mirror of
https://github.com/ostris/ai-toolkit.git
synced 2026-01-26 16:39:47 +00:00
Added pixart sigma support, but it wont work until i address breaking changes with lora code in diffusers so it can be upgraded.
This commit is contained in:
@@ -99,7 +99,7 @@ class SDTrainer(BaseSDTrainProcess):
|
||||
|
||||
# check if we have regs and using adapter and caching clip embeddings
|
||||
has_reg = self.datasets_reg is not None and len(self.datasets_reg) > 0
|
||||
is_caching_clip_embeddings = any([self.datasets[i].cache_clip_vision_to_disk for i in range(len(self.datasets))])
|
||||
is_caching_clip_embeddings = self.datasets is not None and any([self.datasets[i].cache_clip_vision_to_disk for i in range(len(self.datasets))])
|
||||
|
||||
if has_reg and is_caching_clip_embeddings:
|
||||
# we need a list of unconditional clip image embeds from other datasets to handle regs
|
||||
|
||||
@@ -332,6 +332,9 @@ class ModelConfig:
|
||||
self.is_v2: bool = kwargs.get('is_v2', False)
|
||||
self.is_xl: bool = kwargs.get('is_xl', False)
|
||||
self.is_pixart: bool = kwargs.get('is_pixart', False)
|
||||
self.is_pixart_sigma: bool = kwargs.get('is_pixart', False)
|
||||
if self.is_pixart_sigma:
|
||||
self.is_pixart = True
|
||||
self.is_ssd: bool = kwargs.get('is_ssd', False)
|
||||
self.is_vega: bool = kwargs.get('is_vega', False)
|
||||
self.is_v_pred: bool = kwargs.get('is_v_pred', False)
|
||||
|
||||
@@ -33,8 +33,9 @@ class TEAdapterAttnProcessor(nn.Module):
|
||||
"""
|
||||
|
||||
def __init__(self, hidden_size, cross_attention_dim=None, scale=1.0, num_tokens=4, adapter=None,
|
||||
adapter_hidden_size=None):
|
||||
adapter_hidden_size=None, layer_name=None):
|
||||
super().__init__()
|
||||
self.layer_name = layer_name
|
||||
|
||||
if not hasattr(F, "scaled_dot_product_attention"):
|
||||
raise ImportError("AttnProcessor2_0 requires PyTorch 2.0, to use it, please upgrade PyTorch to 2.0.")
|
||||
@@ -170,6 +171,7 @@ class TEAdapter(torch.nn.Module):
|
||||
self.sd_ref: weakref.ref = weakref.ref(sd)
|
||||
self.te_ref: weakref.ref = weakref.ref(te)
|
||||
self.tokenizer_ref: weakref.ref = weakref.ref(tokenizer)
|
||||
self.adapter_modules = []
|
||||
|
||||
if self.adapter_ref().config.text_encoder_arch == "t5":
|
||||
self.token_size = self.te_ref().config.d_model
|
||||
@@ -239,9 +241,11 @@ class TEAdapter(torch.nn.Module):
|
||||
scale=1.0,
|
||||
num_tokens=self.adapter_ref().config.num_tokens,
|
||||
adapter=self,
|
||||
adapter_hidden_size=self.token_size
|
||||
adapter_hidden_size=self.token_size,
|
||||
layer_name=layer_name
|
||||
)
|
||||
attn_procs[name].load_state_dict(weights)
|
||||
self.adapter_modules.append(attn_procs[name])
|
||||
sd.unet.set_attn_processor(attn_procs)
|
||||
self.adapter_modules = torch.nn.ModuleList(sd.unet.attn_processors.values())
|
||||
|
||||
@@ -262,7 +266,10 @@ class TEAdapter(torch.nn.Module):
|
||||
return_tensors="pt",
|
||||
).input_ids.to(te.device)
|
||||
outputs = te(input_ids=input_ids)
|
||||
return outputs.last_hidden_state
|
||||
outputs = outputs.last_hidden_state
|
||||
return outputs
|
||||
|
||||
|
||||
|
||||
def forward(self, input):
|
||||
return input
|
||||
|
||||
@@ -46,6 +46,7 @@ from diffusers import \
|
||||
UNet2DConditionModel
|
||||
from diffusers import PixArtAlphaPipeline, DPMSolverMultistepScheduler
|
||||
from transformers import T5EncoderModel
|
||||
