Update devices.py

This commit is contained in:
lllyasviel
2024-01-24 10:51:36 -08:00
parent d2ea8793aa
commit 2ed12510ba

View File

@@ -1,188 +1,81 @@
import sys
import contextlib
from functools import lru_cache
import torch
from modules import errors, shared
from modules import torch_utils
if sys.platform == "darwin":
from modules import mac_specific
if shared.cmd_opts.use_ipex:
from modules import xpu_specific
import ldm_patched.modules.model_management as model_management
def has_xpu() -> bool:
return shared.cmd_opts.use_ipex and xpu_specific.has_xpu
return model_management.xpu_available
def has_mps() -> bool:
if sys.platform != "darwin":
return False
else:
return mac_specific.has_mps
return model_management.mps_mode()
def cuda_no_autocast(device_id=None) -> bool:
if device_id is None:
device_id = get_cuda_device_id()
return (
torch.cuda.get_device_capability(device_id) == (7, 5)
and torch.cuda.get_device_name(device_id).startswith("NVIDIA GeForce GTX 16")
)
return False
def get_cuda_device_id():
return (
int(shared.cmd_opts.device_id)
if shared.cmd_opts.device_id is not None and shared.cmd_opts.device_id.isdigit()
else 0
) or torch.cuda.current_device()
return model_management.get_torch_device().index
def get_cuda_device_string():
if shared.cmd_opts.device_id is not None:
return f"cuda:{shared.cmd_opts.device_id}"
return "cuda"
return str(model_management.get_torch_device())
def get_optimal_device_name():
if torch.cuda.is_available():
return get_cuda_device_string()
if has_mps():
return "mps"
if has_xpu():
return xpu_specific.get_xpu_device_string()
return "cpu"
return model_management.get_torch_device().type
def get_optimal_device():
return torch.device(get_optimal_device_name())
return model_management.get_torch_device()
def get_device_for(task):
if task in shared.cmd_opts.use_cpu or "all" in shared.cmd_opts.use_cpu:
return cpu
return get_optimal_device()
def torch_gc():
if torch.cuda.is_available():
with torch.cuda.device(get_cuda_device_string()):
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
if has_mps():
mac_specific.torch_mps_gc()
if has_xpu():
xpu_specific.torch_xpu_gc()
model_management.soft_empty_cache()
def enable_tf32():
if torch.cuda.is_available():
return
# enabling benchmark option seems to enable a range of cards to do fp16 when they otherwise can't
# see https://github.com/AUTOMATIC1111/stable-diffusion-webui/pull/4407
if cuda_no_autocast():
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True
torch.backends.cudnn.allow_tf32 = True
errors.run(enable_tf32, "Enabling TF32")
cpu: torch.device = torch.device("cpu")
fp8: bool = False
device: torch.device = None
device_interrogate: torch.device = None
device_gfpgan: torch.device = None
device_esrgan: torch.device = None
device_codeformer: torch.device = None
dtype: torch.dtype = torch.float16
dtype_vae: torch.dtype = torch.float16
dtype_unet: torch.dtype = torch.float16
dtype_inference: torch.dtype = torch.float16
device: torch.device = model_management.get_torch_device()
device_interrogate: torch.device = model_management.text_encoder_device()
device_gfpgan: torch.device = model_management.get_torch_device()
device_esrgan: torch.device = model_management.get_torch_device()
device_codeformer: torch.device = model_management.get_torch_device()
dtype: torch.dtype = model_management.unet_dtype()
dtype_vae: torch.dtype = model_management.vae_dtype()
dtype_unet: torch.dtype = model_management.unet_dtype()
dtype_inference: torch.dtype = model_management.unet_dtype()
unet_needs_upcast = False
def cond_cast_unet(input):
return input.to(dtype_unet) if unet_needs_upcast else input
return input
def cond_cast_float(input):
return input.float() if unet_needs_upcast else input
return input
nv_rng = None
patch_module_list = [
torch.nn.Linear,
torch.nn.Conv2d,
torch.nn.MultiheadAttention,
torch.nn.GroupNorm,
torch.nn.LayerNorm,
]
patch_module_list = []
def manual_cast_forward(target_dtype):
def forward_wrapper(self, *args, **kwargs):
if any(
isinstance(arg, torch.Tensor) and arg.dtype != target_dtype
for arg in args
):
args = [arg.to(target_dtype) if isinstance(arg, torch.Tensor) else arg for arg in args]
kwargs = {k: v.to(target_dtype) if isinstance(v, torch.Tensor) else v for k, v in kwargs.items()}
org_dtype = torch_utils.get_param(self).dtype
if org_dtype != target_dtype:
self.to(target_dtype)
result = self.org_forward(*args, **kwargs)
if org_dtype != target_dtype:
self.to(org_dtype)
if target_dtype != dtype_inference:
if isinstance(result, tuple):
result = tuple(
i.to(dtype_inference)
if isinstance(i, torch.Tensor)
else i
for i in result
)
elif isinstance(result, torch.Tensor):
result = result.to(dtype_inference)
return result
return forward_wrapper
return
@contextlib.contextmanager
def manual_cast(target_dtype):
applied = False
for module_type in patch_module_list:
if hasattr(module_type, "org_forward"):
continue
applied = True
org_forward = module_type.forward
if module_type == torch.nn.MultiheadAttention and has_xpu():
module_type.forward = manual_cast_forward(torch.float32)
else:
module_type.forward = manual_cast_forward(target_dtype)
module_type.org_forward = org_forward
try:
yield None
finally:
if applied:
for module_type in patch_module_list:
if hasattr(module_type, "org_forward"):
module_type.forward = module_type.org_forward
delattr(module_type, "org_forward")
return
def autocast(disable=False):
@@ -198,43 +91,9 @@ class NansException(Exception):
def test_for_nans(x, where):
if shared.cmd_opts.disable_nan_check:
return
if not torch.all(torch.isnan(x)).item():
return
if where == "unet":
message = "A tensor with all NaNs was produced in Unet."
if not shared.cmd_opts.no_half:
message += " This could be either because there's not enough precision to represent the picture, or because your video card does not support half type. Try setting the \"Upcast cross attention layer to float32\" option in Settings > Stable Diffusion or using the --no-half commandline argument to fix this."
elif where == "vae":
message = "A tensor with all NaNs was produced in VAE."
if not shared.cmd_opts.no_half and not shared.cmd_opts.no_half_vae:
message += " This could be because there's not enough precision to represent the picture. Try adding --no-half-vae commandline argument to fix this."
else:
message = "A tensor with all NaNs was produced."
message += " Use --disable-nan-check commandline argument to disable this check."
raise NansException(message)
return
@lru_cache
def first_time_calculation():
"""
just do any calculation with pytorch layers - the first time this is done it allocaltes about 700MB of memory and
spends about 2.7 seconds doing that, at least wih NVidia.
"""
x = torch.zeros((1, 1)).to(device, dtype)
linear = torch.nn.Linear(1, 1).to(device, dtype)
linear(x)
x = torch.zeros((1, 1, 3, 3)).to(device, dtype)
conv2d = torch.nn.Conv2d(1, 1, (3, 3)).to(device, dtype)
conv2d(x)
return