synchronize(split_backend);
// if there are multiple inputs for the split, and we have already synchronized this backend, no need to do it again.
if (!synced_on_input) {
if (sched->events[split_backend_id][sched->cur_copy] != NULL) {
ggml_backend_event_synchronize(sched->events[split_backend_id][sched->cur_copy]);
} else {
ggml_backend_synchronize(split_backend);
}
synced_on_input = true;
}
ggml_backend_tensor_copy(input, input_cpy);
} else {
@@ -2162,7 +2167,7 @@ static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t s
bool work_done = false;
#ifdef GGML_USE_OPENMP
//This maty not be available in old OpenMP versions
//This may not be available in old OpenMP versions
//if (int nlevels = omp_get_max_active_levels(); nlevels < 2) {
// omp_set_max_active_levels(nlevels+1);
// //printf("%s: Setting omp max active levels to 2\n", __func__);
@@ -2241,6 +2246,15 @@ static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t s
if (split->graph.nodes[0]->op == GGML_OP_REDUCE) {
last_reduce = split_backend_id;
if (ith == split_backend_id) {
auto node = split->graph.nodes[0];
int n = node->op_params[1];
for (int j = 0; j < n; ++j) {
if (node->src[j]) {
sched->needs_sync[j] = false;
}
}
}
#pragma omp barrier
}
@@ -2307,6 +2321,15 @@ static enum ggml_status ggml_backend_sched_compute_splits(ggml_backend_sched_t s
if (split->graph.nodes[0]->op == GGML_OP_REDUCE) {
last_reduce = split_backend_id;
barrier.arrive_and_wait();
if (ith == split_backend_id) {
auto node = split->graph.nodes[0];
int n = node->op_params[1];
for (int j = 0; j < n; ++j) {
if (node->src[j]) {
sched->needs_sync[j] = false;
}
}
}
}
//if (needs_barrier) {
// barrier.arrive_and_wait();

View File

@@ -6,7 +6,6 @@
//
#include "reduce.cuh"
#include "binbcast.cuh"
#include "ggml-common.h"
#include <chrono>
@@ -81,6 +80,35 @@ static __global__ void k_reduce_add_T(copy_task task) {
}
}
static void copy_missing_tensors(ggml_backend_cuda_context & ctx, ggml_tensor * dst,
int nhave, int ncopy, const int * idx, const int * copy_idx) {
if (ncopy < 1) return;
auto & info = ggml_cuda_info();
auto size = ggml_nbytes(dst);
int isrc = 0;
for (int ii = 0; ii < ncopy; ++ii) {
int i = copy_idx[ii];
int j = idx[isrc];
isrc = (isrc + 1)%nhave;
//printf("%s: copying from device %d to device %d: %p -> %p\n", __func__, j, i, dst->src[j]->data, dst->src[i]->data);
ggml_cuda_set_device(j);
CUDA_CHECK(cudaMemcpyPeerAsync(dst->src[i]->data, info.all_ctx[i]->device, dst->src[j]->data, info.all_ctx[j]->device,
size, info.all_ctx[j]->stream()));
CUDA_CHECK(cudaEventRecord(info.all_ctx[j]->copy_event, info.all_ctx[j]->stream()));
}
isrc = 0;
for (int ii = 0; ii < ncopy; ++ii) {
int i = copy_idx[ii];
int j = idx[isrc];
isrc = (isrc + 1)%nhave;
ggml_cuda_set_device(i);
CUDA_CHECK(cudaStreamWaitEvent(info.all_ctx[i]->stream(), info.all_ctx[j]->copy_event, 0));
}
