mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-02-17 13:40:04 +00:00
Compare commits
9 Commits
color-corr
...
feat/api-n
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
12bff8bc70 | ||
|
|
88e6370527 | ||
|
|
c0370044cd | ||
|
|
ecd2a19661 | ||
|
|
2c1d06a4e3 | ||
|
|
e2c71ceb00 | ||
|
|
596ed68691 | ||
|
|
ce4a1ab48d | ||
|
|
e1ede29d82 |
105
app/node_replace_manager.py
Normal file
105
app/node_replace_manager.py
Normal file
@@ -0,0 +1,105 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from aiohttp import web
|
||||
|
||||
from typing import TYPE_CHECKING, TypedDict
|
||||
if TYPE_CHECKING:
|
||||
from comfy_api.latest._io_public import NodeReplace
|
||||
|
||||
from comfy_execution.graph_utils import is_link
|
||||
import nodes
|
||||
|
||||
class NodeStruct(TypedDict):
|
||||
inputs: dict[str, str | int | float | bool | tuple[str, int]]
|
||||
class_type: str
|
||||
_meta: dict[str, str]
|
||||
|
||||
def copy_node_struct(node_struct: NodeStruct, empty_inputs: bool = False) -> NodeStruct:
|
||||
new_node_struct = node_struct.copy()
|
||||
if empty_inputs:
|
||||
new_node_struct["inputs"] = {}
|
||||
else:
|
||||
new_node_struct["inputs"] = node_struct["inputs"].copy()
|
||||
new_node_struct["_meta"] = node_struct["_meta"].copy()
|
||||
return new_node_struct
|
||||
|
||||
|
||||
class NodeReplaceManager:
|
||||
"""Manages node replacement registrations."""
|
||||
|
||||
def __init__(self):
|
||||
self._replacements: dict[str, list[NodeReplace]] = {}
|
||||
|
||||
def register(self, node_replace: NodeReplace):
|
||||
"""Register a node replacement mapping."""
|
||||
self._replacements.setdefault(node_replace.old_node_id, []).append(node_replace)
|
||||
|
||||
def get_replacement(self, old_node_id: str) -> list[NodeReplace] | None:
|
||||
"""Get replacements for an old node ID."""
|
||||
return self._replacements.get(old_node_id)
|
||||
|
||||
def has_replacement(self, old_node_id: str) -> bool:
|
||||
"""Check if a replacement exists for an old node ID."""
|
||||
return old_node_id in self._replacements
|
||||
|
||||
def apply_replacements(self, prompt: dict[str, NodeStruct]):
|
||||
connections: dict[str, list[tuple[str, str, int]]] = {}
|
||||
need_replacement: set[str] = set()
|
||||
for node_number, node_struct in prompt.items():
|
||||
class_type = node_struct["class_type"]
|
||||
# need replacement if not in NODE_CLASS_MAPPINGS and has replacement
|
||||
if class_type not in nodes.NODE_CLASS_MAPPINGS.keys() and self.has_replacement(class_type):
|
||||
need_replacement.add(node_number)
|
||||
# keep track of connections
|
||||
for input_id, input_value in node_struct["inputs"].items():
|
||||
if is_link(input_value):
|
||||
conn_number = input_value[0]
|
||||
connections.setdefault(conn_number, []).append((node_number, input_id, input_value[1]))
|
||||
for node_number in need_replacement:
|
||||
node_struct = prompt[node_number]
|
||||
class_type = node_struct["class_type"]
|
||||
replacements = self.get_replacement(class_type)
|
||||
if replacements is None:
|
||||
continue
|
||||
# just use the first replacement
|
||||
replacement = replacements[0]
|
||||
new_node_id = replacement.new_node_id
|
||||
# if replacement is not a valid node, skip trying to replace it as will only cause confusion
|
||||
if new_node_id not in nodes.NODE_CLASS_MAPPINGS.keys():
|
||||
continue
|
||||
# first, replace node id (class_type)
|
||||
new_node_struct = copy_node_struct(node_struct, empty_inputs=True)
|
||||
new_node_struct["class_type"] = new_node_id
|
||||
# TODO: consider replacing display_name in _meta as well for error reporting purposes; would need to query node schema
|
||||
# second, replace inputs
|
||||
if replacement.input_mapping is not None:
|
||||
for input_map in replacement.input_mapping:
|
||||
if "set_value" in input_map:
|
||||
new_node_struct["inputs"][input_map["new_id"]] = input_map["set_value"]
|
||||
elif "old_id" in input_map:
|
||||
new_node_struct["inputs"][input_map["new_id"]] = node_struct["inputs"][input_map["old_id"]]
|
||||
# finalize input replacement
|
||||
prompt[node_number] = new_node_struct
|
||||
# third, replace outputs
|
||||
if replacement.output_mapping is not None:
|
||||
# re-mapping outputs requires changing the input values of nodes that receive connections from this one
|
||||
if node_number in connections:
|
||||
for conns in connections[node_number]:
|
||||
conn_node_number, conn_input_id, old_output_idx = conns
|
||||
for output_map in replacement.output_mapping:
|
||||
if output_map["old_idx"] == old_output_idx:
|
||||
new_output_idx = output_map["new_idx"]
|
||||
previous_input = prompt[conn_node_number]["inputs"][conn_input_id]
|
||||
previous_input[1] = new_output_idx
|
||||
|
||||
def as_dict(self):
|
||||
"""Serialize all replacements to dict."""
|
||||
return {
|
||||
k: [v.as_dict() for v in v_list]
|
||||
for k, v_list in self._replacements.items()
|
||||
}
|
||||
|
||||
def add_routes(self, routes):
|
||||
@routes.get("/node_replacements")
|
||||
async def get_node_replacements(request):
|
||||
return web.json_response(self.as_dict())
|
||||
@@ -1,13 +0,0 @@
|
||||
import pickle
|
||||
|
||||
load = pickle.load
|
||||
|
||||
class Empty:
|
||||
pass
|
||||
|
||||
class Unpickler(pickle.Unpickler):
|
||||
def find_class(self, module, name):
|
||||
#TODO: safe unpickle
|
||||
if module.startswith("pytorch_lightning"):
|
||||
return Empty
|
||||
return super().find_class(module, name)
|
||||
@@ -102,19 +102,7 @@ class VideoConv3d(nn.Module):
|
||||
return self.conv(x)
|
||||
|
||||
def interpolate_up(x, scale_factor):
|
||||
try:
|
||||
return torch.nn.functional.interpolate(x, scale_factor=scale_factor, mode="nearest")
|
||||
except: #operation not implemented for bf16
|
||||
orig_shape = list(x.shape)
|
||||
out_shape = orig_shape[:2]
|
||||
for i in range(len(orig_shape) - 2):
|
||||
out_shape.append(round(orig_shape[i + 2] * scale_factor[i]))
|
||||
out = torch.empty(out_shape, dtype=x.dtype, layout=x.layout, device=x.device)
|
||||
split = 8
|
||||
l = out.shape[1] // split
|
||||
for i in range(0, out.shape[1], l):
|
||||
out[:,i:i+l] = torch.nn.functional.interpolate(x[:,i:i+l].to(torch.float32), scale_factor=scale_factor, mode="nearest").to(x.dtype)
|
||||
return out
|
||||
return torch.nn.functional.interpolate(x, scale_factor=scale_factor, mode="nearest")
|
||||
|
||||
class Upsample(nn.Module):
|
||||
def __init__(self, in_channels, with_conv, conv_op=ops.Conv2d, scale_factor=2.0):
|
||||
|
||||
@@ -374,6 +374,31 @@ def pad_tensor_to_shape(tensor: torch.Tensor, new_shape: list[int]) -> torch.Ten
|
||||
|
||||
return padded_tensor
|
||||
|
||||
def calculate_shape(patches, weight, key, original_weights=None):
|
||||
current_shape = weight.shape
|
||||
|
||||
for p in patches:
|
||||
v = p[1]
|
||||
offset = p[3]
|
||||
|
||||
# Offsets restore the old shape; lists force a diff without metadata
|
||||
if offset is not None or isinstance(v, list):
|
||||
continue
|
||||
|
||||
if isinstance(v, weight_adapter.WeightAdapterBase):
|
||||
adapter_shape = v.calculate_shape(key)
|
||||
if adapter_shape is not None:
|
||||
current_shape = adapter_shape
|
||||
continue
|
||||
|
||||
# Standard diff logic with padding
|
||||
if len(v) == 2:
|
||||
patch_type, patch_data = v[0], v[1]
|
||||
if patch_type == "diff" and len(patch_data) > 1 and patch_data[1]['pad_weight']:
|
||||
current_shape = patch_data[0].shape
|
||||
|
||||
return current_shape
|
||||
|
||||
def calculate_weight(patches, weight, key, intermediate_dtype=torch.float32, original_weights=None):
|
||||
for p in patches:
|
||||
strength = p[0]
|
||||
|
||||
@@ -1514,8 +1514,10 @@ class ModelPatcherDynamic(ModelPatcher):
|
||||
|
||||
weight, _, _ = get_key_weight(self.model, key)
|
||||
if weight is None:
|
||||
return 0
|
||||
return (False, 0)
|
||||
if key in self.patches:
|
||||
if comfy.lora.calculate_shape(self.patches[key], weight, key) != weight.shape:
|
||||
return (True, 0)
|
||||
setattr(m, param_key + "_lowvram_function", LowVramPatch(key, self.patches))
|
||||
num_patches += 1
|
||||
else:
|
||||
@@ -1529,7 +1531,13 @@ class ModelPatcherDynamic(ModelPatcher):
|
||||
model_dtype = getattr(m, param_key + "_comfy_model_dtype", None) or weight.dtype
|
||||
weight._model_dtype = model_dtype
|
||||
geometry = comfy.memory_management.TensorGeometry(shape=weight.shape, dtype=model_dtype)
|
||||
return comfy.memory_management.vram_aligned_size(geometry)
|
||||
return (False, comfy.memory_management.vram_aligned_size(geometry))
|
||||
|
||||
def force_load_param(self, param_key, device_to):
|
||||
key = key_param_name_to_key(n, param_key)
|
||||
if key in self.backup:
|
||||
comfy.utils.set_attr_param(self.model, key, self.backup[key].weight)
|
||||
self.patch_weight_to_device(key, device_to=device_to)
|
||||
|
||||
if hasattr(m, "comfy_cast_weights"):
|
||||
m.comfy_cast_weights = True
|
||||
@@ -1537,13 +1545,19 @@ class ModelPatcherDynamic(ModelPatcher):
|
||||
m.seed_key = n
|
||||
set_dirty(m, dirty)
|
||||
|
||||
v_weight_size = 0
|
||||
v_weight_size += setup_param(self, m, n, "weight")
|
||||
v_weight_size += setup_param(self, m, n, "bias")
|
||||
force_load, v_weight_size = setup_param(self, m, n, "weight")
|
||||
force_load_bias, v_weight_bias = setup_param(self, m, n, "bias")
|
||||
force_load = force_load or force_load_bias
|
||||
v_weight_size += v_weight_bias
|
||||
|
||||
if vbar is not None and not hasattr(m, "_v"):
|
||||
m._v = vbar.alloc(v_weight_size)
|
||||
allocated_size += v_weight_size
|
||||
if force_load:
|
||||
logging.info(f"Module {n} has resizing Lora - force loading")
|
||||
force_load_param(self, "weight", device_to)
|
||||
force_load_param(self, "bias", device_to)
|
||||
else:
|
||||
if vbar is not None and not hasattr(m, "_v"):
|
||||
m._v = vbar.alloc(v_weight_size)
|
||||
allocated_size += v_weight_size
|
||||
|
||||
else:
|
||||
for param in params:
|
||||
@@ -1606,6 +1620,11 @@ class ModelPatcherDynamic(ModelPatcher):
|
||||
for m in self.model.modules():
|
||||
move_weight_functions(m, device_to)
|
||||
|
||||
keys = list(self.backup.keys())
|
||||
for k in keys:
|
||||
bk = self.backup[k]
|
||||
comfy.utils.set_attr_param(self.model, k, bk.weight)
|
||||
|
||||
def partially_load(self, device_to, extra_memory=0, force_patch_weights=False):
|
||||
assert not force_patch_weights #See above
|
||||
with self.use_ejected(skip_and_inject_on_exit_only=True):
|
||||
|
||||
@@ -20,7 +20,7 @@
|
||||
import torch
|
||||
import math
|
||||
import struct
|
||||
import comfy.checkpoint_pickle
|
||||
import comfy.memory_management
|
||||
import safetensors.torch
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
@@ -38,26 +38,26 @@ import warnings
|
||||
MMAP_TORCH_FILES = args.mmap_torch_files
|
||||
DISABLE_MMAP = args.disable_mmap
|
||||
|
||||
ALWAYS_SAFE_LOAD = False
|
||||
if hasattr(torch.serialization, "add_safe_globals"): # TODO: this was added in pytorch 2.4, the unsafe path should be removed once earlier versions are deprecated
|
||||
|
||||
if True: # ckpt/pt file whitelist for safe loading of old sd files
|
||||
class ModelCheckpoint:
|
||||
pass
|
||||
ModelCheckpoint.__module__ = "pytorch_lightning.callbacks.model_checkpoint"
|
||||
|
||||
def scalar(*args, **kwargs):
|
||||
from numpy.core.multiarray import scalar as sc
|
||||
return sc(*args, **kwargs)
|
||||
return None
|
||||
scalar.__module__ = "numpy.core.multiarray"
|
||||
|
||||
from numpy import dtype
|
||||
from numpy.dtypes import Float64DType
|
||||
from _codecs import encode
|
||||
|
||||
def encode(*args, **kwargs): # no longer necessary on newer torch
|
||||
return None
|
||||
encode.__module__ = "_codecs"
|
||||
|
||||
torch.serialization.add_safe_globals([ModelCheckpoint, scalar, dtype, Float64DType, encode])
|
||||
ALWAYS_SAFE_LOAD = True
|
||||
logging.info("Checkpoint files will always be loaded safely.")
