mirror of
https://github.com/ostris/ai-toolkit.git
synced 2026-01-26 16:39:47 +00:00
Merge branch 'main' into dev
This commit is contained in:
12
.vscode/launch.json
vendored
12
.vscode/launch.json
vendored
@@ -40,5 +40,17 @@
|
||||
"console": "integratedTerminal",
|
||||
"justMyCode": false
|
||||
},
|
||||
{
|
||||
"name": "Python: Debug Current File (cuda:1)",
|
||||
"type": "python",
|
||||
"request": "launch",
|
||||
"program": "${file}",
|
||||
"console": "integratedTerminal",
|
||||
"env": {
|
||||
"CUDA_LAUNCH_BLOCKING": "1",
|
||||
"CUDA_VISIBLE_DEVICES": "1"
|
||||
},
|
||||
"justMyCode": false
|
||||
},
|
||||
]
|
||||
}
|
||||
@@ -414,3 +414,12 @@ To learn more about LoKr, read more about it at [KohakuBlueleaf/LyCORIS](https:/
|
||||
|
||||
Everything else should work the same including layer targeting.
|
||||
|
||||
|
||||
## Updates
|
||||
|
||||
### June 10, 2024
|
||||
- Decided to keep track up updates in the readme
|
||||
- Added support for SDXL in the UI
|
||||
- Added support for SD 1.5 in the UI
|
||||
- Fixed UI Wan 2.1 14b name bug
|
||||
- Added support for for conv training in the UI for models that support it
|
||||
@@ -438,7 +438,7 @@ class SDTrainer(BaseSDTrainProcess):
|
||||
dfe_loss += torch.nn.functional.mse_loss(pred_feature_list[i], target_feature_list[i], reduction="mean")
|
||||
|
||||
additional_loss += dfe_loss * self.train_config.diffusion_feature_extractor_weight * 100.0
|
||||
elif self.dfe.version == 3:
|
||||
elif self.dfe.version == 3 or self.dfe.version == 4:
|
||||
dfe_loss = self.dfe(
|
||||
noise=noise,
|
||||
noise_pred=noise_pred,
|
||||
@@ -501,15 +501,27 @@ class SDTrainer(BaseSDTrainProcess):
|
||||
loss = wavelet_loss(pred, batch.latents, noise)
|
||||
else:
|
||||
loss = torch.nn.functional.mse_loss(pred.float(), target.float(), reduction="none")
|
||||
|
||||
do_weighted_timesteps = False
|
||||
if self.sd.is_flow_matching:
|
||||
if self.train_config.linear_timesteps or self.train_config.linear_timesteps2:
|
||||
do_weighted_timesteps = True
|
||||
if self.train_config.timestep_type == "weighted":
|
||||
# use the noise scheduler to get the weights for the timesteps
|
||||
do_weighted_timesteps = True
|
||||
|
||||
# handle linear timesteps and only adjust the weight of the timesteps
|
||||
if self.sd.is_flow_matching and (self.train_config.linear_timesteps or self.train_config.linear_timesteps2):
|
||||
if do_weighted_timesteps:
|
||||
# calculate the weights for the timesteps
|
||||
timestep_weight = self.sd.noise_scheduler.get_weights_for_timesteps(
|
||||
timesteps,
|
||||
v2=self.train_config.linear_timesteps2
|
||||
v2=self.train_config.linear_timesteps2,
|
||||
timestep_type=self.train_config.timestep_type
|
||||
).to(loss.device, dtype=loss.dtype)
|
||||
timestep_weight = timestep_weight.view(-1, 1, 1, 1).detach()
|
||||
if len(loss.shape) == 4:
|
||||
timestep_weight = timestep_weight.view(-1, 1, 1, 1).detach()
|
||||
elif len(loss.shape) == 5:
|
||||
timestep_weight = timestep_weight.view(-1, 1, 1, 1, 1).detach()
|
||||
loss = loss * timestep_weight
|
||||
|
||||
if self.train_config.do_prior_divergence and prior_pred is not None:
|
||||
@@ -764,6 +776,7 @@ class SDTrainer(BaseSDTrainProcess):
|
||||
conditional_embeds: Union[PromptEmbeds, None] = None,
|
||||
unconditional_embeds: Union[PromptEmbeds, None] = None,
|
||||
batch: Optional['DataLoaderBatchDTO'] = None,
|
||||
is_primary_pred: bool = False,
|
||||
**kwargs,
|
||||
):
|
||||
dtype = get_torch_dtype(self.train_config.dtype)
|
||||
@@ -1553,6 +1566,7 @@ class SDTrainer(BaseSDTrainProcess):
|
||||
conditional_embeds=conditional_embeds.to(self.device_torch, dtype=dtype),
|
||||
unconditional_embeds=unconditional_embeds,
|
||||
batch=batch,
|
||||
is_primary_pred=True,
|
||||
**pred_kwargs
|
||||
)
|
||||
self.after_unet_predict()
|
||||
|
||||
@@ -1116,6 +1116,7 @@ class BaseSDTrainProcess(BaseTrainProcess):
|
||||
self.train_config.linear_timesteps,
|
||||
self.train_config.linear_timesteps2,
|
||||
self.train_config.timestep_type == 'linear',
|
||||
self.train_config.timestep_type == 'one_step',
|
||||
])
|
||||
|
||||
timestep_type = 'linear' if linear_timesteps else None
|
||||
@@ -1159,6 +1160,8 @@ class BaseSDTrainProcess(BaseTrainProcess):
|
||||
device=self.device_torch
|
||||
)
|
||||
timestep_indices = timestep_indices.long()
|
||||
elif self.train_config.timestep_type == 'one_step':
|
||||
timestep_indices = torch.zeros((batch_size,), device=self.device_torch, dtype=torch.long)
|
||||
elif content_or_style in ['style', 'content']:
|
||||
# this is from diffusers training code
|
||||
# Cubic sampling for favoring later or earlier timesteps
|
||||
|
||||
@@ -18,7 +18,7 @@ from jobs.process import BaseTrainProcess
|
||||
from toolkit.image_utils import show_tensors
|
||||
from toolkit.kohya_model_util import load_vae, convert_diffusers_back_to_ldm
|
||||
from toolkit.data_loader import ImageDataset
|
||||
from toolkit.losses import ComparativeTotalVariation, get_gradient_penalty, PatternLoss, total_variation
|
||||
from toolkit.losses import ComparativeTotalVariation, get_gradient_penalty, PatternLoss, total_variation, total_variation_deltas
|
||||
from toolkit.metadata import get_meta_for_safetensors
|
||||
from toolkit.optimizer import get_optimizer
|
||||
from toolkit.style import get_style_model_and_losses
|
||||
@@ -283,10 +283,33 @@ class TrainVAEProcess(BaseTrainProcess):
|
||||
else:
|
||||
return torch.tensor(0.0, device=self.device)
|
||||
|
||||
def get_ltv_loss(self, latent):
|
||||
def get_ltv_loss(self, latent, images):
|
||||
# loss to reduce the latent space variance
|
||||
if self.ltv_weight > 0:
|
||||
return total_variation(latent).mean()
|
||||
with torch.no_grad():
|
||||
images = images.to(latent.device, dtype=latent.dtype)
|
||||
# resize down to latent size
|
||||
images = torch.nn.functional.interpolate(images, size=(latent.shape[2], latent.shape[3]), mode='bilinear', align_corners=False)
|
||||
|
||||
# mean the color channel and then expand to latent size
|
||||
images = images.mean(dim=1, keepdim=True)
|
||||
images = images.repeat(1, latent.shape[1], 1, 1)
|
||||
|
||||
# normalize to a mean of 0 and std of 1
|
||||
images_mean = images.mean(dim=(2, 3), keepdim=True)
|
||||
images_std = images.std(dim=(2, 3), keepdim=True)
|
||||
images = (images - images_mean) / (images_std + 1e-6)
|
||||
|
||||
# now we target the same std of the image for the latent space as to not reduce to 0
|
||||
|
||||
latent_tv = torch.abs(total_variation_deltas(latent))
|
||||
images_tv = torch.abs(total_variation_deltas(images))
|
||||
loss = torch.abs(latent_tv - images_tv) # keep it spatially aware
|
||||
loss = loss.mean(dim=2, keepdim=True)
|
||||
loss = loss.mean(dim=3, keepdim=True) # mean over height and width
|
||||
loss = loss.mean(dim=1, keepdim=True) # mean over channels
|
||||
loss = loss.mean()
|
||||
return loss
|
||||
else:
|
||||
return torch.tensor(0.0, device=self.device)
|
||||
|
||||
@@ -733,7 +756,7 @@ class TrainVAEProcess(BaseTrainProcess):
|
||||
mv_loss = torch.tensor(0.0, device=self.device, dtype=self.torch_dtype)
|
||||
|
||||
if self.ltv_weight > 0:
|
||||
ltv_loss = self.get_ltv_loss(latents) * self.ltv_weight
|
||||
ltv_loss = self.get_ltv_loss(latents, batch) * self.ltv_weight
|
||||
else:
|
||||
ltv_loss = torch.tensor(0.0, device=self.device, dtype=self.torch_dtype)
|
||||
|
||||
|
||||
@@ -2,7 +2,7 @@ torchao==0.10.0
|
||||
safetensors
|
||||
git+https://github.com/jaretburkett/easy_dwpose.git
|
||||
git+https://github.com/huggingface/diffusers@363d1ab7e24c5ed6c190abb00df66d9edb74383b
|
||||
transformers==4.49.0
|
||||
transformers==4.52.4
|
||||
lycoris-lora==1.8.3
|
||||
flatten_json
|
||||
pyyaml
|
||||
|
||||
228
scripts/calculate_timestep_weighing_flex.py
Normal file
228
scripts/calculate_timestep_weighing_flex.py
Normal file
@@ -0,0 +1,228 @@
|
||||
import gc
|
||||
import os, sys
|
||||
from tqdm import tqdm
|
||||
import numpy as np
|
||||
import json
|
||||
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
||||
|
||||
# set visible devices to 0
|
||||
# os.environ["CUDA_VISIBLE_DEVICES"] = "0"
|
||||
|
||||
# protect from formatting
|
||||
if True:
|
||||
import torch
|
||||
from optimum.quanto import freeze, qfloat8, QTensor, qint4
|
||||
from diffusers import FluxTransformer2DModel, FluxPipeline, AutoencoderKL, FlowMatchEulerDiscreteScheduler
|
||||
from toolkit.util.quantize import quantize, get_qtype
|
||||
from transformers import T5EncoderModel, T5TokenizerFast, CLIPTextModel, CLIPTokenizer
|
||||
from torchvision import transforms
|
||||
|
||||
qtype = "qfloat8"
|
||||
dtype = torch.bfloat16
|
||||
# base_model_path = "black-forest-labs/FLUX.1-dev"
|
||||
base_model_path = "ostris/Flex.1-alpha"
|
||||
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
||||
print("Loading Transformer...")
|
||||
prompt = "Photo of a man and a woman in a park, sunny day"
|
||||
|
||||
output_root = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "output")
|
||||
output_path = os.path.join(output_root, "flex_timestep_weights.json")
|
||||
img_output_path = os.path.join(output_root, "flex_timestep_weights.png")
|
||||
|
||||
quantization_type = get_qtype(qtype)
|
||||
|
||||
def flush():
|
||||
torch.cuda.empty_cache()
|
||||
gc.collect()
|
||||
|
||||
pil_to_tensor = transforms.ToTensor()
|
||||
|
||||
with torch.no_grad():
|
||||
transformer = FluxTransformer2DModel.from_pretrained(
|
||||
base_model_path,
|
||||
subfolder='transformer',
|
||||
torch_dtype=dtype
|
||||
)
|
||||
|
||||
transformer.to(device, dtype=dtype)
|
||||
|
||||
print("Quantizing Transformer...")
|
||||
quantize(transformer, weights=quantization_type)
|
||||
freeze(transformer)
|
||||
flush()
|
||||
|
||||
print("Loading Scheduler...")
|
||||
scheduler = FlowMatchEulerDiscreteScheduler.from_pretrained(base_model_path, subfolder="scheduler")
|
||||
|
||||
print("Loading Autoencoder...")
|
||||
vae = AutoencoderKL.from_pretrained(base_model_path, subfolder="vae", torch_dtype=dtype)
|
||||
|
||||
vae.to(device, dtype=dtype)
|
||||
|
||||
flush()
|
||||
print("Loading Text Encoder...")
