mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-02-17 05:30:03 +00:00
Compare commits
8 Commits
glsl-cloud
...
pysssss/no
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
ecec1310b2 | ||
|
|
88e6370527 | ||
|
|
c0370044cd | ||
|
|
ecd2a19661 | ||
|
|
2c1d06a4e3 | ||
|
|
e2c71ceb00 | ||
|
|
596ed68691 | ||
|
|
ce4a1ab48d |
105
app/node_replace_manager.py
Normal file
105
app/node_replace_manager.py
Normal file
@@ -0,0 +1,105 @@
|
||||
from __future__ import annotations
|
||||
|
||||
from aiohttp import web
|
||||
|
||||
from typing import TYPE_CHECKING, TypedDict
|
||||
if TYPE_CHECKING:
|
||||
from comfy_api.latest._io_public import NodeReplace
|
||||
|
||||
from comfy_execution.graph_utils import is_link
|
||||
import nodes
|
||||
|
||||
class NodeStruct(TypedDict):
|
||||
inputs: dict[str, str | int | float | bool | tuple[str, int]]
|
||||
class_type: str
|
||||
_meta: dict[str, str]
|
||||
|
||||
def copy_node_struct(node_struct: NodeStruct, empty_inputs: bool = False) -> NodeStruct:
|
||||
new_node_struct = node_struct.copy()
|
||||
if empty_inputs:
|
||||
new_node_struct["inputs"] = {}
|
||||
else:
|
||||
new_node_struct["inputs"] = node_struct["inputs"].copy()
|
||||
new_node_struct["_meta"] = node_struct["_meta"].copy()
|
||||
return new_node_struct
|
||||
|
||||
|
||||
class NodeReplaceManager:
|
||||
"""Manages node replacement registrations."""
|
||||
|
||||
def __init__(self):
|
||||
self._replacements: dict[str, list[NodeReplace]] = {}
|
||||
|
||||
def register(self, node_replace: NodeReplace):
|
||||
"""Register a node replacement mapping."""
|
||||
self._replacements.setdefault(node_replace.old_node_id, []).append(node_replace)
|
||||
|
||||
def get_replacement(self, old_node_id: str) -> list[NodeReplace] | None:
|
||||
"""Get replacements for an old node ID."""
|
||||
return self._replacements.get(old_node_id)
|
||||
|
||||
def has_replacement(self, old_node_id: str) -> bool:
|
||||
"""Check if a replacement exists for an old node ID."""
|
||||
return old_node_id in self._replacements
|
||||
|
||||
def apply_replacements(self, prompt: dict[str, NodeStruct]):
|
||||
connections: dict[str, list[tuple[str, str, int]]] = {}
|
||||
need_replacement: set[str] = set()
|
||||
for node_number, node_struct in prompt.items():
|
||||
class_type = node_struct["class_type"]
|
||||
# need replacement if not in NODE_CLASS_MAPPINGS and has replacement
|
||||
if class_type not in nodes.NODE_CLASS_MAPPINGS.keys() and self.has_replacement(class_type):
|
||||
need_replacement.add(node_number)
|
||||
# keep track of connections
|
||||
for input_id, input_value in node_struct["inputs"].items():
|
||||
if is_link(input_value):
|
||||
conn_number = input_value[0]
|
||||
connections.setdefault(conn_number, []).append((node_number, input_id, input_value[1]))
|
||||
for node_number in need_replacement:
|
||||
node_struct = prompt[node_number]
|
||||
class_type = node_struct["class_type"]
|
||||
replacements = self.get_replacement(class_type)
|
||||
if replacements is None:
|
||||
continue
|
||||
# just use the first replacement
|
||||
replacement = replacements[0]
|
||||
new_node_id = replacement.new_node_id
|
||||
# if replacement is not a valid node, skip trying to replace it as will only cause confusion
|
||||
if new_node_id not in nodes.NODE_CLASS_MAPPINGS.keys():
|
||||
continue
|
||||
# first, replace node id (class_type)
|
||||
new_node_struct = copy_node_struct(node_struct, empty_inputs=True)
|
||||
new_node_struct["class_type"] = new_node_id
|
||||
# TODO: consider replacing display_name in _meta as well for error reporting purposes; would need to query node schema
|
||||
# second, replace inputs
|
||||
if replacement.input_mapping is not None:
|
||||
for input_map in replacement.input_mapping:
|
||||
if "set_value" in input_map:
|
||||
new_node_struct["inputs"][input_map["new_id"]] = input_map["set_value"]
|
||||
elif "old_id" in input_map:
|
||||
new_node_struct["inputs"][input_map["new_id"]] = node_struct["inputs"][input_map["old_id"]]
|
||||
# finalize input replacement
|
||||
prompt[node_number] = new_node_struct
|
||||
# third, replace outputs
|
||||
if replacement.output_mapping is not None:
|
||||
# re-mapping outputs requires changing the input values of nodes that receive connections from this one
|
||||
if node_number in connections:
|
||||
for conns in connections[node_number]:
|
||||
conn_node_number, conn_input_id, old_output_idx = conns
|
||||
for output_map in replacement.output_mapping:
|
||||
if output_map["old_idx"] == old_output_idx:
|
||||
new_output_idx = output_map["new_idx"]
|
||||
previous_input = prompt[conn_node_number]["inputs"][conn_input_id]
|
||||
previous_input[1] = new_output_idx
|
||||
|
||||
def as_dict(self):
|
||||
"""Serialize all replacements to dict."""
|
||||
return {
|
||||
k: [v.as_dict() for v in v_list]
|
||||
for k, v_list in self._replacements.items()
|
||||
}
|
||||
|
||||
def add_routes(self, routes):
|
||||
@routes.get("/node_replacements")
|
||||
async def get_node_replacements(request):
|
||||
return web.json_response(self.as_dict())
|
||||
@@ -1,44 +0,0 @@
|
||||
#version 300 es
|
||||
precision highp float;
|
||||
|
||||
uniform sampler2D u_image0;
|
||||
uniform float u_float0; // Brightness slider -100..100
|
||||
uniform float u_float1; // Contrast slider -100..100
|
||||
|
||||
in vec2 v_texCoord;
|
||||
out vec4 fragColor;
|
||||
|
||||
const float MID_GRAY = 0.18; // 18% reflectance
|
||||
|
||||
// sRGB gamma 2.2 approximation
|
||||
vec3 srgbToLinear(vec3 c) {
|
||||
return pow(max(c, 0.0), vec3(2.2));
|
||||
}
|
||||
|
||||
vec3 linearToSrgb(vec3 c) {
|
||||
return pow(max(c, 0.0), vec3(1.0/2.2));
|
||||
}
|
||||
|
||||
float mapBrightness(float b) {
|
||||
return clamp(b / 100.0, -1.0, 1.0);
|
||||
}
|
||||
|
||||
float mapContrast(float c) {
|
||||
return clamp(c / 100.0 + 1.0, 0.0, 2.0);
|
||||
}
|
||||
|
||||
void main() {
|
||||
vec4 orig = texture(u_image0, v_texCoord);
|
||||
|
||||
float brightness = mapBrightness(u_float0);
|
||||
float contrast = mapContrast(u_float1);
|
||||
|
||||
vec3 lin = srgbToLinear(orig.rgb);
|
||||
|
||||
lin = (lin - MID_GRAY) * contrast + brightness + MID_GRAY;
|
||||
|
||||
// Convert back to sRGB
|
||||
vec3 result = linearToSrgb(clamp(lin, 0.0, 1.0));
|
||||
|
||||
fragColor = vec4(result, orig.a);
|
||||
}
|
||||
@@ -1,72 +0,0 @@
|
||||
#version 300 es
|
||||
precision highp float;
|
||||
|
||||
uniform sampler2D u_image0;
|
||||
uniform vec2 u_resolution;
|
||||
uniform int u_int0; // Mode
|
||||
uniform float u_float0; // Amount (0 to 100)
|
||||
|
||||
in vec2 v_texCoord;
|
||||
out vec4 fragColor;
|
||||
|
||||
const int MODE_LINEAR = 0;
|
||||
const int MODE_RADIAL = 1;
|
||||
const int MODE_BARREL = 2;
|
||||
const int MODE_SWIRL = 3;
|
||||
const int MODE_DIAGONAL = 4;
|
||||
|
||||
const float AMOUNT_SCALE = 0.0005;
|
||||
const float RADIAL_MULT = 4.0;
|
||||
const float BARREL_MULT = 8.0;
|
||||
const float INV_SQRT2 = 0.70710678118;
|
||||
|
||||
void main() {
|
||||
vec2 uv = v_texCoord;
|
||||
vec4 original = texture(u_image0, uv);
|
||||
|
||||
float amount = u_float0 * AMOUNT_SCALE;
|
||||
|
||||
if (amount < 0.000001) {
|
||||
fragColor = original;
|
||||
return;
|
||||
}
|
||||
|
||||
// Aspect-corrected coordinates for circular effects
|
||||
float aspect = u_resolution.x / u_resolution.y;
|
||||
vec2 centered = uv - 0.5;
|
||||
vec2 corrected = vec2(centered.x * aspect, centered.y);
|
||||
float r = length(corrected);
|
||||
vec2 dir = r > 0.0001 ? corrected / r : vec2(0.0);
|
||||
vec2 offset = vec2(0.0);
|
||||
|
||||
if (u_int0 == MODE_LINEAR) {
|
||||
// Horizontal shift (no aspect correction needed)
|
||||
offset = vec2(amount, 0.0);
|
||||
}
|
||||
else if (u_int0 == MODE_RADIAL) {
|
||||
// Outward from center, stronger at edges
|
||||
offset = dir * r * amount * RADIAL_MULT;
|
||||
offset.x /= aspect; // Convert back to UV space
|
||||
}
|
||||
else if (u_int0 == MODE_BARREL) {
|
||||
// Lens distortion simulation (r² falloff)
|
||||
offset = dir * r * r * amount * BARREL_MULT;
|
||||
offset.x /= aspect; // Convert back to UV space
|
||||
}
|
||||
else if (u_int0 == MODE_SWIRL) {
|
||||
// Perpendicular to radial (rotational aberration)
|
||||
vec2 perp = vec2(-dir.y, dir.x);
|
||||
offset = perp * r * amount * RADIAL_MULT;
|
||||
offset.x /= aspect; // Convert back to UV space
|
||||
}
|
||||
else if (u_int0 == MODE_DIAGONAL) {
|
||||
// 45° offset (no aspect correction needed)
|
||||
offset = vec2(amount, amount) * INV_SQRT2;
|
||||
}
|
||||
|
||||
float red = texture(u_image0, uv + offset).r;
|
||||
float green = original.g;
|
||||
float blue = texture(u_image0, uv - offset).b;
|
||||
|
||||
fragColor = vec4(red, green, blue, original.a);
|
||||
}
|
||||
@@ -1,78 +0,0 @@
|
||||
#version 300 es
|
||||
precision highp float;
|
||||
|
||||
uniform sampler2D u_image0;
|
||||
uniform float u_float0; // temperature (-100 to 100)
|
||||
uniform float u_float1; // tint (-100 to 100)
|
||||
uniform float u_float2; // vibrance (-100 to 100)
|
||||
uniform float u_float3; // saturation (-100 to 100)
|
||||
|
||||
in vec2 v_texCoord;
|
||||
out vec4 fragColor;
|
||||
|
||||
const float INPUT_SCALE = 0.01;
|
||||
const float TEMP_TINT_PRIMARY = 0.3;
|
||||
const float TEMP_TINT_SECONDARY = 0.15;
|
||||
const float VIBRANCE_BOOST = 2.0;
|
||||
const float SATURATION_BOOST = 2.0;
|
||||
const float SKIN_PROTECTION = 0.5;
|
||||
const float EPSILON = 0.001;
|
||||
const vec3 LUMA_WEIGHTS = vec3(0.299, 0.587, 0.114);
|
||||
|
||||
void main() {
|
||||
vec4 tex = texture(u_image0, v_texCoord);
|
||||
vec3 color = tex.rgb;
|
||||
|
||||
// Scale inputs: -100/100 → -1/1
|
||||
float temperature = u_float0 * INPUT_SCALE;
|
||||
float tint = u_float1 * INPUT_SCALE;
|
||||
float vibrance = u_float2 * INPUT_SCALE;
|
||||
float saturation = u_float3 * INPUT_SCALE;
|
||||
|
||||
// Temperature (warm/cool): positive = warm, negative = cool
|
||||
color.r += temperature * TEMP_TINT_PRIMARY;
|
||||
color.b -= temperature * TEMP_TINT_PRIMARY;
|
||||
|
||||
// Tint (green/magenta): positive = green, negative = magenta
|
||||
color.g += tint * TEMP_TINT_PRIMARY;
|
||||
color.r -= tint * TEMP_TINT_SECONDARY;
|
||||
color.b -= tint * TEMP_TINT_SECONDARY;
|
||||
|
||||
// Single clamp after temperature/tint
|
||||
color = clamp(color, 0.0, 1.0);
|
||||
|
||||
// Vibrance with skin protection
|
||||
if (vibrance != 0.0) {
|
||||
float maxC = max(color.r, max(color.g, color.b));
|
||||
float minC = min(color.r, min(color.g, color.b));
|
||||
float sat = maxC - minC;
|
||||
float gray = dot(color, LUMA_WEIGHTS);
|
||||
|
||||
if (vibrance < 0.0) {
|
||||
// Desaturate: -100 → gray
|
||||
color = mix(vec3(gray), color, 1.0 + vibrance);
|
||||
} else {
|
||||
// Boost less saturated colors more
|
||||
float vibranceAmt = vibrance * (1.0 - sat);
|
||||
|
||||
// Branchless skin tone protection
|
||||
float isWarmTone = step(color.b, color.g) * step(color.g, color.r);
|
||||
float warmth = (color.r - color.b) / max(maxC, EPSILON);
|
||||
float skinTone = isWarmTone * warmth * sat * (1.0 - sat);
|
||||
vibranceAmt *= (1.0 - skinTone * SKIN_PROTECTION);
|
||||
|
||||
color = mix(vec3(gray), color, 1.0 + vibranceAmt * VIBRANCE_BOOST);
|
||||
}
|
||||
}
|
||||
|
||||
// Saturation
|
||||
if (saturation != 0.0) {
|
||||
float gray = dot(color, LUMA_WEIGHTS);
|
||||
float satMix = saturation < 0.0
|
||||
? 1.0 + saturation // -100 → gray
|
||||
: 1.0 + saturation * SATURATION_BOOST; // +100 → 3x boost
|
||||
color = mix(vec3(gray), color, satMix);
|
||||
}
|
||||
|
||||
fragColor = vec4(clamp(color, 0.0, 1.0), tex.a);
|
||||
}
|
||||
@@ -1,94 +0,0 @@
|
||||
#version 300 es
|
||||
precision highp float;
|
||||
|
||||
uniform sampler2D u_image0;
|
||||
uniform float u_float0; // Blur radius (0–20, default ~5)
|
||||
uniform float u_float1; // Edge threshold (0–100, default ~30)
|
||||
uniform int u_int0; // Step size (0/1 = every pixel, 2+ = skip pixels)
|
||||
|
||||
in vec2 v_texCoord;
|
||||
out vec4 fragColor;
|
||||
|
||||
const int MAX_RADIUS = 20;
|
||||
const float EPSILON = 0.0001;
|
||||
|
||||
// Perceptual luminance
|
||||
float getLuminance(vec3 rgb) {
|
||||
return dot(rgb, vec3(0.299, 0.587, 0.114));
|
||||
}
|
||||
|
||||
vec4 bilateralFilter(vec2 uv, vec2 texelSize, int radius,
|
||||
float sigmaSpatial, float sigmaColor)
|
||||
{
|
||||
vec4 center = texture(u_image0, uv);
|
||||
vec3 centerRGB = center.rgb;
|
||||
|
||||
float invSpatial2 = -0.5 / (sigmaSpatial * sigmaSpatial);
|
||||
float invColor2 = -0.5 / (sigmaColor * sigmaColor + EPSILON);
|
||||
|
||||
vec3 sumRGB = vec3(0.0);
|
||||
float sumWeight = 0.0;
|
||||
|
||||
int step = max(u_int0, 1);
|
||||
float radius2 = float(radius * radius);
|
||||
|
||||
for (int dy = -MAX_RADIUS; dy <= MAX_RADIUS; dy++) {
|
||||
if (dy < -radius || dy > radius) continue;
|
||||
if (abs(dy) % step != 0) continue;
|
||||
|
||||
for (int dx = -MAX_RADIUS; dx <= MAX_RADIUS; dx++) {
|
||||
if (dx < -radius || dx > radius) continue;
|
||||
if (abs(dx) % step != 0) continue;
|
||||
|
||||
vec2 offset = vec2(float(dx), float(dy));
|
||||
float dist2 = dot(offset, offset);
|
||||
if (dist2 > radius2) continue;
|
||||
|
||||
vec3 sampleRGB = texture(u_image0, uv + offset * texelSize).rgb;
|
||||
|
||||
// Spatial Gaussian
|
||||
float spatialWeight = exp(dist2 * invSpatial2);
|
||||
|
||||
// Perceptual color distance (weighted RGB)
|
||||
vec3 diff = sampleRGB - centerRGB;
|
||||
float colorDist = dot(diff * diff, vec3(0.299, 0.587, 0.114));
|
||||
float colorWeight = exp(colorDist * invColor2);
|
||||
|
||||
float w = spatialWeight * colorWeight;
|
||||
sumRGB += sampleRGB * w;
|
||||
sumWeight += w;
|
||||
}
|
||||
}
|
||||
|
||||
vec3 resultRGB = sumRGB / max(sumWeight, EPSILON);
|
||||
return vec4(resultRGB, center.a); // preserve center alpha
|
||||
}
|
||||
|
||||
void main() {
|
||||
vec2 texelSize = 1.0 / vec2(textureSize(u_image0, 0));
|
||||
|
||||
float radiusF = clamp(u_float0, 0.0, float(MAX_RADIUS));
|
||||
int radius = int(radiusF + 0.5);
|
||||
|
||||
if (radius == 0) {
|
||||
fragColor = texture(u_image0, v_texCoord);
|
||||
return;
|
||||
}
|
||||
|
||||
// Edge threshold → color sigma
|
||||
// Squared curve for better low-end control
|
||||
float t = clamp(u_float1, 0.0, 100.0) / 100.0;
|
||||
t *= t;
|
||||
float sigmaColor = mix(0.01, 0.5, t);
|
||||
|
||||
// Spatial sigma tied to radius
|
||||
float sigmaSpatial = max(radiusF * 0.75, 0.5);
|
||||
|
||||
fragColor = bilateralFilter(
|
||||
v_texCoord,
|
||||
texelSize,
|
||||
radius,
|
||||
sigmaSpatial,
|
||||
sigmaColor
|
||||
);
|
||||
}
|
||||
@@ -1,124 +0,0 @@
|
||||
#version 300 es
|
||||
precision highp float;
|
||||
|
||||
uniform sampler2D u_image0;
|
||||
uniform vec2 u_resolution;
|
||||
uniform float u_float0; // grain amount [0.0 – 1.0] typical: 0.2–0.8
|
||||
uniform float u_float1; // grain size [0.3 – 3.0] lower = finer grain
|
||||
uniform float u_float2; // color amount [0.0 – 1.0] 0 = monochrome, 1 = RGB grain
|
||||
uniform float u_float3; // luminance bias [0.0 – 1.0] 0 = uniform, 1 = shadows only
|
||||
uniform int u_int0; // noise mode [0 or 1] 0 = smooth, 1 = grainy
|
||||
|
||||
in vec2 v_texCoord;
|
||||
layout(location = 0) out vec4 fragColor0;
|
||||
|
||||
// High-quality integer hash (pcg-like)
|
||||
uint pcg(uint v) {
|
||||
uint state = v * 747796405u + 2891336453u;
|
||||
uint word = ((state >> ((state >> 28u) + 4u)) ^ state) * 277803737u;
|
||||
return (word >> 22u) ^ word;
|
||||
}
|
||||
|
||||
// 2D -> 1D hash input
|
||||
uint hash2d(uvec2 p) {
|
||||
return pcg(p.x + pcg(p.y));
|
||||
}
|
||||
|
||||
// Hash to float [0, 1]
|
||||
float hashf(uvec2 p) {
|
||||
return float(hash2d(p)) / float(0xffffffffu);
|
||||
}
|
||||
|
||||
// Hash to float with offset (for RGB channels)
|
||||
float hashf(uvec2 p, uint offset) {
|
||||
return float(pcg(hash2d(p) + offset)) / float(0xffffffffu);
|
||||
}
|
||||
|
||||
// Convert uniform [0,1] to roughly Gaussian distribution
|
||||
// Using simple approximation: average of multiple samples
|
||||
float toGaussian(uvec2 p) {
|
||||
float sum = hashf(p, 0u) + hashf(p, 1u) + hashf(p, 2u) + hashf(p, 3u);
|
||||
return (sum - 2.0) * 0.7; // Centered, scaled
|
||||
}
|
||||
|
||||
float toGaussian(uvec2 p, uint offset) {
|
||||
float sum = hashf(p, offset) + hashf(p, offset + 1u)
|
||||
+ hashf(p, offset + 2u) + hashf(p, offset + 3u);
|
||||
return (sum - 2.0) * 0.7;
|
||||
}
|
||||
|
||||
// Smooth noise with better interpolation
|
||||
float smoothNoise(vec2 p) {
|
||||
vec2 i = floor(p);
|
||||
vec2 f = fract(p);
|
||||
|
||||
// Quintic interpolation (less banding than cubic)
|
||||
f = f * f * f * (f * (f * 6.0 - 15.0) + 10.0);
|
||||
|
||||
uvec2 ui = uvec2(i);
|
||||
float a = toGaussian(ui);
|
||||
float b = toGaussian(ui + uvec2(1u, 0u));
|
||||
float c = toGaussian(ui + uvec2(0u, 1u));
|
||||
float d = toGaussian(ui + uvec2(1u, 1u));
|
||||
|
||||
return mix(mix(a, b, f.x), mix(c, d, f.x), f.y);
|
||||
}
|
||||
|
||||
float smoothNoise(vec2 p, uint offset) {
|
||||
vec2 i = floor(p);
|
||||
vec2 f = fract(p);
|
||||
|
||||
f = f * f * f * (f * (f * 6.0 - 15.0) + 10.0);
|
||||
|
||||
uvec2 ui = uvec2(i);
|
||||
float a = toGaussian(ui, offset);
|
||||
float b = toGaussian(ui + uvec2(1u, 0u), offset);
|
||||
float c = toGaussian(ui + uvec2(0u, 1u), offset);
|
||||
float d = toGaussian(ui + uvec2(1u, 1u), offset);
|
||||
|
||||
return mix(mix(a, b, f.x), mix(c, d, f.x), f.y);
|
||||
}
|
||||
|
||||
void main() {
|
||||
vec4 color = texture(u_image0, v_texCoord);
|
||||
|
||||
// Luminance (Rec.709)
|
||||
float luma = dot(color.rgb, vec3(0.2126, 0.7152, 0.0722));
|
||||
|
||||
// Grain UV (resolution-independent)
|
||||
vec2 grainUV = v_texCoord * u_resolution / max(u_float1, 0.01);
|
||||
uvec2 grainPixel = uvec2(grainUV);
|
||||
|
||||
float g;
|
||||
vec3 grainRGB;
|
||||
|
||||
if (u_int0 == 1) {
|
||||
// Grainy mode: pure hash noise (no interpolation = no banding)
|
||||
g = toGaussian(grainPixel);
|
||||
grainRGB = vec3(
|
||||
toGaussian(grainPixel, 100u),
|
||||
toGaussian(grainPixel, 200u),
|
||||
toGaussian(grainPixel, 300u)
|
||||
);
|
||||
} else {
|
||||
// Smooth mode: interpolated with quintic curve
|
||||
g = smoothNoise(grainUV);
|
||||
grainRGB = vec3(
|
||||
smoothNoise(grainUV, 100u),
|
||||
smoothNoise(grainUV, 200u),
|
||||
smoothNoise(grainUV, 300u)
|
||||
);
|
||||
}
|
||||
|
||||
// Luminance weighting (less grain in highlights)
|
||||
float lumWeight = mix(1.0, 1.0 - luma, clamp(u_float3, 0.0, 1.0));
|
||||
|
||||
// Strength
|
||||
float strength = u_float0 * 0.15;
|
||||
|
||||
// Color vs monochrome grain
|
||||
vec3 grainColor = mix(vec3(g), grainRGB, clamp(u_float2, 0.0, 1.0));
|
||||
|
||||
color.rgb += grainColor * strength * lumWeight;
|
||||
fragColor0 = vec4(clamp(color.rgb, 0.0, 1.0), color.a);
|
||||
}
|
||||
@@ -1,133 +0,0 @@
|
||||
#version 300 es
|
||||
precision mediump float;
|
||||
|
||||
uniform sampler2D u_image0;
|
||||
uniform vec2 u_resolution;
|
||||
uniform int u_int0; // Blend mode
|
||||
uniform int u_int1; // Color tint
|
||||
uniform float u_float0; // Intensity
|
||||
uniform float u_float1; // Radius
|
||||
uniform float u_float2; // Threshold
|
||||
|
||||
in vec2 v_texCoord;
|
||||
out vec4 fragColor;
|
||||
|
||||
const int BLEND_ADD = 0;
|
||||
const int BLEND_SCREEN = 1;
|
||||
const int BLEND_SOFT = 2;
|
||||
const int BLEND_OVERLAY = 3;
|
||||
const int BLEND_LIGHTEN = 4;
|
||||
|
||||
const float GOLDEN_ANGLE = 2.39996323;
|
||||
const int MAX_SAMPLES = 48;
|
||||
const vec3 LUMA = vec3(0.299, 0.587, 0.114);
|
||||
|
||||
float hash(vec2 p) {
|
||||
p = fract(p * vec2(123.34, 456.21));
|
||||
p += dot(p, p + 45.32);
|
||||
return fract(p.x * p.y);
|
||||
}
|
||||
|
||||
vec3 hexToRgb(int h) {
|
||||
return vec3(
|
||||
float((h >> 16) & 255),
|
||||
float((h >> 8) & 255),
|
||||
float(h & 255)
|
||||
) * (1.0 / 255.0);
|
||||
}
|
||||
|
||||
vec3 blend(vec3 base, vec3 glow, int mode) {
|
||||
if (mode == BLEND_SCREEN) {
|
||||
return 1.0 - (1.0 - base) * (1.0 - glow);
|
||||
}
|
||||
if (mode == BLEND_SOFT) {
|
||||
return mix(
|
||||
base - (1.0 - 2.0 * glow) * base * (1.0 - base),
|
||||
base + (2.0 * glow - 1.0) * (sqrt(base) - base),
|
||||
step(0.5, glow)
|
||||
);
|
||||
}
|
||||
if (mode == BLEND_OVERLAY) {
|
||||
return mix(
|
||||
2.0 * base * glow,
|
||||
1.0 - 2.0 * (1.0 - base) * (1.0 - glow),
|
||||
step(0.5, base)
|
||||
);
|
||||
}
|
||||
if (mode == BLEND_LIGHTEN) {
|
||||
return max(base, glow);
|
||||
}
|
||||
return base + glow;
|
||||
}
|
||||
|
||||
void main() {
|
||||
vec4 original = texture(u_image0, v_texCoord);
|
||||
|
||||
float intensity = u_float0 * 0.05;
|
||||
float radius = u_float1 * u_float1 * 0.012;
|
||||
|
||||
if (intensity < 0.001 || radius < 0.1) {
|