|
||||
else:
|
||||
logging.warning("Warning, you are using an old pytorch version and some ckpt/pt files might be loaded unsafely. Upgrading to 2.4 or above is recommended as older versions of pytorch are no longer supported.")
|
||||
|
||||
|
||||
# Current as of safetensors 0.7.0
|
||||
_TYPES = {
|
||||
@@ -140,11 +140,8 @@ def load_torch_file(ckpt, safe_load=False, device=None, return_metadata=False):
|
||||
if MMAP_TORCH_FILES:
|
||||
torch_args["mmap"] = True
|
||||
|
||||
if safe_load or ALWAYS_SAFE_LOAD:
|
||||
pl_sd = torch.load(ckpt, map_location=device, weights_only=True, **torch_args)
|
||||
else:
|
||||
logging.warning("WARNING: loading {} unsafely, upgrade your pytorch to 2.4 or newer to load this file safely.".format(ckpt))
|
||||
pl_sd = torch.load(ckpt, map_location=device, pickle_module=comfy.checkpoint_pickle)
|
||||
pl_sd = torch.load(ckpt, map_location=device, weights_only=True, **torch_args)
|
||||
|
||||
if "state_dict" in pl_sd:
|
||||
sd = pl_sd["state_dict"]
|
||||
else:
|
||||
|
||||
@@ -49,6 +49,12 @@ class WeightAdapterBase:
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
def calculate_shape(
|
||||
self,
|
||||
key
|
||||
):
|
||||
return None
|
||||
|
||||
def calculate_weight(
|
||||
self,
|
||||
weight,
|
||||
|
||||
@@ -214,6 +214,13 @@ class LoRAAdapter(WeightAdapterBase):
|
||||
else:
|
||||
return None
|
||||
|
||||
def calculate_shape(
|
||||
self,
|
||||
key
|
||||
):
|
||||
reshape = self.weights[5]
|
||||
return tuple(reshape) if reshape is not None else None
|
||||
|
||||
def calculate_weight(
|
||||
self,
|
||||
weight,
|
||||
|
||||
@@ -14,6 +14,7 @@ SERVER_FEATURE_FLAGS: dict[str, Any] = {
|
||||
"supports_preview_metadata": True,
|
||||
"max_upload_size": args.max_upload_size * 1024 * 1024, # Convert MB to bytes
|
||||
"extension": {"manager": {"supports_v4": True}},
|
||||
"node_replacements": True,
|
||||
}
|
||||
|
||||
|
||||
|
||||
@@ -21,6 +21,17 @@ class ComfyAPI_latest(ComfyAPIBase):
|
||||
VERSION = "latest"
|
||||
STABLE = False
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.node_replacement = self.NodeReplacement()
|
||||
self.execution = self.Execution()
|
||||
|
||||
class NodeReplacement(ProxiedSingleton):
|
||||
async def register(self, node_replace: io.NodeReplace) -> None:
|
||||
"""Register a node replacement mapping."""
|
||||
from server import PromptServer
|
||||
PromptServer.instance.node_replace_manager.register(node_replace)
|
||||
|
||||
class Execution(ProxiedSingleton):
|
||||
async def set_progress(
|
||||
self,
|
||||
@@ -73,8 +84,6 @@ class ComfyAPI_latest(ComfyAPIBase):
|
||||
image=to_display,
|
||||
)
|
||||
|
||||
execution: Execution
|
||||
|
||||
class ComfyExtension(ABC):
|
||||
async def on_load(self) -> None:
|
||||
"""
|
||||
|
||||
@@ -1203,70 +1203,6 @@ class Color(ComfyTypeIO):
|
||||
def as_dict(self):
|
||||
return super().as_dict()
|
||||
|
||||
@comfytype(io_type="COLOR_CORRECT")
|
||||
class ColorCorrect(ComfyTypeIO):
|
||||
Type = dict
|
||||
|
||||
class Input(WidgetInput):
|
||||
def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None,
|
||||
socketless: bool=True, default: dict=None, advanced: bool=None):
|
||||
super().__init__(id, display_name, optional, tooltip, None, default, socketless, None, None, None, None, advanced)
|
||||
if default is None:
|
||||
self.default = {
|
||||
"temperature": 0,
|
||||
"hue": 0,
|
||||
"brightness": 0,
|
||||
"contrast": 0,
|
||||
"saturation": 0,
|
||||
"gamma": 1.0
|
||||
}
|
||||
|
||||
def as_dict(self):
|
||||
return super().as_dict()
|
||||
|
||||
@comfytype(io_type="COLOR_BALANCE")
|
||||
class ColorBalance(ComfyTypeIO):
|
||||
Type = dict
|
||||
|
||||
class Input(WidgetInput):
|
||||
def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None,
|
||||
socketless: bool=True, default: dict=None, advanced: bool=None):
|
||||
super().__init__(id, display_name, optional, tooltip, None, default, socketless, None, None, None, None, advanced)
|
||||
if default is None:
|
||||
self.default = {
|
||||
"shadows_red": 0,
|
||||
"shadows_green": 0,
|
||||
"shadows_blue": 0,
|
||||
"midtones_red": 0,
|
||||
"midtones_green": 0,
|
||||
"midtones_blue": 0,
|
||||
"highlights_red": 0,
|
||||
"highlights_green": 0,
|
||||
"highlights_blue": 0
|
||||
}
|
||||
|
||||
def as_dict(self):
|
||||
return super().as_dict()
|
||||
|
||||
@comfytype(io_type="COLOR_CURVES")
|
||||
class ColorCurves(ComfyTypeIO):
|
||||
Type = dict
|
||||
|
||||
class Input(WidgetInput):
|
||||
def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None,
|
||||
socketless: bool=True, default: dict=None, advanced: bool=None):
|
||||
super().__init__(id, display_name, optional, tooltip, None, default, socketless, None, None, None, None, advanced)
|
||||
if default is None:
|
||||
self.default = {
|
||||
"rgb": [[0, 0], [1, 1]],
|
||||
"red": [[0, 0], [1, 1]],
|
||||
"green": [[0, 0], [1, 1]],
|
||||
"blue": [[0, 0], [1, 1]]
|
||||
}
|
||||
|
||||
def as_dict(self):
|
||||
return super().as_dict()
|
||||
|
||||
DYNAMIC_INPUT_LOOKUP: dict[str, Callable[[dict[str, Any], dict[str, Any], tuple[str, dict[str, Any]], str, list[str] | None], None]] = {}
|
||||
def register_dynamic_input_func(io_type: str, func: Callable[[dict[str, Any], dict[str, Any], tuple[str, dict[str, Any]], str, list[str] | None], None]):
|
||||
DYNAMIC_INPUT_LOOKUP[io_type] = func
|
||||
@@ -2094,6 +2030,68 @@ class _UIOutput(ABC):
|
||||
...
|
||||
|
||||
|
||||
class InputMapOldId(TypedDict):
|
||||
"""Map an old node input to a new node input by ID."""
|
||||
new_id: str
|
||||
old_id: str
|
||||
|
||||
class InputMapSetValue(TypedDict):
|
||||
"""Set a specific value for a new node input."""
|
||||
new_id: str
|
||||
set_value: Any
|
||||
|
||||
InputMap = InputMapOldId | InputMapSetValue
|
||||
"""
|
||||
Input mapping for node replacement. Type is inferred by dictionary keys:
|
||||
- {"new_id": str, "old_id": str} - maps old input to new input
|
||||
- {"new_id": str, "set_value": Any} - sets a specific value for new input
|
||||
"""
|
||||
|
||||
class OutputMap(TypedDict):
|
||||
"""Map outputs of node replacement via indexes."""
|
||||
new_idx: int
|
||||
old_idx: int
|
||||
|
||||
class NodeReplace:
|
||||
"""
|
||||
Defines a possible node replacement, mapping inputs and outputs of the old node to the new node.
|
||||
|
||||
Also supports assigning specific values to the input widgets of the new node.
|
||||
|
||||
Args:
|
||||
new_node_id: The class name of the new replacement node.
|
||||
old_node_id: The class name of the deprecated node.
|
||||
old_widget_ids: Ordered list of input IDs for widgets that may not have an input slot
|
||||
connected. The workflow JSON stores widget values by their relative position index,
|
||||
not by ID. This list maps those positional indexes to input IDs, enabling the
|
||||
replacement system to correctly identify widget values during node migration.
|
||||
input_mapping: List of input mappings from old node to new node.
|
||||
output_mapping: List of output mappings from old node to new node.
|
||||
"""
|
||||
def __init__(self,
|
||||
new_node_id: str,
|
||||
old_node_id: str,
|
||||
old_widget_ids: list[str] | None=None,
|
||||
input_mapping: list[InputMap] | None=None,
|
||||
output_mapping: list[OutputMap] | None=None,
|
||||
):
|
||||
self.new_node_id = new_node_id
|
||||
self.old_node_id = old_node_id
|
||||
self.old_widget_ids = old_widget_ids
|
||||
self.input_mapping = input_mapping
|
||||
self.output_mapping = output_mapping
|
||||
|
||||
def as_dict(self):
|
||||
"""Create serializable representation of the node replacement."""
|
||||
return {
|
||||
"new_node_id": self.new_node_id,
|
||||
"old_node_id": self.old_node_id,
|
||||
"old_widget_ids": self.old_widget_ids,
|
||||
"input_mapping": list(self.input_mapping) if self.input_mapping else None,
|
||||
"output_mapping": list(self.output_mapping) if self.output_mapping else None,
|
||||
}
|
||||
|
||||
|
||||
__all__ = [
|
||||
"FolderType",
|
||||
"UploadType",
|
||||
@@ -2185,7 +2183,5 @@ __all__ = [
|
||||
"ImageCompare",
|
||||
"PriceBadgeDepends",
|
||||
"PriceBadge",
|
||||
"ColorCorrect",
|
||||
"ColorBalance",
|
||||
"ColorCurves"
|
||||
"NodeReplace",
|
||||
]
|
||||
|
||||
@@ -45,17 +45,55 @@ class BriaEditImageRequest(BaseModel):
|
||||
)
|
||||
|
||||
|
||||
class BriaRemoveBackgroundRequest(BaseModel):
|
||||
image: str = Field(...)
|
||||
sync: bool = Field(False)
|
||||
visual_input_content_moderation: bool = Field(
|
||||
False, description="If true, returns 422 on input image moderation failure."
|
||||
)
|
||||
visual_output_content_moderation: bool = Field(
|
||||
False, description="If true, returns 422 on visual output moderation failure."
|
||||
)
|
||||
seed: int = Field(...)