|
||||
tokenizer_2 = T5TokenizerFast.from_pretrained(base_model_path, subfolder="tokenizer_2", torch_dtype=dtype)
|
||||
text_encoder_2 = T5EncoderModel.from_pretrained(base_model_path, subfolder="text_encoder_2", torch_dtype=dtype)
|
||||
text_encoder_2.to(device, dtype=dtype)
|
||||
|
||||
print("Quantizing Text Encoder...")
|
||||
quantize(text_encoder_2, weights=get_qtype(qtype))
|
||||
freeze(text_encoder_2)
|
||||
flush()
|
||||
|
||||
print("Loading CLIP")
|
||||
text_encoder = CLIPTextModel.from_pretrained(base_model_path, subfolder="text_encoder", torch_dtype=dtype)
|
||||
tokenizer = CLIPTokenizer.from_pretrained(base_model_path, subfolder="tokenizer", torch_dtype=dtype)
|
||||
text_encoder.to(device, dtype=dtype)
|
||||
|
||||
print("Making pipe")
|
||||
|
||||
pipe: FluxPipeline = FluxPipeline(
|
||||
scheduler=scheduler,
|
||||
text_encoder=text_encoder,
|
||||
tokenizer=tokenizer,
|
||||
text_encoder_2=None,
|
||||
tokenizer_2=tokenizer_2,
|
||||
vae=vae,
|
||||
transformer=None,
|
||||
)
|
||||
pipe.text_encoder_2 = text_encoder_2
|
||||
pipe.transformer = transformer
|
||||
|
||||
pipe.to(device, dtype=dtype)
|
||||
|
||||
print("Encoding prompt...")
|
||||
|
||||
prompt_embeds, pooled_prompt_embeds, text_ids = pipe.encode_prompt(
|
||||
prompt,
|
||||
prompt_2=prompt,
|
||||
device=device
|
||||
)
|
||||
|
||||
|
||||
generator = torch.manual_seed(42)
|
||||
|
||||
height = 1024
|
||||
width = 1024
|
||||
|
||||
print("Generating image...")
|
||||
|
||||
# Fix a bug in diffusers/torch
|
||||
def callback_on_step_end(pipe, i, t, callback_kwargs):
|
||||
latents = callback_kwargs["latents"]
|
||||
if latents.dtype != dtype:
|
||||
latents = latents.to(dtype)
|
||||
return {"latents": latents}
|
||||
img = pipe(
|
||||
prompt_embeds=prompt_embeds,
|
||||
pooled_prompt_embeds=pooled_prompt_embeds,
|
||||
height=height,
|
||||
width=height,
|
||||
num_inference_steps=30,
|
||||
guidance_scale=3.5,
|
||||
generator=generator,
|
||||
callback_on_step_end=callback_on_step_end,
|
||||
).images[0]
|
||||
|
||||
img.save(img_output_path)
|
||||
print(f"Image saved to {img_output_path}")
|
||||
|
||||
print("Encoding image...")
|
||||
# img is a PIL image. convert it to a -1 to 1 tensor
|
||||
img = pil_to_tensor(img)
|
||||
img = img.unsqueeze(0) # add batch dimension
|
||||
img = img * 2 - 1 # convert to -1 to 1 range
|
||||
img = img.to(device, dtype=dtype)
|
||||
latents = vae.encode(img).latent_dist.sample()
|
||||
|
||||
shift = vae.config['shift_factor'] if vae.config['shift_factor'] is not None else 0
|
||||
latents = vae.config['scaling_factor'] * (latents - shift)
|
||||
|
||||
num_channels_latents = pipe.transformer.config.in_channels // 4
|
||||
|
||||
l_height = 2 * (int(height) // (pipe.vae_scale_factor * 2))
|
||||
l_width = 2 * (int(width) // (pipe.vae_scale_factor * 2))
|
||||
packed_latents = pipe._pack_latents(latents, 1, num_channels_latents, l_height, l_width)
|
||||
|
||||
packed_latents, latent_image_ids = pipe.prepare_latents(
|
||||
1,
|
||||
num_channels_latents,
|
||||
height,
|
||||
width,
|
||||
prompt_embeds.dtype,
|
||||
device,
|
||||
generator,
|
||||
packed_latents,
|
||||
)
|
||||
|
||||
print("Calculating timestep weights...")
|
||||
|
||||
torch.manual_seed(8675309)
|
||||
noise = torch.randn_like(packed_latents, device=device, dtype=dtype)
|
||||
|
||||
# Create linear timesteps from 1000 to 0
|
||||
num_train_timesteps = 1000
|
||||
timesteps_torch = torch.linspace(1000, 1, num_train_timesteps, device='cpu')
|
||||
timesteps = np.linspace(1, num_train_timesteps, num_train_timesteps, dtype=np.float32)[::-1].copy()
|
||||
timesteps = torch.from_numpy(timesteps).to(dtype=torch.float32)
|
||||
|
||||
timestep_weights = torch.zeros(num_train_timesteps, dtype=torch.float32, device=device)
|
||||
|
||||
guidance = torch.full([1], 1.0, device=device, dtype=torch.float32)
|
||||
guidance = guidance.expand(latents.shape[0])
|
||||
|
||||
pbar = tqdm(range(num_train_timesteps), desc="loss: 0.000000 scaler: 0.0000")
|
||||
for i in pbar:
|
||||
timestep = timesteps[i:i+1].to(device)
|
||||
t_01 = (timestep / 1000).to(device)
|
||||
t_01 = t_01.reshape(-1, 1, 1)
|
||||
noisy_latents = (1.0 - t_01) * packed_latents + t_01 * noise
|
||||
|
||||
noise_pred = pipe.transformer(
|
||||
hidden_states=noisy_latents, # torch.Size([1, 4096, 64])
|
||||
timestep=timestep / 1000,
|
||||
guidance=guidance,
|
||||
pooled_projections=pooled_prompt_embeds,
|
||||
encoder_hidden_states=prompt_embeds,
|
||||
txt_ids=text_ids,
|
||||
img_ids=latent_image_ids,
|
||||
return_dict=False,
|
||||
)[0]
|
||||
|
||||
target = noise - packed_latents
|
||||
|
||||
loss = torch.nn.functional.mse_loss(noise_pred.float(), target.float())
|
||||
loss = loss
|
||||
|
||||
# determine scaler to multiply loss by to make it 1
|
||||
scaler = 1.0 / (loss + 1e-6)
|
||||
|
||||
timestep_weights[i] = scaler
|
||||
pbar.set_description(f"loss: {loss.item():.6f} scaler: {scaler.item():.4f}")
|
||||
|
||||
print("normalizing timestep weights...")
|
||||
# normalize the timestep weights so they are a mean of 1.0
|
||||
timestep_weights = timestep_weights / timestep_weights.mean()
|
||||
timestep_weights = timestep_weights.cpu().numpy().tolist()
|
||||
|
||||
print("Saving timestep weights...")
|
||||
|
||||
with open(output_path, 'w') as f:
|
||||
json.dump(timestep_weights, f)
|
||||
|
||||
|
||||
print(f"Timestep weights saved to {output_path}")
|
||||
print("Done!")
|
||||
flush()
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
@@ -437,7 +437,7 @@ class TrainConfig:
|
||||
# adds an additional loss to the network to encourage it output a normalized standard deviation
|
||||
self.target_norm_std = kwargs.get('target_norm_std', None)
|
||||
self.target_norm_std_value = kwargs.get('target_norm_std_value', 1.0)
|
||||
self.timestep_type = kwargs.get('timestep_type', 'sigmoid') # sigmoid, linear, lognorm_blend, next_sample
|
||||
self.timestep_type = kwargs.get('timestep_type', 'sigmoid') # sigmoid, linear, lognorm_blend, next_sample, weighted, one_step
|
||||
self.next_sample_timesteps = kwargs.get('next_sample_timesteps', 8)
|
||||
self.linear_timesteps = kwargs.get('linear_timesteps', False)
|
||||
self.linear_timesteps2 = kwargs.get('linear_timesteps2', False)
|
||||
|
||||
@@ -1773,6 +1773,97 @@ class LatentCachingMixin:
|
||||
self.sd.restore_device_state()
|
||||
|
||||
|
||||
|
||||
class TextEmbeddingCachingMixin:
|
||||
def __init__(self: 'AiToolkitDataset', **kwargs):
|
||||
# if we have super, call it
|
||||
if hasattr(super(), '__init__'):
|
||||
super().__init__(**kwargs)
|
||||
self.is_caching_text_embeddings = self.dataset_config.cache_text_embeddings
|
||||
|
||||
def cache_text_embeddings(self: 'AiToolkitDataset'):
|
||||
|
||||
with accelerator.main_process_first():
|
||||
print_acc(f"Caching text_embeddings for {self.dataset_path}")
|
||||
# cache all latents to disk
|
||||
to_disk = self.is_caching_latents_to_disk
|
||||
to_memory = self.is_caching_latents_to_memory
|
||||
print_acc(" - Saving text embeddings to disk")
|
||||
# move sd items to cpu except for vae
|
||||
self.sd.set_device_state_preset('cache_latents')
|
||||
|
||||
# use tqdm to show progress
|
||||
i = 0
|
||||
for file_item in tqdm(self.file_list, desc=f'Caching latents{" to disk" if to_disk else ""}'):
|
||||
# set latent space version
|
||||
if self.sd.model_config.latent_space_version is not None:
|
||||
file_item.latent_space_version = self.sd.model_config.latent_space_version
|
||||
elif self.sd.is_xl:
|
||||
file_item.latent_space_version = 'sdxl'
|
||||
elif self.sd.is_v3:
|
||||
file_item.latent_space_version = 'sd3'
|
||||
elif self.sd.is_auraflow:
|
||||
file_item.latent_space_version = 'sdxl'
|
||||
elif self.sd.is_flux:
|
||||
file_item.latent_space_version = 'flux1'
|
||||
elif self.sd.model_config.is_pixart_sigma:
|
||||
file_item.latent_space_version = 'sdxl'
|
||||
else:
|
||||
file_item.latent_space_version = self.sd.model_config.arch
|
||||
file_item.is_caching_to_disk = to_disk
|
||||
file_item.is_caching_to_memory = to_memory
|
||||
file_item.latent_load_device = self.sd.device
|
||||
|
||||
latent_path = file_item.get_latent_path(recalculate=True)
|
||||
# check if it is saved to disk already
|
||||
if os.path.exists(latent_path):
|
||||
if to_memory:
|
||||
# load it into memory
|
||||
state_dict = load_file(latent_path, device='cpu')
|
||||
file_item._encoded_latent = state_dict['latent'].to('cpu', dtype=self.sd.torch_dtype)
|
||||
else:
|
||||
# not saved to disk, calculate
|
||||
# load the image first
|
||||
file_item.load_and_process_image(self.transform, only_load_latents=True)
|
||||
dtype = self.sd.torch_dtype
|
||||
device = self.sd.device_torch
|
||||
# add batch dimension
|
||||
try:
|
||||
imgs = file_item.tensor.unsqueeze(0).to(device, dtype=dtype)
|
||||
latent = self.sd.encode_images(imgs).squeeze(0)
|
||||
except Exception as e:
|
||||
print_acc(f"Error processing image: {file_item.path}")
|
||||
print_acc(f"Error: {str(e)}")
|
||||
raise e
|
||||
# save_latent
|
||||
if to_disk:
|
||||
state_dict = OrderedDict([
|
||||
('latent', latent.clone().detach().cpu()),
|
||||
])
|
||||
# metadata
|
||||
meta = get_meta_for_safetensors(file_item.get_latent_info_dict())
|
||||
os.makedirs(os.path.dirname(latent_path), exist_ok=True)
|
||||
save_file(state_dict, latent_path, metadata=meta)
|
||||
|
||||
if to_memory:
|
||||
# keep it in memory
|
||||
file_item._encoded_latent = latent.to('cpu', dtype=self.sd.torch_dtype)
|
||||
|
||||
del imgs
|
||||
del latent
|
||||
del file_item.tensor
|
||||
|
||||
# flush(garbage_collect=False)
|
||||
file_item.is_latent_cached = True
|
||||
i += 1
|
||||
# flush every 100
|
||||
# if i % 100 == 0:
|
||||
# flush()
|
||||
|
||||
# restore device state
|
||||
self.sd.restore_device_state()
|
||||
|
||||
|
||||
class CLIPCachingMixin:
|
||||
def __init__(self: 'AiToolkitDataset', **kwargs):
|
||||
# if we have super, call it
|
||||
|
||||
@@ -137,7 +137,8 @@ class ExponentialMovingAverage:
|
||||
|
||||
update_param = False
|
||||
if self.use_feedback:
|
||||
param_float.add_(tmp)
|
||||
# make feedback 10x decay
|
||||
param_float.add_(tmp * 10)
|
||||
update_param = True
|
||||
|
||||
if self.param_multiplier != 1.0:
|
||||
|
||||
@@ -7,7 +7,7 @@ import re
|
||||
import sys
|
||||
from typing import List, Optional, Dict, Type, Union
|
||||
import torch
|
||||
from diffusers import UNet2DConditionModel, PixArtTransformer2DModel, AuraFlowTransformer2DModel
|
||||
from diffusers import UNet2DConditionModel, PixArtTransformer2DModel, AuraFlowTransformer2DModel, WanTransformer3DModel
|
||||
from transformers import CLIPTextModel
|
||||
from toolkit.models.lokr import LokrModule
|
||||
|
||||
@@ -522,6 +522,14 @@ class LoRASpecialNetwork(ToolkitNetworkMixin, LoRANetwork):
|
||||
|
||||
transformer.pos_embed = self.transformer_pos_embed
|
||||
transformer.proj_out = self.transformer_proj_out
|
||||
|
||||
elif base_model is not None and base_model.arch == "wan21":
|
||||
transformer: WanTransformer3DModel = unet
|
||||
self.transformer_pos_embed = copy.deepcopy(transformer.patch_embedding)
|
||||
self.transformer_proj_out = copy.deepcopy(transformer.proj_out)
|
||||
|
||||
transformer.patch_embedding = self.transformer_pos_embed
|
||||
transformer.proj_out = self.transformer_proj_out
|
||||
|
||||
else:
|
||||
unet: UNet2DConditionModel = unet
|
||||
@@ -539,7 +547,8 @@ class LoRASpecialNetwork(ToolkitNetworkMixin, LoRANetwork):
|
||||
all_params = super().prepare_optimizer_params(text_encoder_lr, unet_lr, default_lr)
|
||||
|
||||
if self.full_train_in_out:
|
||||
if self.is_pixart or self.is_auraflow or self.is_flux:
|
||||
base_model = self.base_model_ref() if self.base_model_ref is not None else None
|
||||
if self.is_pixart or self.is_auraflow or self.is_flux or (base_model is not None and base_model.arch == "wan21"):
|
||||
all_params.append({"lr": unet_lr, "params": list(self.transformer_pos_embed.parameters())})
|
||||
all_params.append({"lr": unet_lr, "params": list(self.transformer_proj_out.parameters())})
|
||||
else:
|
||||
|
||||
@@ -13,6 +13,22 @@ def total_variation(image):
|
||||
n_elements = image.shape[1] * image.shape[2] * image.shape[3]
|
||||
return ((torch.sum(torch.abs(image[:, :, :, :-1] - image[:, :, :, 1:])) +
|
||||
torch.sum(torch.abs(image[:, :, :-1, :] - image[:, :, 1:, :]))) / n_elements)
|
||||
|
||||
def total_variation_deltas(image):
|
||||
"""
|
||||
Compute per-pixel total variation deltas.