ggml_cuda_set_device(ctx.device);
}
void ggml_cuda_op_reduce([[maybe_unused]] ggml_backend_cuda_context & ctx, ggml_tensor * dst) {
auto op = (ggml_op)dst->op_params[0];
@@ -90,7 +118,7 @@ void ggml_cuda_op_reduce([[maybe_unused]] ggml_backend_cuda_context & ctx, ggml_
GGML_ASSERT(dst->type == GGML_TYPE_F16 || dst->type == GGML_TYPE_F32 ||
dst->type == GGML_TYPE_Q8_0 || dst->type == GGML_TYPE_BF16);
GGML_ASSERT(ggml_is_contiguous(dst));
GGML_ASSERT(nhave >=2 && nhave <= nreduce);
GGML_ASSERT(nhave >= 2 && nhave <= nreduce);
if (dst->op_params[3] == 1) {
// The dst tensor is just a container for the sources and the reduce op is turned off
return;
@@ -125,13 +153,20 @@ void ggml_cuda_op_reduce([[maybe_unused]] ggml_backend_cuda_context & ctx, ggml_
GGML_ASSERT(dst->data == dst->src[ctx.device]->data);
auto nbytes = ggml_nbytes(dst);
int idx[GGML_CUDA_MAX_DEVICES];
int copy_idx[GGML_CUDA_MAX_DEVICES];
int ncopy = 0;
{
int ii = 0;
bool have_this_device = false;
for (int i = 0; i < nreduce; ++i) {
if (dst->src[i]) {
idx[ii++] = i;
if (i == ctx.device) have_this_device = true;
if (dst->op_params[4] & (1u << i)) {
copy_idx[ncopy++] = i;
}
else {
if (dst->src[i]) {
idx[ii++] = i;
if (i == ctx.device) have_this_device = true;
}
}
}
GGML_ASSERT(ii == nhave);
@@ -224,15 +259,6 @@ void ggml_cuda_op_reduce([[maybe_unused]] ggml_backend_cuda_context & ctx, ggml_
auto nblocks_per_device = (nblocks + nhave - 1)/nhave;
auto nelem_per_device = nblocks_per_device * tt.blck_size;
auto size_per_device = nblocks_per_device * tt.type_size;
//size_t nelem_per_device, required_size;
//if (dst->type == GGML_TYPE_Q8_0) {
// GGML_ASSERT(nelem % QK8_0 == 0);
// nelem_per_device = QK8_0*((nelem/QK8_0 + nhave - 1)/nhave);
// required_size nelem_per_device/QK8_0 * sizeof(ggml_block_q8_0);
//}
//auto elem_size = ggml_element_size(dst);
//auto nelem_per_device = (nelem + nhave - 1)/nhave;
//auto required_size = nelem_per_device*elem_size;
for (int ii = 0; ii < nhave; ++ii) {
int i = idx[ii];
auto this_ctx = info.all_ctx[i];
@@ -277,8 +303,6 @@ void ggml_cuda_op_reduce([[maybe_unused]] ggml_backend_cuda_context & ctx, ggml_
auto this_nelem = std::min(nelem_per_device, nelem - ichunk*nelem_per_device);
ggml_cuda_set_device(info.all_ctx[i]->device);
CUDA_CHECK(cudaStreamWaitEvent(info.all_ctx[i]->stream(), info.all_ctx[peer]->copy_event, 0));
//ggml_op_add_same_type(ctx, dst->type, this_nelem, info.all_ctx[i]->copy_buffer,
// (const char *)dst->src[i]->data + ichunk*size_per_device, (char *)dst->src[i]->data + ichunk*size_per_device);
int num_blocks = (this_nelem + CUDA_REDUCE_BLOCK_SIZE - 1)/CUDA_REDUCE_BLOCK_SIZE;
if (dst->type == GGML_TYPE_F16) {
k_add<half, CUDA_REDUCE_BLOCK_SIZE><<<num_blocks, CUDA_REDUCE_BLOCK_SIZE, 0, info.all_ctx[i]->stream()>>>(this_nelem,
@@ -313,8 +337,6 @@ void ggml_cuda_op_reduce([[maybe_unused]] ggml_backend_cuda_context & ctx, ggml_