|
||||
|
||||
|
||||
class BriaStatusResponse(BaseModel):
|
||||
request_id: str = Field(...)
|
||||
status_url: str = Field(...)
|
||||
warning: str | None = Field(None)
|
||||
|
||||
|
||||
class BriaResult(BaseModel):
|
||||
class BriaRemoveBackgroundResult(BaseModel):
|
||||
image_url: str = Field(...)
|
||||
|
||||
|
||||
class BriaRemoveBackgroundResponse(BaseModel):
|
||||
status: str = Field(...)
|
||||
result: BriaRemoveBackgroundResult | None = Field(None)
|
||||
|
||||
|
||||
class BriaImageEditResult(BaseModel):
|
||||
structured_prompt: str = Field(...)
|
||||
image_url: str = Field(...)
|
||||
|
||||
|
||||
class BriaResponse(BaseModel):
|
||||
class BriaImageEditResponse(BaseModel):
|
||||
status: str = Field(...)
|
||||
result: BriaResult | None = Field(None)
|
||||
result: BriaImageEditResult | None = Field(None)
|
||||
|
||||
|
||||
class BriaRemoveVideoBackgroundRequest(BaseModel):
|
||||
video: str = Field(...)
|
||||
background_color: str = Field(default="transparent", description="Background color for the output video.")
|
||||
output_container_and_codec: str = Field(...)
|
||||
preserve_audio: bool = Field(True)
|
||||
seed: int = Field(...)
|
||||
|
||||
|
||||
class BriaRemoveVideoBackgroundResult(BaseModel):
|
||||
video_url: str = Field(...)
|
||||
|
||||
|
||||
class BriaRemoveVideoBackgroundResponse(BaseModel):
|
||||
status: str = Field(...)
|
||||
result: BriaRemoveVideoBackgroundResult | None = Field(None)
|
||||
|
||||
@@ -64,3 +64,23 @@ class To3DProTaskResultResponse(BaseModel):
|
||||
|
||||
class To3DProTaskQueryRequest(BaseModel):
|
||||
JobId: str = Field(...)
|
||||
|
||||
|
||||
class To3DUVFileInput(BaseModel):
|
||||
Type: str = Field(..., description="File type: GLB, OBJ, or FBX")
|
||||
Url: str = Field(...)
|
||||
|
||||
|
||||
class To3DUVTaskRequest(BaseModel):
|
||||
File: To3DUVFileInput = Field(...)
|
||||
|
||||
|
||||
class TextureEditImageInfo(BaseModel):
|
||||
Url: str = Field(...)
|
||||
|
||||
|
||||
class TextureEditTaskRequest(BaseModel):
|
||||
File3D: To3DUVFileInput = Field(...)
|
||||
Image: TextureEditImageInfo | None = Field(None)
|
||||
Prompt: str | None = Field(None)
|
||||
EnablePBR: bool | None = Field(None)
|
||||
|
||||
@@ -198,11 +198,6 @@ dict_recraft_substyles_v3 = {
|
||||
}
|
||||
|
||||
|
||||
class RecraftModel(str, Enum):
|
||||
recraftv3 = 'recraftv3'
|
||||
recraftv2 = 'recraftv2'
|
||||
|
||||
|
||||
class RecraftImageSize(str, Enum):
|
||||
res_1024x1024 = '1024x1024'
|
||||
res_1365x1024 = '1365x1024'
|
||||
@@ -221,6 +216,41 @@ class RecraftImageSize(str, Enum):
|
||||
res_1707x1024 = '1707x1024'
|
||||
|
||||
|
||||
RECRAFT_V4_SIZES = [
|
||||
"1024x1024",
|
||||
"1536x768",
|
||||
"768x1536",
|
||||
"1280x832",
|
||||
"832x1280",
|
||||
"1216x896",
|
||||
"896x1216",
|
||||
"1152x896",
|
||||
"896x1152",
|
||||
"832x1344",
|
||||
"1280x896",
|
||||
"896x1280",
|
||||
"1344x768",
|
||||
"768x1344",
|
||||
]
|
||||
|
||||
RECRAFT_V4_PRO_SIZES = [
|
||||
"2048x2048",
|
||||
"3072x1536",
|
||||
"1536x3072",
|
||||
"2560x1664",
|
||||
"1664x2560",
|
||||
"2432x1792",
|
||||
"1792x2432",
|
||||
"2304x1792",
|
||||
"1792x2304",
|
||||
"1664x2688",
|
||||
"1434x1024",
|
||||
"1024x1434",
|
||||
"2560x1792",
|
||||
"1792x2560",
|
||||
]
|
||||
|
||||
|
||||
class RecraftColorObject(BaseModel):
|
||||
rgb: list[int] = Field(..., description='An array of 3 integer values in range of 0...255 defining RGB Color Model')
|
||||
|
||||
@@ -234,17 +264,16 @@ class RecraftControlsObject(BaseModel):
|
||||
|
||||
class RecraftImageGenerationRequest(BaseModel):
|
||||
prompt: str = Field(..., description='The text prompt describing the image to generate')
|
||||
size: RecraftImageSize | None = Field(None, description='The size of the generated image (e.g., "1024x1024")')
|
||||
size: str | None = Field(None, description='The size of the generated image (e.g., "1024x1024")')
|
||||
n: int = Field(..., description='The number of images to generate')
|
||||
negative_prompt: str | None = Field(None, description='A text description of undesired elements on an image')
|
||||
model: RecraftModel | None = Field(RecraftModel.recraftv3, description='The model to use for generation (e.g., "recraftv3")')
|
||||
model: str = Field(...)
|
||||
style: str | None = Field(None, description='The style to apply to the generated image (e.g., "digital_illustration")')
|
||||
substyle: str | None = Field(None, description='The substyle to apply to the generated image, depending on the style input')
|
||||
controls: RecraftControlsObject | None = Field(None, description='A set of custom parameters to tweak generation process')
|
||||
style_id: str | None = Field(None, description='Use a previously uploaded style as a reference; UUID')
|
||||
strength: float | None = Field(None, description='Defines the difference with the original image, should lie in [0, 1], where 0 means almost identical, and 1 means miserable similarity')
|
||||
random_seed: int | None = Field(None, description="Seed for video generation")
|
||||
# text_layout
|
||||
|
||||
|
||||
class RecraftReturnedObject(BaseModel):
|
||||
|
||||
@@ -3,7 +3,11 @@ from typing_extensions import override
|
||||
from comfy_api.latest import IO, ComfyExtension, Input
|
||||
from comfy_api_nodes.apis.bria import (
|
||||
BriaEditImageRequest,
|
||||
BriaResponse,
|
||||
BriaRemoveBackgroundRequest,
|
||||
BriaRemoveBackgroundResponse,
|
||||
BriaRemoveVideoBackgroundRequest,
|
||||
BriaRemoveVideoBackgroundResponse,
|
||||
BriaImageEditResponse,
|
||||
BriaStatusResponse,
|
||||
InputModerationSettings,
|
||||
)
|
||||
@@ -11,10 +15,12 @@ from comfy_api_nodes.util import (
|
||||
ApiEndpoint,
|
||||
convert_mask_to_image,
|
||||
download_url_to_image_tensor,
|
||||
get_number_of_images,
|
||||
download_url_to_video_output,
|
||||
poll_op,
|
||||
sync_op,
|
||||
upload_images_to_comfyapi,
|
||||
upload_image_to_comfyapi,
|
||||
upload_video_to_comfyapi,
|
||||
validate_video_duration,
|
||||
)
|
||||
|
||||
|
||||
@@ -73,21 +79,15 @@ class BriaImageEditNode(IO.ComfyNode):
|
||||
IO.DynamicCombo.Input(
|
||||
"moderation",
|
||||
options=[
|
||||
IO.DynamicCombo.Option("false", []),
|
||||
IO.DynamicCombo.Option(
|
||||
"true",
|
||||
[
|
||||
IO.Boolean.Input(
|
||||
"prompt_content_moderation", default=False
|
||||
),
|
||||
IO.Boolean.Input(
|
||||
"visual_input_moderation", default=False
|
||||
),
|
||||
IO.Boolean.Input(
|
||||
"visual_output_moderation", default=True
|
||||
),
|
||||
IO.Boolean.Input("prompt_content_moderation", default=False),
|
||||
IO.Boolean.Input("visual_input_moderation", default=False),
|
||||
IO.Boolean.Input("visual_output_moderation", default=True),
|
||||
],
|
||||
),
|
||||
IO.DynamicCombo.Option("false", []),
|
||||
],
|
||||
tooltip="Moderation settings",
|
||||
),
|
||||
@@ -127,50 +127,26 @@ class BriaImageEditNode(IO.ComfyNode):
|
||||
mask: Input.Image | None = None,
|
||||
) -> IO.NodeOutput:
|
||||
if not prompt and not structured_prompt:
|
||||
raise ValueError(
|
||||
"One of prompt or structured_prompt is required to be non-empty."
|
||||
)
|
||||
if get_number_of_images(image) != 1:
|
||||
raise ValueError("Exactly one input image is required.")
|
||||
raise ValueError("One of prompt or structured_prompt is required to be non-empty.")