|
||||
Input:
|
||||
- image: Tensor of shape (N, C, H, W)
|
||||
Returns:
|
||||
- Tensor with shape (N, C, H, W), padded to match input shape
|
||||
"""
|
||||
dh = torch.zeros_like(image)
|
||||
dv = torch.zeros_like(image)
|
||||
|
||||
dh[:, :, :, :-1] = torch.abs(image[:, :, :, 1:] - image[:, :, :, :-1])
|
||||
dv[:, :, :-1, :] = torch.abs(image[:, :, 1:, :] - image[:, :, :-1, :])
|
||||
|
||||
return dh + dv
|
||||
|
||||
|
||||
class ComparativeTotalVariation(torch.nn.Module):
|
||||
|
||||
@@ -1,3 +1,4 @@
|
||||
import math
|
||||
import torch
|
||||
import os
|
||||
from torch import nn
|
||||
@@ -351,12 +352,252 @@ class DiffusionFeatureExtractor3(nn.Module):
|
||||
|
||||
return total_loss
|
||||
|
||||
class DiffusionFeatureExtractor4(nn.Module):
|
||||
def __init__(self, device=torch.device("cuda"), dtype=torch.bfloat16, vae=None):
|
||||
super().__init__()
|
||||
self.version = 4
|
||||
if vae is None:
|
||||
raise ValueError("vae must be provided for DFE4")
|
||||
self.vae = vae
|
||||
# image_encoder_path = "google/siglip-so400m-patch14-384"
|
||||
image_encoder_path = "google/siglip2-so400m-patch16-naflex"
|
||||
from transformers import Siglip2ImageProcessor, Siglip2VisionModel
|
||||
try:
|
||||
self.image_processor = Siglip2ImageProcessor.from_pretrained(
|
||||
image_encoder_path)
|
||||
except EnvironmentError:
|
||||
self.image_processor = Siglip2ImageProcessor()
|
||||
|
||||
self.image_processor.max_num_patches = 1024
|
||||
|
||||
self.vision_encoder = Siglip2VisionModel.from_pretrained(
|
||||
image_encoder_path,
|
||||
ignore_mismatched_sizes=True
|
||||
).to(device, dtype=dtype)
|
||||
|
||||
self.losses = {}
|
||||
self.log_every = 100
|
||||
self.step = 0
|
||||
|
||||
def _target_hw(self, h, w, patch, max_patches, eps: float = 1e-5):
|
||||
def _snap(x, s):
|
||||
x = math.ceil((x * s) / patch) * patch
|
||||
return max(patch, int(x))
|
||||
|
||||
lo, hi = eps / 10, 1.0
|
||||
while hi - lo >= eps:
|
||||
mid = (lo + hi) / 2
|
||||
th, tw = _snap(h, mid), _snap(w, mid)
|
||||
if (th // patch) * (tw // patch) <= max_patches:
|
||||
lo = mid
|
||||
else:
|
||||
hi = mid
|
||||
return _snap(h, lo), _snap(w, lo)
|
||||
|
||||
|
||||
def tensors_to_siglip_like_features(self, batch: torch.Tensor):
|
||||
"""
|
||||
Args:
|
||||
batch: (bs, 3, H, W) tensor already in the desired value range
|
||||
(e.g. [-1, 1] or [0, 1]); no extra rescale / normalize here.
|
||||
|
||||
Returns:
|
||||
dict(
|
||||
pixel_values – (bs, L, P) where L = n_h*n_w, P = 3*patch*patch
|
||||
pixel_attention_mask– (L,) all-ones
|
||||
spatial_shapes – (n_h, n_w)
|
||||
)
|
||||
"""
|
||||
if batch.ndim != 4:
|
||||
raise ValueError("Expected (bs, 3, H, W) tensor")
|
||||
|
||||
bs, c, H, W = batch.shape
|
||||
proc = self.image_processor
|
||||
patch = proc.patch_size
|
||||
max_patches = proc.max_num_patches
|
||||
|
||||
# One shared resize for the whole batch
|
||||
tgt_h, tgt_w = self._target_hw(H, W, patch, max_patches)
|
||||
batch = torch.nn.functional.interpolate(
|
||||
batch, size=(tgt_h, tgt_w), mode="bilinear", align_corners=False
|
||||
)
|
||||
|
||||
n_h, n_w = tgt_h // patch, tgt_w // patch
|
||||
# flat_dim = c * patch * patch
|
||||
num_p = n_h * n_w
|
||||
|
||||
# unfold → (bs, flat_dim, num_p) → (bs, num_p, flat_dim)
|
||||
patches = (
|
||||
torch.nn.functional.unfold(batch, kernel_size=patch, stride=patch)
|
||||
.transpose(1, 2)
|
||||
)
|
||||
|
||||
attn_mask = torch.ones(num_p, dtype=torch.long, device=batch.device)
|
||||
spatial = torch.tensor((n_h, n_w), device=batch.device, dtype=torch.int32)
|
||||
|
||||
# repeat attn_mask for each batch element
|
||||
attn_mask = attn_mask.unsqueeze(0).repeat(bs, 1)
|
||||
spatial = spatial.unsqueeze(0).repeat(bs, 1)
|
||||
|
||||
return {
|
||||
"pixel_values": patches, # (bs, num_patches, patch_dim)
|
||||
"pixel_attention_mask": attn_mask, # (num_patches,)
|
||||
"spatial_shapes": spatial
|
||||
}
|
||||
|
||||
def get_siglip_features(self, tensors_0_1):
|
||||
dtype = torch.bfloat16
|
||||
device = self.vae.device
|
||||
|
||||
tensors_0_1 = torch.clamp(tensors_0_1, 0.0, 1.0)
|
||||
|
||||
mean = torch.tensor(self.image_processor.image_mean).to(
|
||||
device, dtype=dtype
|
||||
).detach()
|
||||
std = torch.tensor(self.image_processor.image_std).to(
|
||||
device, dtype=dtype
|
||||
).detach()
|
||||
# tensors_0_1 = torch.clip((255. * tensors_0_1), 0, 255).round() / 255.0
|
||||
clip_image = (tensors_0_1 - mean.view([1, 3, 1, 1])) / std.view([1, 3, 1, 1])
|
||||
|
||||
encoder_kwargs = self.tensors_to_siglip_like_features(clip_image)
|
||||
id_embeds = self.vision_encoder(
|
||||
pixel_values=encoder_kwargs['pixel_values'],
|
||||
pixel_attention_mask=encoder_kwargs['pixel_attention_mask'],
|
||||
spatial_shapes=encoder_kwargs['spatial_shapes'],
|
||||
output_hidden_states=True,
|
||||
)
|
||||
|
||||
# embeds = id_embeds['hidden_states'][-2] # penultimate layer
|
||||
image_embeds = id_embeds['pooler_output']
|
||||
image_embeds = image_embeds / image_embeds.norm(p=2, dim=-1, keepdim=True)
|
||||
return image_embeds
|
||||
|
||||
def forward(
|
||||
self,
|
||||
noise,
|
||||
noise_pred,
|
||||
noisy_latents,
|
||||
timesteps,
|
||||
batch: DataLoaderBatchDTO,
|
||||
scheduler: CustomFlowMatchEulerDiscreteScheduler,
|
||||
clip_weight=1.0,
|
||||
mse_weight=0.0,
|
||||
model=None
|
||||
):
|
||||
dtype = torch.bfloat16
|
||||
device = self.vae.device
|
||||
tensors = batch.tensor.to(device, dtype=dtype)
|
||||
is_video = False
|
||||
# stack time for video models on the batch dimension
|
||||
if len(noise_pred.shape) == 5:
|
||||
# B, C, T, H, W = images.shape
|
||||
# only take first time
|
||||
noise = noise[:, :, 0, :, :]
|
||||
noise_pred = noise_pred[:, :, 0, :, :]
|
||||
noisy_latents = noisy_latents[:, :, 0, :, :]
|
||||
is_video = True
|
||||
|
||||
if len(tensors.shape) == 5:
|
||||
# batch is different
|
||||
# (B, T, C, H, W)
|
||||
# only take first time
|
||||
tensors = tensors[:, 0, :, :, :]
|
||||
|
||||
if model is not None and hasattr(model, 'get_stepped_pred'):
|
||||
stepped_latents = model.get_stepped_pred(noise_pred, noise)
|
||||
else:
|
||||
# stepped_latents = noise - noise_pred
|
||||
# first we step the scheduler from current timestep to the very end for a full denoise
|
||||
bs = noise_pred.shape[0]
|
||||
noise_pred_chunks = torch.chunk(noise_pred, bs)
|
||||
timestep_chunks = torch.chunk(timesteps, bs)
|
||||
noisy_latent_chunks = torch.chunk(noisy_latents, bs)
|
||||
stepped_chunks = []
|
||||
for idx in range(bs):
|
||||
model_output = noise_pred_chunks[idx]
|
||||
timestep = timestep_chunks[idx]
|
||||
scheduler._step_index = None
|
||||
scheduler._init_step_index(timestep)
|
||||
sample = noisy_latent_chunks[idx].to(torch.float32)
|
||||
|
||||
sigma = scheduler.sigmas[scheduler.step_index]
|
||||
sigma_next = scheduler.sigmas[-1] # use last sigma for final step
|
||||
prev_sample = sample + (sigma_next - sigma) * model_output
|
||||
stepped_chunks.append(prev_sample)
|
||||
|
||||
stepped_latents = torch.cat(stepped_chunks, dim=0)
|
||||
|
||||
latents = stepped_latents.to(self.vae.device, dtype=self.vae.dtype)
|
||||
|
||||
scaling_factor = self.vae.config['scaling_factor'] if 'scaling_factor' in self.vae.config else 1.0
|
||||
shift_factor = self.vae.config['shift_factor'] if 'shift_factor' in self.vae.config else 0.0
|
||||
latents = (latents / scaling_factor) + shift_factor
|
||||
if is_video:
|
||||
# if video, we need to unsqueeze the latents to match the vae input shape
|
||||
latents = latents.unsqueeze(2)
|
||||
tensors_n1p1 = self.vae.decode(latents).sample # -1 to 1
|
||||
|
||||
if is_video:
|
||||
# if video, we need to squeeze the tensors to match the output shape
|
||||
tensors_n1p1 = tensors_n1p1.squeeze(2)
|
||||
|
||||
pred_images = (tensors_n1p1 + 1) / 2 # 0 to 1
|
||||
|
||||
total_loss = 0
|
||||
|
||||
with torch.no_grad():
|
||||
target_img = tensors.to(device, dtype=dtype)
|
||||
# go from -1 to 1 to 0 to 1
|
||||
target_img = (target_img + 1) / 2
|
||||
if clip_weight > 0:
|
||||
target_clip_output = self.get_siglip_features(target_img).detach()
|
||||
if clip_weight > 0:
|
||||
pred_clip_output = self.get_siglip_features(pred_images)
|
||||
clip_loss = torch.nn.functional.mse_loss(
|
||||
pred_clip_output.float(), target_clip_output.float()
|
||||
) * clip_weight
|
||||
|
||||
if 'clip_loss' not in self.losses:
|
||||
self.losses['clip_loss'] = clip_loss.item()
|
||||
else:
|
||||
self.losses['clip_loss'] += clip_loss.item()
|
||||
|
||||
total_loss += clip_loss
|
||||
if mse_weight > 0:
|
||||
mse_loss = torch.nn.functional.mse_loss(
|
||||
pred_images.float(), target_img.float()
|
||||
) * mse_weight
|
||||
|
||||
if 'mse_loss' not in self.losses:
|
||||
self.losses['mse_loss'] = mse_loss.item()
|
||||
else:
|
||||
self.losses['mse_loss'] += mse_loss.item()
|
||||
|
||||
total_loss += mse_loss
|
||||
|
||||