||||
fragColor = original;
|
||||
return;
|
||||
}
|
||||
|
||||
float threshold = 1.0 - u_float2 * 0.01;
|
||||
float t0 = threshold - 0.15;
|
||||
float t1 = threshold + 0.15;
|
||||
|
||||
vec2 texelSize = 1.0 / u_resolution;
|
||||
float radius2 = radius * radius;
|
||||
|
||||
float sampleScale = clamp(radius * 0.75, 0.35, 1.0);
|
||||
int samples = int(float(MAX_SAMPLES) * sampleScale);
|
||||
|
||||
float noise = hash(gl_FragCoord.xy);
|
||||
float angleOffset = noise * GOLDEN_ANGLE;
|
||||
float radiusJitter = 0.85 + noise * 0.3;
|
||||
|
||||
float ca = cos(GOLDEN_ANGLE);
|
||||
float sa = sin(GOLDEN_ANGLE);
|
||||
vec2 dir = vec2(cos(angleOffset), sin(angleOffset));
|
||||
|
||||
vec3 glow = vec3(0.0);
|
||||
float totalWeight = 0.0;
|
||||
|
||||
// Center tap
|
||||
float centerMask = smoothstep(t0, t1, dot(original.rgb, LUMA));
|
||||
glow += original.rgb * centerMask * 2.0;
|
||||
totalWeight += 2.0;
|
||||
|
||||
for (int i = 1; i < MAX_SAMPLES; i++) {
|
||||
if (i >= samples) break;
|
||||
|
||||
float fi = float(i);
|
||||
float dist = sqrt(fi / float(samples)) * radius * radiusJitter;
|
||||
|
||||
vec2 offset = dir * dist * texelSize;
|
||||
vec3 c = texture(u_image0, v_texCoord + offset).rgb;
|
||||
float mask = smoothstep(t0, t1, dot(c, LUMA));
|
||||
|
||||
float w = 1.0 - (dist * dist) / (radius2 * 1.5);
|
||||
w = max(w, 0.0);
|
||||
w *= w;
|
||||
|
||||
glow += c * mask * w;
|
||||
totalWeight += w;
|
||||
|
||||
dir = vec2(
|
||||
dir.x * ca - dir.y * sa,
|
||||
dir.x * sa + dir.y * ca
|
||||
);
|
||||
}
|
||||
|
||||
glow *= intensity / max(totalWeight, 0.001);
|
||||
|
||||
if (u_int1 > 0) {
|
||||
glow *= hexToRgb(u_int1);
|
||||
}
|
||||
|
||||
vec3 result = blend(original.rgb, glow, u_int0);
|
||||
result += (noise - 0.5) * (1.0 / 255.0);
|
||||
|
||||
fragColor = vec4(clamp(result, 0.0, 1.0), original.a);
|
||||
}
|
||||
@@ -1,222 +0,0 @@
|
||||
#version 300 es
|
||||
precision highp float;
|
||||
|
||||
uniform sampler2D u_image0;
|
||||
uniform int u_int0; // Mode: 0=Master, 1=Reds, 2=Yellows, 3=Greens, 4=Cyans, 5=Blues, 6=Magentas, 7=Colorize
|
||||
uniform int u_int1; // Color Space: 0=HSL, 1=HSB/HSV
|
||||
uniform float u_float0; // Hue (-180 to 180)
|
||||
uniform float u_float1; // Saturation (-100 to 100)
|
||||
uniform float u_float2; // Lightness/Brightness (-100 to 100)
|
||||
uniform float u_float3; // Overlap (0 to 100) - feathering between adjacent color ranges
|
||||
|
||||
in vec2 v_texCoord;
|
||||
out vec4 fragColor;
|
||||
|
||||
// Color range modes
|
||||
const int MODE_MASTER = 0;
|
||||
const int MODE_RED = 1;
|
||||
const int MODE_YELLOW = 2;
|
||||
const int MODE_GREEN = 3;
|
||||
const int MODE_CYAN = 4;
|
||||
const int MODE_BLUE = 5;
|
||||
const int MODE_MAGENTA = 6;
|
||||
const int MODE_COLORIZE = 7;
|
||||
|
||||
// Color space modes
|
||||
const int COLORSPACE_HSL = 0;
|
||||
const int COLORSPACE_HSB = 1;
|
||||
|
||||
const float EPSILON = 0.0001;
|
||||
|
||||
//=============================================================================
|
||||
// RGB <-> HSL Conversions
|
||||
//=============================================================================
|
||||
|
||||
vec3 rgb2hsl(vec3 c) {
|
||||
float maxC = max(max(c.r, c.g), c.b);
|
||||
float minC = min(min(c.r, c.g), c.b);
|
||||
float delta = maxC - minC;
|
||||
|
||||
float h = 0.0;
|
||||
float s = 0.0;
|
||||
float l = (maxC + minC) * 0.5;
|
||||
|
||||
if (delta > EPSILON) {
|
||||
s = l < 0.5
|
||||
? delta / (maxC + minC)
|
||||
: delta / (2.0 - maxC - minC);
|
||||
|
||||
if (maxC == c.r) {
|
||||
h = (c.g - c.b) / delta + (c.g < c.b ? 6.0 : 0.0);
|
||||
} else if (maxC == c.g) {
|
||||
h = (c.b - c.r) / delta + 2.0;
|
||||
} else {
|
||||
h = (c.r - c.g) / delta + 4.0;
|
||||
}
|
||||
h /= 6.0;
|
||||
}
|
||||
|
||||
return vec3(h, s, l);
|
||||
}
|
||||
|
||||
float hue2rgb(float p, float q, float t) {
|
||||
t = fract(t);
|
||||
if (t < 1.0/6.0) return p + (q - p) * 6.0 * t;
|
||||
if (t < 0.5) return q;
|
||||
if (t < 2.0/3.0) return p + (q - p) * (2.0/3.0 - t) * 6.0;
|
||||
return p;
|
||||
}
|
||||
|
||||
vec3 hsl2rgb(vec3 hsl) {
|
||||
if (hsl.y < EPSILON) return vec3(hsl.z);
|
||||
|
||||
float q = hsl.z < 0.5
|
||||
? hsl.z * (1.0 + hsl.y)
|
||||
: hsl.z + hsl.y - hsl.z * hsl.y;
|
||||
float p = 2.0 * hsl.z - q;
|
||||
|
||||
return vec3(
|
||||
hue2rgb(p, q, hsl.x + 1.0/3.0),
|
||||
hue2rgb(p, q, hsl.x),
|
||||
hue2rgb(p, q, hsl.x - 1.0/3.0)
|
||||
);
|
||||
}
|
||||
|
||||
vec3 rgb2hsb(vec3 c) {
|
||||
float maxC = max(max(c.r, c.g), c.b);
|
||||
float minC = min(min(c.r, c.g), c.b);
|
||||
float delta = maxC - minC;
|
||||
|
||||
float h = 0.0;
|
||||
float s = (maxC > EPSILON) ? delta / maxC : 0.0;
|
||||
float b = maxC;
|
||||
|
||||
if (delta > EPSILON) {
|
||||
if (maxC == c.r) {
|
||||
h = (c.g - c.b) / delta + (c.g < c.b ? 6.0 : 0.0);
|
||||
} else if (maxC == c.g) {
|
||||
h = (c.b - c.r) / delta + 2.0;
|
||||
} else {
|
||||
h = (c.r - c.g) / delta + 4.0;
|
||||
}
|
||||
h /= 6.0;
|
||||
}
|
||||
|
||||
return vec3(h, s, b);
|
||||
}
|
||||
|
||||
vec3 hsb2rgb(vec3 hsb) {
|
||||
vec3 rgb = clamp(abs(mod(hsb.x * 6.0 + vec3(0.0, 4.0, 2.0), 6.0) - 3.0) - 1.0, 0.0, 1.0);
|
||||
return hsb.z * mix(vec3(1.0), rgb, hsb.y);
|
||||
}
|
||||
|
||||
//=============================================================================
|
||||
// Color Range Weight Calculation
|
||||
//=============================================================================
|
||||
|
||||
float hueDistance(float a, float b) {
|
||||
float d = abs(a - b);
|
||||
return min(d, 1.0 - d);
|
||||
}
|
||||
|
||||
float getHueWeight(float hue, float center, float overlap) {
|
||||
float baseWidth = 1.0 / 6.0;
|
||||
float feather = baseWidth * overlap;
|
||||
|
||||
float d = hueDistance(hue, center);
|
||||
|
||||
float inner = baseWidth * 0.5;
|
||||
float outer = inner + feather;
|
||||
|
||||
return 1.0 - smoothstep(inner, outer, d);
|
||||
}
|
||||
|
||||
float getModeWeight(float hue, int mode, float overlap) {
|
||||
if (mode == MODE_MASTER || mode == MODE_COLORIZE) return 1.0;
|
||||
|
||||
if (mode == MODE_RED) {
|
||||
return max(
|
||||
getHueWeight(hue, 0.0, overlap),
|
||||
getHueWeight(hue, 1.0, overlap)
|
||||
);
|
||||
}
|
||||
|
||||
float center = float(mode - 1) / 6.0;
|
||||
return getHueWeight(hue, center, overlap);
|
||||
}
|
||||
|
||||
//=============================================================================
|
||||
// Adjustment Functions
|
||||
//=============================================================================
|
||||
|
||||
float adjustLightness(float l, float amount) {
|
||||
return amount > 0.0
|
||||
? l + (1.0 - l) * amount
|
||||
: l + l * amount;
|
||||
}
|
||||
|
||||
float adjustBrightness(float b, float amount) {
|
||||
return clamp(b + amount, 0.0, 1.0);
|
||||
}
|
||||
|
||||
float adjustSaturation(float s, float amount) {
|
||||
return amount > 0.0
|
||||
? s + (1.0 - s) * amount
|
||||
: s + s * amount;
|
||||
}
|
||||
|
||||
vec3 colorize(vec3 rgb, float hue, float sat, float light) {
|
||||
float lum = dot(rgb, vec3(0.299, 0.587, 0.114));
|
||||
float l = adjustLightness(lum, light);
|
||||
|
||||
vec3 hsl = vec3(fract(hue), clamp(abs(sat), 0.0, 1.0), clamp(l, 0.0, 1.0));
|
||||
return hsl2rgb(hsl);
|
||||
}
|
||||
|
||||
//=============================================================================
|
||||
// Main
|
||||
//=============================================================================
|
||||
|
||||
void main() {
|
||||
vec4 original = texture(u_image0, v_texCoord);
|
||||
|
||||
float hueShift = u_float0 / 360.0; // -180..180 -> -0.5..0.5
|
||||
float satAmount = u_float1 / 100.0; // -100..100 -> -1..1
|
||||
float lightAmount= u_float2 / 100.0; // -100..100 -> -1..1
|
||||
float overlap = u_float3 / 100.0; // 0..100 -> 0..1
|
||||
|
||||
vec3 result;
|
||||
|
||||
if (u_int0 == MODE_COLORIZE) {
|
||||
result = colorize(original.rgb, hueShift, satAmount, lightAmount);
|
||||
fragColor = vec4(result, original.a);
|
||||
return;
|
||||
}
|
||||
|
||||
vec3 hsx = (u_int1 == COLORSPACE_HSL)
|
||||
? rgb2hsl(original.rgb)
|
||||
: rgb2hsb(original.rgb);
|
||||
|
||||
float weight = getModeWeight(hsx.x, u_int0, overlap);
|
||||
|
||||
if (u_int0 != MODE_MASTER && hsx.y < EPSILON) {
|
||||
weight = 0.0;
|
||||
}
|
||||
|
||||
if (weight > EPSILON) {
|
||||
float h = fract(hsx.x + hueShift * weight);
|
||||
float s = clamp(adjustSaturation(hsx.y, satAmount * weight), 0.0, 1.0);
|
||||
float v = (u_int1 == COLORSPACE_HSL)
|
||||
? clamp(adjustLightness(hsx.z, lightAmount * weight), 0.0, 1.0)
|
||||
: clamp(adjustBrightness(hsx.z, lightAmount * weight), 0.0, 1.0);
|
||||
|
||||
vec3 adjusted = vec3(h, s, v);
|
||||
result = (u_int1 == COLORSPACE_HSL)
|
||||
? hsl2rgb(adjusted)
|
||||
: hsb2rgb(adjusted);
|
||||
} else {
|
||||
result = original.rgb;
|
||||
}
|
||||
|
||||
fragColor = vec4(result, original.a);
|
||||
}
|
||||
@@ -1,111 +0,0 @@
|
||||
#version 300 es
|
||||
#pragma passes 2
|
||||
precision highp float;
|
||||
|
||||
// Blur type constants
|
||||
const int BLUR_GAUSSIAN = 0;
|
||||
const int BLUR_BOX = 1;
|
||||
const int BLUR_RADIAL = 2;
|
||||
|
||||
// Radial blur config
|
||||
const int RADIAL_SAMPLES = 12;
|
||||
const float RADIAL_STRENGTH = 0.0003;
|
||||
|
||||
uniform sampler2D u_image0;
|
||||
uniform vec2 u_resolution;
|
||||
uniform int u_int0; // Blur type (BLUR_GAUSSIAN, BLUR_BOX, BLUR_RADIAL)
|
||||
uniform float u_float0; // Blur radius/amount
|
||||
uniform int u_pass; // Pass index (0 = horizontal, 1 = vertical)
|
||||
|
||||
in vec2 v_texCoord;
|
||||
layout(location = 0) out vec4 fragColor0;
|
||||
|
||||
float gaussian(float x, float sigma) {
|
||||
return exp(-(x * x) / (2.0 * sigma * sigma));
|
||||
}
|
||||
|
||||
void main() {
|
||||
vec2 texelSize = 1.0 / u_resolution;
|
||||
float radius = max(u_float0, 0.0);
|
||||
|
||||
// Radial (angular) blur - single pass, doesn't use separable
|
||||
if (u_int0 == BLUR_RADIAL) {
|
||||
// Only execute on first pass
|
||||
if (u_pass > 0) {
|
||||
fragColor0 = texture(u_image0, v_texCoord);
|
||||
return;
|
||||
}
|
||||
|
||||
vec2 center = vec2(0.5);
|
||||
vec2 dir = v_texCoord - center;
|
||||
float dist = length(dir);
|
||||
|
||||
if (dist < 1e-4) {
|
||||
fragColor0 = texture(u_image0, v_texCoord);
|
||||
return;
|
||||
}
|
||||
|
||||
vec4 sum = vec4(0.0);
|
||||
float totalWeight = 0.0;
|
||||
float angleStep = radius * RADIAL_STRENGTH;
|
||||
|
||||
dir /= dist;
|
||||
|
||||
float cosStep = cos(angleStep);
|
||||
float sinStep = sin(angleStep);
|
||||
|
||||
float negAngle = -float(RADIAL_SAMPLES) * angleStep;
|
||||
vec2 rotDir = vec2(
|
||||
dir.x * cos(negAngle) - dir.y * sin(negAngle),
|
||||
dir.x * sin(negAngle) + dir.y * cos(negAngle)
|
||||
);
|
||||
|
||||
for (int i = -RADIAL_SAMPLES; i <= RADIAL_SAMPLES; i++) {
|
||||
vec2 uv = center + rotDir * dist;
|
||||
float w = 1.0 - abs(float(i)) / float(RADIAL_SAMPLES);
|
||||
sum += texture(u_image0, uv) * w;
|
||||
totalWeight += w;
|
||||
|
||||
rotDir = vec2(
|
||||
rotDir.x * cosStep - rotDir.y * sinStep,
|
||||
rotDir.x * sinStep + rotDir.y * cosStep
|
||||
);
|
||||
}
|
||||
|
||||
fragColor0 = sum / max(totalWeight, 0.001);
|
||||
return;
|
||||
}
|
||||
|
||||
// Separable Gaussian / Box blur
|
||||
int samples = int(ceil(radius));
|
||||
|
||||
if (samples == 0) {
|
||||
fragColor0 = texture(u_image0, v_texCoord);
|
||||
return;
|
||||
}
|
||||
|
||||
// Direction: pass 0 = horizontal, pass 1 = vertical
|
||||
vec2 dir = (u_pass == 0) ? vec2(1.0, 0.0) : vec2(0.0, 1.0);
|
||||
|
||||
vec4 color = vec4(0.0);
|
||||
float totalWeight = 0.0;
|
||||
float sigma = radius / 2.0;
|
||||
|
||||
for (int i = -samples; i <= samples; i++) {
|
||||
vec2 offset = dir * float(i) * texelSize;
|
||||
vec4 sample_color = texture(u_image0, v_texCoord + offset);
|
||||
|
||||
float weight;
|
||||
if (u_int0 == BLUR_GAUSSIAN) {
|
||||
weight = gaussian(float(i), sigma);
|
||||
} else {
|
||||
// BLUR_BOX
|
||||
weight = 1.0;
|
||||
}
|
||||
|
||||
color += sample_color * weight;
|
||||
totalWeight += weight;
|
||||
}
|
||||
|
||||
fragColor0 = color / totalWeight;
|
||||
}
|
||||
@@ -1,19 +0,0 @@
|
||||
#version 300 es
|
||||
precision highp float;
|
||||
|
||||
uniform sampler2D u_image0;
|
||||
|
||||
in vec2 v_texCoord;
|
||||
layout(location = 0) out vec4 fragColor0;
|
||||
layout(location = 1) out vec4 fragColor1;
|
||||
layout(location = 2) out vec4 fragColor2;
|
||||
layout(location = 3) out vec4 fragColor3;
|
||||
|
||||
void main() {
|
||||
vec4 color = texture(u_image0, v_texCoord);
|
||||
// Output each channel as grayscale to separate render targets
|
||||
fragColor0 = vec4(vec3(color.r), 1.0); // Red channel
|
||||
fragColor1 = vec4(vec3(color.g), 1.0); // Green channel
|
||||
fragColor2 = vec4(vec3(color.b), 1.0); // Blue channel
|
||||
fragColor3 = vec4(vec3(color.a), 1.0); // Alpha channel
|
||||
}
|
||||
@@ -1,71 +0,0 @@
|
||||
#version 300 es
|
||||
precision highp float;
|
||||
|
||||
// Levels Adjustment
|
||||
// u_int0: channel (0=RGB, 1=R, 2=G, 3=B) default: 0
|
||||
// u_float0: input black (0-255) default: 0
|
||||
// u_float1: input white (0-255) default: 255
|
||||
// u_float2: gamma (0.01-9.99) default: 1.0
|
||||
// u_float3: output black (0-255) default: 0
|
||||
// u_float4: output white (0-255) default: 255
|
||||
|
||||
uniform sampler2D u_image0;
|
||||
uniform int u_int0;
|
||||
uniform float u_float0;
|
||||
uniform float u_float1;
|
||||
uniform float u_float2;
|
||||
uniform float u_float3;
|
||||
uniform float u_float4;
|
||||
|
||||
in vec2 v_texCoord;
|
||||
out vec4 fragColor;
|
||||
|
||||
vec3 applyLevels(vec3 color, float inBlack, float inWhite, float gamma, float outBlack, float outWhite) {
|
||||
float inRange = max(inWhite - inBlack, 0.0001);
|
||||
vec3 result = clamp((color - inBlack) / inRange, 0.0, 1.0);
|
||||
result = pow(result, vec3(1.0 / gamma));
|
||||
result = mix(vec3(outBlack), vec3(outWhite), result);
|
||||
return result;
|
||||
}
|
||||
|
||||
float applySingleChannel(float value, float inBlack, float inWhite, float gamma, float outBlack, float outWhite) {
|
||||
float inRange = max(inWhite - inBlack, 0.0001);
|
||||
float result = clamp((value - inBlack) / inRange, 0.0, 1.0);
|
||||
result = pow(result, 1.0 / gamma);
|
||||
result = mix(outBlack, outWhite, result);
|
||||
return result;
|
||||
}
|
||||
|
||||
void main() {
|
||||
vec4 texColor = texture(u_image0, v_texCoord);
|
||||
vec3 color = texColor.rgb;
|
||||
|
||||
float inBlack = u_float0 / 255.0;
|
||||
float inWhite = u_float1 / 255.0;
|
||||
float gamma = u_float2;
|
||||
float outBlack = u_float3 / 255.0;
|
||||
float outWhite = u_float4 / 255.0;
|
||||
|
||||
vec3 result;
|
||||
|
||||
if (u_int0 == 0) {
|
||||
result = applyLevels(color, inBlack, inWhite, gamma, outBlack, outWhite);
|
||||
}
|
||||
else if (u_int0 == 1) {
|
||||
result = color;
|
||||
result.r = applySingleChannel(color.r, inBlack, inWhite, gamma, outBlack, outWhite);
|
||||
}
|
||||
else if (u_int0 == 2) {
|
||||
result = color;
|
||||
result.g = applySingleChannel(color.g, inBlack, inWhite, gamma, outBlack, outWhite);
|
||||
}
|
||||
else if (u_int0 == 3) {
|
||||
result = color;
|
||||
result.b = applySingleChannel(color.b, inBlack, inWhite, gamma, outBlack, outWhite);
|
||||
}
|
||||
else {
|
||||
result = color;
|
||||
}
|
||||
|
||||
fragColor = vec4(result, texColor.a);
|
||||
}
|
||||
@@ -1,28 +0,0 @@
|
||||
# GLSL Shader Sources
|
||||
|
||||
This folder contains the GLSL fragment shaders extracted from blueprint JSON files for easier editing and version control.
|
||||
|
||||
## File Naming Convention
|
||||
|
||||
`{Blueprint_Name}_{node_id}.frag`
|
||||
|
||||
- **Blueprint_Name**: The JSON filename with spaces/special chars replaced by underscores
|
||||
- **node_id**: The GLSLShader node ID within the subgraph
|
||||
|
||||
## Usage
|
||||
|
||||
```bash
|
||||
# Extract shaders from blueprint JSONs to this folder
|
||||
python update_blueprints.py extract
|
||||
|
||||
# Patch edited shaders back into blueprint JSONs
|
||||
python update_blueprints.py patch
|
||||
```
|
||||
|
||||
## Workflow
|
||||
|
||||
1. Run `extract` to pull current shaders from JSONs
|
||||
2. Edit `.frag` files
|
||||
3. Run `patch` to update the blueprint JSONs
|
||||
4. Test
|
||||
5. Commit both `.frag` files and updated JSONs
|
||||
@@ -1,28 +0,0 @@
|
||||
#version 300 es
|
||||
precision highp float;
|
||||
|
||||
uniform sampler2D u_image0;
|
||||
uniform vec2 u_resolution;
|
||||
uniform float u_float0; // strength [0.0 – 2.0] typical: 0.3–1.0
|
||||
|
||||
in vec2 v_texCoord;
|
||||
layout(location = 0) out vec4 fragColor0;
|
||||
|
||||
void main() {
|
||||
vec2 texel = 1.0 / u_resolution;
|
||||
|
||||
// Sample center and neighbors
|
||||
vec4 center = texture(u_image0, v_texCoord);
|
||||
vec4 top = texture(u_image0, v_texCoord + vec2( 0.0, -texel.y));
|
||||
vec4 bottom = texture(u_image0, v_texCoord + vec2( 0.0, texel.y));
|
||||
vec4 left = texture(u_image0, v_texCoord + vec2(-texel.x, 0.0));
|
||||
vec4 right = texture(u_image0, v_texCoord + vec2( texel.x, 0.0));
|
||||
|
||||
// Edge enhancement (Laplacian)
|
||||
vec4 edges = center * 4.0 - top - bottom - left - right;
|
||||
|
||||
// Add edges back scaled by strength
|
||||
vec4 sharpened = center + edges * u_float0;
|
||||
|
||||
fragColor0 = vec4(clamp(sharpened.rgb, 0.0, 1.0), center.a);
|
||||
}
|
||||
@@ -1,61 +0,0 @@
|
||||
#version 300 es
|
||||
precision highp float;
|
||||
|
||||
uniform sampler2D u_image0;
|
||||
uniform vec2 u_resolution;
|
||||
uniform float u_float0; // amount [0.0 - 3.0] typical: 0.5-1.5
|
||||
uniform float u_float1; // radius [0.5 - 10.0] blur radius in pixels
|
||||
uniform float u_float2; // threshold [0.0 - 0.1] min difference to sharpen
|
||||
|
||||
in vec2 v_texCoord;
|
||||
layout(location = 0) out vec4 fragColor0;
|
||||
|
||||
float gaussian(float x, float sigma) {
|
||||
return exp(-(x * x) / (2.0 * sigma * sigma));
|
||||
}
|
||||
|
||||
float getLuminance(vec3 color) {
|
||||
return dot(color, vec3(0.2126, 0.7152, 0.0722));
|
||||
}
|
||||
|
||||
void main() {
|
||||
vec2 texel = 1.0 / u_resolution;
|
||||
float radius = max(u_float1, 0.5);
|
||||
float amount = u_float0;
|
||||
float threshold = u_float2;
|
||||
|
||||
vec4 original = texture(u_image0, v_texCoord);
|
||||
|
||||
// Gaussian blur for the "unsharp" mask
|
||||
int samples = int(ceil(radius));
|
||||
float sigma = radius / 2.0;
|
||||
|
||||
vec4 blurred = vec4(0.0);
|
||||
float totalWeight = 0.0;
|
||||
|
||||
for (int x = -samples; x <= samples; x++) {
|
||||
for (int y = -samples; y <= samples; y++) {
|
||||
vec2 offset = vec2(float(x), float(y)) * texel;
|
||||
vec4 sample_color = texture(u_image0, v_texCoord + offset);
|
||||
|
||||
float dist = length(vec2(float(x), float(y)));
|
||||
float weight = gaussian(dist, sigma);
|
||||
blurred += sample_color * weight;
|
||||
totalWeight += weight;
|
||||
}
|
||||
}
|
||||
blurred /= totalWeight;
|
||||
|
||||
// Unsharp mask = original - blurred
|
||||
vec3 mask = original.rgb - blurred.rgb;
|
||||
|
||||
// Luminance-based threshold with smooth falloff
|
||||
float lumaDelta = abs(getLuminance(original.rgb) - getLuminance(blurred.rgb));
|
||||
float thresholdScale = smoothstep(0.0, threshold, lumaDelta);
|
||||
mask *= thresholdScale;
|
||||
|
||||
// Sharpen: original + mask * amount
|
||||
vec3 sharpened = original.rgb + mask * amount;
|
||||
|
||||
fragColor0 = vec4(clamp(sharpened, 0.0, 1.0), original.a);
|
||||
}
|
||||
@@ -1,159 +0,0 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Shader Blueprint Updater
|
||||
|
||||
Syncs GLSL shader files between this folder and blueprint JSON files.
|
||||
|
||||
File naming convention:
|
||||
{Blueprint Name}_{node_id}.frag
|
||||
|
||||
Usage:
|
||||
python update_blueprints.py extract # Extract shaders from JSONs to here
|
||||
python update_blueprints.py patch # Patch shaders back into JSONs
|
||||
python update_blueprints.py # Same as patch (default)
|
||||
"""
|
||||
|
||||
import json
|
||||
import logging
|
||||
import sys
|
||||
import re
|
||||
from pathlib import Path
|
||||
|
||||
logging.basicConfig(level=logging.INFO, format='%(message)s')
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
GLSL_DIR = Path(__file__).parent
|
||||
BLUEPRINTS_DIR = GLSL_DIR.parent
|
||||
|
||||
|
||||
def get_blueprint_files():
|
||||
"""Get all blueprint JSON files."""
|
||||
return sorted(BLUEPRINTS_DIR.glob("*.json"))
|
||||
|
||||
|
||||
def sanitize_filename(name):
|
||||
"""Convert blueprint name to safe filename."""
|
||||
return re.sub(r'[^\w\-]', '_', name)
|
||||
|
||||
|
||||
def extract_shaders():
|
||||
"""Extract all shaders from blueprint JSONs to this folder."""