|
||||
mask_url = None
|
||||
if mask is not None:
|
||||
mask_url = (
|
||||
await upload_images_to_comfyapi(
|
||||
cls,
|
||||
convert_mask_to_image(mask),
|
||||
max_images=1,
|
||||
mime_type="image/png",
|
||||
wait_label="Uploading mask",
|
||||
)
|
||||
)[0]
|
||||
mask_url = await upload_image_to_comfyapi(cls, convert_mask_to_image(mask), wait_label="Uploading mask")
|
||||
response = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="proxy/bria/v2/image/edit", method="POST"),
|
||||
data=BriaEditImageRequest(
|
||||
instruction=prompt if prompt else None,
|
||||
structured_instruction=structured_prompt if structured_prompt else None,
|
||||
images=await upload_images_to_comfyapi(
|
||||
cls,
|
||||
image,
|
||||
max_images=1,
|
||||
mime_type="image/png",
|
||||
wait_label="Uploading image",
|
||||
),
|
||||
images=[await upload_image_to_comfyapi(cls, image, wait_label="Uploading image")],
|
||||
mask=mask_url,
|
||||
negative_prompt=negative_prompt if negative_prompt else None,
|
||||
guidance_scale=guidance_scale,
|
||||
seed=seed,
|
||||
model_version=model,
|
||||
steps_num=steps,
|
||||
prompt_content_moderation=moderation.get(
|
||||
"prompt_content_moderation", False
|
||||
),
|
||||
visual_input_content_moderation=moderation.get(
|
||||
"visual_input_moderation", False
|
||||
),
|
||||
visual_output_content_moderation=moderation.get(
|
||||
"visual_output_moderation", False
|
||||
),
|
||||
prompt_content_moderation=moderation.get("prompt_content_moderation", False),
|
||||
visual_input_content_moderation=moderation.get("visual_input_moderation", False),
|
||||
visual_output_content_moderation=moderation.get("visual_output_moderation", False),
|
||||
),
|
||||
response_model=BriaStatusResponse,
|
||||
)
|
||||
@@ -178,7 +154,7 @@ class BriaImageEditNode(IO.ComfyNode):
|
||||
cls,
|
||||
ApiEndpoint(path=f"/proxy/bria/v2/status/{response.request_id}"),
|
||||
status_extractor=lambda r: r.status,
|
||||
response_model=BriaResponse,
|
||||
response_model=BriaImageEditResponse,
|
||||
)
|
||||
return IO.NodeOutput(
|
||||
await download_url_to_image_tensor(response.result.image_url),
|
||||
@@ -186,11 +162,167 @@ class BriaImageEditNode(IO.ComfyNode):
|
||||
)
|
||||
|
||||
|
||||
class BriaRemoveImageBackground(IO.ComfyNode):
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="BriaRemoveImageBackground",
|
||||
display_name="Bria Remove Image Background",
|
||||
category="api node/image/Bria",
|
||||
description="Remove the background from an image using Bria RMBG 2.0.",
|
||||
inputs=[
|
||||
IO.Image.Input("image"),
|
||||
IO.DynamicCombo.Input(
|
||||
"moderation",
|
||||
options=[
|
||||
IO.DynamicCombo.Option("false", []),
|
||||
IO.DynamicCombo.Option(
|
||||
"true",
|
||||
[
|
||||
IO.Boolean.Input("visual_input_moderation", default=False),
|
||||
IO.Boolean.Input("visual_output_moderation", default=True),
|
||||
],
|
||||
),
|
||||
],
|
||||
tooltip="Moderation settings",
|
||||
),
|
||||
IO.Int.Input(
|
||||
"seed",
|
||||
default=0,
|
||||
min=0,
|
||||
max=2147483647,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
control_after_generate=True,
|
||||
tooltip="Seed controls whether the node should re-run; "
|
||||
"results are non-deterministic regardless of seed.",
|
||||
),
|
||||
],
|
||||
outputs=[IO.Image.Output()],
|
||||
hidden=[
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
expr="""{"type":"usd","usd":0.018}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
async def execute(
|
||||
cls,
|
||||
image: Input.Image,
|
||||
moderation: dict,
|
||||
seed: int,
|
||||
) -> IO.NodeOutput:
|
||||
response = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/bria/v2/image/edit/remove_background", method="POST"),
|
||||
data=BriaRemoveBackgroundRequest(
|
||||
image=await upload_image_to_comfyapi(cls, image, wait_label="Uploading image"),
|
||||
sync=False,
|
||||
visual_input_content_moderation=moderation.get("visual_input_moderation", False),
|
||||
visual_output_content_moderation=moderation.get("visual_output_moderation", False),
|
||||
seed=seed,
|
||||
),
|
||||
response_model=BriaStatusResponse,
|
||||
)
|
||||
response = await poll_op(
|
||||
cls,
|
||||
ApiEndpoint(path=f"/proxy/bria/v2/status/{response.request_id}"),
|
||||
status_extractor=lambda r: r.status,
|
||||
response_model=BriaRemoveBackgroundResponse,
|
||||
)
|
||||
return IO.NodeOutput(await download_url_to_image_tensor(response.result.image_url))
|
||||
|
||||
|
||||
class BriaRemoveVideoBackground(IO.ComfyNode):
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="BriaRemoveVideoBackground",
|
||||
display_name="Bria Remove Video Background",
|
||||
category="api node/video/Bria",
|
||||
description="Remove the background from a video using Bria. ",
|
||||
inputs=[
|
||||
IO.Video.Input("video"),
|
||||
IO.Combo.Input(
|
||||
"background_color",
|
||||
options=[
|
||||
"Black",
|
||||
"White",
|
||||
"Gray",
|
||||
"Red",
|
||||
"Green",
|
||||
"Blue",
|
||||
"Yellow",
|
||||
"Cyan",
|
||||
"Magenta",
|
||||
"Orange",
|
||||
],
|
||||
tooltip="Background color for the output video.",
|
||||
),
|
||||
IO.Int.Input(
|
||||
"seed",
|
||||
default=0,
|
||||
min=0,
|
||||
max=2147483647,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
control_after_generate=True,
|
||||
tooltip="Seed controls whether the node should re-run; "
|
||||
"results are non-deterministic regardless of seed.",
|
||||
),
|
||||
],
|
||||
outputs=[IO.Video.Output()],
|
||||
hidden=[
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
expr="""{"type":"usd","usd":0.14,"format":{"suffix":"/second"}}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
async def execute(
|
||||
cls,
|
||||
video: Input.Video,
|
||||
background_color: str,
|
||||
seed: int,
|
||||
) -> IO.NodeOutput:
|
||||
validate_video_duration(video, max_duration=60.0)
|
||||
response = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/bria/v2/video/edit/remove_background", method="POST"),
|
||||
data=BriaRemoveVideoBackgroundRequest(
|
||||
video=await upload_video_to_comfyapi(cls, video),
|
||||
background_color=background_color,
|
||||
output_container_and_codec="mp4_h264",
|
||||
seed=seed,
|
||||
),
|
||||
response_model=BriaStatusResponse,
|
||||
)
|
||||
response = await poll_op(
|
||||
cls,
|
||||
ApiEndpoint(path=f"/proxy/bria/v2/status/{response.request_id}"),
|
||||
status_extractor=lambda r: r.status,
|
||||
response_model=BriaRemoveVideoBackgroundResponse,
|
||||
)
|
||||
return IO.NodeOutput(await download_url_to_video_output(response.result.video_url))
|
||||
|
||||
|
||||
class BriaExtension(ComfyExtension):
|
||||
@override
|
||||
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
|
||||
return [
|
||||
BriaImageEditNode,
|
||||
BriaRemoveImageBackground,
|
||||
BriaRemoveVideoBackground,
|
||||
]
|
||||
|
||||
|
||||
|
||||
@@ -1,31 +1,48 @@
|
||||
from typing_extensions import override
|
||||
|
||||
from comfy_api.latest import IO, ComfyExtension, Input
|
||||
from comfy_api.latest import IO, ComfyExtension, Input, Types
|
||||
from comfy_api_nodes.apis.hunyuan3d import (
|
||||
Hunyuan3DViewImage,
|
||||
InputGenerateType,
|
||||
ResultFile3D,
|
||||
TextureEditTaskRequest,
|
||||
To3DProTaskCreateResponse,
|
||||
To3DProTaskQueryRequest,
|
||||
To3DProTaskRequest,
|
||||
To3DProTaskResultResponse,
|
||||
To3DUVFileInput,
|
||||
To3DUVTaskRequest,
|
||||
)
|
||||
from comfy_api_nodes.util import (
|
||||
ApiEndpoint,
|
||||
download_url_to_file_3d,
|
||||
download_url_to_image_tensor,
|
||||
downscale_image_tensor_by_max_side,
|
||||
poll_op,
|
||||
sync_op,
|
||||
upload_3d_model_to_comfyapi,
|
||||
upload_image_to_comfyapi,
|
||||
validate_image_dimensions,
|
||||
validate_string,
|
||||
)
|
||||
|
||||
|
||||
def get_file_from_response(response_objs: list[ResultFile3D], file_type: str) -> ResultFile3D | None:
|
||||
def _is_tencent_rate_limited(status: int, body: object) -> bool:
|
||||
return (
|
||||
status == 400
|
||||
and isinstance(body, dict)
|
||||
and "RequestLimitExceeded" in str(body.get("Response", {}).get("Error", {}).get("Code", ""))
|
||||
)
|
||||
|
||||
|
||||
def get_file_from_response(
|
||||
response_objs: list[ResultFile3D], file_type: str, raise_if_not_found: bool = True
|
||||
) -> ResultFile3D | None:
|
||||
for i in response_objs:
|
||||
if i.Type.lower() == file_type.lower():
|
||||
return i
|
||||
if raise_if_not_found:
|
||||
raise ValueError(f"'{file_type}' file type is not found in the response.")
|
||||
return None
|
||||
|
||||
|
||||
@@ -35,7 +52,7 @@ class TencentTextToModelNode(IO.ComfyNode):
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="TencentTextToModelNode",
|
||||
display_name="Hunyuan3D: Text to Model (Pro)",
|
||||
display_name="Hunyuan3D: Text to Model",
|
||||
category="api node/3d/Tencent",
|
||||
inputs=[
|
||||
IO.Combo.Input(
|
||||
@@ -120,6 +137,7 @@ class TencentTextToModelNode(IO.ComfyNode):
|
||||
EnablePBR=generate_type.get("pbr", None),
|
||||
PolygonType=generate_type.get("polygon_type", None),
|
||||
),
|
||||
is_rate_limited=_is_tencent_rate_limited,
|
||||
)
|
||||
if response.Error:
|
||||
raise ValueError(f"Task creation failed with code {response.Error.Code}: {response.Error.Message}")
|
||||
@@ -131,11 +149,14 @@ class TencentTextToModelNode(IO.ComfyNode):
|
||||
response_model=To3DProTaskResultResponse,
|
||||
status_extractor=lambda r: r.Status,
|
||||
)
|
||||
glb_result = get_file_from_response(result.ResultFile3Ds, "glb")
|
||||
obj_result = get_file_from_response(result.ResultFile3Ds, "obj")
|
||||
file_glb = await download_url_to_file_3d(glb_result.Url, "glb", task_id=task_id) if glb_result else None
|
||||
return IO.NodeOutput(
|
||||
file_glb, file_glb, await download_url_to_file_3d(obj_result.Url, "obj", task_id=task_id) if obj_result else None
|
||||
f"{task_id}.glb",
|
||||
await download_url_to_file_3d(
|
||||
get_file_from_response(result.ResultFile3Ds, "glb").Url, "glb", task_id=task_id
|
||||
),
|
||||
await download_url_to_file_3d(
|
||||
get_file_from_response(result.ResultFile3Ds, "obj").Url, "obj", task_id=task_id
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
@@ -145,7 +166,7 @@ class TencentImageToModelNode(IO.ComfyNode):
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="TencentImageToModelNode",
|
||||
display_name="Hunyuan3D: Image(s) to Model (Pro)",
|
||||
display_name="Hunyuan3D: Image(s) to Model",
|
||||
category="api node/3d/Tencent",
|
||||
inputs=[
|
||||
IO.Combo.Input(
|
||||
@@ -268,6 +289,7 @@ class TencentImageToModelNode(IO.ComfyNode):
|
||||
EnablePBR=generate_type.get("pbr", None),
|
||||
PolygonType=generate_type.get("polygon_type", None),
|
||||
),
|
||||
is_rate_limited=_is_tencent_rate_limited,
|
||||
)
|
||||
if response.Error:
|
||||
raise ValueError(f"Task creation failed with code {response.Error.Code}: {response.Error.Message}")
|
||||
@@ -279,11 +301,257 @@ class TencentImageToModelNode(IO.ComfyNode):
|
||||
response_model=To3DProTaskResultResponse,
|
||||
status_extractor=lambda r: r.Status,
|
||||
)
|
||||
glb_result = get_file_from_response(result.ResultFile3Ds, "glb")
|
||||
obj_result = get_file_from_response(result.ResultFile3Ds, "obj")
|
||||
file_glb = await download_url_to_file_3d(glb_result.Url, "glb", task_id=task_id) if glb_result else None
|
||||
return IO.NodeOutput(
|
||||
file_glb, file_glb, await download_url_to_file_3d(obj_result.Url, "obj", task_id=task_id) if obj_result else None
|
||||
f"{task_id}.glb",
|
||||
await download_url_to_file_3d(
|
||||
get_file_from_response(result.ResultFile3Ds, "glb").Url, "glb", task_id=task_id
|
||||
),
|
||||
await download_url_to_file_3d(
|
||||
get_file_from_response(result.ResultFile3Ds, "obj").Url, "obj", task_id=task_id
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
class TencentModelTo3DUVNode(IO.ComfyNode):
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="TencentModelTo3DUVNode",
|
||||
display_name="Hunyuan3D: Model to UV",
|
||||
category="api node/3d/Tencent",
|
||||
description="Perform UV unfolding on a 3D model to generate UV texture. "
|
||||
"Input model must have less than 30000 faces.",
|
||||
inputs=[
|
||||
IO.MultiType.Input(
|
||||
"model_3d",
|
||||
types=[IO.File3DGLB, IO.File3DOBJ, IO.File3DFBX, IO.File3DAny],
|
||||
tooltip="Input 3D model (GLB, OBJ, or FBX)",
|
||||
),
|
||||
IO.Int.Input(
|
||||
"seed",
|
||||
default=1,
|
||||
min=0,
|
||||
max=2147483647,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
control_after_generate=True,
|
||||
tooltip="Seed controls whether the node should re-run; "
|
||||
"results are non-deterministic regardless of seed.",
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
IO.File3DOBJ.Output(display_name="OBJ"),
|
||||
IO.File3DFBX.Output(display_name="FBX"),
|
||||
IO.Image.Output(),
|
||||
],
|
||||
hidden=[
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(expr='{"type":"usd","usd":0.2}'),
|
||||
)
|
||||
|
||||
SUPPORTED_FORMATS = {"glb", "obj", "fbx"}
|
||||
|
||||
@classmethod
|
||||
async def execute(
|
||||
cls,
|
||||
model_3d: Types.File3D,
|
||||
seed: int,
|
||||
) -> IO.NodeOutput:
|
||||
_ = seed
|
||||
file_format = model_3d.format.lower()
|
||||
if file_format not in cls.SUPPORTED_FORMATS:
|
||||
raise ValueError(
|
||||
f"Unsupported file format: '{file_format}'. "
|
||||
f"Supported formats: {', '.join(sorted(cls.SUPPORTED_FORMATS))}."