if self.step % self.log_every == 0 and self.step > 0:
|
||||
print(f"DFE losses:")
|
||||
for key in self.losses:
|
||||
self.losses[key] /= self.log_every
|
||||
# print in 2.000e-01 format
|
||||
print(f" - {key}: {self.losses[key]:.3e}")
|
||||
self.losses[key] = 0.0
|
||||
|
||||
# total_loss += mse_loss
|
||||
self.step += 1
|
||||
|
||||
return total_loss
|
||||
|
||||
def load_dfe(model_path, vae=None) -> DiffusionFeatureExtractor:
|
||||
if model_path == "v3":
|
||||
dfe = DiffusionFeatureExtractor3(vae=vae)
|
||||
dfe.eval()
|
||||
return dfe
|
||||
if model_path == "v4":
|
||||
dfe = DiffusionFeatureExtractor4(vae=vae)
|
||||
dfe.eval()
|
||||
return dfe
|
||||
if not os.path.exists(model_path):
|
||||
raise FileNotFoundError(f"Model file not found: {model_path}")
|
||||
# if it ende with safetensors
|
||||
|
||||
865
toolkit/models/wan21/autoencoder_kl_wan.py
Normal file
865
toolkit/models/wan21/autoencoder_kl_wan.py
Normal file
@@ -0,0 +1,865 @@
|
||||
# Copyright 2025 The Wan Team and The HuggingFace Team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from typing import List, Optional, Tuple, Union
|
||||
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.nn.functional as F
|
||||
import torch.utils.checkpoint
|
||||
|
||||
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
||||
from diffusers.utils import logging
|
||||
from diffusers.utils.accelerate_utils import apply_forward_hook
|
||||
from diffusers.models.activations import get_activation
|
||||
from diffusers.models.modeling_outputs import AutoencoderKLOutput
|
||||
from diffusers.models.modeling_utils import ModelMixin
|
||||
from diffusers.models.autoencoders.vae import DecoderOutput, DiagonalGaussianDistribution
|
||||
import copy
|
||||
|
||||
|
||||
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
||||
|
||||
CACHE_T = 2
|
||||
|
||||
|
||||
class WanCausalConv3d(nn.Conv3d):
|
||||
r"""
|
||||
A custom 3D causal convolution layer with feature caching support.
|
||||
|
||||
This layer extends the standard Conv3D layer by ensuring causality in the time dimension and handling feature
|
||||
caching for efficient inference.
|
||||
|
||||
Args:
|
||||
in_channels (int): Number of channels in the input image
|
||||
out_channels (int): Number of channels produced by the convolution
|
||||
kernel_size (int or tuple): Size of the convolving kernel
|
||||
stride (int or tuple, optional): Stride of the convolution. Default: 1
|
||||
padding (int or tuple, optional): Zero-padding added to all three sides of the input. Default: 0
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
in_channels: int,
|
||||
out_channels: int,
|
||||
kernel_size: Union[int, Tuple[int, int, int]],
|
||||
stride: Union[int, Tuple[int, int, int]] = 1,
|
||||
padding: Union[int, Tuple[int, int, int]] = 0,
|
||||
) -> None:
|
||||
super().__init__(
|
||||
in_channels=in_channels,
|
||||
out_channels=out_channels,
|
||||
kernel_size=kernel_size,
|
||||
stride=stride,
|
||||
padding=padding,
|
||||
)
|
||||
|
||||
# Set up causal padding
|
||||
self._padding = (self.padding[2], self.padding[2], self.padding[1], self.padding[1], 2 * self.padding[0], 0)
|
||||
self.padding = (0, 0, 0)
|
||||
|
||||
def forward(self, x, cache_x=None):
|
||||
padding = list(self._padding)
|
||||
if cache_x is not None and self._padding[4] > 0:
|
||||
cache_x = cache_x.to(x.device)
|
||||
x = torch.cat([cache_x, x], dim=2)
|
||||
padding[4] -= cache_x.shape[2]
|
||||
x = F.pad(x, padding)
|
||||
return super().forward(x)
|
||||
|
||||
|
||||
class WanRMS_norm(nn.Module):
|
||||
r"""
|
||||
A custom RMS normalization layer.
|
||||
|
||||
Args:
|
||||
dim (int): The number of dimensions to normalize over.
|
||||
channel_first (bool, optional): Whether the input tensor has channels as the first dimension.
|
||||
Default is True.
|
||||
images (bool, optional): Whether the input represents image data. Default is True.
|
||||
bias (bool, optional): Whether to include a learnable bias term. Default is False.
|
||||
"""
|
||||
|
||||
def __init__(self, dim: int, channel_first: bool = True, images: bool = True, bias: bool = False) -> None:
|
||||
super().__init__()
|
||||
broadcastable_dims = (1, 1, 1) if not images else (1, 1)
|
||||
shape = (dim, *broadcastable_dims) if channel_first else (dim,)
|
||||
|
||||
self.channel_first = channel_first
|
||||
self.scale = dim**0.5
|
||||
self.gamma = nn.Parameter(torch.ones(shape))
|
||||
self.bias = nn.Parameter(torch.zeros(shape)) if bias else 0.0
|
||||
|
||||
def forward(self, x):
|
||||
return F.normalize(x, dim=(1 if self.channel_first else -1)) * self.scale * self.gamma + self.bias
|
||||
|
||||
|
||||
class WanUpsample(nn.Upsample):
|
||||
r"""
|
||||
Perform upsampling while ensuring the output tensor has the same data type as the input.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor to be upsampled.
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Upsampled tensor with the same data type as the input.
|
||||
"""
|
||||
|
||||
def forward(self, x):
|
||||
return super().forward(x.float()).type_as(x)
|
||||
|
||||
|
||||
class WanResample(nn.Module):
|
||||
r"""
|
||||
A custom resampling module for 2D and 3D data.
|
||||
|
||||
Args:
|
||||
dim (int): The number of input/output channels.
|
||||
mode (str): The resampling mode. Must be one of:
|
||||
- 'none': No resampling (identity operation).
|
||||
- 'upsample2d': 2D upsampling with nearest-exact interpolation and convolution.
|
||||
- 'upsample3d': 3D upsampling with nearest-exact interpolation, convolution, and causal 3D convolution.
|
||||
- 'downsample2d': 2D downsampling with zero-padding and convolution.
|
||||
- 'downsample3d': 3D downsampling with zero-padding, convolution, and causal 3D convolution.
|
||||
"""
|
||||
|
||||
def __init__(self, dim: int, mode: str) -> None:
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.mode = mode
|
||||
|
||||
# layers
|
||||
if mode == "upsample2d":
|
||||
self.resample = nn.Sequential(
|
||||
WanUpsample(scale_factor=(2.0, 2.0), mode="nearest-exact"), nn.Conv2d(dim, dim // 2, 3, padding=1)
|
||||
)
|
||||
elif mode == "upsample3d":
|
||||
self.resample = nn.Sequential(
|
||||
WanUpsample(scale_factor=(2.0, 2.0), mode="nearest-exact"), nn.Conv2d(dim, dim // 2, 3, padding=1)
|
||||
)
|
||||
self.time_conv = WanCausalConv3d(dim, dim * 2, (3, 1, 1), padding=(1, 0, 0))
|
||||
|
||||
elif mode == "downsample2d":
|
||||
self.resample = nn.Sequential(nn.ZeroPad2d((0, 1, 0, 1)), nn.Conv2d(dim, dim, 3, stride=(2, 2)))
|
||||
elif mode == "downsample3d":
|
||||
self.resample = nn.Sequential(nn.ZeroPad2d((0, 1, 0, 1)), nn.Conv2d(dim, dim, 3, stride=(2, 2)))
|
||||
self.time_conv = WanCausalConv3d(dim, dim, (3, 1, 1), stride=(2, 1, 1), padding=(0, 0, 0))
|
||||
|
||||
else:
|
||||
self.resample = nn.Identity()
|
||||
|
||||
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
||||
b, c, t, h, w = x.size()
|
||||
if self.mode == "upsample3d":
|
||||
if feat_cache is not None:
|
||||
idx = feat_idx[0]
|
||||
if feat_cache[idx] is None:
|
||||
feat_cache[idx] = "Rep"
|
||||
feat_idx[0] += 1
|
||||
else:
|
||||
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
||||
if cache_x.shape[2] < 2 and feat_cache[idx] is not None and feat_cache[idx] != "Rep":
|
||||
# cache last frame of last two chunk
|
||||
cache_x = torch.cat(
|
||||
[feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2
|
||||
)
|
||||
if cache_x.shape[2] < 2 and feat_cache[idx] is not None and feat_cache[idx] == "Rep":
|
||||
cache_x = torch.cat([torch.zeros_like(cache_x).to(cache_x.device), cache_x], dim=2)
|
||||
if feat_cache[idx] == "Rep":
|
||||
x = self.time_conv(x)
|
||||
else:
|
||||
x = self.time_conv(x, feat_cache[idx])
|
||||
feat_cache[idx] = cache_x
|
||||
feat_idx[0] += 1
|
||||
|
||||
x = x.reshape(b, 2, c, t, h, w)
|
||||
x = torch.stack((x[:, 0, :, :, :, :], x[:, 1, :, :, :, :]), 3)
|
||||
x = x.reshape(b, c, t * 2, h, w)
|
||||
t = x.shape[2]
|
||||
x = x.permute(0, 2, 1, 3, 4).reshape(b * t, c, h, w)
|
||||
x = self.resample(x)
|
||||
x = x.view(b, t, x.size(1), x.size(2), x.size(3)).permute(0, 2, 1, 3, 4)
|
||||
|
||||
if self.mode == "downsample3d":
|
||||
if feat_cache is not None:
|
||||
idx = feat_idx[0]
|
||||
if feat_cache[idx] is None:
|
||||
feat_cache[idx] = x.clone()
|
||||
feat_idx[0] += 1
|
||||
else:
|
||||
cache_x = x[:, :, -1:, :, :].clone()
|
||||
x = self.time_conv(torch.cat([feat_cache[idx][:, :, -1:, :, :], x], 2))
|
||||
feat_cache[idx] = cache_x
|
||||
feat_idx[0] += 1
|
||||
return x
|
||||
|
||||
|
||||
class WanResidualBlock(nn.Module):
|
||||
r"""
|
||||
A custom residual block module.
|
||||
|
||||
Args:
|
||||
in_dim (int): Number of input channels.
|
||||
out_dim (int): Number of output channels.
|
||||
dropout (float, optional): Dropout rate for the dropout layer. Default is 0.0.
|
||||
non_linearity (str, optional): Type of non-linearity to use. Default is "silu".