|
||||
extracted = 0
|
||||
for json_path in get_blueprint_files():
|
||||
blueprint_name = json_path.stem
|
||||
|
||||
try:
|
||||
with open(json_path, 'r') as f:
|
||||
data = json.load(f)
|
||||
except (json.JSONDecodeError, IOError) as e:
|
||||
logger.warning("Skipping %s: %s", json_path.name, e)
|
||||
continue
|
||||
|
||||
# Find GLSLShader nodes in subgraphs
|
||||
for subgraph in data.get('definitions', {}).get('subgraphs', []):
|
||||
for node in subgraph.get('nodes', []):
|
||||
if node.get('type') == 'GLSLShader':
|
||||
node_id = node.get('id')
|
||||
widgets = node.get('widgets_values', [])
|
||||
|
||||
# Find shader code (first string that looks like GLSL)
|
||||
for widget in widgets:
|
||||
if isinstance(widget, str) and widget.startswith('#version'):
|
||||
safe_name = sanitize_filename(blueprint_name)
|
||||
frag_name = f"{safe_name}_{node_id}.frag"
|
||||
frag_path = GLSL_DIR / frag_name
|
||||
|
||||
with open(frag_path, 'w') as f:
|
||||
f.write(widget)
|
||||
|
||||
logger.info(" Extracted: %s", frag_name)
|
||||
extracted += 1
|
||||
break
|
||||
|
||||
logger.info("\nExtracted %d shader(s)", extracted)
|
||||
|
||||
|
||||
def patch_shaders():
|
||||
"""Patch shaders from this folder back into blueprint JSONs."""
|
||||
# Build lookup: blueprint_name -> [(node_id, shader_code), ...]
|
||||
shader_updates = {}
|
||||
|
||||
for frag_path in sorted(GLSL_DIR.glob("*.frag")):
|
||||
# Parse filename: {blueprint_name}_{node_id}.frag
|
||||
parts = frag_path.stem.rsplit('_', 1)
|
||||
if len(parts) != 2:
|
||||
logger.warning("Skipping %s: invalid filename format", frag_path.name)
|
||||
continue
|
||||
|
||||
blueprint_name, node_id_str = parts
|
||||
|
||||
try:
|
||||
node_id = int(node_id_str)
|
||||
except ValueError:
|
||||
logger.warning("Skipping %s: invalid node_id", frag_path.name)
|
||||
continue
|
||||
|
||||
with open(frag_path, 'r') as f:
|
||||
shader_code = f.read()
|
||||
|
||||
if blueprint_name not in shader_updates:
|
||||
shader_updates[blueprint_name] = []
|
||||
shader_updates[blueprint_name].append((node_id, shader_code))
|
||||
|
||||
# Apply updates to JSON files
|
||||
patched = 0
|
||||
for json_path in get_blueprint_files():
|
||||
blueprint_name = sanitize_filename(json_path.stem)
|
||||
|
||||
if blueprint_name not in shader_updates:
|
||||
continue
|
||||
|
||||
try:
|
||||
with open(json_path, 'r') as f:
|
||||
data = json.load(f)
|
||||
except (json.JSONDecodeError, IOError) as e:
|
||||
logger.error("Error reading %s: %s", json_path.name, e)
|
||||
continue
|
||||
|
||||
modified = False
|
||||
for node_id, shader_code in shader_updates[blueprint_name]:
|
||||
# Find the node and update
|
||||
for subgraph in data.get('definitions', {}).get('subgraphs', []):
|
||||
for node in subgraph.get('nodes', []):
|
||||
if node.get('id') == node_id and node.get('type') == 'GLSLShader':
|
||||
widgets = node.get('widgets_values', [])
|
||||
if len(widgets) > 0 and widgets[0] != shader_code:
|
||||
widgets[0] = shader_code
|
||||
modified = True
|
||||
logger.info(" Patched: %s (node %d)", json_path.name, node_id)
|
||||
patched += 1
|
||||
|
||||
if modified:
|
||||
with open(json_path, 'w') as f:
|
||||
json.dump(data, f)
|
||||
|
||||
if patched == 0:
|
||||
logger.info("No changes to apply.")
|
||||
else:
|
||||
logger.info("\nPatched %d shader(s)", patched)
|
||||
|
||||
|
||||
def main():
|
||||
if len(sys.argv) < 2:
|
||||
command = "patch"
|
||||
else:
|
||||
command = sys.argv[1].lower()
|
||||
|
||||
if command == "extract":
|
||||
logger.info("Extracting shaders from blueprints...")
|
||||
extract_shaders()
|
||||
elif command in ("patch", "update", "apply"):
|
||||
logger.info("Patching shaders into blueprints...")
|
||||
patch_shaders()
|
||||
else:
|
||||
logger.info(__doc__)
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
File diff suppressed because one or more lines are too long
@@ -1 +0,0 @@
|
||||
{"revision": 0, "last_node_id": 29, "last_link_id": 0, "nodes": [{"id": 29, "type": "4c9d6ea4-b912-40e5-8766-6793a9758c53", "pos": [1970, -230], "size": [180, 86], "flags": {}, "order": 5, "mode": 0, "inputs": [{"label": "image", "localized_name": "images.image0", "name": "images.image0", "type": "IMAGE", "link": null}], "outputs": [{"label": "R", "localized_name": "IMAGE0", "name": "IMAGE0", "type": "IMAGE", "links": []}, {"label": "G", "localized_name": "IMAGE1", "name": "IMAGE1", "type": "IMAGE", "links": []}, {"label": "B", "localized_name": "IMAGE2", "name": "IMAGE2", "type": "IMAGE", "links": []}, {"label": "A", "localized_name": "IMAGE3", "name": "IMAGE3", "type": "IMAGE", "links": []}], "title": "Image Channels", "properties": {"proxyWidgets": []}, "widgets_values": []}], "links": [], "version": 0.4, "definitions": {"subgraphs": [{"id": "4c9d6ea4-b912-40e5-8766-6793a9758c53", "version": 1, "state": {"lastGroupId": 0, "lastNodeId": 28, "lastLinkId": 39, "lastRerouteId": 0}, "revision": 0, "config": {}, "name": "Image Channels", "inputNode": {"id": -10, "bounding": [1820, -185, 120, 60]}, "outputNode": {"id": -20, "bounding": [2460, -215, 120, 120]}, "inputs": [{"id": "3522932b-2d86-4a1f-a02a-cb29f3a9d7fe", "name": "images.image0", "type": "IMAGE", "linkIds": [39], "localized_name": "images.image0", "label": "image", "pos": [1920, -165]}], "outputs": [{"id": "605cb9c3-b065-4d9b-81d2-3ec331889b2b", "name": "IMAGE0", "type": "IMAGE", "linkIds": [26], "localized_name": "IMAGE0", "label": "R", "pos": [2480, -195]}, {"id": "fb44a77e-0522-43e9-9527-82e7465b3596", "name": "IMAGE1", "type": "IMAGE", "linkIds": [27], "localized_name": "IMAGE1", "label": "G", "pos": [2480, -175]}, {"id": "81460ee6-0131-402a-874f-6bf3001fc4ff", "name": "IMAGE2", "type": "IMAGE", "linkIds": [28], "localized_name": "IMAGE2", "label": "B", "pos": [2480, -155]}, {"id": "ae690246-80d4-4951-b1d9-9306d8a77417", "name": "IMAGE3", "type": "IMAGE", "linkIds": [29], "localized_name": "IMAGE3", "label": "A", "pos": [2480, -135]}], "widgets": [], "nodes": [{"id": 23, "type": "GLSLShader", "pos": [2000, -330], "size": [400, 172], "flags": {}, "order": 0, "mode": 0, "inputs": [{"label": "image", "localized_name": "images.image0", "name": "images.image0", "type": "IMAGE", "link": 39}, {"localized_name": "fragment_shader", "name": "fragment_shader", "type": "STRING", "widget": {"name": "fragment_shader"}, "link": null}, {"localized_name": "size_mode", "name": "size_mode", "type": "COMFY_DYNAMICCOMBO_V3", "widget": {"name": "size_mode"}, "link": null}, {"label": "image1", "localized_name": "images.image1", "name": "images.image1", "shape": 7, "type": "IMAGE", "link": null}], "outputs": [{"label": "R", "localized_name": "IMAGE0", "name": "IMAGE0", "type": "IMAGE", "links": [26]}, {"label": "G", "localized_name": "IMAGE1", "name": "IMAGE1", "type": "IMAGE", "links": [27]}, {"label": "B", "localized_name": "IMAGE2", "name": "IMAGE2", "type": "IMAGE", "links": [28]}, {"label": "A", "localized_name": "IMAGE3", "name": "IMAGE3", "type": "IMAGE", "links": [29]}], "properties": {"Node name for S&R": "GLSLShader"}, "widgets_values": ["#version 300 es\nprecision highp float;\n\nuniform sampler2D u_image0;\n\nin vec2 v_texCoord;\nlayout(location = 0) out vec4 fragColor0;\nlayout(location = 1) out vec4 fragColor1;\nlayout(location = 2) out vec4 fragColor2;\nlayout(location = 3) out vec4 fragColor3;\n\nvoid main() {\n vec4 color = texture(u_image0, v_texCoord);\n // Output each channel as grayscale to separate render targets\n fragColor0 = vec4(vec3(color.r), 1.0); // Red channel\n fragColor1 = vec4(vec3(color.g), 1.0); // Green channel\n fragColor2 = vec4(vec3(color.b), 1.0); // Blue channel\n fragColor3 = vec4(vec3(color.a), 1.0); // Alpha channel\n}\n", "from_input"]}], "groups": [], "links": [{"id": 39, "origin_id": -10, "origin_slot": 0, "target_id": 23, "target_slot": 0, "type": "IMAGE"}, {"id": 26, "origin_id": 23, "origin_slot": 0, "target_id": -20, "target_slot": 0, "type": "IMAGE"}, {"id": 27, "origin_id": 23, "origin_slot": 1, "target_id": -20, "target_slot": 1, "type": "IMAGE"}, {"id": 28, "origin_id": 23, "origin_slot": 2, "target_id": -20, "target_slot": 2, "type": "IMAGE"}, {"id": 29, "origin_id": 23, "origin_slot": 3, "target_id": -20, "target_slot": 3, "type": "IMAGE"}], "extra": {"workflowRendererVersion": "LG"}}]}}
|
||||
File diff suppressed because one or more lines are too long
@@ -1 +0,0 @@
|
||||
{"revision":0,"last_node_id":25,"last_link_id":0,"nodes":[{"id":25,"type":"621ba4e2-22a8-482d-a369-023753198b7b","pos":[4610,-790],"size":[230,58],"flags":{},"order":4,"mode":0,"inputs":[{"label":"image","localized_name":"images.image0","name":"images.image0","type":"IMAGE","link":null}],"outputs":[{"label":"IMAGE","localized_name":"IMAGE0","name":"IMAGE0","type":"IMAGE","links":[]}],"title":"Sharpen","properties":{"proxyWidgets":[["24","value"]]},"widgets_values":[]}],"links":[],"version":0.4,"definitions":{"subgraphs":[{"id":"621ba4e2-22a8-482d-a369-023753198b7b","version":1,"state":{"lastGroupId":0,"lastNodeId":24,"lastLinkId":36,"lastRerouteId":0},"revision":0,"config":{},"name":"Sharpen","inputNode":{"id":-10,"bounding":[4090,-825,120,60]},"outputNode":{"id":-20,"bounding":[5150,-825,120,60]},"inputs":[{"id":"37011fb7-14b7-4e0e-b1a0-6a02e8da1fd7","name":"images.image0","type":"IMAGE","linkIds":[34],"localized_name":"images.image0","label":"image","pos":[4190,-805]}],"outputs":[{"id":"e9182b3f-635c-4cd4-a152-4b4be17ae4b9","name":"IMAGE0","type":"IMAGE","linkIds":[35],"localized_name":"IMAGE0","label":"IMAGE","pos":[5170,-805]}],"widgets":[],"nodes":[{"id":24,"type":"PrimitiveFloat","pos":[4280,-1240],"size":[270,58],"flags":{},"order":0,"mode":0,"inputs":[{"label":"strength","localized_name":"value","name":"value","type":"FLOAT","widget":{"name":"value"},"link":null}],"outputs":[{"localized_name":"FLOAT","name":"FLOAT","type":"FLOAT","links":[36]}],"properties":{"Node name for S&R":"PrimitiveFloat","min":0,"max":3,"precision":2,"step":0.05},"widgets_values":[0.5]},{"id":23,"type":"GLSLShader","pos":[4570,-1240],"size":[370,192],"flags":{},"order":1,"mode":0,"inputs":[{"label":"image0","localized_name":"images.image0","name":"images.image0","type":"IMAGE","link":34},{"label":"image1","localized_name":"images.image1","name":"images.image1","shape":7,"type":"IMAGE","link":null},{"label":"u_float0","localized_name":"floats.u_float0","name":"floats.u_float0","shape":7,"type":"FLOAT","link":36},{"label":"u_float1","localized_name":"floats.u_float1","name":"floats.u_float1","shape":7,"type":"FLOAT","link":null},{"label":"u_int0","localized_name":"ints.u_int0","name":"ints.u_int0","shape":7,"type":"INT","link":null},{"localized_name":"fragment_shader","name":"fragment_shader","type":"STRING","widget":{"name":"fragment_shader"},"link":null},{"localized_name":"size_mode","name":"size_mode","type":"COMFY_DYNAMICCOMBO_V3","widget":{"name":"size_mode"},"link":null}],"outputs":[{"localized_name":"IMAGE0","name":"IMAGE0","type":"IMAGE","links":[35]},{"localized_name":"IMAGE1","name":"IMAGE1","type":"IMAGE","links":null},{"localized_name":"IMAGE2","name":"IMAGE2","type":"IMAGE","links":null},{"localized_name":"IMAGE3","name":"IMAGE3","type":"IMAGE","links":null}],"properties":{"Node name for S&R":"GLSLShader"},"widgets_values":["#version 300 es\nprecision highp float;\n\nuniform sampler2D u_image0;\nuniform vec2 u_resolution;\nuniform float u_float0; // strength [0.0 – 2.0] typical: 0.3–1.0\n\nin vec2 v_texCoord;\nlayout(location = 0) out vec4 fragColor0;\n\nvoid main() {\n vec2 texel = 1.0 / u_resolution;\n \n // Sample center and neighbors\n vec4 center = texture(u_image0, v_texCoord);\n vec4 top = texture(u_image0, v_texCoord + vec2( 0.0, -texel.y));\n vec4 bottom = texture(u_image0, v_texCoord + vec2( 0.0, texel.y));\n vec4 left = texture(u_image0, v_texCoord + vec2(-texel.x, 0.0));\n vec4 right = texture(u_image0, v_texCoord + vec2( texel.x, 0.0));\n \n // Edge enhancement (Laplacian)\n vec4 edges = center * 4.0 - top - bottom - left - right;\n \n // Add edges back scaled by strength\n vec4 sharpened = center + edges * u_float0;\n \n fragColor0 = vec4(clamp(sharpened.rgb, 0.0, 1.0), center.a);\n}","from_input"]}],"groups":[],"links":[{"id":36,"origin_id":24,"origin_slot":0,"target_id":23,"target_slot":2,"type":"FLOAT"},{"id":34,"origin_id":-10,"origin_slot":0,"target_id":23,"target_slot":0,"type":"IMAGE"},{"id":35,"origin_id":23,"origin_slot":0,"target_id":-20,"target_slot":0,"type":"IMAGE"}],"extra":{"workflowRendererVersion":"LG"}}]}}
|
||||
File diff suppressed because one or more lines are too long
@@ -102,19 +102,7 @@ class VideoConv3d(nn.Module):
|
||||
return self.conv(x)
|
||||
|
||||
def interpolate_up(x, scale_factor):
|
||||
try:
|
||||
return torch.nn.functional.interpolate(x, scale_factor=scale_factor, mode="nearest")
|
||||
except: #operation not implemented for bf16
|
||||
orig_shape = list(x.shape)
|
||||
out_shape = orig_shape[:2]
|
||||
for i in range(len(orig_shape) - 2):
|
||||
out_shape.append(round(orig_shape[i + 2] * scale_factor[i]))
|
||||
out = torch.empty(out_shape, dtype=x.dtype, layout=x.layout, device=x.device)
|
||||
split = 8
|
||||
l = out.shape[1] // split
|
||||
for i in range(0, out.shape[1], l):
|
||||
out[:,i:i+l] = torch.nn.functional.interpolate(x[:,i:i+l].to(torch.float32), scale_factor=scale_factor, mode="nearest").to(x.dtype)
|
||||
return out
|
||||
return torch.nn.functional.interpolate(x, scale_factor=scale_factor, mode="nearest")
|
||||
|
||||
class Upsample(nn.Module):
|
||||
def __init__(self, in_channels, with_conv, conv_op=ops.Conv2d, scale_factor=2.0):
|
||||
|
||||
@@ -374,6 +374,31 @@ def pad_tensor_to_shape(tensor: torch.Tensor, new_shape: list[int]) -> torch.Ten
|
||||
|
||||
return padded_tensor
|
||||
|
||||
def calculate_shape(patches, weight, key, original_weights=None):
|
||||
current_shape = weight.shape
|
||||
|
||||
for p in patches:
|
||||
v = p[1]
|
||||
offset = p[3]
|
||||
|
||||
# Offsets restore the old shape; lists force a diff without metadata
|
||||
if offset is not None or isinstance(v, list):
|
||||
continue
|
||||
|
||||
if isinstance(v, weight_adapter.WeightAdapterBase):
|
||||
adapter_shape = v.calculate_shape(key)
|
||||
if adapter_shape is not None:
|
||||
current_shape = adapter_shape
|
||||
continue
|
||||
|
||||
# Standard diff logic with padding
|
||||
if len(v) == 2:
|
||||
patch_type, patch_data = v[0], v[1]
|
||||
if patch_type == "diff" and len(patch_data) > 1 and patch_data[1]['pad_weight']:
|
||||
current_shape = patch_data[0].shape
|
||||
|
||||
return current_shape
|
||||
|
||||
def calculate_weight(patches, weight, key, intermediate_dtype=torch.float32, original_weights=None):
|
||||
for p in patches:
|
||||
strength = p[0]
|
||||
|
||||
@@ -1514,8 +1514,10 @@ class ModelPatcherDynamic(ModelPatcher):
|
||||
|
||||
weight, _, _ = get_key_weight(self.model, key)
|
||||
if weight is None:
|
||||
return 0
|
||||
return (False, 0)
|
||||
if key in self.patches:
|
||||
if comfy.lora.calculate_shape(self.patches[key], weight, key) != weight.shape:
|
||||
return (True, 0)
|
||||
setattr(m, param_key + "_lowvram_function", LowVramPatch(key, self.patches))
|
||||
num_patches += 1
|
||||
else:
|
||||
@@ -1529,7 +1531,13 @@ class ModelPatcherDynamic(ModelPatcher):
|
||||
model_dtype = getattr(m, param_key + "_comfy_model_dtype", None) or weight.dtype
|
||||
weight._model_dtype = model_dtype
|
||||
geometry = comfy.memory_management.TensorGeometry(shape=weight.shape, dtype=model_dtype)
|
||||
return comfy.memory_management.vram_aligned_size(geometry)
|
||||
return (False, comfy.memory_management.vram_aligned_size(geometry))
|
||||
|
||||
def force_load_param(self, param_key, device_to):
|
||||
key = key_param_name_to_key(n, param_key)
|
||||
if key in self.backup:
|
||||
comfy.utils.set_attr_param(self.model, key, self.backup[key].weight)
|
||||
self.patch_weight_to_device(key, device_to=device_to)
|
||||
|
||||
if hasattr(m, "comfy_cast_weights"):
|
||||
m.comfy_cast_weights = True
|
||||
@@ -1537,13 +1545,19 @@ class ModelPatcherDynamic(ModelPatcher):
|
||||
m.seed_key = n
|
||||
set_dirty(m, dirty)
|
||||
|
||||
v_weight_size = 0
|
||||
v_weight_size += setup_param(self, m, n, "weight")
|
||||
v_weight_size += setup_param(self, m, n, "bias")
|
||||
force_load, v_weight_size = setup_param(self, m, n, "weight")
|
||||
force_load_bias, v_weight_bias = setup_param(self, m, n, "bias")
|
||||
force_load = force_load or force_load_bias
|
||||
v_weight_size += v_weight_bias
|
||||
|
||||
if vbar is not None and not hasattr(m, "_v"):
|
||||
m._v = vbar.alloc(v_weight_size)
|
||||
allocated_size += v_weight_size
|
||||
if force_load:
|
||||
logging.info(f"Module {n} has resizing Lora - force loading")
|
||||
force_load_param(self, "weight", device_to)
|
||||
force_load_param(self, "bias", device_to)
|
||||
else:
|
||||
if vbar is not None and not hasattr(m, "_v"):
|
||||
m._v = vbar.alloc(v_weight_size)
|
||||
allocated_size += v_weight_size
|
||||
|
||||
else:
|
||||
for param in params:
|
||||
@@ -1606,6 +1620,11 @@ class ModelPatcherDynamic(ModelPatcher):
|
||||
for m in self.model.modules():
|
||||
move_weight_functions(m, device_to)
|
||||
|
||||
keys = list(self.backup.keys())
|
||||
for k in keys:
|
||||
bk = self.backup[k]
|
||||
comfy.utils.set_attr_param(self.model, k, bk.weight)
|
||||
|
||||
def partially_load(self, device_to, extra_memory=0, force_patch_weights=False):
|
||||
assert not force_patch_weights #See above
|
||||
with self.use_ejected(skip_and_inject_on_exit_only=True):
|
||||
|
||||
@@ -49,6 +49,12 @@ class WeightAdapterBase:
|
||||
"""
|
||||
raise NotImplementedError
|
||||
|
||||
def calculate_shape(
|
||||
self,
|
||||
key
|
||||
):
|
||||
return None
|
||||
|
||||
def calculate_weight(
|
||||
self,
|
||||
weight,
|
||||
|
||||
@@ -214,6 +214,13 @@ class LoRAAdapter(WeightAdapterBase):
|
||||
else:
|
||||
return None
|
||||
|
||||
def calculate_shape(
|
||||
self,
|
||||
key
|
||||
):
|
||||
reshape = self.weights[5]
|
||||
return tuple(reshape) if reshape is not None else None
|
||||
|
||||
def calculate_weight(
|
||||
self,
|
||||
weight,
|
||||
|
||||
@@ -14,6 +14,7 @@ SERVER_FEATURE_FLAGS: dict[str, Any] = {
|
||||
"supports_preview_metadata": True,
|
||||
"max_upload_size": args.max_upload_size * 1024 * 1024, # Convert MB to bytes
|
||||
"extension": {"manager": {"supports_v4": True}},
|
||||
"node_replacements": True,
|
||||
}
|
||||
|
||||
|
||||
|
||||
@@ -21,6 +21,17 @@ class ComfyAPI_latest(ComfyAPIBase):
|
||||
VERSION = "latest"
|
||||
STABLE = False
|
||||
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
self.node_replacement = self.NodeReplacement()
|
||||
self.execution = self.Execution()
|
||||
|
||||
class NodeReplacement(ProxiedSingleton):
|
||||
async def register(self, node_replace: io.NodeReplace) -> None:
|
||||
"""Register a node replacement mapping."""
|
||||
from server import PromptServer
|
||||
PromptServer.instance.node_replace_manager.register(node_replace)
|
||||
|
||||
class Execution(ProxiedSingleton):
|
||||
async def set_progress(
|
||||
self,
|
||||
@@ -73,8 +84,6 @@ class ComfyAPI_latest(ComfyAPIBase):
|
||||
image=to_display,
|
||||
)
|
||||
|
||||
execution: Execution
|
||||
|
||||
class ComfyExtension(ABC):
|
||||
async def on_load(self) -> None:
|
||||
"""
|
||||
|
||||
@@ -1300,6 +1300,7 @@ class NodeInfoV1:
|
||||
name: str=None
|
||||
display_name: str=None
|
||||
description: str=None
|
||||
short_description: str=None
|
||||
python_module: Any=None
|
||||
category: str=None
|
||||
output_node: bool=None
|
||||
@@ -1390,6 +1391,8 @@ class Schema:
|
||||
hidden: list[Hidden] = field(default_factory=list)
|
||||
description: str=""
|
||||
"""Node description, shown as a tooltip when hovering over the node."""
|
||||
short_description: str=""
|
||||
"""Short node description, shown in the node list/search."""
|
||||
search_aliases: list[str] = field(default_factory=list)
|
||||
"""Alternative names for search. Useful for synonyms, abbreviations, or old names after renaming."""
|
||||
is_input_list: bool = False
|
||||
@@ -1528,6 +1531,7 @@ class Schema:
|
||||
display_name=self.display_name,
|
||||
category=self.category,
|
||||
description=self.description,
|
||||
short_description=self.short_description,
|
||||
output_node=self.is_output_node,
|
||||
deprecated=self.is_deprecated,
|
||||
experimental=self.is_experimental,
|
||||
@@ -1771,6 +1775,14 @@ class _ComfyNodeBaseInternal(_ComfyNodeInternal):
|
||||
cls.GET_SCHEMA()
|
||||
return cls._DESCRIPTION
|
||||
|
||||
_SHORT_DESCRIPTION = None
|
||||
@final
|
||||
@classproperty
|
||||
def SHORT_DESCRIPTION(cls): # noqa
|
||||
if cls._SHORT_DESCRIPTION is None:
|
||||
cls.GET_SCHEMA()
|
||||
return cls._SHORT_DESCRIPTION
|
||||
|
||||
_CATEGORY = None
|
||||
@final
|
||||
@classproperty
|
||||
@@ -1899,6 +1911,8 @@ class _ComfyNodeBaseInternal(_ComfyNodeInternal):
|
||||
schema.validate()
|
||||
if cls._DESCRIPTION is None:
|
||||
cls._DESCRIPTION = schema.description
|
||||
if cls._SHORT_DESCRIPTION is None:
|
||||
cls._SHORT_DESCRIPTION = schema.short_description
|
||||
if cls._CATEGORY is None:
|
||||
cls._CATEGORY = schema.category
|
||||
if cls._EXPERIMENTAL is None:
|
||||
@@ -2030,6 +2044,68 @@ class _UIOutput(ABC):
|
||||
...
|
||||
|
||||
|
||||
class InputMapOldId(TypedDict):
|
||||
"""Map an old node input to a new node input by ID."""
|
||||
new_id: str
|
||||
old_id: str
|
||||
|
||||
class InputMapSetValue(TypedDict):
|
||||
"""Set a specific value for a new node input."""
|
||||
new_id: str
|
||||
set_value: Any
|
||||
|
||||
InputMap = InputMapOldId | InputMapSetValue
|
||||
"""
|
||||
Input mapping for node replacement. Type is inferred by dictionary keys:
|
||||
- {"new_id": str, "old_id": str} - maps old input to new input
|
||||
- {"new_id": str, "set_value": Any} - sets a specific value for new input
|
||||
"""
|
||||
|
||||
class OutputMap(TypedDict):
|
||||
"""Map outputs of node replacement via indexes."""
|
||||
new_idx: int
|
||||
old_idx: int
|
||||
|
||||
class NodeReplace:
|
||||
"""
|
||||
Defines a possible node replacement, mapping inputs and outputs of the old node to the new node.
|
||||
|
||||
Also supports assigning specific values to the input widgets of the new node.
|
||||
|
||||
Args:
|
||||
new_node_id: The class name of the new replacement node.
|
||||
old_node_id: The class name of the deprecated node.
|
||||
old_widget_ids: Ordered list of input IDs for widgets that may not have an input slot
|
||||
connected. The workflow JSON stores widget values by their relative position index,
|
||||
not by ID. This list maps those positional indexes to input IDs, enabling the
|
||||
replacement system to correctly identify widget values during node migration.