|
||||
)
|
||||
response = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/tencent/hunyuan/3d-uv", method="POST"),
|
||||
response_model=To3DProTaskCreateResponse,
|
||||
data=To3DUVTaskRequest(
|
||||
File=To3DUVFileInput(
|
||||
Type=file_format.upper(),
|
||||
Url=await upload_3d_model_to_comfyapi(cls, model_3d, file_format),
|
||||
)
|
||||
),
|
||||
is_rate_limited=_is_tencent_rate_limited,
|
||||
)
|
||||
if response.Error:
|
||||
raise ValueError(f"Task creation failed with code {response.Error.Code}: {response.Error.Message}")
|
||||
result = await poll_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/tencent/hunyuan/3d-uv/query", method="POST"),
|
||||
data=To3DProTaskQueryRequest(JobId=response.JobId),
|
||||
response_model=To3DProTaskResultResponse,
|
||||
status_extractor=lambda r: r.Status,
|
||||
)
|
||||
return IO.NodeOutput(
|
||||
await download_url_to_file_3d(get_file_from_response(result.ResultFile3Ds, "obj").Url, "obj"),
|
||||
await download_url_to_file_3d(get_file_from_response(result.ResultFile3Ds, "fbx").Url, "fbx"),
|
||||
await download_url_to_image_tensor(get_file_from_response(result.ResultFile3Ds, "image").Url),
|
||||
)
|
||||
|
||||
|
||||
class Tencent3DTextureEditNode(IO.ComfyNode):
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="Tencent3DTextureEditNode",
|
||||
display_name="Hunyuan3D: 3D Texture Edit",
|
||||
category="api node/3d/Tencent",
|
||||
description="After inputting the 3D model, perform 3D model texture redrawing.",
|
||||
inputs=[
|
||||
IO.MultiType.Input(
|
||||
"model_3d",
|
||||
types=[IO.File3DFBX, IO.File3DAny],
|
||||
tooltip="3D model in FBX format. Model should have less than 100000 faces.",
|
||||
),
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
multiline=True,
|
||||
default="",
|
||||
tooltip="Describes texture editing. Supports up to 1024 UTF-8 characters.",
|
||||
),
|
||||
IO.Int.Input(
|
||||
"seed",
|
||||
default=0,
|
||||
min=0,
|
||||
max=2147483647,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
control_after_generate=True,
|
||||
tooltip="Seed controls whether the node should re-run; "
|
||||
"results are non-deterministic regardless of seed.",
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
IO.File3DGLB.Output(display_name="GLB"),
|
||||
IO.File3DFBX.Output(display_name="FBX"),
|
||||
],
|
||||
hidden=[
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
expr="""{"type":"usd","usd": 0.6}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
async def execute(
|
||||
cls,
|
||||
model_3d: Types.File3D,
|
||||
prompt: str,
|
||||
seed: int,
|
||||
) -> IO.NodeOutput:
|
||||
_ = seed
|
||||
file_format = model_3d.format.lower()
|
||||
if file_format != "fbx":
|
||||
raise ValueError(f"Unsupported file format: '{file_format}'. Only FBX format is supported.")
|
||||
validate_string(prompt, field_name="prompt", min_length=1, max_length=1024)
|
||||
model_url = await upload_3d_model_to_comfyapi(cls, model_3d, file_format)
|
||||
response = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/tencent/hunyuan/3d-texture-edit", method="POST"),
|
||||
response_model=To3DProTaskCreateResponse,
|
||||
data=TextureEditTaskRequest(
|
||||
File3D=To3DUVFileInput(Type=file_format.upper(), Url=model_url),
|
||||
Prompt=prompt,
|
||||
EnablePBR=True,
|
||||
),
|
||||
is_rate_limited=_is_tencent_rate_limited,
|
||||
)
|
||||
if response.Error:
|
||||
raise ValueError(f"Task creation failed with code {response.Error.Code}: {response.Error.Message}")
|
||||
|
||||
result = await poll_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/tencent/hunyuan/3d-texture-edit/query", method="POST"),
|
||||
data=To3DProTaskQueryRequest(JobId=response.JobId),
|
||||
response_model=To3DProTaskResultResponse,
|
||||
status_extractor=lambda r: r.Status,
|
||||
)
|
||||
return IO.NodeOutput(
|
||||
await download_url_to_file_3d(get_file_from_response(result.ResultFile3Ds, "glb").Url, "glb"),
|
||||
await download_url_to_file_3d(get_file_from_response(result.ResultFile3Ds, "fbx").Url, "fbx"),
|
||||
)
|
||||
|
||||
|
||||
class Tencent3DPartNode(IO.ComfyNode):
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="Tencent3DPartNode",
|
||||
display_name="Hunyuan3D: 3D Part",
|
||||
category="api node/3d/Tencent",
|
||||
description="Automatically perform component identification and generation based on the model structure.",
|
||||
inputs=[
|
||||
IO.MultiType.Input(
|
||||
"model_3d",
|
||||
types=[IO.File3DFBX, IO.File3DAny],
|
||||
tooltip="3D model in FBX format. Model should have less than 30000 faces.",
|
||||
),
|
||||
IO.Int.Input(
|
||||
"seed",
|
||||
default=0,
|
||||
min=0,
|
||||
max=2147483647,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
control_after_generate=True,
|
||||
tooltip="Seed controls whether the node should re-run; "
|
||||
"results are non-deterministic regardless of seed.",
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
IO.File3DFBX.Output(display_name="FBX"),
|
||||
],
|
||||
hidden=[
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(expr='{"type":"usd","usd":0.6}'),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
async def execute(
|
||||
cls,
|
||||
model_3d: Types.File3D,
|
||||
seed: int,
|
||||
) -> IO.NodeOutput:
|
||||
_ = seed
|
||||
file_format = model_3d.format.lower()
|
||||
if file_format != "fbx":
|
||||
raise ValueError(f"Unsupported file format: '{file_format}'. Only FBX format is supported.")
|
||||
model_url = await upload_3d_model_to_comfyapi(cls, model_3d, file_format)
|
||||
response = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/tencent/hunyuan/3d-part", method="POST"),
|
||||
response_model=To3DProTaskCreateResponse,
|
||||
data=To3DUVTaskRequest(
|
||||
File=To3DUVFileInput(Type=file_format.upper(), Url=model_url),
|
||||
),
|
||||
is_rate_limited=_is_tencent_rate_limited,
|
||||
)
|
||||
if response.Error:
|
||||
raise ValueError(f"Task creation failed with code {response.Error.Code}: {response.Error.Message}")
|
||||
result = await poll_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/tencent/hunyuan/3d-part/query", method="POST"),
|
||||
data=To3DProTaskQueryRequest(JobId=response.JobId),
|
||||
response_model=To3DProTaskResultResponse,
|
||||
status_extractor=lambda r: r.Status,
|
||||
)
|
||||
return IO.NodeOutput(
|
||||
await download_url_to_file_3d(get_file_from_response(result.ResultFile3Ds, "fbx").Url, "fbx"),
|
||||
)
|
||||
|
||||
|
||||
@@ -293,6 +561,9 @@ class TencentHunyuan3DExtension(ComfyExtension):
|
||||
return [
|
||||
TencentTextToModelNode,
|
||||
TencentImageToModelNode,
|
||||
# TencentModelTo3DUVNode,
|
||||
# Tencent3DTextureEditNode,
|
||||
Tencent3DPartNode,
|
||||
]
|
||||
|
||||
|
||||
|
||||
@@ -43,7 +43,6 @@ class SupportedOpenAIModel(str, Enum):
|
||||
o1 = "o1"
|
||||
o3 = "o3"
|
||||
o1_pro = "o1-pro"
|
||||
gpt_4o = "gpt-4o"
|
||||
gpt_4_1 = "gpt-4.1"
|
||||
gpt_4_1_mini = "gpt-4.1-mini"
|
||||
gpt_4_1_nano = "gpt-4.1-nano"
|
||||
@@ -649,11 +648,6 @@ class OpenAIChatNode(IO.ComfyNode):
|
||||
"usd": [0.01, 0.04],
|
||||
"format": { "approximate": true, "separator": "-", "suffix": " per 1K tokens" }
|
||||
}
|
||||
: $contains($m, "gpt-4o") ? {
|
||||
"type": "list_usd",
|
||||
"usd": [0.0025, 0.01],
|
||||
"format": { "approximate": true, "separator": "-", "suffix": " per 1K tokens" }
|
||||
}
|
||||
: $contains($m, "gpt-4.1-nano") ? {
|
||||
"type": "list_usd",
|
||||
"usd": [0.0001, 0.0004],
|
||||
|
||||
@@ -1,5 +1,4 @@
|
||||
from io import BytesIO
|
||||
from typing import Optional, Union
|
||||
|
||||
import aiohttp
|
||||
import torch
|
||||
@@ -9,6 +8,8 @@ from typing_extensions import override
|
||||
from comfy.utils import ProgressBar
|
||||
from comfy_api.latest import IO, ComfyExtension
|
||||
from comfy_api_nodes.apis.recraft import (
|
||||
RECRAFT_V4_PRO_SIZES,
|
||||
RECRAFT_V4_SIZES,
|
||||
RecraftColor,
|
||||
RecraftColorChain,
|
||||
RecraftControls,
|
||||
@@ -18,7 +19,6 @@ from comfy_api_nodes.apis.recraft import (
|
||||
RecraftImageGenerationResponse,
|
||||
RecraftImageSize,
|
||||
RecraftIO,
|
||||
RecraftModel,
|
||||
RecraftStyle,
|
||||
RecraftStyleV3,
|
||||
get_v3_substyles,
|
||||
@@ -39,7 +39,7 @@ async def handle_recraft_file_request(
|
||||
cls: type[IO.ComfyNode],
|
||||
image: torch.Tensor,
|
||||
path: str,
|
||||
mask: Optional[torch.Tensor] = None,
|
||||
mask: torch.Tensor | None = None,
|
||||
total_pixels: int = 4096 * 4096,
|
||||
timeout: int = 1024,
|
||||
request=None,
|
||||
@@ -73,11 +73,11 @@ async def handle_recraft_file_request(
|
||||
def recraft_multipart_parser(
|
||||
data,
|
||||
parent_key=None,
|
||||
formatter: Optional[type[callable]] = None,
|
||||
converted_to_check: Optional[list[list]] = None,
|
||||
formatter: type[callable] | None = None,
|
||||
converted_to_check: list[list] | None = None,
|
||||
is_list: bool = False,
|
||||
return_mode: str = "formdata", # "dict" | "formdata"
|
||||
) -> Union[dict, aiohttp.FormData]:
|
||||
) -> dict | aiohttp.FormData:
|
||||
"""
|
||||
Formats data such that multipart/form-data will work with aiohttp library when both files and data are present.