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
in_dim: int,
|
||||
out_dim: int,
|
||||
dropout: float = 0.0,
|
||||
non_linearity: str = "silu",
|
||||
) -> None:
|
||||
super().__init__()
|
||||
self.in_dim = in_dim
|
||||
self.out_dim = out_dim
|
||||
self.nonlinearity = get_activation(non_linearity)
|
||||
|
||||
# layers
|
||||
self.norm1 = WanRMS_norm(in_dim, images=False)
|
||||
self.conv1 = WanCausalConv3d(in_dim, out_dim, 3, padding=1)
|
||||
self.norm2 = WanRMS_norm(out_dim, images=False)
|
||||
self.dropout = nn.Dropout(dropout)
|
||||
self.conv2 = WanCausalConv3d(out_dim, out_dim, 3, padding=1)
|
||||
self.conv_shortcut = WanCausalConv3d(in_dim, out_dim, 1) if in_dim != out_dim else nn.Identity()
|
||||
|
||||
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
||||
# Apply shortcut connection
|
||||
h = self.conv_shortcut(x)
|
||||
|
||||
# First normalization and activation
|
||||
x = self.norm1(x)
|
||||
x = self.nonlinearity(x)
|
||||
|
||||
if feat_cache is not None:
|
||||
idx = feat_idx[0]
|
||||
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
||||
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
||||
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
|
||||
|
||||
x = self.conv1(x, feat_cache[idx])
|
||||
feat_cache[idx] = cache_x
|
||||
feat_idx[0] += 1
|
||||
else:
|
||||
x = self.conv1(x)
|
||||
|
||||
# Second normalization and activation
|
||||
x = self.norm2(x)
|
||||
x = self.nonlinearity(x)
|
||||
|
||||
# Dropout
|
||||
x = self.dropout(x)
|
||||
|
||||
if feat_cache is not None:
|
||||
idx = feat_idx[0]
|
||||
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
||||
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
||||
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
|
||||
|
||||
x = self.conv2(x, feat_cache[idx])
|
||||
feat_cache[idx] = cache_x
|
||||
feat_idx[0] += 1
|
||||
else:
|
||||
x = self.conv2(x)
|
||||
|
||||
# Add residual connection
|
||||
return x + h
|
||||
|
||||
|
||||
class WanAttentionBlock(nn.Module):
|
||||
r"""
|
||||
Causal self-attention with a single head.
|
||||
|
||||
Args:
|
||||
dim (int): The number of channels in the input tensor.
|
||||
"""
|
||||
|
||||
def __init__(self, dim):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
|
||||
# layers
|
||||
self.norm = WanRMS_norm(dim)
|
||||
self.to_qkv = nn.Conv2d(dim, dim * 3, 1)
|
||||
self.proj = nn.Conv2d(dim, dim, 1)
|
||||
|
||||
def forward(self, x):
|
||||
identity = x
|
||||
batch_size, channels, time, height, width = x.size()
|
||||
|
||||
x = x.permute(0, 2, 1, 3, 4).reshape(batch_size * time, channels, height, width)
|
||||
x = self.norm(x)
|
||||
|
||||
# compute query, key, value
|
||||
qkv = self.to_qkv(x)
|
||||
qkv = qkv.reshape(batch_size * time, 1, channels * 3, -1)
|
||||
qkv = qkv.permute(0, 1, 3, 2).contiguous()
|
||||
q, k, v = qkv.chunk(3, dim=-1)
|
||||
|
||||
# apply attention
|
||||
x = F.scaled_dot_product_attention(q, k, v)
|
||||
|
||||
x = x.squeeze(1).permute(0, 2, 1).reshape(batch_size * time, channels, height, width)
|
||||
|
||||
# output projection
|
||||
x = self.proj(x)
|
||||
|
||||
# Reshape back: [(b*t), c, h, w] -> [b, c, t, h, w]
|
||||
x = x.view(batch_size, time, channels, height, width)
|
||||
x = x.permute(0, 2, 1, 3, 4)
|
||||
|
||||
return x + identity
|
||||
|
||||
|
||||
class WanMidBlock(nn.Module):
|
||||
"""
|
||||
Middle block for WanVAE encoder and decoder.
|
||||
|
||||
Args:
|
||||
dim (int): Number of input/output channels.
|
||||
dropout (float): Dropout rate.
|
||||
non_linearity (str): Type of non-linearity to use.
|
||||
"""
|
||||
|
||||
def __init__(self, dim: int, dropout: float = 0.0, non_linearity: str = "silu", num_layers: int = 1):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
|
||||
# Create the components
|
||||
resnets = [WanResidualBlock(dim, dim, dropout, non_linearity)]
|
||||
attentions = []
|
||||
for _ in range(num_layers):
|
||||
attentions.append(WanAttentionBlock(dim))
|
||||
resnets.append(WanResidualBlock(dim, dim, dropout, non_linearity))
|
||||
self.attentions = nn.ModuleList(attentions)
|
||||
self.resnets = nn.ModuleList(resnets)
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
||||
# First residual block
|
||||
x = self.resnets[0](x, feat_cache, feat_idx)
|
||||
|
||||
# Process through attention and residual blocks
|
||||
for attn, resnet in zip(self.attentions, self.resnets[1:]):
|
||||
if attn is not None:
|
||||
x = attn(x)
|
||||
|
||||
x = resnet(x, feat_cache, feat_idx)
|
||||
|
||||
return x
|
||||
|
||||
|
||||
class WanEncoder3d(nn.Module):
|
||||
r"""
|
||||
A 3D encoder module.
|
||||
|
||||
Args:
|
||||
dim (int): The base number of channels in the first layer.
|
||||
z_dim (int): The dimensionality of the latent space.
|
||||
dim_mult (list of int): Multipliers for the number of channels in each block.
|
||||
num_res_blocks (int): Number of residual blocks in each block.
|
||||
attn_scales (list of float): Scales at which to apply attention mechanisms.
|
||||
temperal_downsample (list of bool): Whether to downsample temporally in each block.
|
||||
dropout (float): Dropout rate for the dropout layers.
|
||||
non_linearity (str): Type of non-linearity to use.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim=128,
|
||||
z_dim=4,
|
||||
dim_mult=[1, 2, 4, 4],
|
||||
num_res_blocks=2,
|
||||
attn_scales=[],
|
||||
temperal_downsample=[True, True, False],
|
||||
dropout=0.0,
|
||||
non_linearity: str = "silu",
|
||||
):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.z_dim = z_dim
|
||||
self.dim_mult = dim_mult
|
||||
self.num_res_blocks = num_res_blocks
|
||||
self.attn_scales = attn_scales
|
||||
self.temperal_downsample = temperal_downsample
|
||||
self.nonlinearity = get_activation(non_linearity)
|
||||
|
||||
# dimensions
|
||||
dims = [dim * u for u in [1] + dim_mult]
|
||||
scale = 1.0
|
||||
|
||||
# init block
|
||||
self.conv_in = WanCausalConv3d(3, dims[0], 3, padding=1)
|
||||
|
||||
# downsample blocks
|
||||
self.down_blocks = nn.ModuleList([])
|
||||
for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
|
||||
# residual (+attention) blocks
|
||||
for _ in range(num_res_blocks):
|
||||
self.down_blocks.append(WanResidualBlock(in_dim, out_dim, dropout))
|
||||
if scale in attn_scales:
|
||||
self.down_blocks.append(WanAttentionBlock(out_dim))
|
||||
in_dim = out_dim
|
||||
|
||||
# downsample block
|
||||
if i != len(dim_mult) - 1:
|
||||
mode = "downsample3d" if temperal_downsample[i] else "downsample2d"
|
||||
self.down_blocks.append(WanResample(out_dim, mode=mode))
|
||||
scale /= 2.0
|
||||
|
||||
# middle blocks
|
||||
self.mid_block = WanMidBlock(out_dim, dropout, non_linearity, num_layers=1)
|
||||
|
||||
# output blocks
|
||||
self.norm_out = WanRMS_norm(out_dim, images=False)
|
||||
self.conv_out = WanCausalConv3d(out_dim, z_dim, 3, padding=1)
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
||||
if feat_cache is not None:
|
||||
idx = feat_idx[0]
|
||||
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
||||
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
||||
# cache last frame of last two chunk
|
||||
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
|
||||
x = self.conv_in(x, feat_cache[idx])
|
||||
feat_cache[idx] = cache_x
|
||||
feat_idx[0] += 1
|
||||
else:
|
||||
x = self.conv_in(x)
|
||||
|
||||
## downsamples
|
||||
for layer in self.down_blocks:
|
||||
if feat_cache is not None:
|
||||
x = layer(x, feat_cache, feat_idx)
|
||||
else:
|
||||
x = layer(x)
|
||||
|
||||
## middle
|
||||
x = self.mid_block(x, feat_cache, feat_idx)
|
||||
|
||||
## head
|
||||
x = self.norm_out(x)
|
||||
x = self.nonlinearity(x)
|
||||
if feat_cache is not None:
|
||||
idx = feat_idx[0]
|
||||
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
||||
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
||||
# cache last frame of last two chunk
|
||||
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
|
||||
x = self.conv_out(x, feat_cache[idx])
|
||||
feat_cache[idx] = cache_x
|
||||
feat_idx[0] += 1
|
||||
else:
|
||||
x = self.conv_out(x)
|
||||
return x
|
||||
|
||||
|
||||
class WanUpBlock(nn.Module):
|
||||
"""
|
||||
A block that handles upsampling for the WanVAE decoder.
|
||||
|
||||
Args:
|
||||
in_dim (int): Input dimension
|
||||
out_dim (int): Output dimension
|
||||
num_res_blocks (int): Number of residual blocks
|
||||
dropout (float): Dropout rate
|
||||
upsample_mode (str, optional): Mode for upsampling ('upsample2d' or 'upsample3d')
|
||||
non_linearity (str): Type of non-linearity to use
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
in_dim: int,
|
||||
out_dim: int,
|
||||
num_res_blocks: int,
|
||||
dropout: float = 0.0,
|
||||
upsample_mode: Optional[str] = None,
|
||||
non_linearity: str = "silu",
|
||||
):
|
||||
super().__init__()
|
||||
self.in_dim = in_dim
|
||||
self.out_dim = out_dim
|
||||
|
||||
# Create layers list
|
||||
resnets = []
|
||||
# Add residual blocks and attention if needed
|
||||
current_dim = in_dim
|
||||
for _ in range(num_res_blocks + 1):
|
||||
resnets.append(WanResidualBlock(current_dim, out_dim, dropout, non_linearity))
|
||||
current_dim = out_dim
|
||||
|
||||
self.resnets = nn.ModuleList(resnets)
|
||||
|
||||
# Add upsampling layer if needed
|
||||
self.upsamplers = None
|
||||
if upsample_mode is not None:
|
||||
self.upsamplers = nn.ModuleList([WanResample(out_dim, mode=upsample_mode)])
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
||||
"""
|
||||
Forward pass through the upsampling block.
|
||||
|
||||
Args:
|
||||
x (torch.Tensor): Input tensor
|
||||
feat_cache (list, optional): Feature cache for causal convolutions
|
||||
feat_idx (list, optional): Feature index for cache management
|
||||
|
||||
Returns:
|
||||
torch.Tensor: Output tensor
|
||||
"""
|
||||
for resnet in self.resnets:
|
||||
if feat_cache is not None:
|
||||
x = resnet(x, feat_cache, feat_idx)
|
||||
else:
|
||||
x = resnet(x)
|
||||
|
||||
if self.upsamplers is not None:
|
||||
if feat_cache is not None:
|
||||
x = self.upsamplers[0](x, feat_cache, feat_idx)
|
||||
else:
|
||||
x = self.upsamplers[0](x)
|
||||
return x
|
||||
|
||||
|
||||
class WanDecoder3d(nn.Module):
|
||||
r"""
|
||||
A 3D decoder module.
|
||||
|
||||
Args:
|
||||
dim (int): The base number of channels in the first layer.
|
||||
z_dim (int): The dimensionality of the latent space.
|
||||
dim_mult (list of int): Multipliers for the number of channels in each block.
|
||||
num_res_blocks (int): Number of residual blocks in each block.
|
||||
attn_scales (list of float): Scales at which to apply attention mechanisms.
|
||||
temperal_upsample (list of bool): Whether to upsample temporally in each block.
|
||||
dropout (float): Dropout rate for the dropout layers.
|
||||
non_linearity (str): Type of non-linearity to use.