from toolkit.util.pixart_sigma_patch import pixart_sigma_init_patched_inputs, PixArtSigmaPipeline
|
||||
|
||||
from toolkit.paths import ORIG_CONFIGS_ROOT, DIFFUSERS_CONFIGS_ROOT
|
||||
from toolkit.util.inverse_cfg import inverse_classifier_guidance
|
||||
@@ -237,15 +238,22 @@ class StableDiffusion:
|
||||
elif self.model_config.is_pixart:
|
||||
te_kwargs = {}
|
||||
# handle quantization of TE
|
||||
te_is_quantized = False
|
||||
if self.model_config.text_encoder_bits == 8:
|
||||
te_kwargs['load_in_8bit'] = True
|
||||
te_kwargs['device_map'] = "auto"
|
||||
te_is_quantized = True
|
||||
elif self.model_config.text_encoder_bits == 4:
|
||||
te_kwargs['load_in_4bit'] = True
|
||||
te_kwargs['device_map'] = "auto"
|
||||
te_is_quantized = True
|
||||
|
||||
main_model_path = "PixArt-alpha/PixArt-XL-2-1024-MS"
|
||||
if self.model_config.is_pixart_sigma:
|
||||
main_model_path = "PixArt-alpha/pixart_sigma_sdxlvae_T5_diffusers"
|
||||
# load the TE in 8bit mode
|
||||
text_encoder = T5EncoderModel.from_pretrained(
|
||||
"PixArt-alpha/PixArt-XL-2-1024-MS",
|
||||
main_model_path,
|
||||
subfolder="text_encoder",
|
||||
torch_dtype=self.torch_dtype,
|
||||
**te_kwargs
|
||||
@@ -256,20 +264,46 @@ class StableDiffusion:
|
||||
# check if it is just the unet
|
||||
if os.path.exists(model_path) and not os.path.exists(os.path.join(model_path, subfolder)):
|
||||
subfolder = None
|
||||
# load the transformer only from the save
|
||||
transformer = Transformer2DModel.from_pretrained(model_path, torch_dtype=self.torch_dtype, subfolder=subfolder)
|
||||
|
||||
if te_is_quantized:
|
||||
# replace the to function with a no-op since it throws an error instead of a warning
|
||||
text_encoder.to = lambda *args, **kwargs: None
|
||||
|
||||
# replace the to function with a no-op since it throws an error instead of a warning
|
||||
text_encoder.to = lambda *args, **kwargs: None
|
||||
pipe: PixArtAlphaPipeline = PixArtAlphaPipeline.from_pretrained(
|
||||
"PixArt-alpha/PixArt-XL-2-1024-MS",
|
||||
transformer=transformer,
|
||||
text_encoder=text_encoder,
|
||||
dtype=dtype,
|
||||
device=self.device_torch,
|
||||
**load_args
|
||||
).to(self.device_torch)
|
||||
if self.model_config.is_pixart_sigma:
|
||||
# tmp patches for diffusers PixArtSigmaPipeline Implementation
|
||||
print(
|
||||
"Changing _init_patched_inputs method of diffusers.models.Transformer2DModel "
|
||||
"using scripts.diffusers_patches.pixart_sigma_init_patched_inputs")
|
||||
setattr(Transformer2DModel, '_init_patched_inputs', pixart_sigma_init_patched_inputs)
|
||||
|
||||
# load the transformer only from the save
|
||||
transformer = Transformer2DModel.from_pretrained(
|
||||
model_path,
|
||||
torch_dtype=self.torch_dtype,
|
||||
subfolder='transformer'
|
||||
)
|
||||
pipe: PixArtAlphaPipeline = PixArtSigmaPipeline.from_pretrained(
|
||||
main_model_path,
|
||||
transformer=transformer,
|
||||
text_encoder=text_encoder,
|
||||
dtype=dtype,
|
||||
device=self.device_torch,
|
||||
**load_args
|
||||
)
|
||||
|
||||
else:
|
||||
|
||||
# load the transformer only from the save
|
||||
transformer = Transformer2DModel.from_pretrained(model_path, torch_dtype=self.torch_dtype,
|
||||
subfolder=subfolder)
|
||||
pipe: PixArtAlphaPipeline = PixArtAlphaPipeline.from_pretrained(
|
||||
main_model_path,
|
||||
transformer=transformer,
|
||||
text_encoder=text_encoder,
|
||||
dtype=dtype,
|
||||
device=self.device_torch,