|
||||
|
||||
@@ -309,7 +309,7 @@ class RecraftStyleInfiniteStyleLibrary(IO.ComfyNode):
|
||||
node_id="RecraftStyleV3InfiniteStyleLibrary",
|
||||
display_name="Recraft Style - Infinite Style Library",
|
||||
category="api node/image/Recraft",
|
||||
description="Select style based on preexisting UUID from Recraft's Infinite Style Library.",
|
||||
description="Choose style based on preexisting UUID from Recraft's Infinite Style Library.",
|
||||
inputs=[
|
||||
IO.String.Input("style_id", default="", tooltip="UUID of style from Infinite Style Library."),
|
||||
],
|
||||
@@ -485,7 +485,7 @@ class RecraftTextToImageNode(IO.ComfyNode):
|
||||
data=RecraftImageGenerationRequest(
|
||||
prompt=prompt,
|
||||
negative_prompt=negative_prompt,
|
||||
model=RecraftModel.recraftv3,
|
||||
model="recraftv3",
|
||||
size=size,
|
||||
n=n,
|
||||
style=recraft_style.style,
|
||||
@@ -598,7 +598,7 @@ class RecraftImageToImageNode(IO.ComfyNode):
|
||||
request = RecraftImageGenerationRequest(
|
||||
prompt=prompt,
|
||||
negative_prompt=negative_prompt,
|
||||
model=RecraftModel.recraftv3,
|
||||
model="recraftv3",
|
||||
n=n,
|
||||
strength=round(strength, 2),
|
||||
style=recraft_style.style,
|
||||
@@ -698,7 +698,7 @@ class RecraftImageInpaintingNode(IO.ComfyNode):
|
||||
request = RecraftImageGenerationRequest(
|
||||
prompt=prompt,
|
||||
negative_prompt=negative_prompt,
|
||||
model=RecraftModel.recraftv3,
|
||||
model="recraftv3",
|
||||
n=n,
|
||||
style=recraft_style.style,
|
||||
substyle=recraft_style.substyle,
|
||||
@@ -810,7 +810,7 @@ class RecraftTextToVectorNode(IO.ComfyNode):
|
||||
data=RecraftImageGenerationRequest(
|
||||
prompt=prompt,
|
||||
negative_prompt=negative_prompt,
|
||||
model=RecraftModel.recraftv3,
|
||||
model="recraftv3",
|
||||
size=size,
|
||||
n=n,
|
||||
style=recraft_style.style,
|
||||
@@ -933,7 +933,7 @@ class RecraftReplaceBackgroundNode(IO.ComfyNode):
|
||||
request = RecraftImageGenerationRequest(
|
||||
prompt=prompt,
|
||||
negative_prompt=negative_prompt,
|
||||
model=RecraftModel.recraftv3,
|
||||
model="recraftv3",
|
||||
n=n,
|
||||
style=recraft_style.style,
|
||||
substyle=recraft_style.substyle,
|
||||
@@ -1078,6 +1078,252 @@ class RecraftCreativeUpscaleNode(RecraftCrispUpscaleNode):
|
||||
)
|
||||
|
||||
|
||||
class RecraftV4TextToImageNode(IO.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="RecraftV4TextToImageNode",
|
||||
display_name="Recraft V4 Text to Image",
|
||||
category="api node/image/Recraft",
|
||||
description="Generates images using Recraft V4 or V4 Pro models.",
|
||||
inputs=[
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
multiline=True,
|
||||
tooltip="Prompt for the image generation. Maximum 10,000 characters.",
|
||||
),
|
||||
IO.String.Input(
|
||||
"negative_prompt",
|
||||
multiline=True,
|
||||
tooltip="An optional text description of undesired elements on an image.",
|
||||
),
|
||||
IO.DynamicCombo.Input(
|
||||
"model",
|
||||
options=[
|
||||
IO.DynamicCombo.Option(
|
||||
"recraftv4",
|
||||
[
|
||||
IO.Combo.Input(
|
||||
"size",
|
||||
options=RECRAFT_V4_SIZES,
|
||||
default="1024x1024",
|
||||
tooltip="The size of the generated image.",
|
||||
),
|
||||
],
|
||||
),
|
||||
IO.DynamicCombo.Option(
|
||||
"recraftv4_pro",
|
||||
[
|
||||
IO.Combo.Input(
|
||||
"size",
|
||||
options=RECRAFT_V4_PRO_SIZES,
|
||||
default="2048x2048",
|
||||
tooltip="The size of the generated image.",
|
||||
),
|
||||
],
|
||||
),
|
||||
],
|
||||
tooltip="The model to use for generation.",
|
||||
),
|
||||
IO.Int.Input(
|
||||
"n",
|
||||
default=1,
|
||||
min=1,
|
||||
max=6,
|
||||
tooltip="The number of images to generate.",
|
||||
),
|
||||
IO.Int.Input(
|
||||
"seed",
|
||||
default=0,
|
||||
min=0,
|
||||
max=0xFFFFFFFFFFFFFFFF,
|
||||
control_after_generate=True,
|
||||
tooltip="Seed to determine if node should re-run; "
|
||||
"actual results are nondeterministic regardless of seed.",
|
||||
),
|
||||
IO.Custom(RecraftIO.CONTROLS).Input(
|
||||
"recraft_controls",
|
||||
tooltip="Optional additional controls over the generation via the Recraft Controls node.",
|
||||
optional=True,
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
IO.Image.Output(),
|
||||
],
|
||||
hidden=[
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["model", "n"]),
|
||||
expr="""
|
||||
(
|
||||
$prices := {"recraftv4": 0.04, "recraftv4_pro": 0.25};
|
||||
{"type":"usd","usd": $lookup($prices, widgets.model) * widgets.n}
|
||||
)
|
||||
""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
async def execute(
|
||||
cls,
|
||||
prompt: str,
|
||||
negative_prompt: str,
|
||||
model: dict,
|
||||
n: int,
|
||||
seed: int,
|
||||
recraft_controls: RecraftControls | None = None,
|
||||
) -> IO.NodeOutput:
|
||||
validate_string(prompt, strip_whitespace=False, min_length=1, max_length=10000)
|
||||
response = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/recraft/image_generation", method="POST"),
|
||||
response_model=RecraftImageGenerationResponse,
|
||||
data=RecraftImageGenerationRequest(
|
||||
prompt=prompt,
|
||||
negative_prompt=negative_prompt if negative_prompt else None,
|
||||
model=model["model"],
|
||||
size=model["size"],
|
||||
n=n,
|
||||
controls=recraft_controls.create_api_model() if recraft_controls else None,
|
||||
),
|
||||
max_retries=1,
|
||||
)
|
||||
images = []
|
||||
for data in response.data:
|
||||
with handle_recraft_image_output():
|
||||
image = bytesio_to_image_tensor(await download_url_as_bytesio(data.url, timeout=1024))
|
||||
if len(image.shape) < 4:
|
||||
image = image.unsqueeze(0)
|
||||
images.append(image)
|
||||
return IO.NodeOutput(torch.cat(images, dim=0))
|
||||
|
||||
|
||||
class RecraftV4TextToVectorNode(IO.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="RecraftV4TextToVectorNode",
|
||||
display_name="Recraft V4 Text to Vector",
|
||||
category="api node/image/Recraft",
|
||||
description="Generates SVG using Recraft V4 or V4 Pro models.",
|
||||
inputs=[
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
multiline=True,
|
||||
tooltip="Prompt for the image generation. Maximum 10,000 characters.",
|
||||
),
|
||||
IO.String.Input(
|
||||
"negative_prompt",
|
||||
multiline=True,
|
||||
tooltip="An optional text description of undesired elements on an image.",
|
||||
),
|
||||
IO.DynamicCombo.Input(
|
||||
"model",
|
||||
options=[
|
||||
IO.DynamicCombo.Option(
|
||||
"recraftv4",
|
||||
[
|
||||
IO.Combo.Input(
|
||||
"size",
|
||||
options=RECRAFT_V4_SIZES,
|
||||
default="1024x1024",
|
||||
tooltip="The size of the generated image.",
|
||||
),
|
||||
],
|
||||
),
|
||||
IO.DynamicCombo.Option(
|
||||
"recraftv4_pro",
|
||||
[
|
||||
IO.Combo.Input(
|
||||
"size",
|
||||
options=RECRAFT_V4_PRO_SIZES,
|
||||
default="2048x2048",
|
||||
tooltip="The size of the generated image.",
|
||||
),
|
||||
],
|
||||
),
|
||||
],
|
||||
tooltip="The model to use for generation.",
|
||||
),
|
||||
IO.Int.Input(
|
||||
"n",
|
||||
default=1,
|
||||
min=1,
|
||||
max=6,
|
||||
tooltip="The number of images to generate.",
|
||||
),
|
||||
IO.Int.Input(
|
||||
"seed",
|
||||
default=0,
|
||||
min=0,
|
||||
max=0xFFFFFFFFFFFFFFFF,
|
||||
control_after_generate=True,
|
||||
tooltip="Seed to determine if node should re-run; "
|
||||
"actual results are nondeterministic regardless of seed.",
|
||||
),
|
||||
IO.Custom(RecraftIO.CONTROLS).Input(
|
||||
"recraft_controls",
|
||||
tooltip="Optional additional controls over the generation via the Recraft Controls node.",
|
||||
optional=True,
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
IO.SVG.Output(),
|
||||
],
|
||||
hidden=[
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["model", "n"]),
|
||||
expr="""
|
||||
(
|
||||
$prices := {"recraftv4": 0.08, "recraftv4_pro": 0.30};
|
||||
{"type":"usd","usd": $lookup($prices, widgets.model) * widgets.n}
|
||||
)
|
||||
""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
async def execute(
|
||||
cls,
|
||||
prompt: str,
|
||||
negative_prompt: str,
|
||||
model: dict,
|
||||
n: int,
|
||||
seed: int,
|
||||
recraft_controls: RecraftControls | None = None,
|
||||
) -> IO.NodeOutput:
|
||||
validate_string(prompt, strip_whitespace=False, min_length=1, max_length=10000)
|
||||
response = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/recraft/image_generation", method="POST"),
|
||||
response_model=RecraftImageGenerationResponse,
|
||||
data=RecraftImageGenerationRequest(
|
||||
prompt=prompt,
|
||||
negative_prompt=negative_prompt if negative_prompt else None,
|
||||
model=model["model"],
|
||||
size=model["size"],
|
||||
n=n,
|
||||
style="vector_illustration",
|
||||
substyle=None,
|
||||
controls=recraft_controls.create_api_model() if recraft_controls else None,
|
||||
),
|
||||
max_retries=1,
|
||||
)
|
||||
svg_data = []
|
||||
for data in response.data:
|
||||
svg_data.append(await download_url_as_bytesio(data.url, timeout=1024))
|
||||
return IO.NodeOutput(SVG(svg_data))
|
||||
|
||||
|
||||
class RecraftExtension(ComfyExtension):
|
||||
@override
|
||||
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
|
||||
@@ -1098,6 +1344,8 @@ class RecraftExtension(ComfyExtension):
|
||||
RecraftCreateStyleNode,
|
||||
RecraftColorRGBNode,
|
||||
RecraftControlsNode,
|
||||
RecraftV4TextToImageNode,
|
||||
RecraftV4TextToVectorNode,
|
||||
]
|
||||
|
||||
|
||||
|
||||
@@ -33,6 +33,7 @@ from .download_helpers import (
|
||||
download_url_to_video_output,
|
||||
)
|
||||
from .upload_helpers import (
|
||||
upload_3d_model_to_comfyapi,
|
||||
upload_audio_to_comfyapi,
|
||||
upload_file_to_comfyapi,
|
||||
upload_image_to_comfyapi,
|
||||
@@ -62,6 +63,7 @@ __all__ = [
|
||||
"sync_op",
|
||||
"sync_op_raw",
|
||||
# Upload helpers
|
||||
"upload_3d_model_to_comfyapi",
|
||||
"upload_audio_to_comfyapi",
|
||||
"upload_file_to_comfyapi",
|
||||
"upload_image_to_comfyapi",
|
||||
|
||||
@@ -57,7 +57,7 @@ def tensor_to_bytesio(
|
||||
image: torch.Tensor,
|
||||
*,
|
||||
total_pixels: int | None = 2048 * 2048,
|
||||
mime_type: str = "image/png",
|
||||
mime_type: str | None = "image/png",
|
||||
) -> BytesIO:
|
||||
"""Converts a torch.Tensor image to a named BytesIO object.
|
||||
|
||||
|
||||
@@ -164,6 +164,27 @@ async def upload_video_to_comfyapi(
|
||||
return await upload_file_to_comfyapi(cls, video_bytes_io, filename, upload_mime_type, wait_label)
|
||||
|
||||
|
||||
_3D_MIME_TYPES = {
|
||||
"glb": "model/gltf-binary",
|
||||
"obj": "model/obj",
|
||||
"fbx": "application/octet-stream",
|
||||
}
|
||||
|
||||
|
||||
async def upload_3d_model_to_comfyapi(
|
||||
cls: type[IO.ComfyNode],
|
||||
model_3d: Types.File3D,
|
||||
file_format: str,
|
||||
) -> str:
|
||||
"""Uploads a 3D model file to ComfyUI API and returns its download URL."""