|
||||
"""
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
dim=128,
|
||||
z_dim=4,
|
||||
dim_mult=[1, 2, 4, 4],
|
||||
num_res_blocks=2,
|
||||
attn_scales=[],
|
||||
temperal_upsample=[False, True, True],
|
||||
dropout=0.0,
|
||||
non_linearity: str = "silu",
|
||||
):
|
||||
super().__init__()
|
||||
self.dim = dim
|
||||
self.z_dim = z_dim
|
||||
self.dim_mult = dim_mult
|
||||
self.num_res_blocks = num_res_blocks
|
||||
self.attn_scales = attn_scales
|
||||
self.temperal_upsample = temperal_upsample
|
||||
|
||||
self.nonlinearity = get_activation(non_linearity)
|
||||
|
||||
# dimensions
|
||||
dims = [dim * u for u in [dim_mult[-1]] + dim_mult[::-1]]
|
||||
scale = 1.0 / 2 ** (len(dim_mult) - 2)
|
||||
|
||||
# init block
|
||||
self.conv_in = WanCausalConv3d(z_dim, dims[0], 3, padding=1)
|
||||
|
||||
# middle blocks
|
||||
self.mid_block = WanMidBlock(dims[0], dropout, non_linearity, num_layers=1)
|
||||
|
||||
# upsample blocks
|
||||
self.up_blocks = nn.ModuleList([])
|
||||
for i, (in_dim, out_dim) in enumerate(zip(dims[:-1], dims[1:])):
|
||||
# residual (+attention) blocks
|
||||
if i > 0:
|
||||
in_dim = in_dim // 2
|
||||
|
||||
# Determine if we need upsampling
|
||||
upsample_mode = None
|
||||
if i != len(dim_mult) - 1:
|
||||
upsample_mode = "upsample3d" if temperal_upsample[i] else "upsample2d"
|
||||
|
||||
# Create and add the upsampling block
|
||||
up_block = WanUpBlock(
|
||||
in_dim=in_dim,
|
||||
out_dim=out_dim,
|
||||
num_res_blocks=num_res_blocks,
|
||||
dropout=dropout,
|
||||
upsample_mode=upsample_mode,
|
||||
non_linearity=non_linearity,
|
||||
)
|
||||
self.up_blocks.append(up_block)
|
||||
|
||||
# Update scale for next iteration
|
||||
if upsample_mode is not None:
|
||||
scale *= 2.0
|
||||
|
||||
# output blocks
|
||||
self.norm_out = WanRMS_norm(out_dim, images=False)
|
||||
self.conv_out = WanCausalConv3d(out_dim, 3, 3, padding=1)
|
||||
|
||||
self.gradient_checkpointing = False
|
||||
|
||||
def forward(self, x, feat_cache=None, feat_idx=[0]):
|
||||
## conv1
|
||||
if feat_cache is not None:
|
||||
idx = feat_idx[0]
|
||||
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
||||
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
||||
# cache last frame of last two chunk
|
||||
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
|
||||
x = self.conv_in(x, feat_cache[idx])
|
||||
feat_cache[idx] = cache_x
|
||||
feat_idx[0] += 1
|
||||
else:
|
||||
x = self.conv_in(x)
|
||||
|
||||
## middle
|
||||
if torch.is_grad_enabled() and self.gradient_checkpointing:
|
||||
# middle
|
||||
x = self._gradient_checkpointing_func(self.mid_block, x, feat_cache, feat_idx)
|
||||
|
||||
## upsamples
|
||||
for up_block in self.up_blocks:
|
||||
x = self._gradient_checkpointing_func(up_block, x, feat_cache, feat_idx)
|
||||
|
||||
else:
|
||||
x = self.mid_block(x, feat_cache, feat_idx)
|
||||
|
||||
## upsamples
|
||||
for up_block in self.up_blocks:
|
||||
x = up_block(x, feat_cache, feat_idx)
|
||||
|
||||
## head
|
||||
x = self.norm_out(x)
|
||||
x = self.nonlinearity(x)
|
||||
if feat_cache is not None:
|
||||
idx = feat_idx[0]
|
||||
cache_x = x[:, :, -CACHE_T:, :, :].clone()
|
||||
if cache_x.shape[2] < 2 and feat_cache[idx] is not None:
|
||||
# cache last frame of last two chunk
|
||||
cache_x = torch.cat([feat_cache[idx][:, :, -1, :, :].unsqueeze(2).to(cache_x.device), cache_x], dim=2)
|
||||
x = self.conv_out(x, feat_cache[idx])
|
||||
feat_cache[idx] = cache_x
|
||||
feat_idx[0] += 1
|
||||
else:
|
||||
x = self.conv_out(x)
|
||||
return x
|
||||
|
||||
|
||||
class AutoencoderKLWan(ModelMixin, ConfigMixin):
|
||||
r"""
|
||||
A VAE model with KL loss for encoding videos into latents and decoding latent representations into videos.
|
||||
Introduced in [Wan 2.1].
|
||||
|
||||
This model inherits from [`ModelMixin`]. Check the superclass documentation for it's generic methods implemented
|
||||
for all models (such as downloading or saving).
|
||||
"""
|
||||
|
||||
_supports_gradient_checkpointing = True
|
||||
|
||||
@register_to_config
|
||||
def __init__(
|
||||
self,
|
||||
base_dim: int = 96,
|
||||
z_dim: int = 16,
|
||||
dim_mult: Tuple[int] = [1, 2, 4, 4],
|
||||
num_res_blocks: int = 2,
|
||||
attn_scales: List[float] = [],
|
||||
temperal_downsample: List[bool] = [False, True, True],
|
||||
dropout: float = 0.0,
|
||||
latents_mean: List[float] = [
|
||||
-0.7571,
|
||||
-0.7089,
|
||||
-0.9113,
|
||||
0.1075,
|
||||
-0.1745,
|
||||
0.9653,
|
||||
-0.1517,
|
||||
1.5508,
|
||||
0.4134,
|
||||
-0.0715,
|
||||
0.5517,
|
||||
-0.3632,
|
||||
-0.1922,
|
||||
-0.9497,
|
||||
0.2503,
|
||||
-0.2921,
|
||||
],
|
||||
latents_std: List[float] = [
|
||||
2.8184,
|
||||
1.4541,
|
||||
2.3275,
|
||||
2.6558,
|
||||
1.2196,
|
||||
1.7708,
|
||||
2.6052,
|
||||
2.0743,
|
||||
3.2687,
|
||||
2.1526,
|
||||
2.8652,
|
||||
1.5579,
|
||||
1.6382,
|
||||
1.1253,
|
||||
2.8251,
|
||||
1.9160,
|
||||
],
|
||||
) -> None:
|
||||
super().__init__()
|
||||
|
||||
self.z_dim = z_dim
|
||||
self.temperal_downsample = temperal_downsample
|
||||
self.temperal_upsample = temperal_downsample[::-1]
|
||||
|
||||
self.encoder = WanEncoder3d(
|
||||
base_dim, z_dim * 2, dim_mult, num_res_blocks, attn_scales, self.temperal_downsample, dropout
|
||||
)
|
||||
self.quant_conv = WanCausalConv3d(z_dim * 2, z_dim * 2, 1)
|
||||
self.post_quant_conv = WanCausalConv3d(z_dim, z_dim, 1)
|
||||
|
||||
self.decoder = WanDecoder3d(
|
||||
base_dim, z_dim, dim_mult, num_res_blocks, attn_scales, self.temperal_upsample, dropout
|
||||
)
|
||||
|
||||
def clear_cache(self):
|
||||
def _count_conv3d(model):
|
||||
count = 0
|
||||
for m in model.modules():
|
||||
if isinstance(m, WanCausalConv3d):
|
||||
count += 1
|
||||
return count
|
||||
|
||||
self._conv_num = _count_conv3d(self.decoder)
|
||||
self._conv_idx = [0]
|
||||
self._feat_map = [None] * self._conv_num
|
||||
# cache encode
|
||||
self._enc_conv_num = _count_conv3d(self.encoder)
|
||||
self._enc_conv_idx = [0]
|
||||
self._enc_feat_map = [None] * self._enc_conv_num
|
||||
|
||||
def _encode(self, x: torch.Tensor) -> torch.Tensor:
|
||||
self.clear_cache()
|
||||
## cache
|
||||
t = x.shape[2]
|
||||
iter_ = 1 + (t - 1) // 4
|
||||
for i in range(iter_):
|
||||
self._enc_conv_idx = [0]
|
||||
if i == 0:
|
||||
out = self.encoder(x[:, :, :1, :, :], feat_cache=self._enc_feat_map, feat_idx=self._enc_conv_idx)
|
||||
else:
|
||||
out_ = self.encoder(
|
||||
x[:, :, 1 + 4 * (i - 1) : 1 + 4 * i, :, :],
|
||||
feat_cache=self._enc_feat_map,
|
||||
feat_idx=self._enc_conv_idx,
|
||||
)
|
||||
out = torch.cat([out, out_], 2)
|
||||
|
||||
enc = self.quant_conv(out)
|
||||
mu, logvar = enc[:, : self.z_dim, :, :, :], enc[:, self.z_dim :, :, :, :]
|
||||
enc = torch.cat([mu, logvar], dim=1)
|
||||
self.clear_cache()
|
||||
return enc
|
||||
|
||||
@apply_forward_hook
|
||||
def encode(
|
||||
self, x: torch.Tensor, return_dict: bool = True
|
||||
) -> Union[AutoencoderKLOutput, Tuple[DiagonalGaussianDistribution]]:
|
||||
r"""
|
||||
Encode a batch of images into latents.
|
||||
|
||||
Args:
|
||||
x (`torch.Tensor`): Input batch of images.
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether to return a [`~models.autoencoder_kl.AutoencoderKLOutput`] instead of a plain tuple.
|
||||
|
||||
Returns:
|
||||
The latent representations of the encoded videos. If `return_dict` is True, a
|
||||
[`~models.autoencoder_kl.AutoencoderKLOutput`] is returned, otherwise a plain `tuple` is returned.
|
||||
"""
|
||||
h = self._encode(x)
|
||||
posterior = DiagonalGaussianDistribution(h)
|
||||
if not return_dict:
|
||||
return (posterior,)
|
||||
return AutoencoderKLOutput(latent_dist=posterior)
|
||||
|
||||
def _decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
|
||||
self.clear_cache()
|
||||
|
||||
iter_ = z.shape[2]
|
||||
x = self.post_quant_conv(z)
|
||||
for i in range(iter_):
|
||||
|
||||
self._conv_idx = [0]
|
||||
if i == 0:
|
||||
out = self.decoder(x[:, :, i : i + 1, :, :], feat_cache=self._feat_map, feat_idx=self._conv_idx)
|
||||
else:
|
||||
out_ = self.decoder(x[:, :, i : i + 1, :, :], feat_cache=self._feat_map, feat_idx=self._conv_idx)
|
||||
out = torch.cat([out, out_], 2)
|
||||
|
||||
out = torch.clamp(out, min=-1.0, max=1.0)
|
||||
self.clear_cache()
|
||||
if not return_dict:
|
||||
return (out,)
|
||||
|
||||
return DecoderOutput(sample=out)
|
||||
|
||||
@apply_forward_hook
|
||||
def decode(self, z: torch.Tensor, return_dict: bool = True) -> Union[DecoderOutput, torch.Tensor]:
|
||||
r"""
|
||||
Decode a batch of images.
|
||||
|
||||
Args:
|
||||
z (`torch.Tensor`): Input batch of latent vectors.