|
||||
**load_args
|
||||
).to(self.device_torch)
|
||||
pipe.transformer = pipe.transformer.to(self.device_torch, dtype=dtype)
|
||||
|
||||
flush()
|
||||
@@ -1282,7 +1316,7 @@ class StableDiffusion:
|
||||
self.text_encoder,
|
||||
prompt,
|
||||
truncate=not long_prompts,
|
||||
max_length=max_length,
|
||||
max_length=300 if self.model_config.is_pixart_sigma else 120,
|
||||
dropout_prob=dropout_prob
|
||||
)
|
||||
return PromptEmbeds(
|
||||
|
||||
541
toolkit/util/pixart_sigma_patch.py
Normal file
541
toolkit/util/pixart_sigma_patch.py
Normal file
@@ -0,0 +1,541 @@
|
||||
import torch
|
||||
from diffusers import ImagePipelineOutput, PixArtAlphaPipeline, AutoencoderKL, Transformer2DModel, \
|
||||
DPMSolverMultistepScheduler
|
||||
from diffusers.image_processor import VaeImageProcessor
|
||||
from diffusers.models.attention import BasicTransformerBlock
|
||||
from diffusers.models.embeddings import PixArtAlphaTextProjection, PatchEmbed
|
||||
from diffusers.models.normalization import AdaLayerNormSingle
|
||||
from diffusers.pipelines.pixart_alpha.pipeline_pixart_alpha import retrieve_timesteps
|
||||
from typing import Callable, List, Optional, Tuple, Union
|
||||
|
||||
from diffusers.utils import deprecate
|
||||
from torch import nn
|
||||
from transformers import T5Tokenizer, T5EncoderModel
|
||||
|
||||
ASPECT_RATIO_2048_BIN = {
|
||||
"0.25": [1024.0, 4096.0],
|
||||
"0.26": [1024.0, 3968.0],
|
||||
"0.27": [1024.0, 3840.0],
|
||||
"0.28": [1024.0, 3712.0],
|
||||
"0.32": [1152.0, 3584.0],
|
||||
"0.33": [1152.0, 3456.0],
|
||||
"0.35": [1152.0, 3328.0],
|
||||
"0.4": [1280.0, 3200.0],
|
||||
"0.42": [1280.0, 3072.0],
|
||||
"0.48": [1408.0, 2944.0],
|
||||
"0.5": [1408.0, 2816.0],
|
||||
"0.52": [1408.0, 2688.0],
|
||||
"0.57": [1536.0, 2688.0],
|
||||
"0.6": [1536.0, 2560.0],
|
||||
"0.68": [1664.0, 2432.0],
|
||||
"0.72": [1664.0, 2304.0],
|
||||
"0.78": [1792.0, 2304.0],
|
||||
"0.82": [1792.0, 2176.0],
|
||||
"0.88": [1920.0, 2176.0],
|
||||
"0.94": [1920.0, 2048.0],
|
||||
"1.0": [2048.0, 2048.0],
|
||||
"1.07": [2048.0, 1920.0],
|
||||
"1.13": [2176.0, 1920.0],
|
||||
"1.21": [2176.0, 1792.0],
|
||||
"1.29": [2304.0, 1792.0],
|
||||
"1.38": [2304.0, 1664.0],
|
||||
"1.46": [2432.0, 1664.0],
|
||||
"1.67": [2560.0, 1536.0],
|
||||
"1.75": [2688.0, 1536.0],
|
||||
"2.0": [2816.0, 1408.0],
|
||||
"2.09": [2944.0, 1408.0],
|
||||
"2.4": [3072.0, 1280.0],
|
||||
"2.5": [3200.0, 1280.0],
|
||||
"2.89": [3328.0, 1152.0],
|
||||
"3.0": [3456.0, 1152.0],
|
||||
"3.11": [3584.0, 1152.0],
|
||||
"3.62": [3712.0, 1024.0],
|
||||
"3.75": [3840.0, 1024.0],
|
||||
"3.88": [3968.0, 1024.0],
|
||||
"4.0": [4096.0, 1024.0]
|
||||
}
|
||||
|
||||
ASPECT_RATIO_256_BIN = {
|
||||
"0.25": [128.0, 512.0],
|
||||
"0.28": [128.0, 464.0],
|
||||
"0.32": [144.0, 448.0],
|
||||
"0.33": [144.0, 432.0],
|
||||
"0.35": [144.0, 416.0],
|
||||
"0.4": [160.0, 400.0],
|
||||
"0.42": [160.0, 384.0],
|
||||
"0.48": [176.0, 368.0],
|
||||
"0.5": [176.0, 352.0],
|
||||
"0.52": [176.0, 336.0],
|
||||
"0.57": [192.0, 336.0],
|
||||
"0.6": [192.0, 320.0],
|
||||
"0.68": [208.0, 304.0],
|
||||
"0.72": [208.0, 288.0],
|
||||
"0.78": [224.0, 288.0],
|
||||
"0.82": [224.0, 272.0],
|
||||
"0.88": [240.0, 272.0],
|
||||
"0.94": [240.0, 256.0],
|
||||
"1.0": [256.0, 256.0],
|
||||
"1.07": [256.0, 240.0],
|
||||
"1.13": [272.0, 240.0],
|
||||
"1.21": [272.0, 224.0],
|
||||