|
||||
input_mapping: List of input mappings from old node to new node.
|
||||
output_mapping: List of output mappings from old node to new node.
|
||||
"""
|
||||
def __init__(self,
|
||||
new_node_id: str,
|
||||
old_node_id: str,
|
||||
old_widget_ids: list[str] | None=None,
|
||||
input_mapping: list[InputMap] | None=None,
|
||||
output_mapping: list[OutputMap] | None=None,
|
||||
):
|
||||
self.new_node_id = new_node_id
|
||||
self.old_node_id = old_node_id
|
||||
self.old_widget_ids = old_widget_ids
|
||||
self.input_mapping = input_mapping
|
||||
self.output_mapping = output_mapping
|
||||
|
||||
def as_dict(self):
|
||||
"""Create serializable representation of the node replacement."""
|
||||
return {
|
||||
"new_node_id": self.new_node_id,
|
||||
"old_node_id": self.old_node_id,
|
||||
"old_widget_ids": self.old_widget_ids,
|
||||
"input_mapping": list(self.input_mapping) if self.input_mapping else None,
|
||||
"output_mapping": list(self.output_mapping) if self.output_mapping else None,
|
||||
}
|
||||
|
||||
|
||||
__all__ = [
|
||||
"FolderType",
|
||||
"UploadType",
|
||||
@@ -2121,4 +2197,5 @@ __all__ = [
|
||||
"ImageCompare",
|
||||
"PriceBadgeDepends",
|
||||
"PriceBadge",
|
||||
"NodeReplace",
|
||||
]
|
||||
|
||||
@@ -45,17 +45,55 @@ class BriaEditImageRequest(BaseModel):
|
||||
)
|
||||
|
||||
|
||||
class BriaRemoveBackgroundRequest(BaseModel):
|
||||
image: str = Field(...)
|
||||
sync: bool = Field(False)
|
||||
visual_input_content_moderation: bool = Field(
|
||||
False, description="If true, returns 422 on input image moderation failure."
|
||||
)
|
||||
visual_output_content_moderation: bool = Field(
|
||||
False, description="If true, returns 422 on visual output moderation failure."
|
||||
)
|
||||
seed: int = Field(...)
|
||||
|
||||
|
||||
class BriaStatusResponse(BaseModel):
|
||||
request_id: str = Field(...)
|
||||
status_url: str = Field(...)
|
||||
warning: str | None = Field(None)
|
||||
|
||||
|
||||
class BriaResult(BaseModel):
|
||||
class BriaRemoveBackgroundResult(BaseModel):
|
||||
image_url: str = Field(...)
|
||||
|
||||
|
||||
class BriaRemoveBackgroundResponse(BaseModel):
|
||||
status: str = Field(...)
|
||||
result: BriaRemoveBackgroundResult | None = Field(None)
|
||||
|
||||
|
||||
class BriaImageEditResult(BaseModel):
|
||||
structured_prompt: str = Field(...)
|
||||
image_url: str = Field(...)
|
||||
|
||||
|
||||
class BriaResponse(BaseModel):
|
||||
class BriaImageEditResponse(BaseModel):
|
||||
status: str = Field(...)
|
||||
result: BriaResult | None = Field(None)
|
||||
result: BriaImageEditResult | None = Field(None)
|
||||
|
||||
|
||||
class BriaRemoveVideoBackgroundRequest(BaseModel):
|
||||
video: str = Field(...)
|
||||
background_color: str = Field(default="transparent", description="Background color for the output video.")
|
||||
output_container_and_codec: str = Field(...)
|
||||
preserve_audio: bool = Field(True)
|
||||
seed: int = Field(...)
|
||||
|
||||
|
||||
class BriaRemoveVideoBackgroundResult(BaseModel):
|
||||
video_url: str = Field(...)
|
||||
|
||||
|
||||
class BriaRemoveVideoBackgroundResponse(BaseModel):
|
||||
status: str = Field(...)
|
||||
result: BriaRemoveVideoBackgroundResult | None = Field(None)
|
||||
|
||||
@@ -64,3 +64,23 @@ class To3DProTaskResultResponse(BaseModel):
|
||||
|
||||
class To3DProTaskQueryRequest(BaseModel):
|
||||
JobId: str = Field(...)
|
||||
|
||||
|
||||
class To3DUVFileInput(BaseModel):
|
||||
Type: str = Field(..., description="File type: GLB, OBJ, or FBX")
|
||||
Url: str = Field(...)
|
||||
|
||||
|
||||
class To3DUVTaskRequest(BaseModel):
|
||||
File: To3DUVFileInput = Field(...)
|
||||
|
||||
|
||||
class TextureEditImageInfo(BaseModel):
|
||||
Url: str = Field(...)
|
||||
|
||||
|
||||
class TextureEditTaskRequest(BaseModel):
|
||||
File3D: To3DUVFileInput = Field(...)
|
||||
Image: TextureEditImageInfo | None = Field(None)
|
||||
Prompt: str | None = Field(None)
|
||||
EnablePBR: bool | None = Field(None)
|
||||
|
||||
@@ -44,6 +44,7 @@ class FluxProUltraImageNode(IO.ComfyNode):
|
||||
display_name="Flux 1.1 [pro] Ultra Image",
|
||||
category="api node/image/BFL",
|
||||
description="Generates images using Flux Pro 1.1 Ultra via api based on prompt and resolution.",
|
||||
short_description="Generate images with Flux Pro 1.1 Ultra API.",
|
||||
inputs=[
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
@@ -154,13 +155,17 @@ class FluxProUltraImageNode(IO.ComfyNode):
|
||||
|
||||
class FluxKontextProImageNode(IO.ComfyNode):
|
||||
|
||||
DESCRIPTION = "Edits images using Flux.1 Kontext [pro] via api based on prompt and aspect ratio."
|
||||
SHORT_DESCRIPTION = "Edit images with Flux.1 Kontext [pro] API."
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls) -> IO.Schema:
|
||||
return IO.Schema(
|
||||
node_id=cls.NODE_ID,
|
||||
display_name=cls.DISPLAY_NAME,
|
||||
category="api node/image/BFL",
|
||||
description="Edits images using Flux.1 Kontext [pro] via api based on prompt and aspect ratio.",
|
||||
description=cls.DESCRIPTION,
|
||||
short_description=cls.SHORT_DESCRIPTION,
|
||||
inputs=[
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
@@ -268,6 +273,7 @@ class FluxKontextProImageNode(IO.ComfyNode):
|
||||
class FluxKontextMaxImageNode(FluxKontextProImageNode):
|
||||
|
||||
DESCRIPTION = "Edits images using Flux.1 Kontext [max] via api based on prompt and aspect ratio."
|
||||
SHORT_DESCRIPTION = "Edit images with Flux.1 Kontext [max] API."
|
||||
BFL_PATH = "/proxy/bfl/flux-kontext-max/generate"
|
||||
NODE_ID = "FluxKontextMaxImageNode"
|
||||
DISPLAY_NAME = "Flux.1 Kontext [max] Image"
|
||||
@@ -282,6 +288,7 @@ class FluxProExpandNode(IO.ComfyNode):
|
||||
display_name="Flux.1 Expand Image",
|
||||
category="api node/image/BFL",
|
||||
description="Outpaints image based on prompt.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Image.Input("image"),
|
||||
IO.String.Input(
|
||||
@@ -418,6 +425,7 @@ class FluxProFillNode(IO.ComfyNode):
|
||||
display_name="Flux.1 Fill Image",
|
||||
category="api node/image/BFL",
|
||||
description="Inpaints image based on mask and prompt.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Image.Input("image"),
|
||||
IO.Mask.Input("mask"),
|
||||
@@ -543,6 +551,7 @@ class Flux2ProImageNode(IO.ComfyNode):
|
||||
display_name=cls.DISPLAY_NAME,
|
||||
category="api node/image/BFL",
|
||||
description="Generates images synchronously based on prompt and resolution.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
|
||||
@@ -3,7 +3,11 @@ from typing_extensions import override
|
||||
from comfy_api.latest import IO, ComfyExtension, Input
|
||||
from comfy_api_nodes.apis.bria import (
|
||||
BriaEditImageRequest,
|
||||
BriaResponse,
|
||||
BriaRemoveBackgroundRequest,
|
||||
BriaRemoveBackgroundResponse,
|
||||
BriaRemoveVideoBackgroundRequest,
|
||||
BriaRemoveVideoBackgroundResponse,
|
||||
BriaImageEditResponse,
|
||||
BriaStatusResponse,
|
||||
InputModerationSettings,
|
||||
)
|
||||
@@ -11,10 +15,12 @@ from comfy_api_nodes.util import (
|
||||
ApiEndpoint,
|
||||
convert_mask_to_image,
|
||||
download_url_to_image_tensor,
|
||||
get_number_of_images,
|
||||
download_url_to_video_output,
|
||||
poll_op,
|
||||
sync_op,
|
||||
upload_images_to_comfyapi,
|
||||
upload_image_to_comfyapi,
|
||||
upload_video_to_comfyapi,
|
||||
validate_video_duration,
|
||||
)
|
||||
|
||||
|
||||
@@ -27,6 +33,7 @@ class BriaImageEditNode(IO.ComfyNode):
|
||||
display_name="Bria FIBO Image Edit",
|
||||
category="api node/image/Bria",
|
||||
description="Edit images using Bria latest model",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Combo.Input("model", options=["FIBO"]),
|
||||
IO.Image.Input("image"),
|
||||
@@ -73,21 +80,15 @@ class BriaImageEditNode(IO.ComfyNode):
|
||||
IO.DynamicCombo.Input(
|
||||
"moderation",
|
||||
options=[
|
||||
IO.DynamicCombo.Option("false", []),
|
||||
IO.DynamicCombo.Option(
|
||||
"true",
|
||||
[
|
||||
IO.Boolean.Input(
|
||||
"prompt_content_moderation", default=False
|
||||
),
|
||||
IO.Boolean.Input(
|
||||
"visual_input_moderation", default=False
|
||||
),
|
||||
IO.Boolean.Input(
|
||||
"visual_output_moderation", default=True
|
||||
),
|
||||
IO.Boolean.Input("prompt_content_moderation", default=False),
|
||||
IO.Boolean.Input("visual_input_moderation", default=False),
|
||||
IO.Boolean.Input("visual_output_moderation", default=True),
|
||||
],
|
||||
),
|
||||
IO.DynamicCombo.Option("false", []),
|
||||
],
|
||||
tooltip="Moderation settings",
|
||||
),
|
||||
@@ -127,50 +128,26 @@ class BriaImageEditNode(IO.ComfyNode):
|
||||
mask: Input.Image | None = None,
|
||||
) -> IO.NodeOutput:
|
||||
if not prompt and not structured_prompt:
|
||||
raise ValueError(
|
||||
"One of prompt or structured_prompt is required to be non-empty."
|
||||
)
|
||||
if get_number_of_images(image) != 1:
|
||||
raise ValueError("Exactly one input image is required.")
|
||||
raise ValueError("One of prompt or structured_prompt is required to be non-empty.")
|
||||
mask_url = None
|
||||
if mask is not None:
|
||||
mask_url = (
|
||||
await upload_images_to_comfyapi(
|
||||
cls,
|
||||
convert_mask_to_image(mask),
|
||||
max_images=1,
|
||||
mime_type="image/png",
|
||||
wait_label="Uploading mask",
|
||||
)
|
||||
)[0]
|
||||
mask_url = await upload_image_to_comfyapi(cls, convert_mask_to_image(mask), wait_label="Uploading mask")
|
||||
response = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="proxy/bria/v2/image/edit", method="POST"),
|
||||
data=BriaEditImageRequest(
|
||||
instruction=prompt if prompt else None,
|
||||
structured_instruction=structured_prompt if structured_prompt else None,
|
||||
images=await upload_images_to_comfyapi(
|
||||
cls,
|
||||
image,
|
||||
max_images=1,
|
||||
mime_type="image/png",
|
||||
wait_label="Uploading image",
|
||||
),
|
||||
images=[await upload_image_to_comfyapi(cls, image, wait_label="Uploading image")],
|
||||
mask=mask_url,
|
||||
negative_prompt=negative_prompt if negative_prompt else None,
|
||||
guidance_scale=guidance_scale,
|
||||
seed=seed,
|
||||
model_version=model,
|
||||
steps_num=steps,
|
||||
prompt_content_moderation=moderation.get(
|
||||
"prompt_content_moderation", False
|
||||
),
|
||||
visual_input_content_moderation=moderation.get(
|
||||
"visual_input_moderation", False
|
||||
),
|
||||
visual_output_content_moderation=moderation.get(
|
||||
"visual_output_moderation", False
|
||||
),
|
||||
prompt_content_moderation=moderation.get("prompt_content_moderation", False),
|
||||
visual_input_content_moderation=moderation.get("visual_input_moderation", False),
|
||||
visual_output_content_moderation=moderation.get("visual_output_moderation", False),
|
||||
),
|
||||
response_model=BriaStatusResponse,
|
||||
)
|
||||
@@ -178,7 +155,7 @@ class BriaImageEditNode(IO.ComfyNode):
|
||||
cls,
|
||||
ApiEndpoint(path=f"/proxy/bria/v2/status/{response.request_id}"),
|
||||
status_extractor=lambda r: r.status,
|
||||
response_model=BriaResponse,
|
||||
response_model=BriaImageEditResponse,
|
||||
)
|
||||
return IO.NodeOutput(
|
||||
await download_url_to_image_tensor(response.result.image_url),
|
||||
@@ -186,11 +163,167 @@ class BriaImageEditNode(IO.ComfyNode):
|
||||
)
|
||||
|
||||
|
||||
class BriaRemoveImageBackground(IO.ComfyNode):
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="BriaRemoveImageBackground",
|
||||
display_name="Bria Remove Image Background",
|
||||
category="api node/image/Bria",
|
||||
description="Remove the background from an image using Bria RMBG 2.0.",
|
||||
inputs=[
|
||||
IO.Image.Input("image"),
|
||||
IO.DynamicCombo.Input(
|
||||
"moderation",
|
||||
options=[
|
||||
IO.DynamicCombo.Option("false", []),
|
||||
IO.DynamicCombo.Option(
|
||||
"true",
|
||||
[
|
||||
IO.Boolean.Input("visual_input_moderation", default=False),
|
||||
IO.Boolean.Input("visual_output_moderation", default=True),
|
||||
],
|
||||
),
|
||||
],
|
||||
tooltip="Moderation settings",
|
||||
),
|
||||
IO.Int.Input(
|
||||
"seed",
|
||||
default=0,
|
||||
min=0,
|
||||
max=2147483647,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
control_after_generate=True,
|
||||
tooltip="Seed controls whether the node should re-run; "
|
||||
"results are non-deterministic regardless of seed.",
|
||||
),
|
||||
],
|
||||
outputs=[IO.Image.Output()],
|
||||
hidden=[
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
expr="""{"type":"usd","usd":0.018}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
async def execute(
|
||||
cls,
|
||||
image: Input.Image,
|
||||
moderation: dict,
|
||||
seed: int,
|
||||
) -> IO.NodeOutput:
|
||||
response = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/bria/v2/image/edit/remove_background", method="POST"),
|
||||
data=BriaRemoveBackgroundRequest(
|
||||
image=await upload_image_to_comfyapi(cls, image, wait_label="Uploading image"),
|
||||
sync=False,
|
||||
visual_input_content_moderation=moderation.get("visual_input_moderation", False),
|
||||
visual_output_content_moderation=moderation.get("visual_output_moderation", False),
|
||||
seed=seed,
|
||||
),
|
||||
response_model=BriaStatusResponse,
|
||||
)
|
||||
response = await poll_op(
|
||||
cls,
|
||||
ApiEndpoint(path=f"/proxy/bria/v2/status/{response.request_id}"),
|
||||
status_extractor=lambda r: r.status,
|
||||
response_model=BriaRemoveBackgroundResponse,
|
||||
)
|
||||
return IO.NodeOutput(await download_url_to_image_tensor(response.result.image_url))
|
||||
|
||||
|
||||
class BriaRemoveVideoBackground(IO.ComfyNode):
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="BriaRemoveVideoBackground",
|
||||
display_name="Bria Remove Video Background",
|
||||
category="api node/video/Bria",
|
||||
description="Remove the background from a video using Bria. ",
|
||||
inputs=[
|
||||
IO.Video.Input("video"),
|
||||
IO.Combo.Input(
|
||||
"background_color",
|
||||
options=[
|
||||
"Black",
|
||||
"White",
|
||||
"Gray",
|
||||
"Red",
|
||||
"Green",
|
||||
"Blue",
|
||||
"Yellow",
|
||||
"Cyan",
|
||||
"Magenta",
|
||||
"Orange",
|
||||
],
|
||||
tooltip="Background color for the output video.",
|
||||
),
|
||||
IO.Int.Input(
|
||||
"seed",
|
||||
default=0,
|
||||
min=0,
|
||||
max=2147483647,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
control_after_generate=True,
|
||||
tooltip="Seed controls whether the node should re-run; "
|
||||
"results are non-deterministic regardless of seed.",
|
||||
),
|
||||
],
|
||||
outputs=[IO.Video.Output()],
|
||||
hidden=[
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
expr="""{"type":"usd","usd":0.14,"format":{"suffix":"/second"}}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
async def execute(
|
||||
cls,
|
||||
video: Input.Video,
|
||||
background_color: str,
|
||||
seed: int,
|
||||
) -> IO.NodeOutput:
|
||||
validate_video_duration(video, max_duration=60.0)
|
||||
response = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/bria/v2/video/edit/remove_background", method="POST"),
|
||||
data=BriaRemoveVideoBackgroundRequest(
|
||||
video=await upload_video_to_comfyapi(cls, video),
|
||||
background_color=background_color,
|
||||
output_container_and_codec="mp4_h264",
|
||||
seed=seed,
|
||||
),
|
||||
response_model=BriaStatusResponse,
|
||||
)
|
||||
response = await poll_op(
|
||||
cls,
|
||||
ApiEndpoint(path=f"/proxy/bria/v2/status/{response.request_id}"),
|
||||
status_extractor=lambda r: r.status,
|
||||
response_model=BriaRemoveVideoBackgroundResponse,
|
||||
)
|
||||
return IO.NodeOutput(await download_url_to_video_output(response.result.video_url))
|
||||
|
||||
|
||||
class BriaExtension(ComfyExtension):
|
||||
@override
|
||||
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
|
||||
return [
|
||||
BriaImageEditNode,
|
||||
BriaRemoveImageBackground,
|
||||
BriaRemoveVideoBackground,
|
||||
]
|
||||
|
||||
|
||||
|
||||
@@ -60,6 +60,7 @@ class ByteDanceImageNode(IO.ComfyNode):
|
||||
display_name="ByteDance Image",
|
||||
category="api node/image/ByteDance",
|
||||
description="Generate images using ByteDance models via api based on prompt",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Combo.Input("model", options=["seedream-3-0-t2i-250415"]),
|
||||
IO.String.Input(
|
||||
@@ -182,6 +183,7 @@ class ByteDanceSeedreamNode(IO.ComfyNode):
|
||||
display_name="ByteDance Seedream 4.5",
|
||||
category="api node/image/ByteDance",
|
||||
description="Unified text-to-image generation and precise single-sentence editing at up to 4K resolution.",
|
||||
short_description="Text-to-image generation and editing up to 4K.",
|
||||
inputs=[
|
||||
IO.Combo.Input(
|
||||
"model",
|
||||
@@ -380,6 +382,7 @@ class ByteDanceTextToVideoNode(IO.ComfyNode):
|
||||
display_name="ByteDance Text to Video",
|
||||
category="api node/video/ByteDance",
|
||||
description="Generate video using ByteDance models via api based on prompt",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Combo.Input(
|
||||
"model",
|
||||
@@ -505,6 +508,7 @@ class ByteDanceImageToVideoNode(IO.ComfyNode):
|
||||
display_name="ByteDance Image to Video",
|
||||
category="api node/video/ByteDance",
|
||||
description="Generate video using ByteDance models via api based on image and prompt",
|
||||
short_description="Generate video from image and prompt via ByteDance API.",
|
||||
inputs=[
|
||||
IO.Combo.Input(
|
||||
"model",
|
||||
@@ -639,6 +643,7 @@ class ByteDanceFirstLastFrameNode(IO.ComfyNode):
|
||||
display_name="ByteDance First-Last-Frame to Video",
|
||||
category="api node/video/ByteDance",
|
||||
description="Generate video using prompt and first and last frames.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Combo.Input(
|
||||
"model",
|
||||
@@ -784,6 +789,7 @@ class ByteDanceImageReferenceNode(IO.ComfyNode):
|
||||
display_name="ByteDance Reference Images to Video",
|
||||
category="api node/video/ByteDance",
|
||||
description="Generate video using prompt and reference images.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Combo.Input(
|
||||
"model",
|
||||
|
||||
@@ -254,6 +254,7 @@ class GeminiNode(IO.ComfyNode):
|
||||
description="Generate text responses with Google's Gemini AI model. "
|
||||
"You can provide multiple types of inputs (text, images, audio, video) "
|
||||
"as context for generating more relevant and meaningful responses.",
|
||||
short_description="Generate text responses with Google's Gemini AI.",
|
||||
inputs=[
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
@@ -480,6 +481,7 @@ class GeminiInputFiles(IO.ComfyNode):
|
||||
"The files will be read by the Gemini model when generating a response. "
|
||||
"The contents of the text file count toward the token limit. "
|
||||
"🛈 TIP: Can be chained together with other Gemini Input File nodes.",
|
||||
short_description="Load and prepare input files for Gemini LLM nodes.",
|
||||
inputs=[
|
||||
IO.Combo.Input(
|
||||
"file",
|
||||
@@ -534,6 +536,7 @@ class GeminiImage(IO.ComfyNode):
|
||||
display_name="Nano Banana (Google Gemini Image)",
|
||||
category="api node/image/Gemini",
|
||||
description="Edit images synchronously via Google API.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
@@ -665,6 +668,7 @@ class GeminiImage2(IO.ComfyNode):
|
||||
display_name="Nano Banana Pro (Google Gemini Image)",
|
||||
category="api node/image/Gemini",
|
||||
description="Generate or edit images synchronously via Google Vertex API.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
|
||||
@@ -36,6 +36,7 @@ class GrokImageNode(IO.ComfyNode):
|
||||
display_name="Grok Image",
|
||||
category="api node/image/Grok",
|
||||
description="Generate images using Grok based on a text prompt",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Combo.Input("model", options=["grok-imagine-image-beta"]),
|
||||
IO.String.Input(
|
||||
@@ -137,6 +138,7 @@ class GrokImageEditNode(IO.ComfyNode):
|
||||
display_name="Grok Image Edit",
|
||||
category="api node/image/Grok",
|
||||
description="Modify an existing image based on a text prompt",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Combo.Input("model", options=["grok-imagine-image-beta"]),
|
||||
IO.Image.Input("image"),
|
||||
@@ -226,6 +228,7 @@ class GrokVideoNode(IO.ComfyNode):
|
||||
display_name="Grok Video",
|
||||
category="api node/video/Grok",
|
||||
description="Generate video from a prompt or an image",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Combo.Input("model", options=["grok-imagine-video-beta"]),
|
||||
IO.String.Input(
|
||||
@@ -334,6 +337,7 @@ class GrokVideoEditNode(IO.ComfyNode):
|
||||
display_name="Grok Video Edit",
|
||||
category="api node/video/Grok",
|
||||
description="Edit an existing video based on a text prompt.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Combo.Input("model", options=["grok-imagine-video-beta"]),
|
||||
IO.String.Input(
|
||||
|
||||
@@ -74,6 +74,7 @@ class HitPawGeneralImageEnhance(IO.ComfyNode):
|
||||
category="api node/image/HitPaw",
|
||||
description="Upscale low-resolution images to super-resolution, eliminate artifacts and noise. "
|
||||
f"Maximum output: {MAX_MP_GENERATIVE} megapixels.",
|
||||
short_description="Upscale images to super-resolution, removing artifacts and noise.",
|
||||
inputs=[
|
||||
IO.Combo.Input("model", options=["generative_portrait", "generative"]),
|
||||
IO.Image.Input("image"),
|
||||
@@ -205,6 +206,7 @@ class HitPawVideoEnhance(IO.ComfyNode):
|
||||
category="api node/video/HitPaw",
|
||||
description="Upscale low-resolution videos to high resolution, eliminate artifacts and noise. "
|
||||
"Prices shown are per second of video.",
|
||||
short_description="Upscale videos to high resolution, removing artifacts and noise.",
|
||||
inputs=[
|
||||
IO.DynamicCombo.Input("model", options=model_options),
|
||||
IO.Video.Input("video"),
|
||||
|
||||
@@ -1,31 +1,48 @@
|
||||
from typing_extensions import override
|
||||
|
||||
from comfy_api.latest import IO, ComfyExtension, Input
|
||||
from comfy_api.latest import IO, ComfyExtension, Input, Types
|
||||
from comfy_api_nodes.apis.hunyuan3d import (
|
||||
Hunyuan3DViewImage,
|
||||
InputGenerateType,
|
||||
ResultFile3D,
|
||||
TextureEditTaskRequest,
|
||||
To3DProTaskCreateResponse,
|
||||
To3DProTaskQueryRequest,
|
||||
To3DProTaskRequest,
|
||||
To3DProTaskResultResponse,
|
||||
To3DUVFileInput,
|
||||
To3DUVTaskRequest,
|
||||
)
|
||||
from comfy_api_nodes.util import (
|
||||
ApiEndpoint,
|
||||
download_url_to_file_3d,
|
||||
download_url_to_image_tensor,
|
||||
downscale_image_tensor_by_max_side,
|
||||
poll_op,
|
||||
sync_op,
|
||||
upload_3d_model_to_comfyapi,
|
||||
upload_image_to_comfyapi,
|
||||
validate_image_dimensions,
|
||||
validate_string,
|
||||
)
|
||||
|
||||
|
||||
def get_file_from_response(response_objs: list[ResultFile3D], file_type: str) -> ResultFile3D | None:
|
||||
def _is_tencent_rate_limited(status: int, body: object) -> bool:
|
||||
return (
|
||||
status == 400
|
||||
and isinstance(body, dict)
|
||||
and "RequestLimitExceeded" in str(body.get("Response", {}).get("Error", {}).get("Code", ""))
|
||||
)
|
||||
|
||||
|
||||
def get_file_from_response(
|
||||
response_objs: list[ResultFile3D], file_type: str, raise_if_not_found: bool = True
|
||||
) -> ResultFile3D | None:
|
||||
for i in response_objs:
|
||||
if i.Type.lower() == file_type.lower():
|
||||
return i
|
||||
if raise_if_not_found:
|
||||
raise ValueError(f"'{file_type}' file type is not found in the response.")