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether to return a [`~models.vae.DecoderOutput`] instead of a plain tuple.
|
||||
|
||||
Returns:
|
||||
[`~models.vae.DecoderOutput`] or `tuple`:
|
||||
If return_dict is True, a [`~models.vae.DecoderOutput`] is returned, otherwise a plain `tuple` is
|
||||
returned.
|
||||
"""
|
||||
decoded = self._decode(z).sample
|
||||
if not return_dict:
|
||||
return (decoded,)
|
||||
|
||||
return DecoderOutput(sample=decoded)
|
||||
|
||||
def forward(
|
||||
self,
|
||||
sample: torch.Tensor,
|
||||
sample_posterior: bool = False,
|
||||
return_dict: bool = True,
|
||||
generator: Optional[torch.Generator] = None,
|
||||
) -> Union[DecoderOutput, torch.Tensor]:
|
||||
"""
|
||||
Args:
|
||||
sample (`torch.Tensor`): Input sample.
|
||||
return_dict (`bool`, *optional*, defaults to `True`):
|
||||
Whether or not to return a [`DecoderOutput`] instead of a plain tuple.
|
||||
"""
|
||||
x = sample
|
||||
posterior = self.encode(x).latent_dist
|
||||
if sample_posterior:
|
||||
z = posterior.sample(generator=generator)
|
||||
else:
|
||||
z = posterior.mode()
|
||||
dec = self.decode(z, return_dict=return_dict)
|
||||
return dec
|
||||
@@ -9,7 +9,8 @@ from toolkit.dequantize import patch_dequantization_on_save
|
||||
from toolkit.models.base_model import BaseModel
|
||||
from toolkit.prompt_utils import PromptEmbeds
|
||||
from transformers import AutoTokenizer, UMT5EncoderModel
|
||||
from diffusers import AutoencoderKLWan, WanPipeline, WanTransformer3DModel
|
||||
from diffusers import WanPipeline, WanTransformer3DModel, AutoencoderKL
|
||||
from .autoencoder_kl_wan import AutoencoderKLWan
|
||||
import os
|
||||
import sys
|
||||
|
||||
|
||||
@@ -4,6 +4,7 @@ from torch.distributions import LogNormal
|
||||
from diffusers import FlowMatchEulerDiscreteScheduler
|
||||
import torch
|
||||
import numpy as np
|
||||
from toolkit.timestep_weighing.default_weighing_scheme import default_weighing_scheme
|
||||
|
||||
|
||||
def calculate_shift(
|
||||
@@ -47,20 +48,26 @@ class CustomFlowMatchEulerDiscreteScheduler(FlowMatchEulerDiscreteScheduler):
|
||||
hbsmntw_weighing[num_timesteps //
|
||||
2:] = hbsmntw_weighing[num_timesteps // 2:].max()
|
||||
|
||||
# Create linear timesteps from 1000 to 0
|
||||
timesteps = torch.linspace(1000, 0, num_timesteps, device='cpu')
|
||||
# Create linear timesteps from 1000 to 1
|
||||
timesteps = torch.linspace(1000, 1, num_timesteps, device='cpu')
|
||||
|
||||
self.linear_timesteps = timesteps
|
||||
self.linear_timesteps_weights = bsmntw_weighing
|
||||
self.linear_timesteps_weights2 = hbsmntw_weighing
|
||||
pass
|
||||
|
||||
def get_weights_for_timesteps(self, timesteps: torch.Tensor, v2=False) -> torch.Tensor:
|
||||
def get_weights_for_timesteps(self, timesteps: torch.Tensor, v2=False, timestep_type="linear") -> torch.Tensor:
|
||||
# Get the indices of the timesteps
|
||||
step_indices = [(self.timesteps == t).nonzero().item()
|
||||
for t in timesteps]
|
||||
|
||||
# Get the weights for the timesteps
|
||||
if timestep_type == "weighted":
|
||||
weights = torch.tensor(
|
||||
[default_weighing_scheme[i] for i in step_indices],
|
||||
device=timesteps.device,
|
||||
dtype=timesteps.dtype
|
||||
)
|
||||
if v2:
|
||||
weights = self.linear_timesteps_weights2[step_indices].flatten()
|
||||
else:
|
||||
@@ -106,8 +113,8 @@ class CustomFlowMatchEulerDiscreteScheduler(FlowMatchEulerDiscreteScheduler):
|
||||
patch_size=1
|
||||
):
|
||||
self.timestep_type = timestep_type
|
||||
if timestep_type == 'linear':
|
||||
timesteps = torch.linspace(1000, 0, num_timesteps, device=device)
|
||||
if timestep_type == 'linear' or timestep_type == 'weighted':
|
||||
timesteps = torch.linspace(1000, 1, num_timesteps, device=device)
|
||||
self.timesteps = timesteps
|
||||
return timesteps
|
||||
elif timestep_type == 'sigmoid':
|
||||
@@ -198,7 +205,7 @@ class CustomFlowMatchEulerDiscreteScheduler(FlowMatchEulerDiscreteScheduler):
|
||||
t1 = ((1 - t1/t1.max()) * 1000)
|
||||
|
||||
# add half of linear
|
||||
t2 = torch.linspace(1000, 0, int(
|
||||
t2 = torch.linspace(1000, 1, int(
|
||||
num_timesteps * (1 - alpha)), device=device)
|
||||
timesteps = torch.cat((t1, t2))
|
||||
|
||||
|
||||
0
toolkit/timestep_weighing/__init__.py
Normal file
0
toolkit/timestep_weighing/__init__.py
Normal file
1004
toolkit/timestep_weighing/default_weighing_scheme.py
Normal file
1004
toolkit/timestep_weighing/default_weighing_scheme.py
Normal file
File diff suppressed because it is too large
Load Diff
BIN
toolkit/timestep_weighing/flex_timestep_weights_plot.png
Normal file
BIN
toolkit/timestep_weighing/flex_timestep_weights_plot.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 190 KiB |
@@ -33,7 +33,6 @@ export default function SimpleJob({
|
||||
gpuList,
|
||||
datasetOptions,
|
||||
}: Props) {
|
||||
|
||||
const modelArch = useMemo(() => {
|
||||
return modelArchs.find(a => a.name === jobConfig.config.process[0].model.arch) as ModelArch;
|
||||
}, [jobConfig.config.process[0].model.arch]);
|
||||
@@ -104,8 +103,7 @@ export default function SimpleJob({
|
||||
const newDataset = objectCopy(dataset);
|
||||
newDataset.controls = controls;
|
||||
return newDataset;
|
||||
}
|
||||
);
|
||||
});
|
||||
setJobConfig(datasets, 'config.process[0].datasets');
|
||||
}}
|
||||
options={
|
||||
@@ -131,20 +129,22 @@ export default function SimpleJob({
|
||||
placeholder=""
|
||||
required
|
||||
/>
|
||||
<FormGroup label="Quantize">
|
||||
<div className="grid grid-cols-2 gap-2">
|
||||
<Checkbox
|
||||
label="Transformer"
|
||||
checked={jobConfig.config.process[0].model.quantize}
|
||||
onChange={value => setJobConfig(value, 'config.process[0].model.quantize')}
|
||||
/>
|
||||
<Checkbox
|
||||
label="Text Encoder"
|
||||
checked={jobConfig.config.process[0].model.quantize_te}
|
||||
onChange={value => setJobConfig(value, 'config.process[0].model.quantize_te')}
|
||||
/>
|
||||
</div>
|
||||
</FormGroup>
|
||||
{modelArch?.disableSections?.includes('model.quantize') ? null : (
|
||||
<FormGroup label="Quantize">
|
||||
<div className="grid grid-cols-2 gap-2">
|
||||
<Checkbox
|
||||
label="Transformer"
|
||||
checked={jobConfig.config.process[0].model.quantize}
|
||||
onChange={value => setJobConfig(value, 'config.process[0].model.quantize')}
|
||||
/>
|
||||
<Checkbox
|
||||
label="Text Encoder"
|
||||
checked={jobConfig.config.process[0].model.quantize_te}
|
||||
onChange={value => setJobConfig(value, 'config.process[0].model.quantize_te')}
|
||||
/>
|
||||
</div>
|
||||
</FormGroup>
|
||||
)}
|
||||
</Card>
|
||||
<Card title="Target Configuration">
|
||||
<SelectInput
|
||||
@@ -171,19 +171,37 @@ export default function SimpleJob({
|
||||
/>
|
||||
)}
|
||||
{jobConfig.config.process[0].network?.type == 'lora' && (
|
||||
<NumberInput
|
||||
label="Linear Rank"
|
||||
value={jobConfig.config.process[0].network.linear}
|
||||
onChange={value => {
|
||||
console.log('onChange', value);
|
||||
setJobConfig(value, 'config.process[0].network.linear');
|
||||
setJobConfig(value, 'config.process[0].network.linear_alpha');
|
||||
}}
|
||||
placeholder="eg. 16"
|
||||
min={0}
|
||||
max={1024}
|
||||
required
|
||||
/>
|
||||
<>
|
||||
<NumberInput
|
||||
label="Linear Rank"
|
||||
value={jobConfig.config.process[0].network.linear}
|
||||
onChange={value => {
|
||||
console.log('onChange', value);
|
||||
setJobConfig(value, 'config.process[0].network.linear');
|
||||
setJobConfig(value, 'config.process[0].network.linear_alpha');
|
||||
}}
|
||||
placeholder="eg. 16"
|
||||
min={0}
|
||||
max={1024}
|
||||
required
|
||||
/>
|
||||
{
|
||||
modelArch?.disableSections?.includes('network.conv') ? null : (
|
||||
<NumberInput
|
||||
label="Conv Rank"
|
||||
value={jobConfig.config.process[0].network.conv}
|
||||
onChange={value => {
|
||||
console.log('onChange', value);
|
||||
setJobConfig(value, 'config.process[0].network.conv');
|
||||
setJobConfig(value, 'config.process[0].network.conv_alpha');
|
||||
}}
|
||||
placeholder="eg. 16"
|
||||
min={0}
|
||||
max={1024}
|
||||
/>
|
||||
)
|
||||
}
|
||||
</>
|
||||
)}
|
||||
</Card>
|
||||
<Card title="Save Configuration">
|
||||
@@ -276,16 +294,19 @@ export default function SimpleJob({
|
||||
/>
|
||||
</div>
|
||||
<div>
|
||||
<SelectInput
|
||||
label="Timestep Type"
|
||||
value={jobConfig.config.process[0].train.timestep_type}
|
||||
onChange={value => setJobConfig(value, 'config.process[0].train.timestep_type')}
|
||||
options={[
|
||||
{ value: 'sigmoid', label: 'Sigmoid' },
|
||||
{ value: 'linear', label: 'Linear' },
|
||||
{ value: 'shift', label: 'Shift' },
|
||||
]}
|
||||
/>
|
||||
{modelArch?.disableSections?.includes('train.timestep_type') ? null : (
|
||||
<SelectInput
|
||||
label="Timestep Type"
|
||||
value={jobConfig.config.process[0].train.timestep_type}
|
||||
disabled={modelArch?.disableSections?.includes('train.timestep_type') || false}
|
||||
onChange={value => setJobConfig(value, 'config.process[0].train.timestep_type')}
|
||||
options={[
|
||||
{ value: 'sigmoid', label: 'Sigmoid' },
|
||||
{ value: 'linear', label: 'Linear' },
|
||||
{ value: 'shift', label: 'Shift' },
|
||||
]}
|
||||
/>
|
||||
)}
|
||||
<SelectInput
|
||||
label="Timestep Bias"
|
||||
className="pt-2"
|
||||
@@ -345,7 +366,7 @@ export default function SimpleJob({
|
||||
/>
|
||||
</FormGroup>
|
||||
<NumberInput
|
||||
label="DFE Loss Multiplier"
|
||||
label="DOP Loss Multiplier"
|
||||
className="pt-2"
|
||||
value={jobConfig.config.process[0].train.diff_output_preservation_multiplier as number}
|
||||
onChange={value => setJobConfig(value, 'config.process[0].train.diff_output_preservation_multiplier')}
|
||||
@@ -353,7 +374,7 @@ export default function SimpleJob({
|
||||
min={0}
|
||||
/>
|
||||
<TextInput
|
||||
label="DFE Preservation Class"
|
||||
label="DOP Preservation Class"
|
||||
className="pt-2"
|
||||
value={jobConfig.config.process[0].train.diff_output_preservation_class as string}
|
||||
onChange={value => setJobConfig(value, 'config.process[0].train.diff_output_preservation_class')}
|
||||
@@ -466,10 +487,7 @@ export default function SimpleJob({
|
||||
// automaticallt add the controls for a new dataset
|
||||
const controls = modelArch?.controls ?? [];
|
||||
newDataset.controls = controls;
|
||||
setJobConfig(
|
||||
[...jobConfig.config.process[0].datasets, newDataset],