"1.29": [288.0, 224.0],
|
||||
"1.38": [288.0, 208.0],
|
||||
"1.46": [304.0, 208.0],
|
||||
"1.67": [320.0, 192.0],
|
||||
"1.75": [336.0, 192.0],
|
||||
"2.0": [352.0, 176.0],
|
||||
"2.09": [368.0, 176.0],
|
||||
"2.4": [384.0, 160.0],
|
||||
"2.5": [400.0, 160.0],
|
||||
"3.0": [432.0, 144.0],
|
||||
"4.0": [512.0, 128.0]
|
||||
}
|
||||
|
||||
ASPECT_RATIO_1024_BIN = {
|
||||
"0.25": [512.0, 2048.0],
|
||||
"0.28": [512.0, 1856.0],
|
||||
"0.32": [576.0, 1792.0],
|
||||
"0.33": [576.0, 1728.0],
|
||||
"0.35": [576.0, 1664.0],
|
||||
"0.4": [640.0, 1600.0],
|
||||
"0.42": [640.0, 1536.0],
|
||||
"0.48": [704.0, 1472.0],
|
||||
"0.5": [704.0, 1408.0],
|
||||
"0.52": [704.0, 1344.0],
|
||||
"0.57": [768.0, 1344.0],
|
||||
"0.6": [768.0, 1280.0],
|
||||
"0.68": [832.0, 1216.0],
|
||||
"0.72": [832.0, 1152.0],
|
||||
"0.78": [896.0, 1152.0],
|
||||
"0.82": [896.0, 1088.0],
|
||||
"0.88": [960.0, 1088.0],
|
||||
"0.94": [960.0, 1024.0],
|
||||
"1.0": [1024.0, 1024.0],
|
||||
"1.07": [1024.0, 960.0],
|
||||
"1.13": [1088.0, 960.0],
|
||||
"1.21": [1088.0, 896.0],
|
||||
"1.29": [1152.0, 896.0],
|
||||
"1.38": [1152.0, 832.0],
|
||||
"1.46": [1216.0, 832.0],
|
||||
"1.67": [1280.0, 768.0],
|
||||
"1.75": [1344.0, 768.0],
|
||||
"2.0": [1408.0, 704.0],
|
||||
"2.09": [1472.0, 704.0],
|
||||
"2.4": [1536.0, 640.0],
|
||||
"2.5": [1600.0, 640.0],
|
||||
"3.0": [1728.0, 576.0],
|
||||
"4.0": [2048.0, 512.0],
|
||||
}
|
||||
|
||||
ASPECT_RATIO_512_BIN = {
|
||||
"0.25": [256.0, 1024.0],
|
||||
"0.28": [256.0, 928.0],
|
||||
"0.32": [288.0, 896.0],
|
||||
"0.33": [288.0, 864.0],
|
||||
"0.35": [288.0, 832.0],
|
||||
"0.4": [320.0, 800.0],
|
||||
"0.42": [320.0, 768.0],
|
||||
"0.48": [352.0, 736.0],
|
||||
"0.5": [352.0, 704.0],
|
||||
"0.52": [352.0, 672.0],
|
||||
"0.57": [384.0, 672.0],
|
||||
"0.6": [384.0, 640.0],
|
||||
"0.68": [416.0, 608.0],
|
||||
"0.72": [416.0, 576.0],
|
||||
"0.78": [448.0, 576.0],
|
||||
"0.82": [448.0, 544.0],
|
||||
"0.88": [480.0, 544.0],
|
||||
"0.94": [480.0, 512.0],
|
||||
"1.0": [512.0, 512.0],
|
||||
"1.07": [512.0, 480.0],
|
||||
"1.13": [544.0, 480.0],
|
||||
"1.21": [544.0, 448.0],
|
||||
"1.29": [576.0, 448.0],
|
||||
"1.38": [576.0, 416.0],
|
||||
"1.46": [608.0, 416.0],
|
||||
"1.67": [640.0, 384.0],
|
||||
"1.75": [672.0, 384.0],
|
||||
"2.0": [704.0, 352.0],
|
||||
"2.09": [736.0, 352.0],
|
||||
"2.4": [768.0, 320.0],
|
||||
"2.5": [800.0, 320.0],
|
||||
"3.0": [864.0, 288.0],
|
||||
"4.0": [1024.0, 256.0],
|
||||
}
|
||||
|
||||
|
||||
def pipeline_pixart_alpha_call(
|
||||
self,
|
||||
prompt: Union[str, List[str]] = None,
|
||||
negative_prompt: str = "",
|
||||
num_inference_steps: int = 20,
|
||||
timesteps: List[int] = None,
|
||||
guidance_scale: float = 4.5,
|
||||
num_images_per_prompt: Optional[int] = 1,
|
||||
height: Optional[int] = None,
|
||||
width: Optional[int] = None,
|
||||
eta: float = 0.0,
|
||||
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
||||
latents: Optional[torch.FloatTensor] = None,
|
||||
prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
prompt_attention_mask: Optional[torch.FloatTensor] = None,
|
||||
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
||||
negative_prompt_attention_mask: Optional[torch.FloatTensor] = None,
|
||||
output_type: Optional[str] = "pil",
|
||||
return_dict: bool = True,
|
||||
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
||||