(const char *)dst->src[peer]->data + ichunk*size_per_device, info.all_ctx[peer]->device,
this_size, info.all_ctx[peer]->stream()));
CUDA_CHECK(cudaEventRecord(info.all_ctx[peer]->copy_event, info.all_ctx[peer]->stream()));
//ggml_cuda_set_device(info.all_ctx[i]->device);
//CUDA_CHECK(cudaStreamWaitEvent(info.all_ctx[i]->stream(), info.all_ctx[peer]->copy_event, 0));
ichunk = (ichunk + 1)%nhave;
}
for (int ii = 0; ii < nhave; ++ii) {
@@ -325,6 +347,9 @@ void ggml_cuda_op_reduce([[maybe_unused]] ggml_backend_cuda_context & ctx, ggml_
}
}
ggml_cuda_set_device(ctx.device);
if (ncopy > 0) {
copy_missing_tensors(ctx, dst, nhave, ncopy, idx, copy_idx);
}
return;
}
if (false && nhave == 4 && dst->ne[1] <= 8 && ctx.p2p_enabled) {
@@ -391,6 +416,9 @@ void ggml_cuda_op_reduce([[maybe_unused]] ggml_backend_cuda_context & ctx, ggml_
CUDA_CHECK(cudaStreamWaitEvent(info.all_ctx[i]->stream(), info.all_ctx[j]->copy_event));
}
ggml_cuda_set_device(ctx.device);
if (ncopy > 0) {
copy_missing_tensors(ctx, dst, nhave, ncopy, idx, copy_idx);
}
return;
}
if (dst->ne[1] < 32 && ctx.p2p_enabled) {
@@ -474,6 +502,9 @@ void ggml_cuda_op_reduce([[maybe_unused]] ggml_backend_cuda_context & ctx, ggml_
}
}
ggml_cuda_set_device(ctx.device);
if (ncopy > 0) {
copy_missing_tensors(ctx, dst, nhave, ncopy, idx, copy_idx);
}
return;
}
auto required_size = nbytes*(nhave-1);
@@ -537,4 +568,7 @@ void ggml_cuda_op_reduce([[maybe_unused]] ggml_backend_cuda_context & ctx, ggml_
if (i == ctx.device) continue;
CUDA_CHECK(cudaStreamWaitEvent(ctx.stream(), info.all_ctx[i]->copy_event, 0));
}
if (ncopy > 0) {
copy_missing_tensors(ctx, dst, nhave, ncopy, idx, copy_idx);
}
}

View File

@@ -619,14 +619,19 @@ ggml_tensor * llm_build_context::llm_build_norm(
return cur;
}
static ggml_tensor * get_input_tensor_sm_graph(ggml_tensor * input, int id) {
static ggml_tensor * get_input_tensor_sm_graph(ggml_context * ctx, ggml_tensor * input, int id) {
auto cur = input;
if (input->op == GGML_OP_REDUCE) {
auto view_src = input->view_src;
GGML_ASSERT(view_src);
cur = input->src[id];
if (cur == view_src || !cur) {
//printf("%s: Setting input to %s for id = %d\n", __func__, view_src->name, id);
if (!cur) {
GGML_ASSERT((input->op_params[4] & (1u << id)) == 0);
cur = ggml_dup_tensor(ctx, input);
input->src[id] = cur;
input->op_params[4] |= (1u << id);
}
else if (cur == view_src) {
cur = input;
}
}
@@ -693,7 +698,7 @@ ggml_tensor * llm_build_context::llm_build_ffn(
auto split_d = d->splits[id];
GGML_ASSERT((!split_u && !split_g && !split_d) || (split_u && split_g && split_d));
if (!split_u) continue;
auto cur = get_input_tensor_sm_graph(input, id);
auto cur = get_input_tensor_sm_graph(ctx, input, id);
cur = do_split_norm(ctx, cur, ffn_norm, lctx.model.hparams, cb, id, il_cb, is_norm);
cur = ggml_fused_up_gate(ctx, split_u, split_g, cur, unary_op);