|
||||
return None
|
||||
|
||||
|
||||
@@ -35,8 +52,10 @@ class TencentTextToModelNode(IO.ComfyNode):
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="TencentTextToModelNode",
|
||||
display_name="Hunyuan3D: Text to Model (Pro)",
|
||||
display_name="Hunyuan3D: Text to Model",
|
||||
category="api node/3d/Tencent",
|
||||
description="Generate 3D models from text prompts using Hunyuan3D Pro with configurable face count and geometry options.",
|
||||
short_description="Generate 3D models from text using Hunyuan3D Pro.",
|
||||
inputs=[
|
||||
IO.Combo.Input(
|
||||
"model",
|
||||
@@ -120,6 +139,7 @@ class TencentTextToModelNode(IO.ComfyNode):
|
||||
EnablePBR=generate_type.get("pbr", None),
|
||||
PolygonType=generate_type.get("polygon_type", None),
|
||||
),
|
||||
is_rate_limited=_is_tencent_rate_limited,
|
||||
)
|
||||
if response.Error:
|
||||
raise ValueError(f"Task creation failed with code {response.Error.Code}: {response.Error.Message}")
|
||||
@@ -131,11 +151,14 @@ class TencentTextToModelNode(IO.ComfyNode):
|
||||
response_model=To3DProTaskResultResponse,
|
||||
status_extractor=lambda r: r.Status,
|
||||
)
|
||||
glb_result = get_file_from_response(result.ResultFile3Ds, "glb")
|
||||
obj_result = get_file_from_response(result.ResultFile3Ds, "obj")
|
||||
file_glb = await download_url_to_file_3d(glb_result.Url, "glb", task_id=task_id) if glb_result else None
|
||||
return IO.NodeOutput(
|
||||
file_glb, file_glb, await download_url_to_file_3d(obj_result.Url, "obj", task_id=task_id) if obj_result else None
|
||||
f"{task_id}.glb",
|
||||
await download_url_to_file_3d(
|
||||
get_file_from_response(result.ResultFile3Ds, "glb").Url, "glb", task_id=task_id
|
||||
),
|
||||
await download_url_to_file_3d(
|
||||
get_file_from_response(result.ResultFile3Ds, "obj").Url, "obj", task_id=task_id
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
@@ -145,8 +168,10 @@ class TencentImageToModelNode(IO.ComfyNode):
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="TencentImageToModelNode",
|
||||
display_name="Hunyuan3D: Image(s) to Model (Pro)",
|
||||
display_name="Hunyuan3D: Image(s) to Model",
|
||||
category="api node/3d/Tencent",
|
||||
description="Generate 3D models from images using Hunyuan3D Pro with optional multi-view inputs and configurable geometry.",
|
||||
short_description="Generate 3D models from images using Hunyuan3D Pro.",
|
||||
inputs=[
|
||||
IO.Combo.Input(
|
||||
"model",
|
||||
@@ -268,6 +293,7 @@ class TencentImageToModelNode(IO.ComfyNode):
|
||||
EnablePBR=generate_type.get("pbr", None),
|
||||
PolygonType=generate_type.get("polygon_type", None),
|
||||
),
|
||||
is_rate_limited=_is_tencent_rate_limited,
|
||||
)
|
||||
if response.Error:
|
||||
raise ValueError(f"Task creation failed with code {response.Error.Code}: {response.Error.Message}")
|
||||
@@ -279,11 +305,257 @@ class TencentImageToModelNode(IO.ComfyNode):
|
||||
response_model=To3DProTaskResultResponse,
|
||||
status_extractor=lambda r: r.Status,
|
||||
)
|
||||
glb_result = get_file_from_response(result.ResultFile3Ds, "glb")
|
||||
obj_result = get_file_from_response(result.ResultFile3Ds, "obj")
|
||||
file_glb = await download_url_to_file_3d(glb_result.Url, "glb", task_id=task_id) if glb_result else None
|
||||
return IO.NodeOutput(
|
||||
file_glb, file_glb, await download_url_to_file_3d(obj_result.Url, "obj", task_id=task_id) if obj_result else None
|
||||
f"{task_id}.glb",
|
||||
await download_url_to_file_3d(
|
||||
get_file_from_response(result.ResultFile3Ds, "glb").Url, "glb", task_id=task_id
|
||||
),
|
||||
await download_url_to_file_3d(
|
||||
get_file_from_response(result.ResultFile3Ds, "obj").Url, "obj", task_id=task_id
|
||||
),
|
||||
)
|
||||
|
||||
|
||||
class TencentModelTo3DUVNode(IO.ComfyNode):
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="TencentModelTo3DUVNode",
|
||||
display_name="Hunyuan3D: Model to UV",
|
||||
category="api node/3d/Tencent",
|
||||
description="Perform UV unfolding on a 3D model to generate UV texture. "
|
||||
"Input model must have less than 30000 faces.",
|
||||
inputs=[
|
||||
IO.MultiType.Input(
|
||||
"model_3d",
|
||||
types=[IO.File3DGLB, IO.File3DOBJ, IO.File3DFBX, IO.File3DAny],
|
||||
tooltip="Input 3D model (GLB, OBJ, or FBX)",
|
||||
),
|
||||
IO.Int.Input(
|
||||
"seed",
|
||||
default=1,
|
||||
min=0,
|
||||
max=2147483647,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
control_after_generate=True,
|
||||
tooltip="Seed controls whether the node should re-run; "
|
||||
"results are non-deterministic regardless of seed.",
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
IO.File3DOBJ.Output(display_name="OBJ"),
|
||||
IO.File3DFBX.Output(display_name="FBX"),
|
||||
IO.Image.Output(),
|
||||
],
|
||||
hidden=[
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(expr='{"type":"usd","usd":0.2}'),
|
||||
)
|
||||
|
||||
SUPPORTED_FORMATS = {"glb", "obj", "fbx"}
|
||||
|
||||
@classmethod
|
||||
async def execute(
|
||||
cls,
|
||||
model_3d: Types.File3D,
|
||||
seed: int,
|
||||
) -> IO.NodeOutput:
|
||||
_ = seed
|
||||
file_format = model_3d.format.lower()
|
||||
if file_format not in cls.SUPPORTED_FORMATS:
|
||||
raise ValueError(
|
||||
f"Unsupported file format: '{file_format}'. "
|
||||
f"Supported formats: {', '.join(sorted(cls.SUPPORTED_FORMATS))}."
|
||||
)
|
||||
response = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/tencent/hunyuan/3d-uv", method="POST"),
|
||||
response_model=To3DProTaskCreateResponse,
|
||||
data=To3DUVTaskRequest(
|
||||
File=To3DUVFileInput(
|
||||
Type=file_format.upper(),
|
||||
Url=await upload_3d_model_to_comfyapi(cls, model_3d, file_format),
|
||||
)
|
||||
),
|
||||
is_rate_limited=_is_tencent_rate_limited,
|
||||
)
|
||||
if response.Error:
|
||||
raise ValueError(f"Task creation failed with code {response.Error.Code}: {response.Error.Message}")
|
||||
result = await poll_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/tencent/hunyuan/3d-uv/query", method="POST"),
|
||||
data=To3DProTaskQueryRequest(JobId=response.JobId),
|
||||
response_model=To3DProTaskResultResponse,
|
||||
status_extractor=lambda r: r.Status,
|
||||
)
|
||||
return IO.NodeOutput(
|
||||
await download_url_to_file_3d(get_file_from_response(result.ResultFile3Ds, "obj").Url, "obj"),
|
||||
await download_url_to_file_3d(get_file_from_response(result.ResultFile3Ds, "fbx").Url, "fbx"),
|
||||
await download_url_to_image_tensor(get_file_from_response(result.ResultFile3Ds, "image").Url),
|
||||
)
|
||||
|
||||
|
||||
class Tencent3DTextureEditNode(IO.ComfyNode):
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="Tencent3DTextureEditNode",
|
||||
display_name="Hunyuan3D: 3D Texture Edit",
|
||||
category="api node/3d/Tencent",
|
||||
description="After inputting the 3D model, perform 3D model texture redrawing.",
|
||||
inputs=[
|
||||
IO.MultiType.Input(
|
||||
"model_3d",
|
||||
types=[IO.File3DFBX, IO.File3DAny],
|
||||
tooltip="3D model in FBX format. Model should have less than 100000 faces.",
|
||||
),
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
multiline=True,
|
||||
default="",
|
||||
tooltip="Describes texture editing. Supports up to 1024 UTF-8 characters.",
|
||||
),
|
||||
IO.Int.Input(
|
||||
"seed",
|
||||
default=0,
|
||||
min=0,
|
||||
max=2147483647,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
control_after_generate=True,
|
||||
tooltip="Seed controls whether the node should re-run; "
|
||||
"results are non-deterministic regardless of seed.",
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
IO.File3DGLB.Output(display_name="GLB"),
|
||||
IO.File3DFBX.Output(display_name="FBX"),
|
||||
],
|
||||
hidden=[
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
expr="""{"type":"usd","usd": 0.6}""",
|
||||
),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
async def execute(
|
||||
cls,
|
||||
model_3d: Types.File3D,
|
||||
prompt: str,
|
||||
seed: int,
|
||||
) -> IO.NodeOutput:
|
||||
_ = seed
|
||||
file_format = model_3d.format.lower()
|
||||
if file_format != "fbx":
|
||||
raise ValueError(f"Unsupported file format: '{file_format}'. Only FBX format is supported.")
|
||||
validate_string(prompt, field_name="prompt", min_length=1, max_length=1024)
|
||||
model_url = await upload_3d_model_to_comfyapi(cls, model_3d, file_format)
|
||||
response = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/tencent/hunyuan/3d-texture-edit", method="POST"),
|
||||
response_model=To3DProTaskCreateResponse,
|
||||
data=TextureEditTaskRequest(
|
||||
File3D=To3DUVFileInput(Type=file_format.upper(), Url=model_url),
|
||||
Prompt=prompt,
|
||||
EnablePBR=True,
|
||||
),
|
||||
is_rate_limited=_is_tencent_rate_limited,
|
||||
)
|
||||
if response.Error:
|
||||
raise ValueError(f"Task creation failed with code {response.Error.Code}: {response.Error.Message}")
|
||||
|
||||
result = await poll_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/tencent/hunyuan/3d-texture-edit/query", method="POST"),
|
||||
data=To3DProTaskQueryRequest(JobId=response.JobId),
|
||||
response_model=To3DProTaskResultResponse,
|
||||
status_extractor=lambda r: r.Status,
|
||||
)
|
||||
return IO.NodeOutput(
|
||||
await download_url_to_file_3d(get_file_from_response(result.ResultFile3Ds, "glb").Url, "glb"),
|
||||
await download_url_to_file_3d(get_file_from_response(result.ResultFile3Ds, "fbx").Url, "fbx"),
|
||||
)
|
||||
|
||||
|
||||
class Tencent3DPartNode(IO.ComfyNode):
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="Tencent3DPartNode",
|
||||
display_name="Hunyuan3D: 3D Part",
|
||||
category="api node/3d/Tencent",
|
||||
description="Automatically perform component identification and generation based on the model structure.",
|
||||
inputs=[
|
||||
IO.MultiType.Input(
|
||||
"model_3d",
|
||||
types=[IO.File3DFBX, IO.File3DAny],
|
||||
tooltip="3D model in FBX format. Model should have less than 30000 faces.",
|
||||
),
|
||||
IO.Int.Input(
|
||||
"seed",
|
||||
default=0,
|
||||
min=0,
|
||||
max=2147483647,
|
||||
display_mode=IO.NumberDisplay.number,
|
||||
control_after_generate=True,
|
||||
tooltip="Seed controls whether the node should re-run; "
|
||||
"results are non-deterministic regardless of seed.",
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
IO.File3DFBX.Output(display_name="FBX"),
|
||||
],
|
||||
hidden=[
|
||||
IO.Hidden.auth_token_comfy_org,
|
||||
IO.Hidden.api_key_comfy_org,
|
||||
IO.Hidden.unique_id,
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(expr='{"type":"usd","usd":0.6}'),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
async def execute(
|
||||
cls,
|
||||
model_3d: Types.File3D,
|
||||
seed: int,
|
||||
) -> IO.NodeOutput:
|
||||
_ = seed
|
||||
file_format = model_3d.format.lower()
|
||||
if file_format != "fbx":
|
||||
raise ValueError(f"Unsupported file format: '{file_format}'. Only FBX format is supported.")
|
||||
model_url = await upload_3d_model_to_comfyapi(cls, model_3d, file_format)
|
||||
response = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/tencent/hunyuan/3d-part", method="POST"),
|
||||
response_model=To3DProTaskCreateResponse,
|
||||
data=To3DUVTaskRequest(
|
||||
File=To3DUVFileInput(Type=file_format.upper(), Url=model_url),
|
||||
),
|
||||
is_rate_limited=_is_tencent_rate_limited,
|
||||
)
|
||||
if response.Error:
|
||||
raise ValueError(f"Task creation failed with code {response.Error.Code}: {response.Error.Message}")
|
||||
result = await poll_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/tencent/hunyuan/3d-part/query", method="POST"),
|
||||
data=To3DProTaskQueryRequest(JobId=response.JobId),
|
||||
response_model=To3DProTaskResultResponse,
|
||||
status_extractor=lambda r: r.Status,
|
||||
)
|
||||
return IO.NodeOutput(
|
||||
await download_url_to_file_3d(get_file_from_response(result.ResultFile3Ds, "fbx").Url, "fbx"),
|
||||
)
|
||||
|
||||
|
||||
@@ -293,6 +565,9 @@ class TencentHunyuan3DExtension(ComfyExtension):
|
||||
return [
|
||||
TencentTextToModelNode,
|
||||
TencentImageToModelNode,
|
||||
# TencentModelTo3DUVNode,
|
||||
# Tencent3DTextureEditNode,
|
||||
Tencent3DPartNode,
|
||||
]
|
||||
|
||||
|
||||
|
||||
@@ -236,6 +236,7 @@ class IdeogramV1(IO.ComfyNode):
|
||||
display_name="Ideogram V1",
|
||||
category="api node/image/Ideogram",
|
||||
description="Generates images using the Ideogram V1 model.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
@@ -361,6 +362,7 @@ class IdeogramV2(IO.ComfyNode):
|
||||
display_name="Ideogram V2",
|
||||
category="api node/image/Ideogram",
|
||||
description="Generates images using the Ideogram V2 model.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
@@ -526,6 +528,7 @@ class IdeogramV3(IO.ComfyNode):
|
||||
category="api node/image/Ideogram",
|
||||
description="Generates images using the Ideogram V3 model. "
|
||||
"Supports both regular image generation from text prompts and image editing with mask.",
|
||||
short_description="Generate and edit images with Ideogram V3.",
|
||||
inputs=[
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
|
||||
@@ -642,6 +642,7 @@ class KlingCameraControls(IO.ComfyNode):
|
||||
display_name="Kling Camera Controls",
|
||||
category="api node/video/Kling",
|
||||
description="Allows specifying configuration options for Kling Camera Controls and motion control effects.",
|
||||
short_description="Configure Kling camera controls and motion effects.",
|
||||
inputs=[
|
||||
IO.Combo.Input("camera_control_type", options=KlingCameraControlType),
|
||||
IO.Float.Input(
|
||||
@@ -762,6 +763,7 @@ class KlingTextToVideoNode(IO.ComfyNode):
|
||||
display_name="Kling Text to Video",
|
||||
category="api node/video/Kling",
|
||||
description="Kling Text to Video Node",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.String.Input("prompt", multiline=True, tooltip="Positive text prompt"),
|
||||
IO.String.Input("negative_prompt", multiline=True, tooltip="Negative text prompt"),
|
||||
@@ -849,6 +851,7 @@ class OmniProTextToVideoNode(IO.ComfyNode):
|
||||
display_name="Kling 3.0 Omni Text to Video",
|
||||
category="api node/video/Kling",
|
||||
description="Use text prompts to generate videos with the latest Kling model.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Combo.Input("model_name", options=["kling-v3-omni", "kling-video-o1"]),
|
||||
IO.String.Input(
|
||||
@@ -989,6 +992,7 @@ class OmniProFirstLastFrameNode(IO.ComfyNode):
|
||||
display_name="Kling 3.0 Omni First-Last-Frame to Video",
|
||||
category="api node/video/Kling",
|
||||
description="Use a start frame, an optional end frame, or reference images with the latest Kling model.",
|
||||
short_description="Generate video from start/end frames or reference images.",
|
||||
inputs=[
|
||||
IO.Combo.Input("model_name", options=["kling-v3-omni", "kling-video-o1"]),
|
||||
IO.String.Input(
|
||||
@@ -1187,6 +1191,7 @@ class OmniProImageToVideoNode(IO.ComfyNode):
|
||||
display_name="Kling 3.0 Omni Image to Video",
|
||||
category="api node/video/Kling",
|
||||
description="Use up to 7 reference images to generate a video with the latest Kling model.",
|
||||
short_description="Generate video from up to 7 reference images.",
|
||||
inputs=[
|
||||
IO.Combo.Input("model_name", options=["kling-v3-omni", "kling-video-o1"]),
|
||||
IO.String.Input(
|
||||
@@ -1347,6 +1352,7 @@ class OmniProVideoToVideoNode(IO.ComfyNode):
|
||||
display_name="Kling 3.0 Omni Video to Video",
|
||||
category="api node/video/Kling",
|
||||
description="Use a video and up to 4 reference images to generate a video with the latest Kling model.",
|
||||
short_description="Generate video from a video and reference images.",
|
||||
inputs=[
|
||||
IO.Combo.Input("model_name", options=["kling-v3-omni", "kling-video-o1"]),
|
||||
IO.String.Input(
|
||||
@@ -1458,6 +1464,7 @@ class OmniProEditVideoNode(IO.ComfyNode):
|
||||
display_name="Kling 3.0 Omni Edit Video",
|
||||
category="api node/video/Kling",
|
||||
description="Edit an existing video with the latest model from Kling.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Combo.Input("model_name", options=["kling-v3-omni", "kling-video-o1"]),
|
||||
IO.String.Input(
|
||||
@@ -1565,6 +1572,7 @@ class OmniProImageNode(IO.ComfyNode):
|
||||
display_name="Kling 3.0 Omni Image",
|
||||
category="api node/image/Kling",
|
||||
description="Create or edit images with the latest model from Kling.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Combo.Input("model_name", options=["kling-v3-omni", "kling-image-o1"]),
|
||||
IO.String.Input(
|
||||
@@ -1693,6 +1701,7 @@ class KlingCameraControlT2VNode(IO.ComfyNode):
|
||||
display_name="Kling Text to Video (Camera Control)",
|
||||
category="api node/video/Kling",
|
||||
description="Transform text into cinematic videos with professional camera movements that simulate real-world cinematography. Control virtual camera actions including zoom, rotation, pan, tilt, and first-person view, while maintaining focus on your original text.",
|
||||
short_description="Generate videos from text with camera movement controls.",
|
||||
inputs=[
|
||||
IO.String.Input("prompt", multiline=True, tooltip="Positive text prompt"),
|
||||
IO.String.Input("negative_prompt", multiline=True, tooltip="Negative text prompt"),
|
||||
@@ -1754,6 +1763,8 @@ class KlingImage2VideoNode(IO.ComfyNode):
|
||||
node_id="KlingImage2VideoNode",
|
||||
display_name="Kling Image(First Frame) to Video",
|
||||
category="api node/video/Kling",
|
||||
description="Generate a video from a first-frame image with configurable model, mode, aspect ratio, and duration settings.",
|
||||
short_description="Generate video from a first-frame reference image.",
|
||||
inputs=[
|
||||
IO.Image.Input("start_frame", tooltip="The reference image used to generate the video."),
|
||||
IO.String.Input("prompt", multiline=True, tooltip="Positive text prompt"),
|
||||
@@ -1854,6 +1865,7 @@ class KlingCameraControlI2VNode(IO.ComfyNode):
|
||||
display_name="Kling Image to Video (Camera Control)",
|
||||
category="api node/video/Kling",
|
||||
description="Transform still images into cinematic videos with professional camera movements that simulate real-world cinematography. Control virtual camera actions including zoom, rotation, pan, tilt, and first-person view, while maintaining focus on your original image.",
|
||||
short_description="Generate videos from images with camera movement controls.",
|
||||
inputs=[
|
||||
IO.Image.Input(
|
||||
"start_frame",
|
||||
@@ -1925,6 +1937,7 @@ class KlingStartEndFrameNode(IO.ComfyNode):
|
||||
display_name="Kling Start-End Frame to Video",
|
||||
category="api node/video/Kling",
|
||||
description="Generate a video sequence that transitions between your provided start and end images. The node creates all frames in between, producing a smooth transformation from the first frame to the last.",
|
||||
short_description="Generate video transitioning between start and end frame images.",
|
||||
inputs=[
|
||||
IO.Image.Input(
|
||||
"start_frame",
|
||||
@@ -2019,6 +2032,7 @@ class KlingVideoExtendNode(IO.ComfyNode):
|
||||
display_name="Kling Video Extend",
|
||||
category="api node/video/Kling",
|
||||
description="Kling Video Extend Node. Extend videos made by other Kling nodes. The video_id is created by using other Kling Nodes.",
|
||||
short_description="Extend videos generated by other Kling nodes.",
|
||||
inputs=[
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
@@ -2100,6 +2114,7 @@ class KlingDualCharacterVideoEffectNode(IO.ComfyNode):
|
||||
display_name="Kling Dual Character Video Effects",
|
||||
category="api node/video/Kling",
|
||||
description="Achieve different special effects when generating a video based on the effect_scene. First image will be positioned on left side, second on right side of the composite.",
|
||||
short_description="Apply dual-character video effects from two images.",
|
||||
inputs=[
|
||||
IO.Image.Input("image_left", tooltip="Left side image"),
|
||||
IO.Image.Input("image_right", tooltip="Right side image"),
|
||||
@@ -2190,6 +2205,7 @@ class KlingSingleImageVideoEffectNode(IO.ComfyNode):
|
||||
display_name="Kling Video Effects",
|
||||
category="api node/video/Kling",
|
||||
description="Achieve different special effects when generating a video based on the effect_scene.",
|
||||
short_description="Apply special video effects to a single image.",
|
||||
inputs=[
|
||||
IO.Image.Input(
|
||||
"image",
|
||||
@@ -2263,6 +2279,7 @@ class KlingLipSyncAudioToVideoNode(IO.ComfyNode):
|
||||
display_name="Kling Lip Sync Video with Audio",
|
||||
category="api node/video/Kling",
|
||||
description="Kling Lip Sync Audio to Video Node. Syncs mouth movements in a video file to the audio content of an audio file. When using, ensure that the audio contains clearly distinguishable vocals and that the video contains a distinct face. The audio file should not be larger than 5MB. The video file should not be larger than 100MB, should have height/width between 720px and 1920px, and should be between 2s and 10s in length.",
|
||||
short_description="Sync video mouth movements to audio content.",
|
||||
inputs=[
|
||||
IO.Video.Input("video"),
|
||||
IO.Audio.Input("audio"),
|
||||
@@ -2314,6 +2331,7 @@ class KlingLipSyncTextToVideoNode(IO.ComfyNode):
|
||||
display_name="Kling Lip Sync Video with Text",
|
||||
category="api node/video/Kling",
|
||||
description="Kling Lip Sync Text to Video Node. Syncs mouth movements in a video file to a text prompt. The video file should not be larger than 100MB, should have height/width between 720px and 1920px, and should be between 2s and 10s in length.",
|
||||
short_description="Sync video mouth movements to a text prompt.",
|
||||
inputs=[
|
||||
IO.Video.Input("video"),
|
||||
IO.String.Input(
|
||||
@@ -2381,6 +2399,7 @@ class KlingVirtualTryOnNode(IO.ComfyNode):
|
||||
display_name="Kling Virtual Try On",
|
||||
category="api node/image/Kling",
|
||||
description="Kling Virtual Try On Node. Input a human image and a cloth image to try on the cloth on the human. You can merge multiple clothing item pictures into one image with a white background.",
|
||||
short_description="Virtually try clothing onto a human image.",
|
||||
inputs=[
|
||||
IO.Image.Input("human_image"),
|
||||
IO.Image.Input("cloth_image"),
|
||||
@@ -2448,6 +2467,7 @@ class KlingImageGenerationNode(IO.ComfyNode):
|
||||
display_name="Kling 3.0 Image",
|
||||
category="api node/image/Kling",
|
||||
description="Kling Image Generation Node. Generate an image from a text prompt with an optional reference image.",
|
||||
short_description="Generate images from text with optional reference image.",
|
||||
inputs=[
|
||||
IO.String.Input("prompt", multiline=True, tooltip="Positive text prompt"),
|
||||
IO.String.Input("negative_prompt", multiline=True, tooltip="Negative text prompt"),
|
||||
@@ -2581,6 +2601,8 @@ class TextToVideoWithAudio(IO.ComfyNode):
|
||||
node_id="KlingTextToVideoWithAudio",
|
||||
display_name="Kling 2.6 Text to Video with Audio",
|
||||
category="api node/video/Kling",
|
||||
description="Generate a video with synchronized audio from a text prompt using the Kling v2-6 model.",
|
||||
short_description="Generate video with audio from text using Kling v2-6.",
|
||||
inputs=[
|
||||
IO.Combo.Input("model_name", options=["kling-v2-6"]),
|
||||
IO.String.Input("prompt", multiline=True, tooltip="Positive text prompt."),
|
||||
@@ -2649,6 +2671,8 @@ class ImageToVideoWithAudio(IO.ComfyNode):
|
||||
node_id="KlingImageToVideoWithAudio",
|
||||
display_name="Kling 2.6 Image(First Frame) to Video with Audio",
|
||||
category="api node/video/Kling",
|
||||
description="Generate a video with synchronized audio from a first-frame image and text prompt using the Kling v2-6 model.",
|
||||
short_description="Generate video with audio from an image using Kling v2-6.",
|
||||
inputs=[
|
||||
IO.Combo.Input("model_name", options=["kling-v2-6"]),
|
||||
IO.Image.Input("start_frame"),
|
||||
@@ -2719,6 +2743,8 @@ class MotionControl(IO.ComfyNode):
|
||||
node_id="KlingMotionControl",
|
||||
display_name="Kling Motion Control",
|
||||
category="api node/video/Kling",
|
||||
description="Drive character movement and expression in video using a reference image and motion reference video.",
|
||||
short_description="Control video character motion using reference image and video.",
|
||||
inputs=[
|
||||
IO.String.Input("prompt", multiline=True),
|
||||
IO.Image.Input("reference_image"),
|
||||
@@ -2815,6 +2841,7 @@ class KlingVideoNode(IO.ComfyNode):
|
||||
category="api node/video/Kling",
|
||||
description="Generate videos with Kling V3. "
|
||||
"Supports text-to-video and image-to-video with optional storyboard multi-prompt and audio generation.",
|
||||
short_description="Generate videos with Kling V3 from text or images.",
|
||||
inputs=[
|
||||
IO.DynamicCombo.Input(
|
||||
"multi_shot",
|
||||
|
||||
@@ -52,6 +52,7 @@ class TextToVideoNode(IO.ComfyNode):
|
||||
display_name="LTXV Text To Video",
|
||||
category="api node/video/LTXV",
|
||||
description="Professional-quality videos with customizable duration and resolution.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Combo.Input("model", options=list(MODELS_MAP.keys())),
|
||||
IO.String.Input(
|
||||
@@ -128,6 +129,7 @@ class ImageToVideoNode(IO.ComfyNode):
|
||||
display_name="LTXV Image To Video",
|
||||
category="api node/video/LTXV",
|
||||
description="Professional-quality videos with customizable duration and resolution based on start image.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Image.Input("image", tooltip="First frame to be used for the video."),
|
||||
IO.Combo.Input("model", options=list(MODELS_MAP.keys())),
|
||||
|
||||
@@ -46,6 +46,7 @@ class LumaReferenceNode(IO.ComfyNode):
|
||||
display_name="Luma Reference",
|
||||