callback_steps: int = 1,
|
||||
clean_caption: bool = True,
|
||||
use_resolution_binning: bool = True,
|
||||
max_sequence_length: int = 120,
|
||||
**kwargs,
|
||||
) -> Union[ImagePipelineOutput, Tuple]:
|
||||
"""
|
||||
Function invoked when calling the pipeline for generation.
|
||||
|
||||
Args:
|
||||
prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
||||
instead.
|
||||
negative_prompt (`str` or `List[str]`, *optional*):
|
||||
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
||||
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
||||
less than `1`).
|
||||
num_inference_steps (`int`, *optional*, defaults to 100):
|
||||
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
||||
expense of slower inference.
|
||||
timesteps (`List[int]`, *optional*):
|
||||
Custom timesteps to use for the denoising process. If not defined, equal spaced `num_inference_steps`
|
||||
timesteps are used. Must be in descending order.
|
||||
guidance_scale (`float`, *optional*, defaults to 4.5):
|
||||
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
||||
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
||||
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
||||
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
||||
usually at the expense of lower image quality.
|
||||
num_images_per_prompt (`int`, *optional*, defaults to 1):
|
||||
The number of images to generate per prompt.
|
||||
height (`int`, *optional*, defaults to self.unet.config.sample_size):
|
||||
The height in pixels of the generated image.
|
||||
width (`int`, *optional*, defaults to self.unet.config.sample_size):
|
||||
The width in pixels of the generated image.
|
||||
eta (`float`, *optional*, defaults to 0.0):
|
||||
Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to
|
||||
[`schedulers.DDIMScheduler`], will be ignored for others.
|
||||
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
||||
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
||||
to make generation deterministic.
|
||||
latents (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
||||
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
||||
tensor will ge generated by sampling using the supplied random `generator`.
|
||||
prompt_embeds (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
||||
provided, text embeddings will be generated from `prompt` input argument.
|
||||
prompt_attention_mask (`torch.FloatTensor`, *optional*): Pre-generated attention mask for text embeddings.
|
||||
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated negative text embeddings. For PixArt-Alpha this negative prompt should be "". If not
|
||||
provided, negative_prompt_embeds will be generated from `negative_prompt` input argument.
|
||||
negative_prompt_attention_mask (`torch.FloatTensor`, *optional*):
|
||||
Pre-generated attention mask for negative text embeddings.
|
||||
output_type (`str`, *optional*, defaults to `"pil"`):
|
||||
The output format of the generate image. Choose between
|
||||
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to return a [`~pipelines.stable_diffusion.IFPipelineOutput`] instead of a plain tuple.
|
||||
callback (`Callable`, *optional*):
|
||||
A function that will be called every `callback_steps` steps during inference. The function will be
|
||||
called with the following arguments: `callback(step: int, timestep: int, latents: torch.FloatTensor)`.