|
||||
return await upload_file_to_comfyapi(
|
||||
cls,
|
||||
model_3d.get_data(),
|
||||
f"{uuid.uuid4()}.{file_format}",
|
||||
_3D_MIME_TYPES.get(file_format, "application/octet-stream"),
|
||||
)
|
||||
|
||||
|
||||
async def upload_file_to_comfyapi(
|
||||
cls: type[IO.ComfyNode],
|
||||
file_bytes_io: BytesIO,
|
||||
|
||||
@@ -1,78 +0,0 @@
|
||||
from typing_extensions import override
|
||||
import torch
|
||||
|
||||
from comfy_api.latest import ComfyExtension, io, ui
|
||||
|
||||
|
||||
def _smoothstep(edge0: float, edge1: float, x: torch.Tensor) -> torch.Tensor:
|
||||
t = torch.clamp((x - edge0) / (edge1 - edge0), 0.0, 1.0)
|
||||
return t * t * (3.0 - 2.0 * t)
|
||||
|
||||
|
||||
class ColorBalanceNode(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="ColorBalance",
|
||||
display_name="Color Balance",
|
||||
category="image/adjustment",
|
||||
inputs=[
|
||||
io.Image.Input("image"),
|
||||
io.ColorBalance.Input("settings"),
|
||||
],
|
||||
outputs=[
|
||||
io.Image.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, image: torch.Tensor, settings: dict) -> io.NodeOutput:
|
||||
shadows_red = settings.get("shadows_red", 0)
|
||||
shadows_green = settings.get("shadows_green", 0)
|
||||
shadows_blue = settings.get("shadows_blue", 0)
|
||||
midtones_red = settings.get("midtones_red", 0)
|
||||
midtones_green = settings.get("midtones_green", 0)
|
||||
midtones_blue = settings.get("midtones_blue", 0)
|
||||
highlights_red = settings.get("highlights_red", 0)
|
||||
highlights_green = settings.get("highlights_green", 0)
|
||||
highlights_blue = settings.get("highlights_blue", 0)
|
||||
|
||||
result = image.clone().float()
|
||||
|
||||
# Compute per-pixel luminance
|
||||
luminance = (
|
||||
0.2126 * result[..., 0]
|
||||
+ 0.7152 * result[..., 1]
|
||||
+ 0.0722 * result[..., 2]
|
||||
)
|
||||
|
||||
# Compute tonal range weights
|
||||
shadow_weight = 1.0 - _smoothstep(0.0, 0.5, luminance)
|
||||
highlight_weight = _smoothstep(0.5, 1.0, luminance)
|
||||
midtone_weight = 1.0 - shadow_weight - highlight_weight
|
||||
|
||||
# Apply offsets per channel
|
||||
for ch, (s, m, h) in enumerate([
|
||||
(shadows_red, midtones_red, highlights_red),
|
||||
(shadows_green, midtones_green, highlights_green),
|
||||
(shadows_blue, midtones_blue, highlights_blue),
|
||||
]):
|
||||
offset = (
|
||||
shadow_weight * (s / 100.0)
|
||||
+ midtone_weight * (m / 100.0)
|
||||
+ highlight_weight * (h / 100.0)
|
||||
)
|
||||
result[..., ch] = result[..., ch] + offset
|
||||
|
||||
result = torch.clamp(result, 0, 1)
|
||||
return io.NodeOutput(result, ui=ui.PreviewImage(result))
|
||||
|
||||
|
||||
class ColorBalanceExtension(ComfyExtension):
|
||||
@override
|
||||
async def get_node_list(self) -> list[type[io.ComfyNode]]:
|
||||
return [ColorBalanceNode]
|
||||
|
||||
|
||||
async def comfy_entrypoint() -> ColorBalanceExtension:
|
||||
return ColorBalanceExtension()
|
||||
@@ -1,88 +0,0 @@
|
||||
from typing_extensions import override
|
||||
import torch
|
||||
import numpy as np
|
||||
|
||||
from comfy_api.latest import ComfyExtension, io, ui
|
||||
|
||||
|
||||
class ColorCorrectNode(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="ColorCorrect",
|
||||
display_name="Color Correct",
|
||||
category="image/adjustment",
|
||||
inputs=[
|
||||
io.Image.Input("image"),
|
||||
io.ColorCorrect.Input("settings"),
|
||||
],
|
||||
outputs=[
|
||||
io.Image.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, image: torch.Tensor, settings: dict) -> io.NodeOutput:
|
||||
temperature = settings.get("temperature", 0)
|
||||
hue = settings.get("hue", 0)
|
||||
brightness = settings.get("brightness", 0)
|
||||
contrast = settings.get("contrast", 0)
|
||||
saturation = settings.get("saturation", 0)
|
||||
gamma = settings.get("gamma", 1.0)
|
||||
|
||||
result = image.clone()
|
||||
|
||||
# Brightness: scale RGB values
|
||||
if brightness != 0:
|
||||
factor = 1.0 + brightness / 100.0
|
||||
result = result * factor
|
||||
|
||||
# Contrast: adjust around midpoint
|
||||
if contrast != 0:
|
||||
factor = 1.0 + contrast / 100.0
|
||||
mean = result[..., :3].mean()
|
||||
result[..., :3] = (result[..., :3] - mean) * factor + mean
|
||||
|
||||
# Temperature: shift warm (red+) / cool (blue+)
|
||||
if temperature != 0:
|
||||
temp_factor = temperature / 100.0
|
||||
result[..., 0] = result[..., 0] + temp_factor * 0.1 # Red
|
||||
result[..., 2] = result[..., 2] - temp_factor * 0.1 # Blue
|
||||
|
||||
# Gamma correction
|
||||
if gamma != 1.0:
|
||||
result[..., :3] = torch.pow(torch.clamp(result[..., :3], 0, 1), 1.0 / gamma)
|
||||
|
||||
# Saturation: convert to HSV-like space
|
||||
if saturation != 0:
|
||||
factor = 1.0 + saturation / 100.0
|
||||
gray = result[..., :3].mean(dim=-1, keepdim=True)
|
||||
result[..., :3] = gray + (result[..., :3] - gray) * factor
|
||||
|
||||
# Hue rotation: rotate in RGB space using rotation matrix
|
||||
if hue != 0:
|
||||
angle = np.radians(hue)
|
||||
cos_a = np.cos(angle)
|
||||
sin_a = np.sin(angle)
|
||||
# Rodrigues' rotation formula around (1,1,1)/sqrt(3) axis
|
||||
k = 1.0 / 3.0
|
||||
rotation = torch.tensor([
|
||||
[cos_a + k * (1 - cos_a), k * (1 - cos_a) - sin_a / np.sqrt(3), k * (1 - cos_a) + sin_a / np.sqrt(3)],
|
||||
[k * (1 - cos_a) + sin_a / np.sqrt(3), cos_a + k * (1 - cos_a), k * (1 - cos_a) - sin_a / np.sqrt(3)],
|
||||
[k * (1 - cos_a) - sin_a / np.sqrt(3), k * (1 - cos_a) + sin_a / np.sqrt(3), cos_a + k * (1 - cos_a)]
|
||||
], dtype=result.dtype, device=result.device)
|
||||
rgb = result[..., :3]
|
||||
result[..., :3] = torch.matmul(rgb, rotation.T)
|
||||
|
||||
result = torch.clamp(result, 0, 1)
|
||||
return io.NodeOutput(result, ui=ui.PreviewImage(result))
|
||||
|
||||
|
||||
class ColorCorrectExtension(ComfyExtension):
|
||||
@override
|
||||
async def get_node_list(self) -> list[type[io.ComfyNode]]:
|
||||
return [ColorCorrectNode]
|
||||
|
||||
|
||||
async def comfy_entrypoint() -> ColorCorrectExtension:
|
||||
return ColorCorrectExtension()
|
||||
@@ -1,137 +0,0 @@
|
||||
from typing_extensions import override
|
||||
import torch
|
||||
import numpy as np
|
||||
|
||||
from comfy_api.latest import ComfyExtension, io, ui
|
||||
|
||||
|
||||
def _monotone_cubic_hermite(xs, ys, x_query):
|
||||
"""Evaluate monotone cubic Hermite interpolation at x_query points."""
|
||||
n = len(xs)
|
||||
if n == 0:
|
||||
return np.zeros_like(x_query)
|
||||
if n == 1:
|
||||
return np.full_like(x_query, ys[0])
|
||||
|
||||
# Compute slopes
|
||||
deltas = np.diff(ys) / np.maximum(np.diff(xs), 1e-10)
|
||||
|
||||
# Compute tangents (Fritsch-Carlson)
|
||||
slopes = np.zeros(n)
|
||||
slopes[0] = deltas[0]
|
||||
slopes[-1] = deltas[-1]
|
||||
for i in range(1, n - 1):
|
||||
if deltas[i - 1] * deltas[i] <= 0:
|
||||
slopes[i] = 0
|
||||
else:
|
||||
slopes[i] = (deltas[i - 1] + deltas[i]) / 2
|
||||
|
||||
# Enforce monotonicity
|
||||
for i in range(n - 1):
|
||||
if deltas[i] == 0:
|
||||
slopes[i] = 0
|
||||
slopes[i + 1] = 0
|
||||
else:
|
||||
alpha = slopes[i] / deltas[i]
|
||||
beta = slopes[i + 1] / deltas[i]
|
||||
s = alpha ** 2 + beta ** 2
|
||||
if s > 9:
|
||||
t = 3 / np.sqrt(s)
|
||||
slopes[i] = t * alpha * deltas[i]
|
||||
slopes[i + 1] = t * beta * deltas[i]
|
||||
|
||||
# Evaluate
|
||||
result = np.zeros_like(x_query, dtype=np.float64)
|
||||
indices = np.searchsorted(xs, x_query, side='right') - 1
|
||||
indices = np.clip(indices, 0, n - 2)
|
||||
|
||||
for i in range(n - 1):
|
||||
mask = indices == i
|
||||
if not np.any(mask):
|
||||
continue
|
||||
dx = xs[i + 1] - xs[i]
|
||||
if dx == 0:
|
||||
result[mask] = ys[i]
|
||||
continue
|
||||
t = (x_query[mask] - xs[i]) / dx
|
||||
t2 = t * t
|
||||
t3 = t2 * t
|
||||
h00 = 2 * t3 - 3 * t2 + 1
|
||||
h10 = t3 - 2 * t2 + t
|
||||
h01 = -2 * t3 + 3 * t2
|
||||
h11 = t3 - t2
|
||||
result[mask] = h00 * ys[i] + h10 * dx * slopes[i] + h01 * ys[i + 1] + h11 * dx * slopes[i + 1]
|
||||
|
||||
# Clamp edges
|
||||
result[x_query <= xs[0]] = ys[0]
|
||||
result[x_query >= xs[-1]] = ys[-1]
|
||||
|
||||
return result
|
||||
|
||||
|
||||
def _build_lut(points):
|
||||
"""Build a 256-entry LUT from curve control points in [0,1] space."""