category="api node/image/Luma",
|
||||
description="Holds an image and weight for use with Luma Generate Image node.",
|
||||
short_description="Image and weight input for Luma generation.",
|
||||
inputs=[
|
||||
IO.Image.Input(
|
||||
"image",
|
||||
@@ -85,6 +86,7 @@ class LumaConceptsNode(IO.ComfyNode):
|
||||
display_name="Luma Concepts",
|
||||
category="api node/video/Luma",
|
||||
description="Camera Concepts for use with Luma Text to Video and Luma Image to Video nodes.",
|
||||
short_description="Camera concepts for Luma video generation nodes.",
|
||||
inputs=[
|
||||
IO.Combo.Input(
|
||||
"concept1",
|
||||
@@ -134,6 +136,7 @@ class LumaImageGenerationNode(IO.ComfyNode):
|
||||
display_name="Luma Text to Image",
|
||||
category="api node/image/Luma",
|
||||
description="Generates images synchronously based on prompt and aspect ratio.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
@@ -278,6 +281,7 @@ class LumaImageModifyNode(IO.ComfyNode):
|
||||
display_name="Luma Image to Image",
|
||||
category="api node/image/Luma",
|
||||
description="Modifies images synchronously based on prompt and aspect ratio.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Image.Input(
|
||||
"image",
|
||||
@@ -371,6 +375,7 @@ class LumaTextToVideoGenerationNode(IO.ComfyNode):
|
||||
display_name="Luma Text to Video",
|
||||
category="api node/video/Luma",
|
||||
description="Generates videos synchronously based on prompt and output_size.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
@@ -472,6 +477,7 @@ class LumaImageToVideoGenerationNode(IO.ComfyNode):
|
||||
display_name="Luma Image to Video",
|
||||
category="api node/video/Luma",
|
||||
description="Generates videos synchronously based on prompt, input images, and output_size.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
|
||||
@@ -242,6 +242,7 @@ class MagnificImageUpscalerPreciseV2Node(IO.ComfyNode):
|
||||
category="api node/image/Magnific",
|
||||
description="High-fidelity upscaling with fine control over sharpness, grain, and detail. "
|
||||
"Maximum output: 10060×10060 pixels.",
|
||||
short_description="High-fidelity upscaling with sharpness, grain, and detail control.",
|
||||
inputs=[
|
||||
IO.Image.Input("image"),
|
||||
IO.Combo.Input("scale_factor", options=["2x", "4x", "8x", "16x"]),
|
||||
@@ -401,6 +402,7 @@ class MagnificImageStyleTransferNode(IO.ComfyNode):
|
||||
display_name="Magnific Image Style Transfer",
|
||||
category="api node/image/Magnific",
|
||||
description="Transfer the style from a reference image to your input image.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Image.Input("image", tooltip="The image to apply style transfer to."),
|
||||
IO.Image.Input("reference_image", tooltip="The reference image to extract style from."),
|
||||
@@ -549,6 +551,7 @@ class MagnificImageRelightNode(IO.ComfyNode):
|
||||
display_name="Magnific Image Relight",
|
||||
category="api node/image/Magnific",
|
||||
description="Relight an image with lighting adjustments and optional reference-based light transfer.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Image.Input("image", tooltip="The image to relight."),
|
||||
IO.String.Input(
|
||||
@@ -787,6 +790,7 @@ class MagnificImageSkinEnhancerNode(IO.ComfyNode):
|
||||
display_name="Magnific Image Skin Enhancer",
|
||||
category="api node/image/Magnific",
|
||||
description="Skin enhancement for portraits with multiple processing modes.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Image.Input("image", tooltip="The portrait image to enhance."),
|
||||
IO.Int.Input(
|
||||
|
||||
@@ -34,6 +34,8 @@ class MeshyTextToModelNode(IO.ComfyNode):
|
||||
node_id="MeshyTextToModelNode",
|
||||
display_name="Meshy: Text to Model",
|
||||
category="api node/3d/Meshy",
|
||||
description="Generate a 3D model from a text prompt using the Meshy API.",
|
||||
short_description="Generate a 3D model from a text prompt.",
|
||||
inputs=[
|
||||
IO.Combo.Input("model", options=["latest"]),
|
||||
IO.String.Input("prompt", multiline=True, default=""),
|
||||
@@ -146,6 +148,7 @@ class MeshyRefineNode(IO.ComfyNode):
|
||||
display_name="Meshy: Refine Draft Model",
|
||||
category="api node/3d/Meshy",
|
||||
description="Refine a previously created draft model.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Combo.Input("model", options=["latest"]),
|
||||
IO.Custom("MESHY_TASK_ID").Input("meshy_task_id"),
|
||||
@@ -239,6 +242,8 @@ class MeshyImageToModelNode(IO.ComfyNode):
|
||||
node_id="MeshyImageToModelNode",
|
||||
display_name="Meshy: Image to Model",
|
||||
category="api node/3d/Meshy",
|
||||
description="Generate a 3D model from a single image using the Meshy API.",
|
||||
short_description="Generate a 3D model from an image.",
|
||||
inputs=[
|
||||
IO.Combo.Input("model", options=["latest"]),
|
||||
IO.Image.Input("image"),
|
||||
@@ -403,6 +408,7 @@ class MeshyMultiImageToModelNode(IO.ComfyNode):
|
||||
node_id="MeshyMultiImageToModelNode",
|
||||
display_name="Meshy: Multi-Image to Model",
|
||||
category="api node/3d/Meshy",
|
||||
description="Generate a 3D model from multiple images using the Meshy API.",
|
||||
inputs=[
|
||||
IO.Combo.Input("model", options=["latest"]),
|
||||
IO.Autogrow.Input(
|
||||
@@ -575,6 +581,7 @@ class MeshyRigModelNode(IO.ComfyNode):
|
||||
description="Provides a rigged character in standard formats. "
|
||||
"Auto-rigging is currently not suitable for untextured meshes, non-humanoid assets, "
|
||||
"or humanoid assets with unclear limb and body structure.",
|
||||
short_description="Rig a character model for animation.",
|
||||
inputs=[
|
||||
IO.Custom("MESHY_TASK_ID").Input("meshy_task_id"),
|
||||
IO.Float.Input(
|
||||
@@ -654,6 +661,7 @@ class MeshyAnimateModelNode(IO.ComfyNode):
|
||||
display_name="Meshy: Animate Model",
|
||||
category="api node/3d/Meshy",
|
||||
description="Apply a specific animation action to a previously rigged character.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Custom("MESHY_RIGGED_TASK_ID").Input("rig_task_id"),
|
||||
IO.Int.Input(
|
||||
@@ -719,6 +727,7 @@ class MeshyTextureNode(IO.ComfyNode):
|
||||
node_id="MeshyTextureNode",
|
||||
display_name="Meshy: Texture Model",
|
||||
category="api node/3d/Meshy",
|
||||
description="Apply textures to an existing 3D model using the Meshy API.",
|
||||
inputs=[
|
||||
IO.Combo.Input("model", options=["latest"]),
|
||||
IO.Custom("MESHY_TASK_ID").Input("meshy_task_id"),
|
||||
|
||||
@@ -103,6 +103,7 @@ class MinimaxTextToVideoNode(IO.ComfyNode):
|
||||
display_name="MiniMax Text to Video",
|
||||
category="api node/video/MiniMax",
|
||||
description="Generates videos synchronously based on a prompt, and optional parameters.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.String.Input(
|
||||
"prompt_text",
|
||||
@@ -165,6 +166,7 @@ class MinimaxImageToVideoNode(IO.ComfyNode):
|
||||
display_name="MiniMax Image to Video",
|
||||
category="api node/video/MiniMax",
|
||||
description="Generates videos synchronously based on an image and prompt, and optional parameters.",
|
||||
short_description="Generate videos from an image, prompt, and optional parameters.",
|
||||
inputs=[
|
||||
IO.Image.Input(
|
||||
"image",
|
||||
@@ -232,6 +234,7 @@ class MinimaxSubjectToVideoNode(IO.ComfyNode):
|
||||
display_name="MiniMax Subject to Video",
|
||||
category="api node/video/MiniMax",
|
||||
description="Generates videos synchronously based on an image and prompt, and optional parameters.",
|
||||
short_description="Subject-driven video generation from image and prompt.",
|
||||
inputs=[
|
||||
IO.Image.Input(
|
||||
"subject",
|
||||
@@ -296,6 +299,7 @@ class MinimaxHailuoVideoNode(IO.ComfyNode):
|
||||
display_name="MiniMax Hailuo Video",
|
||||
category="api node/video/MiniMax",
|
||||
description="Generates videos from prompt, with optional start frame using the new MiniMax Hailuo-02 model.",
|
||||
short_description="Generate videos with optional start frame using Hailuo-02.",
|
||||
inputs=[
|
||||
IO.String.Input(
|
||||
"prompt_text",
|
||||
|
||||
@@ -166,6 +166,7 @@ class MoonvalleyImg2VideoNode(IO.ComfyNode):
|
||||
display_name="Moonvalley Marey Image to Video",
|
||||
category="api node/video/Moonvalley Marey",
|
||||
description="Moonvalley Marey Image to Video Node",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Image.Input(
|
||||
"image",
|
||||
@@ -290,7 +291,8 @@ class MoonvalleyVideo2VideoNode(IO.ComfyNode):
|
||||
node_id="MoonvalleyVideo2VideoNode",
|
||||
display_name="Moonvalley Marey Video to Video",
|
||||
category="api node/video/Moonvalley Marey",
|
||||
description="",
|
||||
description="Transform an input video into a new video using a text prompt and motion or pose control.",
|
||||
short_description="Transform video using text prompt with motion or pose control.",
|
||||
inputs=[
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
@@ -415,7 +417,8 @@ class MoonvalleyTxt2VideoNode(IO.ComfyNode):
|
||||
node_id="MoonvalleyTxt2VideoNode",
|
||||
display_name="Moonvalley Marey Text to Video",
|
||||
category="api node/video/Moonvalley Marey",
|
||||
description="",
|
||||
description="Generate a video from a text prompt using the Moonvalley Marey model.",
|
||||
short_description="Generate video from a text prompt using Moonvalley Marey.",
|
||||
inputs=[
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
|
||||
@@ -43,7 +43,6 @@ class SupportedOpenAIModel(str, Enum):
|
||||
o1 = "o1"
|
||||
o3 = "o3"
|
||||
o1_pro = "o1-pro"
|
||||
gpt_4o = "gpt-4o"
|
||||
gpt_4_1 = "gpt-4.1"
|
||||
gpt_4_1_mini = "gpt-4.1-mini"
|
||||
gpt_4_1_nano = "gpt-4.1-nano"
|
||||
@@ -99,6 +98,7 @@ class OpenAIDalle2(IO.ComfyNode):
|
||||
display_name="OpenAI DALL·E 2",
|
||||
category="api node/image/OpenAI",
|
||||
description="Generates images synchronously via OpenAI's DALL·E 2 endpoint.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
@@ -249,6 +249,7 @@ class OpenAIDalle3(IO.ComfyNode):
|
||||
display_name="OpenAI DALL·E 3",
|
||||
category="api node/image/OpenAI",
|
||||
description="Generates images synchronously via OpenAI's DALL·E 3 endpoint.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
@@ -367,6 +368,7 @@ class OpenAIGPTImage1(IO.ComfyNode):
|
||||
display_name="OpenAI GPT Image 1.5",
|
||||
category="api node/image/OpenAI",
|
||||
description="Generates images synchronously via OpenAI's GPT Image endpoint.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
@@ -577,6 +579,7 @@ class OpenAIChatNode(IO.ComfyNode):
|
||||
display_name="OpenAI ChatGPT",
|
||||
category="api node/text/OpenAI",
|
||||
description="Generate text responses from an OpenAI model.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
@@ -649,11 +652,6 @@ class OpenAIChatNode(IO.ComfyNode):
|
||||
"usd": [0.01, 0.04],
|
||||
"format": { "approximate": true, "separator": "-", "suffix": " per 1K tokens" }
|
||||
}
|
||||
: $contains($m, "gpt-4o") ? {
|
||||
"type": "list_usd",
|
||||
"usd": [0.0025, 0.01],
|
||||
"format": { "approximate": true, "separator": "-", "suffix": " per 1K tokens" }
|
||||
}
|
||||
: $contains($m, "gpt-4.1-nano") ? {
|
||||
"type": "list_usd",
|
||||
"usd": [0.0001, 0.0004],
|
||||
@@ -809,6 +807,7 @@ class OpenAIInputFiles(IO.ComfyNode):
|
||||
display_name="OpenAI ChatGPT Input Files",
|
||||
category="api node/text/OpenAI",
|
||||
description="Loads and prepares input files (text, pdf, etc.) to include as inputs for the OpenAI Chat Node. The files will be read by the OpenAI model when generating a response. 🛈 TIP: Can be chained together with other OpenAI Input File nodes.",
|
||||
short_description="Load and prepare input files for OpenAI Chat.",
|
||||
inputs=[
|
||||
IO.Combo.Input(
|
||||
"file",
|
||||
@@ -856,6 +855,7 @@ class OpenAIChatConfig(IO.ComfyNode):
|
||||
display_name="OpenAI ChatGPT Advanced Options",
|
||||
category="api node/text/OpenAI",
|
||||
description="Allows specifying advanced configuration options for the OpenAI Chat Nodes.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Combo.Input(
|
||||
"truncation",
|
||||
|
||||
@@ -54,6 +54,8 @@ class PixverseTemplateNode(IO.ComfyNode):
|
||||
node_id="PixverseTemplateNode",
|
||||
display_name="PixVerse Template",
|
||||
category="api node/video/PixVerse",
|
||||
description="Select a style template for PixVerse video generation.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Combo.Input("template", options=list(pixverse_templates.keys())),
|
||||
],
|
||||
@@ -76,6 +78,7 @@ class PixverseTextToVideoNode(IO.ComfyNode):
|
||||
display_name="PixVerse Text to Video",
|
||||
category="api node/video/PixVerse",
|
||||
description="Generates videos based on prompt and output_size.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
@@ -194,6 +197,7 @@ class PixverseImageToVideoNode(IO.ComfyNode):
|
||||
display_name="PixVerse Image to Video",
|
||||
category="api node/video/PixVerse",
|
||||
description="Generates videos based on prompt and output_size.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Image.Input("image"),
|
||||
IO.String.Input(
|
||||
@@ -312,6 +316,7 @@ class PixverseTransitionVideoNode(IO.ComfyNode):
|
||||
display_name="PixVerse Transition Video",
|
||||
category="api node/video/PixVerse",
|
||||
description="Generates videos based on prompt and output_size.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Image.Input("first_frame"),
|
||||
IO.Image.Input("last_frame"),
|
||||
|
||||
@@ -180,6 +180,7 @@ class RecraftColorRGBNode(IO.ComfyNode):
|
||||
display_name="Recraft Color RGB",
|
||||
category="api node/image/Recraft",
|
||||
description="Create Recraft Color by choosing specific RGB values.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Int.Input("r", default=0, min=0, max=255, tooltip="Red value of color."),
|
||||
IO.Int.Input("g", default=0, min=0, max=255, tooltip="Green value of color."),
|
||||
@@ -206,6 +207,7 @@ class RecraftControlsNode(IO.ComfyNode):
|
||||
display_name="Recraft Controls",
|
||||
category="api node/image/Recraft",
|
||||
description="Create Recraft Controls for customizing Recraft generation.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Custom(RecraftIO.COLOR).Input("colors", optional=True),
|
||||
IO.Custom(RecraftIO.COLOR).Input("background_color", optional=True),
|
||||
@@ -230,6 +232,7 @@ class RecraftStyleV3RealisticImageNode(IO.ComfyNode):
|
||||
display_name="Recraft Style - Realistic Image",
|
||||
category="api node/image/Recraft",
|
||||
description="Select realistic_image style and optional substyle.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Combo.Input("substyle", options=get_v3_substyles(cls.RECRAFT_STYLE)),
|
||||
],
|
||||
@@ -254,7 +257,8 @@ class RecraftStyleV3DigitalIllustrationNode(RecraftStyleV3RealisticImageNode):
|
||||
node_id="RecraftStyleV3DigitalIllustration",
|
||||
display_name="Recraft Style - Digital Illustration",
|
||||
category="api node/image/Recraft",
|
||||
description="Select realistic_image style and optional substyle.",
|
||||
description="Select digital_illustration style and optional substyle.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Combo.Input("substyle", options=get_v3_substyles(cls.RECRAFT_STYLE)),
|
||||
],
|
||||
@@ -271,9 +275,10 @@ class RecraftStyleV3VectorIllustrationNode(RecraftStyleV3RealisticImageNode):
|
||||
def define_schema(cls):
|
||||
return IO.Schema(
|
||||
node_id="RecraftStyleV3VectorIllustrationNode",
|
||||
display_name="Recraft Style - Realistic Image",
|
||||
display_name="Recraft Style - Vector Illustration",
|
||||
category="api node/image/Recraft",
|
||||
description="Select realistic_image style and optional substyle.",
|
||||
description="Select vector_illustration style and optional substyle.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Combo.Input("substyle", options=get_v3_substyles(cls.RECRAFT_STYLE)),
|
||||
],
|
||||
@@ -292,7 +297,8 @@ class RecraftStyleV3LogoRasterNode(RecraftStyleV3RealisticImageNode):
|
||||
node_id="RecraftStyleV3LogoRaster",
|
||||
display_name="Recraft Style - Logo Raster",
|
||||
category="api node/image/Recraft",
|
||||
description="Select realistic_image style and optional substyle.",
|
||||
description="Select logo_raster style and optional substyle.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Combo.Input("substyle", options=get_v3_substyles(cls.RECRAFT_STYLE, include_none=False)),
|
||||
],
|
||||
@@ -310,6 +316,7 @@ class RecraftStyleInfiniteStyleLibrary(IO.ComfyNode):
|
||||
display_name="Recraft Style - Infinite Style Library",
|
||||
category="api node/image/Recraft",
|
||||
description="Select style based on preexisting UUID from Recraft's Infinite Style Library.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.String.Input("style_id", default="", tooltip="UUID of style from Infinite Style Library."),
|
||||
],
|
||||
@@ -335,6 +342,7 @@ class RecraftCreateStyleNode(IO.ComfyNode):
|
||||
description="Create a custom style from reference images. "
|
||||
"Upload 1-5 images to use as style references. "
|
||||
"Total size of all images is limited to 5 MB.",
|
||||
short_description="Create a custom style from 1-5 reference images.",
|
||||
inputs=[
|
||||
IO.Combo.Input(
|
||||
"style",
|
||||
@@ -402,6 +410,7 @@ class RecraftTextToImageNode(IO.ComfyNode):
|
||||
display_name="Recraft Text to Image",
|
||||
category="api node/image/Recraft",
|
||||
description="Generates images synchronously based on prompt and resolution.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.String.Input("prompt", multiline=True, default="", tooltip="Prompt for the image generation."),
|
||||
IO.Combo.Input(
|
||||
@@ -514,6 +523,7 @@ class RecraftImageToImageNode(IO.ComfyNode):
|
||||
display_name="Recraft Image to Image",
|
||||
category="api node/image/Recraft",
|
||||
description="Modify image based on prompt and strength.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Image.Input("image"),
|
||||
IO.String.Input("prompt", multiline=True, default="", tooltip="Prompt for the image generation."),
|
||||
@@ -632,6 +642,7 @@ class RecraftImageInpaintingNode(IO.ComfyNode):
|
||||
display_name="Recraft Image Inpainting",
|
||||
category="api node/image/Recraft",
|
||||
description="Modify image based on prompt and mask.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Image.Input("image"),
|
||||
IO.Mask.Input("mask"),
|
||||
@@ -734,6 +745,7 @@ class RecraftTextToVectorNode(IO.ComfyNode):
|
||||
display_name="Recraft Text to Vector",
|
||||
category="api node/image/Recraft",
|
||||
description="Generates SVG synchronously based on prompt and resolution.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.String.Input("prompt", default="", tooltip="Prompt for the image generation.", multiline=True),
|
||||
IO.Combo.Input("substyle", options=get_v3_substyles(RecraftStyleV3.vector_illustration)),
|
||||
@@ -834,6 +846,7 @@ class RecraftVectorizeImageNode(IO.ComfyNode):
|
||||
display_name="Recraft Vectorize Image",
|
||||
category="api node/image/Recraft",
|
||||
description="Generates SVG synchronously from an input image.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Image.Input("image"),
|
||||
],
|
||||
@@ -877,6 +890,7 @@ class RecraftReplaceBackgroundNode(IO.ComfyNode):
|
||||
display_name="Recraft Replace Background",
|
||||
category="api node/image/Recraft",
|
||||
description="Replace background on image, based on provided prompt.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Image.Input("image"),
|
||||
IO.String.Input("prompt", tooltip="Prompt for the image generation.", default="", multiline=True),
|
||||
@@ -964,6 +978,7 @@ class RecraftRemoveBackgroundNode(IO.ComfyNode):
|
||||
display_name="Recraft Remove Background",
|
||||
category="api node/image/Recraft",
|
||||
description="Remove background from image, and return processed image and mask.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Image.Input("image"),
|
||||
],
|
||||
@@ -1012,8 +1027,9 @@ class RecraftCrispUpscaleNode(IO.ComfyNode):
|
||||
display_name="Recraft Crisp Upscale Image",
|
||||
category="api node/image/Recraft",
|
||||
description="Upscale image synchronously.\n"
|
||||
"Enhances a given raster image using ‘crisp upscale’ tool, "
|
||||
"Enhances a given raster image using 'crisp upscale' tool, "
|
||||
"increasing image resolution, making the image sharper and cleaner.",
|
||||
short_description="Crisp upscale to sharpen and increase image resolution.",
|
||||
inputs=[
|
||||
IO.Image.Input("image"),
|
||||
],
|
||||
@@ -1058,8 +1074,9 @@ class RecraftCreativeUpscaleNode(RecraftCrispUpscaleNode):
|
||||
display_name="Recraft Creative Upscale Image",
|
||||
category="api node/image/Recraft",
|
||||
description="Upscale image synchronously.\n"
|
||||
"Enhances a given raster image using ‘creative upscale’ tool, "
|
||||
"Enhances a given raster image using 'creative upscale' tool, "
|
||||
"boosting resolution with a focus on refining small details and faces.",
|
||||
short_description="Creative upscale focusing on small details and faces.",
|
||||
inputs=[
|
||||
IO.Image.Input("image"),
|
||||
],
|
||||
|
||||
@@ -238,6 +238,7 @@ class Rodin3D_Regular(IO.ComfyNode):
|
||||
display_name="Rodin 3D Generate - Regular Generate",
|
||||
category="api node/3d/Rodin",
|
||||
description=cleandoc(cls.__doc__ or ""),
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Image.Input("Images"),
|
||||
*COMMON_PARAMETERS,
|
||||
@@ -297,6 +298,7 @@ class Rodin3D_Detail(IO.ComfyNode):
|
||||
display_name="Rodin 3D Generate - Detail Generate",
|
||||
category="api node/3d/Rodin",
|
||||
description=cleandoc(cls.__doc__ or ""),
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Image.Input("Images"),
|
||||
*COMMON_PARAMETERS,
|
||||
@@ -356,6 +358,7 @@ class Rodin3D_Smooth(IO.ComfyNode):
|
||||
display_name="Rodin 3D Generate - Smooth Generate",
|
||||
category="api node/3d/Rodin",
|
||||
description=cleandoc(cls.__doc__ or ""),
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Image.Input("Images"),
|
||||
*COMMON_PARAMETERS,
|
||||
@@ -414,6 +417,7 @@ class Rodin3D_Sketch(IO.ComfyNode):
|
||||
display_name="Rodin 3D Generate - Sketch Generate",
|
||||
category="api node/3d/Rodin",
|
||||
description=cleandoc(cls.__doc__ or ""),
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Image.Input("Images"),
|
||||
IO.Int.Input(
|
||||
@@ -476,6 +480,7 @@ class Rodin3D_Gen2(IO.ComfyNode):
|
||||
display_name="Rodin 3D Generate - Gen-2 Generate",
|
||||
category="api node/3d/Rodin",
|
||||
description=cleandoc(cls.__doc__ or ""),
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Image.Input("Images"),
|
||||
IO.Int.Input(
|
||||
|
||||
@@ -145,6 +145,7 @@ class RunwayImageToVideoNodeGen3a(IO.ComfyNode):
|
||||
"Before diving in, review these best practices to ensure that "
|
||||
"your input selections will set your generation up for success: "
|
||||
"https://help.runwayml.com/hc/en-us/articles/33927968552339-Creating-with-Act-One-on-Gen-3-Alpha-and-Turbo.",
|
||||
short_description="Generate video from a starting frame using Gen3a Turbo.",
|
||||
inputs=[
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
@@ -239,6 +240,7 @@ class RunwayImageToVideoNodeGen4(IO.ComfyNode):
|
||||
"Before diving in, review these best practices to ensure that "
|
||||
"your input selections will set your generation up for success: "
|
||||
"https://help.runwayml.com/hc/en-us/articles/37327109429011-Creating-with-Gen-4-Video.",
|
||||
short_description="Generate video from a starting frame using Gen4 Turbo.",
|
||||
inputs=[
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
@@ -337,6 +339,7 @@ class RunwayFirstLastFrameNode(IO.ComfyNode):
|
||||
"Before diving in, review these best practices to ensure that your input selections "
|
||||
"will set your generation up for success: "
|
||||
"https://help.runwayml.com/hc/en-us/articles/34170748696595-Creating-with-Keyframes-on-Gen-3.",
|
||||
short_description="Generate video from first and last keyframes with a prompt.",
|
||||
inputs=[
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
@@ -443,6 +446,7 @@ class RunwayTextToImageNode(IO.ComfyNode):
|
||||
category="api node/image/Runway",
|
||||
description="Generate an image from a text prompt using Runway's Gen 4 model. "
|
||||
"You can also include reference image to guide the generation.",
|
||||
short_description="Generate an image from text using Runway Gen 4.",
|
||||
inputs=[
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
|
||||
@@ -36,6 +36,7 @@ class OpenAIVideoSora2(IO.ComfyNode):
|
||||
display_name="OpenAI Sora - Video",
|
||||
category="api node/video/Sora",
|
||||
description="OpenAI video and audio generation.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Combo.Input(
|
||||
"model",
|
||||
|
||||
@@ -64,6 +64,7 @@ class StabilityStableImageUltraNode(IO.ComfyNode):
|
||||
display_name="Stability AI Stable Image Ultra",
|
||||
category="api node/image/Stability AI",
|
||||
description=cleandoc(cls.__doc__ or ""),
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
@@ -197,6 +198,7 @@ class StabilityStableImageSD_3_5Node(IO.ComfyNode):
|
||||
display_name="Stability AI Stable Diffusion 3.5 Image",
|
||||
category="api node/image/Stability AI",
|
||||
description=cleandoc(cls.__doc__ or ""),
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
@@ -352,6 +354,7 @@ class StabilityUpscaleConservativeNode(IO.ComfyNode):
|
||||
display_name="Stability AI Upscale Conservative",
|
||||
category="api node/image/Stability AI",
|
||||
description=cleandoc(cls.__doc__ or ""),
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Image.Input("image"),
|
||||
IO.String.Input(
|
||||
@@ -454,6 +457,7 @@ class StabilityUpscaleCreativeNode(IO.ComfyNode):
|
||||
display_name="Stability AI Upscale Creative",
|
||||
category="api node/image/Stability AI",
|
||||