|
||||
callback_steps (`int`, *optional*, defaults to 1):
|
||||
The frequency at which the `callback` function will be called. If not specified, the callback will be
|
||||
called at every step.
|
||||
clean_caption (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to clean the caption before creating embeddings. Requires `beautifulsoup4` and `ftfy` to
|
||||
be installed. If the dependencies are not installed, the embeddings will be created from the raw
|
||||
prompt.
|
||||
use_resolution_binning (`bool` defaults to `True`):
|
||||
If set to `True`, the requested height and width are first mapped to the closest resolutions using
|
||||
`ASPECT_RATIO_1024_BIN`. After the produced latents are decoded into images, they are resized back to
|
||||
the requested resolution. Useful for generating non-square images.
|
||||
|
||||
Examples:
|
||||
|
||||
Returns:
|
||||
[`~pipelines.ImagePipelineOutput`] or `tuple`:
|
||||
If `return_dict` is `True`, [`~pipelines.ImagePipelineOutput`] is returned, otherwise a `tuple` is
|
||||
returned where the first element is a list with the generated images
|
||||
"""
|
||||
if "mask_feature" in kwargs:
|
||||
deprecation_message = "The use of `mask_feature` is deprecated. It is no longer used in any computation and that doesn't affect the end results. It will be removed in a future version."
|
||||
deprecate("mask_feature", "1.0.0", deprecation_message, standard_warn=False)
|
||||
# 1. Check inputs. Raise error if not correct
|
||||
height = height or self.transformer.config.sample_size * self.vae_scale_factor
|
||||
width = width or self.transformer.config.sample_size * self.vae_scale_factor
|
||||
if use_resolution_binning:
|
||||
if self.transformer.config.sample_size == 32:
|
||||
aspect_ratio_bin = ASPECT_RATIO_256_BIN
|
||||
elif self.transformer.config.sample_size == 64:
|
||||
aspect_ratio_bin = ASPECT_RATIO_512_BIN
|
||||
elif self.transformer.config.sample_size == 128:
|
||||
aspect_ratio_bin = ASPECT_RATIO_1024_BIN
|
||||
elif self.transformer.config.sample_size == 256:
|
||||
aspect_ratio_bin = ASPECT_RATIO_2048_BIN
|
||||
else:
|
||||
raise ValueError("Invalid sample size")
|
||||
orig_height, orig_width = height, width
|
||||
height, width = self.classify_height_width_bin(height, width, ratios=aspect_ratio_bin)
|
||||
|
||||
self.check_inputs(
|
||||
prompt,
|
||||
height,
|
||||
width,
|
||||
negative_prompt,
|
||||
callback_steps,
|
||||
prompt_embeds,
|
||||
negative_prompt_embeds,
|
||||
prompt_attention_mask,
|
||||
negative_prompt_attention_mask,
|
||||
)
|
||||
|
||||
# 2. Default height and width to transformer
|
||||
if prompt is not None and isinstance(prompt, str):
|
||||
batch_size = 1
|
||||
elif prompt is not None and isinstance(prompt, list):
|
||||
batch_size = len(prompt)
|
||||
else:
|
||||
batch_size = prompt_embeds.shape[0]
|
||||
|
||||
device = self._execution_device
|
||||
|
||||
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
||||
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
||||
# corresponds to doing no classifier free guidance.
|
||||
do_classifier_free_guidance = guidance_scale > 1.0
|
||||
|
||||
# 3. Encode input prompt
|
||||
(
|
||||
prompt_embeds,
|
||||
prompt_attention_mask,
|
||||
negative_prompt_embeds,
|
||||
negative_prompt_attention_mask,
|
||||
) = self.encode_prompt(
|
||||
prompt,
|
||||
do_classifier_free_guidance,
|
||||
negative_prompt=negative_prompt,
|
||||
num_images_per_prompt=num_images_per_prompt,
|
||||
device=device,
|
||||
prompt_embeds=prompt_embeds,
|
||||
negative_prompt_embeds=negative_prompt_embeds,
|
||||
prompt_attention_mask=prompt_attention_mask,
|
||||
negative_prompt_attention_mask=negative_prompt_attention_mask,
|
||||
clean_caption=clean_caption,
|
||||
max_sequence_length=max_sequence_length,
|
||||
)
|
||||
if do_classifier_free_guidance:
|
||||
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
||||
prompt_attention_mask = torch.cat([negative_prompt_attention_mask, prompt_attention_mask], dim=0)