|
||||
'config.process[0].datasets',
|
||||
)
|
||||
setJobConfig([...jobConfig.config.process[0].datasets, newDataset], 'config.process[0].datasets');
|
||||
}}
|
||||
className="w-full px-4 py-2 bg-gray-700 hover:bg-gray-600 rounded-lg transition-colors"
|
||||
>
|
||||
|
||||
@@ -30,6 +30,8 @@ export const defaultJobConfig: JobConfig = {
|
||||
type: 'lora',
|
||||
linear: 32,
|
||||
linear_alpha: 32,
|
||||
conv: 16,
|
||||
conv_alpha: 16,
|
||||
lokr_full_rank: true,
|
||||
lokr_factor: -1,
|
||||
network_kwargs: {
|
||||
|
||||
@@ -1,4 +1,3 @@
|
||||
|
||||
type Control = 'depth' | 'line' | 'pose' | 'inpaint';
|
||||
|
||||
export interface ModelArch {
|
||||
@@ -6,11 +5,14 @@ export interface ModelArch {
|
||||
label: string;
|
||||
controls?: Control[];
|
||||
isVideoModel?: boolean;
|
||||
defaults?: { [key: string]: [any, any] };
|
||||
defaults?: { [key: string]: any };
|
||||
disableSections?: DisableableSections[];
|
||||
}
|
||||
|
||||
const defaultNameOrPath = '';
|
||||
|
||||
type DisableableSections = 'model.quantize' | 'train.timestep_type' | 'network.conv';
|
||||
|
||||
export const modelArchs: ModelArch[] = [
|
||||
{
|
||||
name: 'flux',
|
||||
@@ -23,6 +25,7 @@ export const modelArchs: ModelArch[] = [
|
||||
'config.process[0].sample.sampler': ['flowmatch', 'flowmatch'],
|
||||
'config.process[0].train.noise_scheduler': ['flowmatch', 'flowmatch'],
|
||||
},
|
||||
disableSections: ['network.conv'],
|
||||
},
|
||||
{
|
||||
name: 'flex1',
|
||||
@@ -36,6 +39,7 @@ export const modelArchs: ModelArch[] = [
|
||||
'config.process[0].sample.sampler': ['flowmatch', 'flowmatch'],
|
||||
'config.process[0].train.noise_scheduler': ['flowmatch', 'flowmatch'],
|
||||
},
|
||||
disableSections: ['network.conv'],
|
||||
},
|
||||
{
|
||||
name: 'flex2',
|
||||
@@ -62,6 +66,7 @@ export const modelArchs: ModelArch[] = [
|
||||
'config.process[0].sample.sampler': ['flowmatch', 'flowmatch'],
|
||||
'config.process[0].train.noise_scheduler': ['flowmatch', 'flowmatch'],
|
||||
},
|
||||
disableSections: ['network.conv'],
|
||||
},
|
||||
{
|
||||
name: 'chroma',
|
||||
@@ -74,6 +79,7 @@ export const modelArchs: ModelArch[] = [
|
||||
'config.process[0].sample.sampler': ['flowmatch', 'flowmatch'],
|
||||
'config.process[0].train.noise_scheduler': ['flowmatch', 'flowmatch'],
|
||||
},
|
||||
disableSections: ['network.conv'],
|
||||
},
|
||||
{
|
||||
name: 'wan21:1b',
|
||||
@@ -89,6 +95,7 @@ export const modelArchs: ModelArch[] = [
|
||||
'config.process[0].sample.num_frames': [40, 1],
|
||||
'config.process[0].sample.fps': [15, 1],
|
||||
},
|
||||
disableSections: ['network.conv'],
|
||||
},
|
||||
{
|
||||
name: 'wan21:14b',
|
||||
@@ -96,7 +103,7 @@ export const modelArchs: ModelArch[] = [
|
||||
isVideoModel: true,
|
||||
defaults: {
|
||||
// default updates when [selected, unselected] in the UI
|
||||
'config.process[0].model.name_or_path': ['Wan-AI/Wan2.1-T2V-14B-Diffuserss', defaultNameOrPath],
|
||||
'config.process[0].model.name_or_path': ['Wan-AI/Wan2.1-T2V-14B-Diffusers', defaultNameOrPath],
|
||||
'config.process[0].model.quantize': [true, false],
|
||||
'config.process[0].model.quantize_te': [true, false],
|
||||
'config.process[0].sample.sampler': ['flowmatch', 'flowmatch'],
|
||||
@@ -104,6 +111,7 @@ export const modelArchs: ModelArch[] = [
|
||||
'config.process[0].sample.num_frames': [40, 1],
|
||||
'config.process[0].sample.fps': [15, 1],
|
||||
},
|
||||
disableSections: ['network.conv'],
|
||||
},
|
||||
{
|
||||
name: 'lumina2',
|
||||
@@ -116,6 +124,7 @@ export const modelArchs: ModelArch[] = [
|
||||
'config.process[0].sample.sampler': ['flowmatch', 'flowmatch'],
|
||||
'config.process[0].train.noise_scheduler': ['flowmatch', 'flowmatch'],
|
||||
},
|
||||
disableSections: ['network.conv'],
|
||||
},
|
||||
{
|
||||
name: 'hidream',
|
||||
@@ -131,5 +140,37 @@ export const modelArchs: ModelArch[] = [
|
||||
'config.process[0].train.timestep_type': ['shift', 'sigmoid'],
|
||||
'config.process[0].network.network_kwargs.ignore_if_contains': [['ff_i.experts', 'ff_i.gate'], []],
|
||||
},
|
||||
disableSections: ['network.conv'],
|
||||
},
|
||||
];
|
||||
{
|
||||
name: 'sdxl',
|
||||
label: 'SDXL',
|
||||
defaults: {
|
||||
// default updates when [selected, unselected] in the UI
|
||||
'config.process[0].model.name_or_path': ['stabilityai/stable-diffusion-xl-base-1.0', defaultNameOrPath],
|
||||
'config.process[0].model.quantize': [false, false],
|
||||
'config.process[0].model.quantize_te': [false, false],
|
||||
'config.process[0].sample.sampler': ['ddpm', 'flowmatch'],
|
||||
'config.process[0].train.noise_scheduler': ['ddpm', 'flowmatch'],
|
||||
'config.process[0].sample.guidance_scale': [6, 4],
|
||||
},
|
||||
disableSections: ['model.quantize', 'train.timestep_type'],
|
||||
},
|
||||
{
|
||||
name: 'sd15',
|
||||
label: 'SD 1.5',
|
||||
defaults: {
|
||||
// default updates when [selected, unselected] in the UI
|
||||
'config.process[0].model.name_or_path': ['stable-diffusion-v1-5/stable-diffusion-v1-5', defaultNameOrPath],
|
||||
'config.process[0].sample.sampler': ['ddpm', 'flowmatch'],
|
||||
'config.process[0].train.noise_scheduler': ['ddpm', 'flowmatch'],
|
||||
'config.process[0].sample.width': [512, 1024],
|
||||
'config.process[0].sample.height': [512, 1024],
|
||||
'config.process[0].sample.guidance_scale': [6, 4],
|
||||
},
|
||||
disableSections: ['model.quantize', 'train.timestep_type'],
|
||||
},
|
||||
].sort((a, b) => {
|
||||
// Sort by label, case-insensitive
|
||||
return a.label.localeCompare(b.label, undefined, { sensitivity: 'base' })
|
||||
}) as any;
|
||||
|
||||
@@ -11,11 +11,12 @@ const Sidebar = () => {
|
||||
];
|
||||
|
||||
return (
|
||||
<div className="flex flex-col w-64 bg-gray-900 text-gray-100">
|
||||
<div className="p-4">
|
||||
<h1 className="text-xl">
|
||||
<img src="/ostris_logo.png" alt="Ostris AI Toolkit" className="w-auto h-8 mr-3 inline" />
|
||||
Ostris - AI Toolkit
|
||||
<div className="flex flex-col w-59 bg-gray-900 text-gray-100">
|
||||
<div className="px-4 py-3">
|
||||
<h1 className="text-l">
|
||||
<img src="/ostris_logo.png" alt="Ostris AI Toolkit" className="w-auto h-7 mr-3 inline" />
|
||||
<span className="font-bold uppercase">Ostris</span>
|
||||
<span className='ml-2 uppercase text-gray-300'>AI-Toolkit</span>
|
||||
</h1>
|
||||
</div>
|
||||
<nav className="flex-1">
|
||||
@@ -33,31 +34,18 @@ const Sidebar = () => {
|
||||
))}
|
||||
</ul>
|
||||
</nav>
|
||||
<a href="https://patreon.com/ostris" target="_blank" rel="noreferrer" className="flex items-center space-x-2 p-4">
|
||||
<a href="https://ostris.com/support" target="_blank" rel="noreferrer" className="flex items-center space-x-2 px-4 py-3">
|
||||
<div className="min-w-[26px] min-h-[26px]">
|
||||
<svg
|
||||
viewBox="0 0 512 512"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
fillRule="evenodd"
|
||||
clipRule="evenodd"
|
||||
strokeLinejoin="round"
|
||||
strokeMiterlimit="2"
|
||||
>
|
||||
<g transform="matrix(.47407 0 0 .47407 .383 .422)">
|
||||
<clipPath id="prefix__a">
|
||||
<path d="M0 0h1080v1080H0z"></path>
|
||||
</clipPath>
|
||||
<g clipPath="url(#prefix__a)">
|
||||
<path
|
||||
d="M1033.05 324.45c-.19-137.9-107.59-250.92-233.6-291.7-156.48-50.64-362.86-43.3-512.28 27.2-181.1 85.46-237.99 272.66-240.11 459.36-1.74 153.5 13.58 557.79 241.62 560.67 169.44 2.15 194.67-216.18 273.07-321.33 55.78-74.81 127.6-95.94 216.01-117.82 151.95-37.61 255.51-157.53 255.29-316.38z"
|
||||
fillRule="nonzero"
|
||||
fill="#ffffff"
|
||||
></path>
|
||||
</g>
|
||||
<svg height="24" version="1.1" width="24" xmlns="http://www.w3.org/2000/svg">
|
||||
<g transform="translate(0 -1028.4)">
|
||||
<path
|
||||
d="m7 1031.4c-1.5355 0-3.0784 0.5-4.25 1.7-2.3431 2.4-2.2788 6.1 0 8.5l9.25 9.8 9.25-9.8c2.279-2.4 2.343-6.1 0-8.5-2.343-2.3-6.157-2.3-8.5 0l-0.75 0.8-0.75-0.8c-1.172-1.2-2.7145-1.7-4.25-1.7z"
|
||||
fill="#c0392b"
|
||||
/>
|
||||
</g>
|
||||
</svg>
|
||||
</div>
|
||||
<div className="text-gray-500 text-md mb-2 flex-1 pt-2 pl-2">Support me on Patreon</div>
|
||||
<div className="uppercase text-gray-500 text-sm mb-2 flex-1 pt-2 pl-0">Support AI-Toolkit</div>
|
||||
</a>
|
||||
</div>
|
||||
);
|
||||
|
||||
@@ -2,8 +2,8 @@
|
||||
|
||||
import React, { forwardRef } from 'react';
|
||||
import classNames from 'classnames';
|
||||
import dynamic from "next/dynamic";
|
||||
const Select = dynamic(() => import("react-select"), { ssr: false });
|
||||
import dynamic from 'next/dynamic';
|
||||
const Select = dynamic(() => import('react-select'), { ssr: false });
|
||||
|
||||
const labelClasses = 'block text-xs mb-1 mt-2 text-gray-300';
|
||||
const inputClasses =
|
||||
@@ -42,7 +42,7 @@ export const TextInput = forwardRef<HTMLInputElement, TextInputProps>(
|
||||
/>
|
||||
</div>
|
||||
);
|
||||
}
|
||||
},
|
||||
);
|
||||
|
||||
// 👇 Helpful for debugging
|
||||
@@ -114,6 +114,7 @@ export const NumberInput = (props: NumberInputProps) => {
|
||||
|
||||
export interface SelectInputProps extends InputProps {
|
||||
value: string;
|
||||
disabled?: boolean;
|
||||
onChange: (value: string) => void;
|
||||
options: { value: string; label: string }[];
|
||||
}
|
||||
@@ -122,11 +123,16 @@ export const SelectInput = (props: SelectInputProps) => {
|
||||
const { label, value, onChange, options } = props;
|
||||
const selectedOption = options.find(option => option.value === value);
|
||||
return (
|
||||
<div className={classNames(props.className)}>
|
||||
<div
|
||||
className={classNames(props.className, {
|
||||
'opacity-30 cursor-not-allowed': props.disabled,
|
||||
})}
|
||||
>
|
||||
{label && <label className={labelClasses}>{label}</label>}
|
||||
<Select
|
||||
value={selectedOption}
|
||||
<Select
|
||||
value={selectedOption}
|
||||
options={options}
|
||||
isDisabled={props.disabled}
|
||||
className="aitk-react-select-container"
|
||||
classNamePrefix="aitk-react-select"
|
||||
onChange={selected => {
|
||||
|
||||
@@ -53,6 +53,8 @@ export interface NetworkConfig {
|
||||
type: string;
|
||||
linear: number;
|
||||
linear_alpha: number;
|
||||
conv: number;
|
||||
conv_alpha: number;
|
||||
lokr_full_rank: boolean;
|
||||
lokr_factor: number;
|
||||
network_kwargs: {
|
||||
|
||||
@@ -1 +1 @@
|
||||
VERSION = "0.2.9"
|
||||
VERSION = "0.2.10"
|
||||
Reference in New Issue
Block a user