|
||||
if not points or len(points) < 2:
|
||||
return np.arange(256, dtype=np.float64) / 255.0
|
||||
|
||||
pts = sorted(points, key=lambda p: p[0])
|
||||
xs = np.array([p[0] for p in pts], dtype=np.float64)
|
||||
ys = np.array([p[1] for p in pts], dtype=np.float64)
|
||||
|
||||
x_query = np.linspace(0, 1, 256)
|
||||
lut = _monotone_cubic_hermite(xs, ys, x_query)
|
||||
return np.clip(lut, 0, 1)
|
||||
|
||||
|
||||
class ColorCurvesNode(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="ColorCurves",
|
||||
display_name="Color Curves",
|
||||
category="image/adjustment",
|
||||
inputs=[
|
||||
io.Image.Input("image"),
|
||||
io.ColorCurves.Input("settings"),
|
||||
],
|
||||
outputs=[
|
||||
io.Image.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, image: torch.Tensor, settings: dict) -> io.NodeOutput:
|
||||
rgb_pts = settings.get("rgb", [[0, 0], [1, 1]])
|
||||
red_pts = settings.get("red", [[0, 0], [1, 1]])
|
||||
green_pts = settings.get("green", [[0, 0], [1, 1]])
|
||||
blue_pts = settings.get("blue", [[0, 0], [1, 1]])
|
||||
|
||||
rgb_lut = _build_lut(rgb_pts)
|
||||
red_lut = _build_lut(red_pts)
|
||||
green_lut = _build_lut(green_pts)
|
||||
blue_lut = _build_lut(blue_pts)
|
||||
|
||||
# Convert to numpy for LUT application
|
||||
img_np = image.cpu().numpy().copy()
|
||||
|
||||
# Apply per-channel curves then RGB master curve
|
||||
for ch, ch_lut in enumerate([red_lut, green_lut, blue_lut]):
|
||||
# Per-channel curve
|
||||
indices = np.clip(img_np[..., ch] * 255, 0, 255).astype(np.int32)
|
||||
img_np[..., ch] = ch_lut[indices]
|
||||
# RGB master curve
|
||||
indices = np.clip(img_np[..., ch] * 255, 0, 255).astype(np.int32)
|
||||
img_np[..., ch] = rgb_lut[indices]
|
||||
|
||||
result = torch.from_numpy(np.clip(img_np, 0, 1)).to(image.device, dtype=image.dtype)
|
||||
return io.NodeOutput(result, ui=ui.PreviewImage(result))
|
||||
|
||||
|
||||
class ColorCurvesExtension(ComfyExtension):
|
||||
@override
|
||||
async def get_node_list(self) -> list[type[io.ComfyNode]]:
|
||||
return [ColorCurvesNode]
|
||||
|
||||
|
||||
async def comfy_entrypoint() -> ColorCurvesExtension:
|
||||
return ColorCurvesExtension()
|
||||
@@ -7,6 +7,7 @@ import logging
|
||||
from enum import Enum
|
||||
from typing_extensions import override
|
||||
from comfy_api.latest import ComfyExtension, io
|
||||
from tqdm.auto import trange
|
||||
|
||||
CLAMP_QUANTILE = 0.99
|
||||
|
||||
@@ -49,12 +50,22 @@ LORA_TYPES = {"standard": LORAType.STANDARD,
|
||||
"full_diff": LORAType.FULL_DIFF}
|
||||
|
||||
def calc_lora_model(model_diff, rank, prefix_model, prefix_lora, output_sd, lora_type, bias_diff=False):
|
||||
comfy.model_management.load_models_gpu([model_diff], force_patch_weights=True)
|
||||
comfy.model_management.load_models_gpu([model_diff])
|
||||
sd = model_diff.model_state_dict(filter_prefix=prefix_model)
|
||||
|
||||
for k in sd:
|
||||
if k.endswith(".weight"):
|
||||
sd_keys = list(sd.keys())
|
||||
for index in trange(len(sd_keys), unit="weight"):
|
||||
k = sd_keys[index]
|
||||
op_keys = sd_keys[index].rsplit('.', 1)
|
||||
if len(op_keys) < 2 or op_keys[1] not in ["weight", "bias"] or (op_keys[1] == "bias" and not bias_diff):
|
||||
continue
|
||||
op = comfy.utils.get_attr(model_diff.model, op_keys[0])
|
||||
if hasattr(op, "comfy_cast_weights") and not getattr(op, "comfy_patched_weights", False):
|
||||
weight_diff = model_diff.patch_weight_to_device(k, model_diff.load_device, return_weight=True)
|
||||
else:
|
||||
weight_diff = sd[k]
|
||||
|
||||
if op_keys[1] == "weight":
|
||||
if lora_type == LORAType.STANDARD:
|
||||
if weight_diff.ndim < 2:
|
||||
if bias_diff:
|
||||
@@ -69,8 +80,8 @@ def calc_lora_model(model_diff, rank, prefix_model, prefix_lora, output_sd, lora
|
||||
elif lora_type == LORAType.FULL_DIFF:
|
||||
output_sd["{}{}.diff".format(prefix_lora, k[len(prefix_model):-7])] = weight_diff.contiguous().half().cpu()
|
||||
|
||||
elif bias_diff and k.endswith(".bias"):
|
||||
output_sd["{}{}.diff_b".format(prefix_lora, k[len(prefix_model):-5])] = sd[k].contiguous().half().cpu()
|
||||
elif bias_diff and op_keys[1] == "bias":
|
||||
output_sd["{}{}.diff_b".format(prefix_lora, k[len(prefix_model):-5])] = weight_diff.contiguous().half().cpu()
|
||||
return output_sd
|
||||
|
||||
class LoraSave(io.ComfyNode):
|
||||
|
||||
@@ -655,6 +655,7 @@ class BatchImagesMasksLatentsNode(io.ComfyNode):
|
||||
batched = batch_masks(values)
|
||||
return io.NodeOutput(batched)
|
||||
|
||||
|
||||
class PostProcessingExtension(ComfyExtension):
|
||||
@override
|
||||
async def get_node_list(self) -> list[type[io.ComfyNode]]:
|
||||
|
||||
103
comfy_extras/nodes_replacements.py
Normal file
103
comfy_extras/nodes_replacements.py
Normal file
@@ -0,0 +1,103 @@
|
||||
from comfy_api.latest import ComfyExtension, io, ComfyAPI
|
||||
|
||||
api = ComfyAPI()
|
||||
|
||||
|
||||
async def register_replacements():
|
||||
"""Register all built-in node replacements."""
|
||||
await register_replacements_longeredge()
|
||||
await register_replacements_batchimages()
|
||||
await register_replacements_upscaleimage()
|
||||
await register_replacements_controlnet()
|
||||
await register_replacements_load3d()
|
||||
await register_replacements_preview3d()
|
||||
await register_replacements_svdimg2vid()
|
||||
await register_replacements_conditioningavg()
|
||||
|
||||
async def register_replacements_longeredge():
|
||||
# No dynamic inputs here
|
||||
await api.node_replacement.register(io.NodeReplace(
|
||||
new_node_id="ImageScaleToMaxDimension",
|
||||
old_node_id="ResizeImagesByLongerEdge",
|
||||
old_widget_ids=["longer_edge"],
|
||||
input_mapping=[
|
||||
{"new_id": "image", "old_id": "images"},
|
||||
{"new_id": "largest_size", "old_id": "longer_edge"},
|
||||
{"new_id": "upscale_method", "set_value": "lanczos"},
|
||||
],
|
||||
# just to test the frontend output_mapping code, does nothing really here
|
||||
output_mapping=[{"new_idx": 0, "old_idx": 0}],
|
||||
))
|
||||
|
||||
async def register_replacements_batchimages():
|
||||
# BatchImages node uses Autogrow
|
||||
await api.node_replacement.register(io.NodeReplace(
|
||||
new_node_id="BatchImagesNode",
|
||||
old_node_id="ImageBatch",
|
||||
input_mapping=[
|
||||
{"new_id": "images.image0", "old_id": "image1"},
|
||||
{"new_id": "images.image1", "old_id": "image2"},
|
||||
],
|
||||
))
|
||||
|
||||
async def register_replacements_upscaleimage():
|
||||
# ResizeImageMaskNode uses DynamicCombo
|
||||
await api.node_replacement.register(io.NodeReplace(
|
||||
new_node_id="ResizeImageMaskNode",
|
||||
old_node_id="ImageScaleBy",
|
||||
old_widget_ids=["upscale_method", "scale_by"],
|
||||
input_mapping=[
|
||||
{"new_id": "input", "old_id": "image"},
|
||||
{"new_id": "resize_type", "set_value": "scale by multiplier"},
|
||||
{"new_id": "resize_type.multiplier", "old_id": "scale_by"},
|
||||
{"new_id": "scale_method", "old_id": "upscale_method"},
|
||||
],
|
||||
))
|
||||
|
||||
async def register_replacements_controlnet():
|
||||
# T2IAdapterLoader → ControlNetLoader
|
||||
await api.node_replacement.register(io.NodeReplace(
|
||||
new_node_id="ControlNetLoader",
|
||||
old_node_id="T2IAdapterLoader",
|
||||
input_mapping=[
|
||||
{"new_id": "control_net_name", "old_id": "t2i_adapter_name"},
|
||||
],
|
||||
))
|
||||
|
||||
async def register_replacements_load3d():
|
||||
# Load3DAnimation merged into Load3D
|
||||
await api.node_replacement.register(io.NodeReplace(
|
||||
new_node_id="Load3D",
|
||||
old_node_id="Load3DAnimation",
|
||||
))
|
||||
|
||||
async def register_replacements_preview3d():
|
||||
# Preview3DAnimation merged into Preview3D
|
||||
await api.node_replacement.register(io.NodeReplace(
|
||||
new_node_id="Preview3D",
|
||||
old_node_id="Preview3DAnimation",
|
||||
))
|
||||
|
||||
async def register_replacements_svdimg2vid():
|
||||
# Typo fix: SDV → SVD
|
||||
await api.node_replacement.register(io.NodeReplace(
|
||||
new_node_id="SVD_img2vid_Conditioning",
|
||||
old_node_id="SDV_img2vid_Conditioning",
|
||||
))
|
||||
|
||||
async def register_replacements_conditioningavg():
|
||||
# Typo fix: trailing space in node name
|
||||
await api.node_replacement.register(io.NodeReplace(
|
||||
new_node_id="ConditioningAverage",
|
||||
old_node_id="ConditioningAverage ",
|
||||
))
|
||||
|
||||
class NodeReplacementsExtension(ComfyExtension):
|
||||
async def on_load(self) -> None:
|
||||
await register_replacements()
|
||||
|
||||
async def get_node_list(self) -> list[type[io.ComfyNode]]:
|
||||
return []
|
||||
|
||||
async def comfy_entrypoint() -> NodeReplacementsExtension:
|
||||
return NodeReplacementsExtension()
|
||||
5
nodes.py
5
nodes.py
@@ -2264,6 +2264,7 @@ async def load_custom_node(module_path: str, ignore=set(), module_parent="custom
|
||||
if not isinstance(extension, ComfyExtension):
|
||||
logging.warning(f"comfy_entrypoint in {module_path} did not return a ComfyExtension, skipping.")
|
||||
return False
|
||||
await extension.on_load()
|
||||
node_list = await extension.get_node_list()
|
||||
if not isinstance(node_list, list):
|
||||
logging.warning(f"comfy_entrypoint in {module_path} did not return a list of nodes, skipping.")
|
||||
@@ -2435,9 +2436,7 @@ async def init_builtin_extra_nodes():
|
||||
"nodes_lora_debug.py",
|
||||
"nodes_color.py",
|
||||
"nodes_toolkit.py",
|
||||
"nodes_color_correct.py",
|
||||
"nodes_color_balance.py",
|
||||
"nodes_color_curves.py"
|
||||
"nodes_replacements.py",
|
||||
]
|
||||
|
||||
import_failed = []
|
||||
|
||||
@@ -40,6 +40,7 @@ from app.user_manager import UserManager
|
||||
from app.model_manager import ModelFileManager
|
||||
from app.custom_node_manager import CustomNodeManager
|
||||
from app.subgraph_manager import SubgraphManager
|
||||
from app.node_replace_manager import NodeReplaceManager
|
||||
from typing import Optional, Union
|
||||
from api_server.routes.internal.internal_routes import InternalRoutes
|
||||
from protocol import BinaryEventTypes
|
||||
@@ -204,6 +205,7 @@ class PromptServer():
|
||||
self.model_file_manager = ModelFileManager()
|
||||
self.custom_node_manager = CustomNodeManager()
|
||||
self.subgraph_manager = SubgraphManager()
|
||||
self.node_replace_manager = NodeReplaceManager()
|
||||
self.internal_routes = InternalRoutes(self)
|
||||
self.supports = ["custom_nodes_from_web"]
|
||||
self.prompt_queue = execution.PromptQueue(self)
|
||||
@@ -887,6 +889,8 @@ class PromptServer():
|
||||
if "partial_execution_targets" in json_data:
|
||||
partial_execution_targets = json_data["partial_execution_targets"]
|
||||
|
||||
self.node_replace_manager.apply_replacements(prompt)
|
||||
|
||||
valid = await execution.validate_prompt(prompt_id, prompt, partial_execution_targets)
|
||||
extra_data = {}
|
||||
if "extra_data" in json_data:
|
||||
@@ -995,6 +999,7 @@ class PromptServer():
|
||||
self.model_file_manager.add_routes(self.routes)
|
||||
self.custom_node_manager.add_routes(self.routes, self.app, nodes.LOADED_MODULE_DIRS.items())
|
||||
self.subgraph_manager.add_routes(self.routes, nodes.LOADED_MODULE_DIRS.items())
|
||||
self.node_replace_manager.add_routes(self.routes)
|
||||
self.app.add_subapp('/internal', self.internal_routes.get_app())
|
||||
|
||||
# Prefix every route with /api for easier matching for delegation.
|
||||
|
||||
Reference in New Issue
Block a user