|
||||
|
||||
# 4. Prepare timesteps
|
||||
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
|
||||
|
||||
# 5. Prepare latents.
|
||||
latent_channels = self.transformer.config.in_channels
|
||||
latents = self.prepare_latents(
|
||||
batch_size * num_images_per_prompt,
|
||||
latent_channels,
|
||||
height,
|
||||
width,
|
||||
prompt_embeds.dtype,
|
||||
device,
|
||||
generator,
|
||||
latents,
|
||||
)
|
||||
|
||||
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
||||
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
||||
|
||||
# 6.1 Prepare micro-conditions.
|
||||
added_cond_kwargs = {"resolution": None, "aspect_ratio": None}
|
||||
if self.transformer.config.sample_size == 128:
|
||||
resolution = torch.tensor([height, width]).repeat(batch_size * num_images_per_prompt, 1)
|
||||
aspect_ratio = torch.tensor([float(height / width)]).repeat(batch_size * num_images_per_prompt, 1)
|
||||
resolution = resolution.to(dtype=prompt_embeds.dtype, device=device)
|
||||
aspect_ratio = aspect_ratio.to(dtype=prompt_embeds.dtype, device=device)
|
||||
|
||||
if do_classifier_free_guidance:
|
||||
resolution = torch.cat([resolution, resolution], dim=0)
|
||||
aspect_ratio = torch.cat([aspect_ratio, aspect_ratio], dim=0)
|
||||
|
||||
added_cond_kwargs = {"resolution": resolution, "aspect_ratio": aspect_ratio}
|
||||
|
||||
# 7. Denoising loop
|
||||
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
||||
|
||||
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
||||
for i, t in enumerate(timesteps):
|
||||
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
||||
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
||||
|
||||
current_timestep = t
|
||||
if not torch.is_tensor(current_timestep):
|
||||
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
|
||||
# This would be a good case for the `match` statement (Python 3.10+)
|
||||
is_mps = latent_model_input.device.type == "mps"
|
||||
if isinstance(current_timestep, float):
|
||||
dtype = torch.float32 if is_mps else torch.float64
|
||||
else:
|
||||
dtype = torch.int32 if is_mps else torch.int64
|
||||
current_timestep = torch.tensor([current_timestep], dtype=dtype, device=latent_model_input.device)
|
||||
elif len(current_timestep.shape) == 0:
|
||||
current_timestep = current_timestep[None].to(latent_model_input.device)
|
||||
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
||||
current_timestep = current_timestep.expand(latent_model_input.shape[0])
|
||||
|
||||
# predict noise model_output
|
||||
noise_pred = self.transformer(
|
||||
latent_model_input,
|
||||
encoder_hidden_states=prompt_embeds,
|
||||
encoder_attention_mask=prompt_attention_mask,
|
||||
timestep=current_timestep,
|
||||
added_cond_kwargs=added_cond_kwargs,
|
||||
return_dict=False,
|
||||
)[0]
|
||||
|
||||
# perform guidance
|
||||
if do_classifier_free_guidance:
|
||||
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
||||
noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond)
|
||||
|
||||
# learned sigma
|
||||
if self.transformer.config.out_channels // 2 == latent_channels:
|
||||
noise_pred = noise_pred.chunk(2, dim=1)[0]
|
||||
else:
|
||||
noise_pred = noise_pred
|
||||
|
||||
# compute previous image: x_t -> x_t-1
|
||||
if num_inference_steps == 1:
|
||||
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs).pred_original_sample
|
||||
else:
|
||||
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
||||
|
||||
# call the callback, if provided
|
||||
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
||||
progress_bar.update()
|
||||
if callback is not None and i % callback_steps == 0:
|
||||
step_idx = i // getattr(self.scheduler, "order", 1)
|
||||
callback(step_idx, t, latents)
|
||||
|
||||
if not output_type == "latent":
|
||||
image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0]
|
||||
if use_resolution_binning:
|
||||
image = self.resize_and_crop_tensor(image, orig_width, orig_height)
|
||||
else:
|
||||
image = latents
|
||||
|
||||
if not output_type == "latent":
|
||||
image = self.image_processor.postprocess(image, output_type=output_type)