description=cleandoc(cls.__doc__ or ""),
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Image.Input("image"),
|
||||
IO.String.Input(
|
||||
@@ -573,6 +577,7 @@ class StabilityUpscaleFastNode(IO.ComfyNode):
|
||||
display_name="Stability AI Upscale Fast",
|
||||
category="api node/image/Stability AI",
|
||||
description=cleandoc(cls.__doc__ or ""),
|
||||
short_description="Quickly upscale an image to 4x its original size.",
|
||||
inputs=[
|
||||
IO.Image.Input("image"),
|
||||
],
|
||||
@@ -625,6 +630,7 @@ class StabilityTextToAudio(IO.ComfyNode):
|
||||
display_name="Stability AI Text To Audio",
|
||||
category="api node/audio/Stability AI",
|
||||
description=cleandoc(cls.__doc__ or ""),
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Combo.Input(
|
||||
"model",
|
||||
@@ -701,6 +707,7 @@ class StabilityAudioToAudio(IO.ComfyNode):
|
||||
display_name="Stability AI Audio To Audio",
|
||||
category="api node/audio/Stability AI",
|
||||
description=cleandoc(cls.__doc__ or ""),
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Combo.Input(
|
||||
"model",
|
||||
@@ -794,6 +801,7 @@ class StabilityAudioInpaint(IO.ComfyNode):
|
||||
display_name="Stability AI Audio Inpaint",
|
||||
category="api node/audio/Stability AI",
|
||||
description=cleandoc(cls.__doc__ or ""),
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Combo.Input(
|
||||
"model",
|
||||
|
||||
@@ -49,6 +49,7 @@ class TopazImageEnhance(IO.ComfyNode):
|
||||
display_name="Topaz Image Enhance",
|
||||
category="api node/image/Topaz",
|
||||
description="Industry-standard upscaling and image enhancement.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Combo.Input("model", options=["Reimagine"]),
|
||||
IO.Image.Input("image"),
|
||||
@@ -223,6 +224,7 @@ class TopazVideoEnhance(IO.ComfyNode):
|
||||
display_name="Topaz Video Enhance",
|
||||
category="api node/video/Topaz",
|
||||
description="Breathe new life into video with powerful upscaling and recovery technology.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Video.Input("video"),
|
||||
IO.Boolean.Input("upscaler_enabled", default=True),
|
||||
|
||||
@@ -80,6 +80,7 @@ class TripoTextToModelNode(IO.ComfyNode):
|
||||
node_id="TripoTextToModelNode",
|
||||
display_name="Tripo: Text to Model",
|
||||
category="api node/3d/Tripo",
|
||||
description="Generate a 3D model from a text prompt using Tripo's API.",
|
||||
inputs=[
|
||||
IO.String.Input("prompt", multiline=True),
|
||||
IO.String.Input("negative_prompt", multiline=True, optional=True),
|
||||
@@ -199,6 +200,7 @@ class TripoImageToModelNode(IO.ComfyNode):
|
||||
node_id="TripoImageToModelNode",
|
||||
display_name="Tripo: Image to Model",
|
||||
category="api node/3d/Tripo",
|
||||
description="Generate a 3D model from a single image using Tripo's API.",
|
||||
inputs=[
|
||||
IO.Image.Input("image"),
|
||||
IO.Combo.Input(
|
||||
@@ -331,6 +333,7 @@ class TripoMultiviewToModelNode(IO.ComfyNode):
|
||||
node_id="TripoMultiviewToModelNode",
|
||||
display_name="Tripo: Multiview to Model",
|
||||
category="api node/3d/Tripo",
|
||||
description="Generate a 3D model from multiple view images using Tripo's API.",
|
||||
inputs=[
|
||||
IO.Image.Input("image"),
|
||||
IO.Image.Input("image_left", optional=True),
|
||||
@@ -470,6 +473,7 @@ class TripoTextureNode(IO.ComfyNode):
|
||||
node_id="TripoTextureNode",
|
||||
display_name="Tripo: Texture model",
|
||||
category="api node/3d/Tripo",
|
||||
description="Apply textures to an existing 3D model using Tripo's API.",
|
||||
inputs=[
|
||||
IO.Custom("MODEL_TASK_ID").Input("model_task_id"),
|
||||
IO.Boolean.Input("texture", default=True, optional=True),
|
||||
@@ -538,6 +542,7 @@ class TripoRefineNode(IO.ComfyNode):
|
||||
display_name="Tripo: Refine Draft model",
|
||||
category="api node/3d/Tripo",
|
||||
description="Refine a draft model created by v1.4 Tripo models only.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Custom("MODEL_TASK_ID").Input("model_task_id", tooltip="Must be a v1.4 Tripo model"),
|
||||
],
|
||||
@@ -577,6 +582,8 @@ class TripoRigNode(IO.ComfyNode):
|
||||
node_id="TripoRigNode",
|
||||
display_name="Tripo: Rig model",
|
||||
category="api node/3d/Tripo",
|
||||
description="Add a skeleton rig to an existing 3D model using Tripo's API.",
|
||||
short_description="Add a skeleton rig to a 3D model.",
|
||||
inputs=[IO.Custom("MODEL_TASK_ID").Input("original_model_task_id")],
|
||||
outputs=[
|
||||
IO.String.Output(display_name="model_file"), # for backward compatibility only
|
||||
@@ -614,6 +621,8 @@ class TripoRetargetNode(IO.ComfyNode):
|
||||
node_id="TripoRetargetNode",
|
||||
display_name="Tripo: Retarget rigged model",
|
||||
category="api node/3d/Tripo",
|
||||
description="Apply a preset animation to a rigged 3D model using Tripo's API.",
|
||||
short_description="Apply a preset animation to a rigged model.",
|
||||
inputs=[
|
||||
IO.Custom("RIG_TASK_ID").Input("original_model_task_id"),
|
||||
IO.Combo.Input(
|
||||
@@ -679,6 +688,8 @@ class TripoConversionNode(IO.ComfyNode):
|
||||
node_id="TripoConversionNode",
|
||||
display_name="Tripo: Convert model",
|
||||
category="api node/3d/Tripo",
|
||||
description="Convert a 3D model to different formats with optional post-processing using Tripo's API.",
|
||||
short_description="Convert a 3D model to different formats.",
|
||||
inputs=[
|
||||
IO.Custom("MODEL_TASK_ID,RIG_TASK_ID,RETARGET_TASK_ID").Input("original_model_task_id"),
|
||||
IO.Combo.Input("format", options=["GLTF", "USDZ", "FBX", "OBJ", "STL", "3MF"]),
|
||||
|
||||
@@ -46,6 +46,7 @@ class VeoVideoGenerationNode(IO.ComfyNode):
|
||||
display_name="Google Veo 2 Video Generation",
|
||||
category="api node/video/Veo",
|
||||
description="Generates videos from text prompts using Google's Veo 2 API",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
@@ -264,6 +265,7 @@ class Veo3VideoGenerationNode(VeoVideoGenerationNode):
|
||||
display_name="Google Veo 3 Video Generation",
|
||||
category="api node/video/Veo",
|
||||
description="Generates videos from text prompts using Google's Veo 3 API",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
@@ -377,6 +379,7 @@ class Veo3FirstLastFrameNode(IO.ComfyNode):
|
||||
display_name="Google Veo 3 First-Last-Frame to Video",
|
||||
category="api node/video/Veo",
|
||||
description="Generate video using prompt and first and last frames.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.String.Input(
|
||||
"prompt",
|
||||
|
||||
@@ -72,6 +72,7 @@ class ViduTextToVideoNode(IO.ComfyNode):
|
||||
display_name="Vidu Text To Video Generation",
|
||||
category="api node/video/Vidu",
|
||||
description="Generate video from a text prompt",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Combo.Input("model", options=["viduq1"], tooltip="Model name"),
|
||||
IO.String.Input(
|
||||
@@ -168,6 +169,7 @@ class ViduImageToVideoNode(IO.ComfyNode):
|
||||
display_name="Vidu Image To Video Generation",
|
||||
category="api node/video/Vidu",
|
||||
description="Generate video from image and optional prompt",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Combo.Input("model", options=["viduq1"], tooltip="Model name"),
|
||||
IO.Image.Input(
|
||||
@@ -270,6 +272,7 @@ class ViduReferenceVideoNode(IO.ComfyNode):
|
||||
display_name="Vidu Reference To Video Generation",
|
||||
category="api node/video/Vidu",
|
||||
description="Generate video from multiple images and a prompt",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Combo.Input("model", options=["viduq1"], tooltip="Model name"),
|
||||
IO.Image.Input(
|
||||
@@ -383,6 +386,7 @@ class ViduStartEndToVideoNode(IO.ComfyNode):
|
||||
display_name="Vidu Start End To Video Generation",
|
||||
category="api node/video/Vidu",
|
||||
description="Generate a video from start and end frames and a prompt",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Combo.Input("model", options=["viduq1"], tooltip="Model name"),
|
||||
IO.Image.Input(
|
||||
@@ -485,6 +489,7 @@ class Vidu2TextToVideoNode(IO.ComfyNode):
|
||||
display_name="Vidu2 Text-to-Video Generation",
|
||||
category="api node/video/Vidu",
|
||||
description="Generate video from a text prompt",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Combo.Input("model", options=["viduq2"]),
|
||||
IO.String.Input(
|
||||
@@ -576,6 +581,7 @@ class Vidu2ImageToVideoNode(IO.ComfyNode):
|
||||
display_name="Vidu2 Image-to-Video Generation",
|
||||
category="api node/video/Vidu",
|
||||
description="Generate a video from an image and an optional prompt.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Combo.Input("model", options=["viduq2-pro-fast", "viduq2-pro", "viduq2-turbo"]),
|
||||
IO.Image.Input(
|
||||
@@ -704,6 +710,7 @@ class Vidu2ReferenceVideoNode(IO.ComfyNode):
|
||||
display_name="Vidu2 Reference-to-Video Generation",
|
||||
category="api node/video/Vidu",
|
||||
description="Generate a video from multiple reference images and a prompt.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Combo.Input("model", options=["viduq2"]),
|
||||
IO.Autogrow.Input(
|
||||
@@ -837,6 +844,7 @@ class Vidu2StartEndToVideoNode(IO.ComfyNode):
|
||||
display_name="Vidu2 Start/End Frame-to-Video Generation",
|
||||
category="api node/video/Vidu",
|
||||
description="Generate a video from a start frame, an end frame, and a prompt.",
|
||||
short_description="Generate video from start frame, end frame, and prompt.",
|
||||
inputs=[
|
||||
IO.Combo.Input("model", options=["viduq2-pro-fast", "viduq2-pro", "viduq2-turbo"]),
|
||||
IO.Image.Input("first_frame"),
|
||||
@@ -956,6 +964,7 @@ class ViduExtendVideoNode(IO.ComfyNode):
|
||||
display_name="Vidu Video Extension",
|
||||
category="api node/video/Vidu",
|
||||
description="Extend an existing video by generating additional frames.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.DynamicCombo.Input(
|
||||
"model",
|
||||
@@ -1126,6 +1135,7 @@ class ViduMultiFrameVideoNode(IO.ComfyNode):
|
||||
display_name="Vidu Multi-Frame Video Generation",
|
||||
category="api node/video/Vidu",
|
||||
description="Generate a video with multiple keyframe transitions.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Combo.Input("model", options=["viduq2-pro", "viduq2-turbo"]),
|
||||
IO.Image.Input(
|
||||
@@ -1272,6 +1282,7 @@ class Vidu3TextToVideoNode(IO.ComfyNode):
|
||||
display_name="Vidu Q3 Text-to-Video Generation",
|
||||
category="api node/video/Vidu",
|
||||
description="Generate video from a text prompt.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.DynamicCombo.Input(
|
||||
"model",
|
||||
@@ -1380,6 +1391,7 @@ class Vidu3ImageToVideoNode(IO.ComfyNode):
|
||||
display_name="Vidu Q3 Image-to-Video Generation",
|
||||
category="api node/video/Vidu",
|
||||
description="Generate a video from an image and an optional prompt.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.DynamicCombo.Input(
|
||||
"model",
|
||||
|
||||
@@ -175,6 +175,7 @@ class WanTextToImageApi(IO.ComfyNode):
|
||||
display_name="Wan Text to Image",
|
||||
category="api node/image/Wan",
|
||||
description="Generates an image based on a text prompt.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Combo.Input(
|
||||
"model",
|
||||
@@ -298,6 +299,7 @@ class WanImageToImageApi(IO.ComfyNode):
|
||||
category="api node/image/Wan",
|
||||
description="Generates an image from one or two input images and a text prompt. "
|
||||
"The output image is currently fixed at 1.6 MP, and its aspect ratio matches the input image(s).",
|
||||
short_description="Generate an image from input images and a text prompt.",
|
||||
inputs=[
|
||||
IO.Combo.Input(
|
||||
"model",
|
||||
@@ -424,6 +426,7 @@ class WanTextToVideoApi(IO.ComfyNode):
|
||||
display_name="Wan Text to Video",
|
||||
category="api node/video/Wan",
|
||||
description="Generates a video based on a text prompt.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Combo.Input(
|
||||
"model",
|
||||
@@ -603,6 +606,7 @@ class WanImageToVideoApi(IO.ComfyNode):
|
||||
display_name="Wan Image to Video",
|
||||
category="api node/video/Wan",
|
||||
description="Generates a video from the first frame and a text prompt.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Combo.Input(
|
||||
"model",
|
||||
@@ -779,6 +783,7 @@ class WanReferenceVideoApi(IO.ComfyNode):
|
||||
category="api node/video/Wan",
|
||||
description="Use the character and voice from input videos, combined with a prompt, "
|
||||
"to generate a new video that maintains character consistency.",
|
||||
short_description="Generate character-consistent video from reference videos and prompt.",
|
||||
inputs=[
|
||||
IO.Combo.Input("model", options=["wan2.6-r2v"]),
|
||||
IO.String.Input(
|
||||
|
||||
@@ -30,6 +30,7 @@ class WavespeedFlashVSRNode(IO.ComfyNode):
|
||||
category="api node/video/WaveSpeed",
|
||||
description="Fast, high-quality video upscaler that "
|
||||
"boosts resolution and restores clarity for low-resolution or blurry footage.",
|
||||
short_description="Fast video upscaler that boosts resolution and restores clarity.",
|
||||
inputs=[
|
||||
IO.Video.Input("video"),
|
||||
IO.Combo.Input("target_resolution", options=["720p", "1080p", "2K", "4K"]),
|
||||
@@ -101,6 +102,7 @@ class WavespeedImageUpscaleNode(IO.ComfyNode):
|
||||
display_name="WaveSpeed Image Upscale",
|
||||
category="api node/image/WaveSpeed",
|
||||
description="Boost image resolution and quality, upscaling photos to 4K or 8K for sharp, detailed results.",
|
||||
short_description="Upscale images to 4K or 8K with enhanced quality.",
|
||||
inputs=[
|
||||
IO.Combo.Input("model", options=["SeedVR2", "Ultimate"]),
|
||||
IO.Image.Input("image"),
|
||||
|
||||
@@ -33,6 +33,7 @@ from .download_helpers import (
|
||||
download_url_to_video_output,
|
||||
)
|
||||
from .upload_helpers import (
|
||||
upload_3d_model_to_comfyapi,
|
||||
upload_audio_to_comfyapi,
|
||||
upload_file_to_comfyapi,
|
||||
upload_image_to_comfyapi,
|
||||
@@ -62,6 +63,7 @@ __all__ = [
|
||||
"sync_op",
|
||||
"sync_op_raw",
|
||||
# Upload helpers
|
||||
"upload_3d_model_to_comfyapi",
|
||||
"upload_audio_to_comfyapi",
|
||||
"upload_file_to_comfyapi",
|
||||
"upload_image_to_comfyapi",
|
||||
|
||||
@@ -57,7 +57,7 @@ def tensor_to_bytesio(
|
||||
image: torch.Tensor,
|
||||
*,
|
||||
total_pixels: int | None = 2048 * 2048,
|
||||
mime_type: str = "image/png",
|
||||
mime_type: str | None = "image/png",
|
||||
) -> BytesIO:
|
||||
"""Converts a torch.Tensor image to a named BytesIO object.
|
||||
|
||||
|
||||
@@ -164,6 +164,27 @@ async def upload_video_to_comfyapi(
|
||||
return await upload_file_to_comfyapi(cls, video_bytes_io, filename, upload_mime_type, wait_label)
|
||||
|
||||
|
||||
_3D_MIME_TYPES = {
|
||||
"glb": "model/gltf-binary",
|
||||
"obj": "model/obj",
|
||||
"fbx": "application/octet-stream",
|
||||
}
|
||||
|
||||
|
||||
async def upload_3d_model_to_comfyapi(
|
||||
cls: type[IO.ComfyNode],
|
||||
model_3d: Types.File3D,
|
||||
file_format: str,
|
||||
) -> str:
|
||||
"""Uploads a 3D model file to ComfyUI API and returns its download URL."""
|
||||
return await upload_file_to_comfyapi(
|
||||
cls,
|
||||
model_3d.get_data(),
|
||||
f"{uuid.uuid4()}.{file_format}",
|
||||
_3D_MIME_TYPES.get(file_format, "application/octet-stream"),
|
||||
)
|
||||
|
||||
|
||||
async def upload_file_to_comfyapi(
|
||||
cls: type[IO.ComfyNode],
|
||||
file_bytes_io: BytesIO,
|
||||
|
||||
@@ -12,6 +12,8 @@ class TextEncodeAceStepAudio(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id="TextEncodeAceStepAudio",
|
||||
category="conditioning",
|
||||
description="Encodes tags and lyrics into conditioning for ACE-Step 1.0 audio generation with adjustable lyrics strength.",
|
||||
short_description="Encodes tags and lyrics for ACE-Step 1.0 audio.",
|
||||
inputs=[
|
||||
io.Clip.Input("clip"),
|
||||
io.String.Input("tags", multiline=True, dynamic_prompts=True),
|
||||
@@ -34,6 +36,8 @@ class TextEncodeAceStepAudio15(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id="TextEncodeAceStepAudio1.5",
|
||||
category="conditioning",
|
||||
description="Encodes tags, lyrics, and music parameters like BPM, key, and language into conditioning for ACE-Step 1.5 audio generation.",
|
||||
short_description="Encodes text and music parameters for ACE-Step 1.5.",
|
||||
inputs=[
|
||||
io.Clip.Input("clip"),
|
||||
io.String.Input("tags", multiline=True, dynamic_prompts=True),
|
||||
@@ -68,6 +72,8 @@ class EmptyAceStepLatentAudio(io.ComfyNode):
|
||||
node_id="EmptyAceStepLatentAudio",
|
||||
display_name="Empty Ace Step 1.0 Latent Audio",
|
||||
category="latent/audio",
|
||||
description="Creates an empty latent audio tensor for ACE-Step 1.0 with a specified duration and batch size.",
|
||||
short_description="Creates an empty ACE-Step 1.0 audio latent.",
|
||||
inputs=[
|
||||
io.Float.Input("seconds", default=120.0, min=1.0, max=1000.0, step=0.1),
|
||||
io.Int.Input(
|
||||
@@ -91,6 +97,8 @@ class EmptyAceStep15LatentAudio(io.ComfyNode):
|
||||
node_id="EmptyAceStep1.5LatentAudio",
|
||||
display_name="Empty Ace Step 1.5 Latent Audio",
|
||||
category="latent/audio",
|
||||
description="Creates an empty latent audio tensor for ACE-Step 1.5 with a specified duration and batch size.",
|
||||
short_description="Creates an empty ACE-Step 1.5 audio latent.",
|
||||
inputs=[
|
||||
io.Float.Input("seconds", default=120.0, min=1.0, max=1000.0, step=0.01),
|
||||
io.Int.Input(
|
||||
@@ -115,6 +123,7 @@ class ReferenceAudio(io.ComfyNode):
|
||||
category="advanced/conditioning/audio",
|
||||
is_experimental=True,
|
||||
description="This node sets the reference audio for ace step 1.5",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
io.Conditioning.Input("conditioning"),
|
||||
io.Latent.Input("latent", optional=True),
|
||||
|
||||
@@ -46,6 +46,8 @@ class SamplerLCMUpscale(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id="SamplerLCMUpscale",
|
||||
category="sampling/custom_sampling/samplers",
|
||||
description="Sampler that progressively upscales the latent during LCM sampling steps, combining denoising with gradual resolution increase.",
|
||||
short_description="LCM sampler with progressive latent upscaling.",
|
||||
inputs=[
|
||||
io.Float.Input("scale_ratio", default=1.0, min=0.1, max=20.0, step=0.01),
|
||||
io.Int.Input("scale_steps", default=-1, min=-1, max=1000, step=1),
|
||||
@@ -93,6 +95,8 @@ class SamplerEulerCFGpp(io.ComfyNode):
|
||||
node_id="SamplerEulerCFGpp",
|
||||
display_name="SamplerEulerCFG++",
|
||||
category="_for_testing", # "sampling/custom_sampling/samplers"
|
||||
description="Euler sampler variant using the CFG++ formulation, which modifies the denoising direction using unconditional predictions for improved guidance.",
|
||||
short_description="Euler sampler using CFG++ guidance formulation.",
|
||||
inputs=[
|
||||
io.Combo.Input("version", options=["regular", "alternative"]),
|
||||
],
|
||||
|
||||
@@ -30,6 +30,8 @@ class AlignYourStepsScheduler(io.ComfyNode):
|
||||
node_id="AlignYourStepsScheduler",
|
||||
search_aliases=["AYS scheduler"],
|
||||
category="sampling/custom_sampling/schedulers",
|
||||
description="Generates an optimized noise schedule using the Align Your Steps method with log-linear interpolation.",
|
||||
short_description="Optimized noise schedule using Align Your Steps.",
|
||||
inputs=[
|
||||
io.Combo.Input("model_type", options=["SD1", "SDXL", "SVD"]),
|
||||
io.Int.Input("steps", default=10, min=1, max=10000),
|
||||
|
||||
@@ -17,6 +17,8 @@ class APG(io.ComfyNode):
|
||||
node_id="APG",
|
||||
display_name="Adaptive Projected Guidance",
|
||||
category="sampling/custom_sampling",
|
||||
description="Applies Adaptive Projected Guidance to a model, decomposing CFG guidance into parallel and orthogonal components with optional momentum and norm thresholding for improved sampling quality.",
|
||||
short_description="Decomposes CFG guidance with projection and normalization.",
|
||||
inputs=[
|
||||
io.Model.Input("model"),
|
||||
io.Float.Input(
|
||||
|
||||
@@ -26,6 +26,8 @@ class UNetSelfAttentionMultiply(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id="UNetSelfAttentionMultiply",
|
||||
category="_for_testing/attention_experiments",
|
||||
description="Scales the query, key, value, and output weights of UNet self-attention layers by specified multipliers to experiment with attention behavior.",
|
||||
short_description="Scale UNet self-attention Q/K/V/Out weights.",
|
||||
inputs=[
|
||||
io.Model.Input("model"),
|
||||
io.Float.Input("q", default=1.0, min=0.0, max=10.0, step=0.01),
|
||||
@@ -49,6 +51,8 @@ class UNetCrossAttentionMultiply(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id="UNetCrossAttentionMultiply",
|
||||
category="_for_testing/attention_experiments",
|
||||
description="Scales the query, key, value, and output weights of UNet cross-attention layers by specified multipliers to experiment with text-to-image attention.",
|
||||
short_description="Scale UNet cross-attention Q/K/V/Out weights.",
|
||||
inputs=[
|
||||
io.Model.Input("model"),
|
||||
io.Float.Input("q", default=1.0, min=0.0, max=10.0, step=0.01),
|
||||
@@ -73,6 +77,8 @@ class CLIPAttentionMultiply(io.ComfyNode):
|
||||
node_id="CLIPAttentionMultiply",
|
||||
search_aliases=["clip attention scale", "text encoder attention"],
|
||||
category="_for_testing/attention_experiments",
|
||||
description="Scales the query, key, value, and output projection weights of CLIP text encoder self-attention layers by specified multipliers.",
|
||||
short_description="Scale CLIP text encoder attention weights.",
|
||||
inputs=[
|
||||
io.Clip.Input("clip"),
|
||||
io.Float.Input("q", default=1.0, min=0.0, max=10.0, step=0.01),
|
||||
@@ -107,6 +113,8 @@ class UNetTemporalAttentionMultiply(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id="UNetTemporalAttentionMultiply",
|
||||
category="_for_testing/attention_experiments",
|
||||
description="Scales the output weights of UNet temporal and structural attention layers independently, allowing fine-grained control over video model attention behavior.",
|
||||
short_description="Scale UNet temporal and structural attention weights.",
|
||||
inputs=[
|
||||
io.Model.Input("model"),
|
||||
io.Float.Input("self_structural", default=1.0, min=0.0, max=10.0, step=0.01),
|
||||
|
||||
@@ -19,6 +19,8 @@ class EmptyLatentAudio(IO.ComfyNode):
|
||||
node_id="EmptyLatentAudio",
|
||||
display_name="Empty Latent Audio",
|
||||
category="latent/audio",
|
||||
description="Creates an empty latent audio tensor with a specified duration and batch size for Stable Audio generation.",
|
||||
short_description="Creates an empty latent audio tensor.",
|
||||
inputs=[
|
||||
IO.Float.Input("seconds", default=47.6, min=1.0, max=1000.0, step=0.1),
|
||||
IO.Int.Input(
|
||||
@@ -43,6 +45,8 @@ class ConditioningStableAudio(IO.ComfyNode):
|
||||
return IO.Schema(
|
||||
node_id="ConditioningStableAudio",
|
||||
category="conditioning",
|
||||
description="Sets the start time and total duration on Stable Audio positive and negative conditioning.",
|
||||
short_description="Sets timing parameters on Stable Audio conditioning.",
|
||||
inputs=[
|
||||
IO.Conditioning.Input("positive"),
|
||||
IO.Conditioning.Input("negative"),
|
||||
@@ -72,6 +76,8 @@ class VAEEncodeAudio(IO.ComfyNode):
|
||||
search_aliases=["audio to latent"],
|
||||
display_name="VAE Encode Audio",
|
||||
category="latent/audio",
|
||||
description="Encodes an audio waveform into a latent representation using a VAE, resampling if needed.",
|
||||
short_description="Encodes audio into latent via VAE.",
|
||||
inputs=[
|
||||
IO.Audio.Input("audio"),
|
||||
IO.Vae.Input("vae"),
|
||||
@@ -115,6 +121,8 @@ class VAEDecodeAudio(IO.ComfyNode):
|
||||
search_aliases=["latent to audio"],
|
||||
display_name="VAE Decode Audio",
|
||||
category="latent/audio",
|
||||
description="Decodes a latent representation back into an audio waveform using a VAE.",
|
||||
short_description="Decodes latent into audio via VAE.",
|
||||
inputs=[
|
||||
IO.Latent.Input("samples"),
|
||||
IO.Vae.Input("vae"),
|
||||
@@ -137,6 +145,8 @@ class VAEDecodeAudioTiled(IO.ComfyNode):
|
||||
search_aliases=["latent to audio"],
|
||||
display_name="VAE Decode Audio (Tiled)",
|
||||
category="latent/audio",
|
||||
description="Decodes a latent representation into audio using tiled VAE decoding to reduce memory usage.",
|
||||
short_description="Tiled VAE decoding of latent into audio.",
|
||||
inputs=[
|
||||
IO.Latent.Input("samples"),
|
||||
IO.Vae.Input("vae"),
|
||||
@@ -159,6 +169,8 @@ class SaveAudio(IO.ComfyNode):
|
||||
search_aliases=["export flac"],
|
||||
display_name="Save Audio (FLAC)",
|
||||
category="audio",
|
||||
description="Saves audio to disk in FLAC format with a configurable filename prefix.",
|
||||
short_description="Saves audio to disk in FLAC format.",
|
||||
inputs=[
|
||||
IO.Audio.Input("audio"),
|
||||
IO.String.Input("filename_prefix", default="audio/ComfyUI"),
|
||||
@@ -184,6 +196,8 @@ class SaveAudioMP3(IO.ComfyNode):
|
||||
search_aliases=["export mp3"],
|
||||
display_name="Save Audio (MP3)",
|
||||
category="audio",
|
||||
description="Saves audio to disk in MP3 format with configurable quality and filename prefix.",
|
||||
short_description="Saves audio to disk in MP3 format.",
|
||||
inputs=[
|
||||
IO.Audio.Input("audio"),
|
||||
IO.String.Input("filename_prefix", default="audio/ComfyUI"),
|
||||
@@ -212,6 +226,8 @@ class SaveAudioOpus(IO.ComfyNode):
|
||||
search_aliases=["export opus"],
|
||||
display_name="Save Audio (Opus)",
|
||||
category="audio",
|
||||
description="Saves audio to disk in Opus format with configurable quality and filename prefix.",
|
||||
short_description="Saves audio to disk in Opus format.",
|
||||
inputs=[
|
||||
IO.Audio.Input("audio"),
|
||||