cb(cur, "ffn_up_gate", il_cb);
@@ -1277,17 +1282,8 @@ llm_expert_gating_func_type gating_op,
(!split_up_exps->splits[id] && !split_gate_exps->splits[id] && !split_down_exps->splits[id]));
if (!split_up_exps->splits[id]) continue;
int il_cb = 1000*(id + 1) + il;
auto cur = get_input_tensor_sm_graph(input, id);
auto cur = get_input_tensor_sm_graph(ctx, input, id);
cur = do_split_norm(ctx, cur, ffn_norm, lctx.model.hparams, cb, id, il_cb, false);
//if (ffn_norm) {
// auto split_ffn_norm = (ggml_split_tensor_t *)ffn_norm->extra;
// GGML_ASSERT(split_ffn_norm && split_ffn_norm->n_device == split_up_exps->n_device);
// cur = llm_build_norm(ctx, cur, lctx.model.hparams, split_ffn_norm->splits[id], nullptr, LLM_NORM_RMS, cb, il);
// cb(cur, "ffn_inp_normed", il_cb);
//}
//if (cur->type != GGML_TYPE_F32) {
// cur = ggml_cast(ctx, cur, GGML_TYPE_F32);
//}
GGML_ASSERT(!split_gate_inp_b || split_gate_inp_b->splits[id]);
GGML_ASSERT(!split_exps_down_b || split_exps_down_b->splits[id]);
GGML_ASSERT(!split_exps_gate_b || split_exps_gate_b->splits[id]);
@@ -9190,7 +9186,6 @@ ggml_tensor * llm_build_context::build_std_attention(ggml_cgraph * gf, ggml_tens
if (!model.layers[il].wqkv && !model.layers[il].wqk && cparams.flash_attn &&
model.layers[il].wq->extra && model.layers[il].wk->extra && model.layers[il].wv->extra && model.layers[il].wo->extra) {
if (kv_self.k_l[il]->extra && kv_self.v_l[il]->extra) {
//ggml_split_tensor_t * attn_norm = the_attn_norm ? (ggml_split_tensor_t *)the_attn_norm->extra : nullptr;
auto wq = (ggml_split_tensor_t *)model.layers[il].wq->extra;
auto wk = (ggml_split_tensor_t *)model.layers[il].wk->extra;
auto wv = (ggml_split_tensor_t *)model.layers[il].wv->extra;
@@ -9230,18 +9225,8 @@ ggml_tensor * llm_build_context::build_std_attention(ggml_cgraph * gf, ggml_tens
GGML_ASSERT((!split_wq && !split_wk && !split_wv && !split_wo && !split_kl && !split_vl) ||
(split_wq && split_wk && split_wv && split_wo && split_kl && split_vl));
if (!split_wq) continue;
auto cur = get_input_tensor_sm_graph(input, id);
auto cur = get_input_tensor_sm_graph(ctx0, input, id);
cur = do_split_norm(ctx0, cur, the_attn_norm, lctx.model.hparams, cb, id, il_cb, is_norm);
//if (attn_norm) {
// if (is_norm) {
// cur = ggml_fused_norm(ctx0, cur, attn_norm->splits[id], lctx.model.hparams.f_norm_eps);
// } else {
// cur = llm_build_norm(ctx0, cur, lctx.model.hparams, attn_norm->splits[id], NULL, LLM_NORM_RMS, cb, il);
// }
//}
//if (cur->type != GGML_TYPE_F32) {
// cur = ggml_cast(ctx0, cur, GGML_TYPE_F32);
//}
auto the_q_norm = model.layers[il].attn_q_norm ? model.layers[il].attn_q_norm->extra ?
((ggml_split_tensor_t *)model.layers[il].attn_q_norm->extra)->splits[id] : model.layers[il].attn_q_norm : nullptr;
auto the_k_norm = model.layers[il].attn_k_norm ? model.layers[il].attn_k_norm->extra ?