|
||||
|
||||
# Offload all models
|
||||
self.maybe_free_model_hooks()
|
||||
|
||||
if not return_dict:
|
||||
return (image,)
|
||||
|
||||
return ImagePipelineOutput(images=image)
|
||||
|
||||
|
||||
class PixArtSigmaPipeline(PixArtAlphaPipeline):
|
||||
r"""
|
||||
tmp Pipeline for text-to-image generation using PixArt-Sigma.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
tokenizer: T5Tokenizer,
|
||||
text_encoder: T5EncoderModel,
|
||||
vae: AutoencoderKL,
|
||||
transformer: Transformer2DModel,
|
||||
scheduler: DPMSolverMultistepScheduler,
|
||||
):
|
||||
super().__init__(tokenizer, text_encoder, vae, transformer, scheduler)
|
||||
|
||||
self.register_modules(
|
||||
tokenizer=tokenizer, text_encoder=text_encoder, vae=vae, transformer=transformer, scheduler=scheduler
|
||||
)
|
||||
|
||||
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1)
|
||||
self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
|
||||
|
||||
|
||||
def pixart_sigma_init_patched_inputs(self, norm_type):
|
||||
assert self.config.sample_size is not None, "Transformer2DModel over patched input must provide sample_size"
|
||||
|
||||
self.height = self.config.sample_size
|
||||
self.width = self.config.sample_size
|
||||
|
||||
self.patch_size = self.config.patch_size
|
||||
interpolation_scale = (
|
||||
self.config.interpolation_scale
|
||||
if self.config.interpolation_scale is not None
|
||||
else max(self.config.sample_size // 64, 1)
|
||||
)
|
||||
self.pos_embed = PatchEmbed(
|
||||
height=self.config.sample_size,
|
||||
width=self.config.sample_size,
|
||||
patch_size=self.config.patch_size,
|
||||
in_channels=self.in_channels,
|
||||
embed_dim=self.inner_dim,
|
||||
interpolation_scale=interpolation_scale,
|
||||
)
|
||||
|
||||
self.transformer_blocks = nn.ModuleList(
|
||||
[
|
||||
BasicTransformerBlock(
|
||||
self.inner_dim,
|
||||
self.config.num_attention_heads,
|
||||
self.config.attention_head_dim,
|
||||
dropout=self.config.dropout,
|
||||
cross_attention_dim=self.config.cross_attention_dim,
|
||||
activation_fn=self.config.activation_fn,
|
||||
num_embeds_ada_norm=self.config.num_embeds_ada_norm,
|
||||
attention_bias=self.config.attention_bias,
|
||||
only_cross_attention=self.config.only_cross_attention,
|
||||
double_self_attention=self.config.double_self_attention,
|
||||
upcast_attention=self.config.upcast_attention,
|
||||
norm_type=norm_type,
|
||||
norm_elementwise_affine=self.config.norm_elementwise_affine,
|
||||
norm_eps=self.config.norm_eps,
|
||||
attention_type=self.config.attention_type,
|
||||
)
|
||||
for _ in range(self.config.num_layers)
|
||||
]
|
||||
)
|
||||
|
||||
if self.config.norm_type != "ada_norm_single":
|
||||
self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6)
|
||||
self.proj_out_1 = nn.Linear(self.inner_dim, 2 * self.inner_dim)
|
||||
self.proj_out_2 = nn.Linear(
|
||||
self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels
|
||||
)
|
||||
elif self.config.norm_type == "ada_norm_single":
|
||||
self.norm_out = nn.LayerNorm(self.inner_dim, elementwise_affine=False, eps=1e-6)
|
||||
self.scale_shift_table = nn.Parameter(torch.randn(2, self.inner_dim) / self.inner_dim ** 0.5)
|
||||
self.proj_out = nn.Linear(
|
||||
self.inner_dim, self.config.patch_size * self.config.patch_size * self.out_channels
|
||||
)
|
||||
|
||||
# PixArt-Sigma blocks.
|
||||
self.adaln_single = None
|
||||
self.use_additional_conditions = False
|
||||
if self.config.norm_type == "ada_norm_single":
|
||||
# TODO(Sayak, PVP) clean this, PixArt-Sigma doesn't use additional_conditions anymore
|
||||
# additional conditions until we find better name
|
||||
self.adaln_single = AdaLayerNormSingle(
|
||||
self.inner_dim, use_additional_conditions=self.use_additional_conditions
|
||||
)
|
||||
|
||||
self.caption_projection = None
|
||||
if self.caption_channels is not None:
|
||||
self.caption_projection = PixArtAlphaTextProjection(
|
||||
in_features=self.caption_channels, hidden_size=self.inner_dim
|
||||
)
|
||||
Reference in New Issue
Block a user