IO.String.Input("filename_prefix", default="audio/ComfyUI"),
|
||||
@@ -240,6 +256,8 @@ class PreviewAudio(IO.ComfyNode):
|
||||
search_aliases=["play audio"],
|
||||
display_name="Preview Audio",
|
||||
category="audio",
|
||||
description="Plays back audio in the UI for previewing.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Audio.Input("audio"),
|
||||
],
|
||||
@@ -300,6 +318,8 @@ class LoadAudio(IO.ComfyNode):
|
||||
search_aliases=["import audio", "open audio", "audio file"],
|
||||
display_name="Load Audio",
|
||||
category="audio",
|
||||
description="Loads an audio or video file from disk and outputs the audio as a single Audio output.",
|
||||
short_description="Loads an audio file from disk.",
|
||||
inputs=[
|
||||
IO.Combo.Input("audio", upload=IO.UploadType.audio, options=sorted(files)),
|
||||
],
|
||||
@@ -338,6 +358,7 @@ class RecordAudio(IO.ComfyNode):
|
||||
search_aliases=["microphone input", "audio capture", "voice input"],
|
||||
display_name="Record Audio",
|
||||
category="audio",
|
||||
description="Records audio from a microphone input and outputs the captured audio.",
|
||||
inputs=[
|
||||
IO.Custom("AUDIO_RECORD").Input("audio"),
|
||||
],
|
||||
@@ -363,6 +384,7 @@ class TrimAudioDuration(IO.ComfyNode):
|
||||
search_aliases=["cut audio", "audio clip", "shorten audio"],
|
||||
display_name="Trim Audio Duration",
|
||||
description="Trim audio tensor into chosen time range.",
|
||||
short_description=None,
|
||||
category="audio",
|
||||
inputs=[
|
||||
IO.Audio.Input("audio"),
|
||||
@@ -416,6 +438,7 @@ class SplitAudioChannels(IO.ComfyNode):
|
||||
search_aliases=["stereo to mono"],
|
||||
display_name="Split Audio Channels",
|
||||
description="Separates the audio into left and right channels.",
|
||||
short_description=None,
|
||||
category="audio",
|
||||
inputs=[
|
||||
IO.Audio.Input("audio"),
|
||||
@@ -448,6 +471,7 @@ class JoinAudioChannels(IO.ComfyNode):
|
||||
node_id="JoinAudioChannels",
|
||||
display_name="Join Audio Channels",
|
||||
description="Joins left and right mono audio channels into a stereo audio.",
|
||||
short_description=None,
|
||||
category="audio",
|
||||
inputs=[
|
||||
IO.Audio.Input("audio_left"),
|
||||
@@ -517,6 +541,7 @@ class AudioConcat(IO.ComfyNode):
|
||||
search_aliases=["join audio", "combine audio", "append audio"],
|
||||
display_name="Audio Concat",
|
||||
description="Concatenates the audio1 to audio2 in the specified direction.",
|
||||
short_description=None,
|
||||
category="audio",
|
||||
inputs=[
|
||||
IO.Audio.Input("audio1"),
|
||||
@@ -565,6 +590,7 @@ class AudioMerge(IO.ComfyNode):
|
||||
search_aliases=["mix audio", "overlay audio", "layer audio"],
|
||||
display_name="Audio Merge",
|
||||
description="Combine two audio tracks by overlaying their waveforms.",
|
||||
short_description=None,
|
||||
category="audio",
|
||||
inputs=[
|
||||
IO.Audio.Input("audio1"),
|
||||
@@ -626,6 +652,8 @@ class AudioAdjustVolume(IO.ComfyNode):
|
||||
search_aliases=["audio gain", "loudness", "audio level"],
|
||||
display_name="Audio Adjust Volume",
|
||||
category="audio",
|
||||
description="Adjusts audio volume by a specified number of decibels.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
IO.Audio.Input("audio"),
|
||||
IO.Int.Input(
|
||||
@@ -662,6 +690,8 @@ class EmptyAudio(IO.ComfyNode):
|
||||
search_aliases=["blank audio"],
|
||||
display_name="Empty Audio",
|
||||
category="audio",
|
||||
description="Creates a silent audio clip with configurable duration, sample rate, and channel count.",
|
||||
short_description="Creates a silent audio clip.",
|
||||
inputs=[
|
||||
IO.Float.Input(
|
||||
"duration",
|
||||
|
||||
@@ -11,6 +11,8 @@ class AudioEncoderLoader(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id="AudioEncoderLoader",
|
||||
category="loaders",
|
||||
description="Loads an audio encoder model from a checkpoint file for encoding audio into embeddings.",
|
||||
short_description="Loads an audio encoder model from a checkpoint.",
|
||||
inputs=[
|
||||
io.Combo.Input(
|
||||
"audio_encoder_name",
|
||||
@@ -36,6 +38,8 @@ class AudioEncoderEncode(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id="AudioEncoderEncode",
|
||||
category="conditioning",
|
||||
description="Encodes audio into embeddings using a loaded audio encoder model.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
io.AudioEncoder.Input("audio_encoder"),
|
||||
io.Audio.Input("audio"),
|
||||
|
||||
@@ -154,6 +154,8 @@ class WanCameraEmbedding(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id="WanCameraEmbedding",
|
||||
category="camera",
|
||||
description="Generates Plucker camera embeddings from a selected camera motion trajectory for Wan video generation.",
|
||||
short_description="Generates camera embeddings for Wan video generation.",
|
||||
inputs=[
|
||||
io.Combo.Input(
|
||||
"camera_pose",
|
||||
|
||||
@@ -12,6 +12,8 @@ class Canny(io.ComfyNode):
|
||||
node_id="Canny",
|
||||
search_aliases=["edge detection", "outline", "contour detection", "line art"],
|
||||
category="image/preprocessors",
|
||||
description="Detects edges in an image using the Canny edge detection algorithm with configurable low and high thresholds.",
|
||||
short_description="Canny edge detection on images.",
|
||||
inputs=[
|
||||
io.Image.Input("image"),
|
||||
io.Float.Input("low_threshold", default=0.4, min=0.01, max=0.99, step=0.01),
|
||||
|
||||
@@ -27,6 +27,8 @@ class CFGZeroStar(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id="CFGZeroStar",
|
||||
category="advanced/guidance",
|
||||
description="Applies CFG-Zero* post-CFG correction that computes an optimal scaling factor between conditional and unconditional predictions to reduce CFG artifacts.",
|
||||
short_description="CFG-Zero* guidance correction to reduce artifacts.",
|
||||
inputs=[
|
||||
io.Model.Input("model"),
|
||||
],
|
||||
@@ -54,6 +56,8 @@ class CFGNorm(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id="CFGNorm",
|
||||
category="advanced/guidance",
|
||||
description="Constrains the CFG-guided prediction norm to not exceed the conditional prediction norm, helping to prevent oversaturation at high CFG scales.",
|
||||
short_description="Constrain CFG output norm to conditional prediction norm.",
|
||||
inputs=[
|
||||
io.Model.Input("model"),
|
||||
io.Float.Input("strength", default=1.0, min=0.0, max=100.0, step=0.01),
|
||||
|
||||
@@ -14,6 +14,8 @@ class EmptyChromaRadianceLatentImage(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id="EmptyChromaRadianceLatentImage",
|
||||
category="latent/chroma_radiance",
|
||||
description="Creates an empty Chroma Radiance latent image tensor with the specified width, height, and batch size.",
|
||||
short_description="Creates an empty Chroma Radiance latent image.",
|
||||
inputs=[
|
||||
io.Int.Input(id="width", default=1024, min=16, max=nodes.MAX_RESOLUTION, step=16),
|
||||
io.Int.Input(id="height", default=1024, min=16, max=nodes.MAX_RESOLUTION, step=16),
|
||||
@@ -35,6 +37,7 @@ class ChromaRadianceOptions(io.ComfyNode):
|
||||
node_id="ChromaRadianceOptions",
|
||||
category="model_patches/chroma_radiance",
|
||||
description="Allows setting advanced options for the Chroma Radiance model.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
io.Model.Input(id="model"),
|
||||
io.Boolean.Input(
|
||||
|
||||
@@ -10,6 +10,8 @@ class CLIPTextEncodeSDXLRefiner(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id="CLIPTextEncodeSDXLRefiner",
|
||||
category="advanced/conditioning",
|
||||
description="Encodes text for SDXL refiner models with aesthetic score and resolution conditioning parameters.",
|
||||
short_description="Encodes text for SDXL refiner models.",
|
||||
inputs=[
|
||||
io.Float.Input("ascore", default=6.0, min=0.0, max=1000.0, step=0.01),
|
||||
io.Int.Input("width", default=1024, min=0, max=nodes.MAX_RESOLUTION),
|
||||
@@ -31,6 +33,8 @@ class CLIPTextEncodeSDXL(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id="CLIPTextEncodeSDXL",
|
||||
category="advanced/conditioning",
|
||||
description="Encodes separate G and L text prompts for SDXL models with resolution and crop conditioning parameters.",
|
||||
short_description="Encodes dual text prompts for SDXL models.",
|
||||
inputs=[
|
||||
io.Clip.Input("clip"),
|
||||
io.Int.Input("width", default=1024, min=0, max=nodes.MAX_RESOLUTION),
|
||||
|
||||
@@ -10,6 +10,7 @@ class ColorToRGBInt(io.ComfyNode):
|
||||
display_name="Color to RGB Int",
|
||||
category="utils",
|
||||
description="Convert a color to a RGB integer value.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
io.Color.Input("color"),
|
||||
],
|
||||
|
||||
@@ -112,6 +112,8 @@ class PorterDuffImageComposite(io.ComfyNode):
|
||||
search_aliases=["alpha composite", "blend modes", "layer blend", "transparency blend"],
|
||||
display_name="Porter-Duff Image Composite",
|
||||
category="mask/compositing",
|
||||
description="Composites two images with alpha masks using Porter-Duff blend modes.",
|
||||
short_description="",
|
||||
inputs=[
|
||||
io.Image.Input("source"),
|
||||
io.Mask.Input("source_alpha"),
|
||||
@@ -169,6 +171,8 @@ class SplitImageWithAlpha(io.ComfyNode):
|
||||
search_aliases=["extract alpha", "separate transparency", "remove alpha"],
|
||||
display_name="Split Image with Alpha",
|
||||
category="mask/compositing",
|
||||
description="Separates an RGBA image into its RGB color channels and an alpha transparency mask.",
|
||||
short_description="Split RGBA image into RGB and alpha mask.",
|
||||
inputs=[
|
||||
io.Image.Input("image"),
|
||||
],
|
||||
@@ -193,6 +197,8 @@ class JoinImageWithAlpha(io.ComfyNode):
|
||||
search_aliases=["add transparency", "apply alpha", "composite alpha", "RGBA"],
|
||||
display_name="Join Image with Alpha",
|
||||
category="mask/compositing",
|
||||
description="Combines an RGB image with an alpha mask to produce an RGBA image with transparency.",
|
||||
short_description="Combine RGB image and alpha into RGBA.",
|
||||
inputs=[
|
||||
io.Image.Input("image"),
|
||||
io.Mask.Input("alpha"),
|
||||
|
||||
@@ -9,6 +9,8 @@ class CLIPTextEncodeControlnet(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id="CLIPTextEncodeControlnet",
|
||||
category="_for_testing/conditioning",
|
||||
description="Encodes text with CLIP and attaches the result as cross-attention controlnet conditioning to existing conditioning data.",
|
||||
short_description="CLIP text encode for controlnet cross-attention conditioning.",
|
||||
inputs=[
|
||||
io.Clip.Input("clip"),
|
||||
io.Conditioning.Input("conditioning"),
|
||||
@@ -36,6 +38,8 @@ class T5TokenizerOptions(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id="T5TokenizerOptions",
|
||||
category="_for_testing/conditioning",
|
||||
description="Configures minimum padding and length options for T5-family tokenizers used in CLIP text encoding.",
|
||||
short_description="Set T5 tokenizer padding and length options.",
|
||||
inputs=[
|
||||
io.Clip.Input("clip"),
|
||||
io.Int.Input("min_padding", default=0, min=0, max=10000, step=1),
|
||||
|
||||
@@ -12,6 +12,7 @@ class ContextWindowsManualNode(io.ComfyNode):
|
||||
display_name="Context Windows (Manual)",
|
||||
category="context",
|
||||
description="Manually set context windows.",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
io.Model.Input("model", tooltip="The model to apply context windows to during sampling."),
|
||||
io.Int.Input("context_length", min=1, default=16, tooltip="The length of the context window."),
|
||||
@@ -65,6 +66,7 @@ class WanContextWindowsManualNode(ContextWindowsManualNode):
|
||||
schema.node_id = "WanContextWindowsManual"
|
||||
schema.display_name = "WAN Context Windows (Manual)"
|
||||
schema.description = "Manually set context windows for WAN-like models (dim=2)."
|
||||
schema.short_description = None
|
||||
schema.inputs = [
|
||||
io.Model.Input("model", tooltip="The model to apply context windows to during sampling."),
|
||||
io.Int.Input("context_length", min=1, max=nodes.MAX_RESOLUTION, step=4, default=81, tooltip="The length of the context window."),
|
||||
|
||||
@@ -10,6 +10,8 @@ class SetUnionControlNetType(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id="SetUnionControlNetType",
|
||||
category="conditioning/controlnet",
|
||||
description="Sets the control type for a Union ControlNet, selecting which conditioning mode to use.",
|
||||
short_description="Select control mode for Union ControlNet.",
|
||||
inputs=[
|
||||
io.ControlNet.Input("control_net"),
|
||||
io.Combo.Input("type", options=["auto"] + list(UNION_CONTROLNET_TYPES.keys())),
|
||||
@@ -40,6 +42,8 @@ class ControlNetInpaintingAliMamaApply(io.ComfyNode):
|
||||
node_id="ControlNetInpaintingAliMamaApply",
|
||||
search_aliases=["masked controlnet"],
|
||||
category="conditioning/controlnet",
|
||||
description="Applies an AliMama inpainting ControlNet to positive and negative conditioning using an image and mask with VAE encoding.",
|
||||
short_description="Applies AliMama inpainting ControlNet with mask.",
|
||||
inputs=[
|
||||
io.Conditioning.Input("positive"),
|
||||
io.Conditioning.Input("negative"),
|
||||
|
||||
@@ -14,6 +14,7 @@ class EmptyCosmosLatentVideo(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id="EmptyCosmosLatentVideo",
|
||||
category="latent/video",
|
||||
description="Creates an empty latent tensor sized for Cosmos video generation.",
|
||||
inputs=[
|
||||
io.Int.Input("width", default=1280, min=16, max=nodes.MAX_RESOLUTION, step=16),
|
||||
io.Int.Input("height", default=704, min=16, max=nodes.MAX_RESOLUTION, step=16),
|
||||
@@ -46,6 +47,8 @@ class CosmosImageToVideoLatent(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id="CosmosImageToVideoLatent",
|
||||
category="conditioning/inpaint",
|
||||
description="Creates an inpainting video latent for Cosmos by encoding optional start and end images with a noise mask.",
|
||||
short_description="Cosmos inpainting video latent from start/end images.",
|
||||
inputs=[
|
||||
io.Vae.Input("vae"),
|
||||
io.Int.Input("width", default=1280, min=16, max=nodes.MAX_RESOLUTION, step=16),
|
||||
@@ -89,6 +92,8 @@ class CosmosPredict2ImageToVideoLatent(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id="CosmosPredict2ImageToVideoLatent",
|
||||
category="conditioning/inpaint",
|
||||
description="Creates an inpainting video latent for Cosmos Predict2 by encoding optional start and end images with Wan latent format processing.",
|
||||
short_description="Cosmos Predict2 inpainting video latent from images.",
|
||||
inputs=[
|
||||
io.Vae.Input("vae"),
|
||||
io.Int.Input("width", default=848, min=16, max=nodes.MAX_RESOLUTION, step=16),
|
||||
|
||||
@@ -18,6 +18,8 @@ class BasicScheduler(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id="BasicScheduler",
|
||||
category="sampling/custom_sampling/schedulers",
|
||||
description="Generates a sigma schedule from a model using a selected scheduler algorithm, step count, and denoise strength.",
|
||||
short_description="Generate sigma schedule from model and scheduler.",
|
||||
inputs=[
|
||||
io.Model.Input("model"),
|
||||
io.Combo.Input("scheduler", options=comfy.samplers.SCHEDULER_NAMES),
|
||||
@@ -48,6 +50,8 @@ class KarrasScheduler(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id="KarrasScheduler",
|
||||
category="sampling/custom_sampling/schedulers",
|
||||
description="Generates a sigma schedule using the Karras noise schedule with configurable sigma range and rho parameter.",
|
||||
short_description="Generate sigmas using Karras noise schedule.",
|
||||
inputs=[
|
||||
io.Int.Input("steps", default=20, min=1, max=10000),
|
||||
io.Float.Input("sigma_max", default=14.614642, min=0.0, max=5000.0, step=0.01, round=False),
|
||||
@@ -70,6 +74,8 @@ class ExponentialScheduler(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id="ExponentialScheduler",
|
||||
category="sampling/custom_sampling/schedulers",
|
||||
description="Generates a sigma schedule using an exponential noise schedule with configurable sigma range.",
|
||||
short_description="Generate sigmas using exponential noise schedule.",
|
||||
inputs=[
|
||||
io.Int.Input("steps", default=20, min=1, max=10000),
|
||||
io.Float.Input("sigma_max", default=14.614642, min=0.0, max=5000.0, step=0.01, round=False),
|
||||
@@ -91,6 +97,8 @@ class PolyexponentialScheduler(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id="PolyexponentialScheduler",
|
||||
category="sampling/custom_sampling/schedulers",
|
||||
description="Generates a sigma schedule using a polyexponential noise schedule with configurable sigma range and rho parameter.",
|
||||
short_description="Generate sigmas using polyexponential noise schedule.",
|
||||
inputs=[
|
||||
io.Int.Input("steps", default=20, min=1, max=10000),
|
||||
io.Float.Input("sigma_max", default=14.614642, min=0.0, max=5000.0, step=0.01, round=False),
|
||||
@@ -113,6 +121,8 @@ class LaplaceScheduler(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id="LaplaceScheduler",
|
||||
category="sampling/custom_sampling/schedulers",
|
||||
description="Generates a sigma schedule using a Laplace distribution-based noise schedule with configurable mu and beta parameters.",
|
||||
short_description="Generate sigmas using Laplace distribution schedule.",
|
||||
inputs=[
|
||||
io.Int.Input("steps", default=20, min=1, max=10000),
|
||||
io.Float.Input("sigma_max", default=14.614642, min=0.0, max=5000.0, step=0.01, round=False),
|
||||
@@ -137,6 +147,8 @@ class SDTurboScheduler(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id="SDTurboScheduler",
|
||||
category="sampling/custom_sampling/schedulers",
|
||||
description="Generates a sigma schedule optimized for SD Turbo models with very few steps and adjustable denoise strength.",
|
||||
short_description="Generate sigma schedule for SD Turbo models.",
|
||||
inputs=[
|
||||
io.Model.Input("model"),
|
||||
io.Int.Input("steps", default=1, min=1, max=10),
|
||||
@@ -161,6 +173,8 @@ class BetaSamplingScheduler(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id="BetaSamplingScheduler",
|
||||
category="sampling/custom_sampling/schedulers",
|
||||
description="Generates a sigma schedule using a beta distribution with configurable alpha and beta shape parameters.",
|
||||
short_description="Generate sigmas using beta distribution schedule.",
|
||||
inputs=[
|
||||
io.Model.Input("model"),
|
||||
io.Int.Input("steps", default=20, min=1, max=10000),
|
||||
@@ -183,6 +197,8 @@ class VPScheduler(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id="VPScheduler",
|
||||
category="sampling/custom_sampling/schedulers",
|
||||
description="Generates a sigma schedule using the Variance Preserving (VP) SDE formulation with configurable beta and epsilon parameters.",
|
||||
short_description="Generate sigmas using VP SDE schedule.",
|
||||
inputs=[
|
||||
io.Int.Input("steps", default=20, min=1, max=10000),
|
||||
io.Float.Input("beta_d", default=19.9, min=0.0, max=5000.0, step=0.01, round=False), #TODO: fix default values
|
||||
@@ -205,6 +221,8 @@ class SplitSigmas(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id="SplitSigmas",
|
||||
category="sampling/custom_sampling/sigmas",
|
||||
description="Splits a sigma sequence into high and low portions at a specified step index for multi-pass sampling.",
|
||||
short_description="Split sigmas into high and low at a step.",
|
||||
inputs=[
|
||||
io.Sigmas.Input("sigmas"),
|
||||
io.Int.Input("step", default=0, min=0, max=10000),
|
||||
@@ -229,6 +247,8 @@ class SplitSigmasDenoise(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id="SplitSigmasDenoise",
|
||||
category="sampling/custom_sampling/sigmas",
|
||||
description="Splits a sigma sequence into high and low portions based on a denoise ratio for multi-pass sampling workflows.",
|
||||
short_description="Split sigmas by denoise ratio.",
|
||||
inputs=[
|
||||
io.Sigmas.Input("sigmas"),
|
||||
io.Float.Input("denoise", default=1.0, min=0.0, max=1.0, step=0.01),
|
||||
@@ -255,6 +275,8 @@ class FlipSigmas(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id="FlipSigmas",
|
||||
category="sampling/custom_sampling/sigmas",
|
||||
description="Reverses the order of a sigma sequence, useful for converting between ascending and descending noise schedules.",
|
||||
short_description="Reverse the order of a sigma sequence.",
|
||||
inputs=[io.Sigmas.Input("sigmas")],
|
||||
outputs=[io.Sigmas.Output()]
|
||||
)
|
||||
@@ -277,6 +299,8 @@ class SetFirstSigma(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id="SetFirstSigma",
|
||||
category="sampling/custom_sampling/sigmas",
|
||||
description="Overrides the first sigma value in a sequence with a custom value, allowing manual control of the initial noise level.",
|
||||
short_description="Override the first sigma value in a sequence.",
|
||||
inputs=[
|
||||
io.Sigmas.Input("sigmas"),
|
||||
io.Float.Input("sigma", default=136.0, min=0.0, max=20000.0, step=0.001, round=False),
|
||||
@@ -299,6 +323,8 @@ class ExtendIntermediateSigmas(io.ComfyNode):
|
||||
node_id="ExtendIntermediateSigmas",
|
||||
search_aliases=["interpolate sigmas"],
|
||||
category="sampling/custom_sampling/sigmas",
|
||||
description="Interpolates additional intermediate sigma values between existing steps using selectable spacing within a specified sigma range.",
|
||||
short_description="Interpolate additional sigma steps between existing values.",
|
||||
inputs=[
|
||||
io.Sigmas.Input("sigmas"),
|
||||
io.Int.Input("steps", default=2, min=1, max=100),
|
||||
@@ -352,6 +378,8 @@ class SamplingPercentToSigma(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id="SamplingPercentToSigma",
|
||||
category="sampling/custom_sampling/sigmas",
|
||||
description="Converts a sampling percentage (0.0 to 1.0) to the corresponding sigma value using a model's noise schedule.",
|
||||
short_description="Convert sampling percentage to sigma value.",
|
||||
inputs=[
|
||||
io.Model.Input("model"),
|
||||
io.Float.Input("sampling_percent", default=0.0, min=0.0, max=1.0, step=0.0001),
|
||||
@@ -380,6 +408,8 @@ class KSamplerSelect(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id="KSamplerSelect",
|
||||
category="sampling/custom_sampling/samplers",
|
||||
description="Selects a sampler algorithm by name from the list of available samplers and outputs the sampler object.",
|
||||
short_description="Select a sampler algorithm by name.",
|
||||
inputs=[io.Combo.Input("sampler_name", options=comfy.samplers.SAMPLER_NAMES)],
|
||||
outputs=[io.Sampler.Output()]
|
||||
)
|
||||
@@ -397,6 +427,8 @@ class SamplerDPMPP_3M_SDE(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id="SamplerDPMPP_3M_SDE",
|
||||
category="sampling/custom_sampling/samplers",
|
||||
description="Creates a DPM++ 3M SDE sampler with configurable eta, noise scale, and GPU or CPU noise generation.",
|
||||
short_description="Create a DPM++ 3M SDE sampler.",
|
||||
inputs=[
|
||||
io.Float.Input("eta", default=1.0, min=0.0, max=100.0, step=0.01, round=False),
|
||||
io.Float.Input("s_noise", default=1.0, min=0.0, max=100.0, step=0.01, round=False),
|
||||
@@ -422,6 +454,8 @@ class SamplerDPMPP_2M_SDE(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id="SamplerDPMPP_2M_SDE",
|
||||
category="sampling/custom_sampling/samplers",
|
||||
description="Creates a DPM++ 2M SDE sampler with configurable solver type, eta, noise scale, and noise device.",
|
||||
short_description="Create a DPM++ 2M SDE sampler.",
|
||||
inputs=[
|
||||
io.Combo.Input("solver_type", options=['midpoint', 'heun']),
|
||||
io.Float.Input("eta", default=1.0, min=0.0, max=100.0, step=0.01, round=False),
|
||||
@@ -449,6 +483,8 @@ class SamplerDPMPP_SDE(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id="SamplerDPMPP_SDE",
|
||||
category="sampling/custom_sampling/samplers",
|
||||
description="Creates a DPM++ SDE sampler with configurable eta, noise scale, r parameter, and noise device.",
|
||||
short_description="Create a DPM++ SDE sampler.",
|
||||
inputs=[
|
||||
io.Float.Input("eta", default=1.0, min=0.0, max=100.0, step=0.01, round=False),
|
||||
io.Float.Input("s_noise", default=1.0, min=0.0, max=100.0, step=0.01, round=False),
|
||||
@@ -475,6 +511,8 @@ class SamplerDPMPP_2S_Ancestral(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id="SamplerDPMPP_2S_Ancestral",
|
||||
category="sampling/custom_sampling/samplers",
|
||||
description="Creates a DPM++ 2S Ancestral sampler with configurable eta and noise scale parameters.",
|
||||
short_description="Create a DPM++ 2S Ancestral sampler.",
|
||||
inputs=[
|
||||
io.Float.Input("eta", default=1.0, min=0.0, max=100.0, step=0.01, round=False),
|
||||
io.Float.Input("s_noise", default=1.0, min=0.0, max=100.0, step=0.01, round=False),
|
||||
@@ -495,6 +533,8 @@ class SamplerEulerAncestral(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id="SamplerEulerAncestral",
|
||||
category="sampling/custom_sampling/samplers",
|
||||
description="Creates an Euler Ancestral sampler with configurable eta and noise scale for stochastic sampling.",
|
||||
short_description="Create an Euler Ancestral stochastic sampler.",
|
||||
inputs=[
|
||||
io.Float.Input("eta", default=1.0, min=0.0, max=100.0, step=0.01, round=False),
|
||||
io.Float.Input("s_noise", default=1.0, min=0.0, max=100.0, step=0.01, round=False),
|
||||
@@ -516,6 +556,8 @@ class SamplerEulerAncestralCFGPP(io.ComfyNode):
|
||||
node_id="SamplerEulerAncestralCFGPP",
|
||||
display_name="SamplerEulerAncestralCFG++",
|
||||
category="sampling/custom_sampling/samplers",
|
||||
description="Creates an Euler Ancestral CFG++ sampler that applies classifier-free guidance with improved stability.",
|
||||
short_description="Create an Euler Ancestral CFG++ sampler.",
|
||||
inputs=[
|
||||
io.Float.Input("eta", default=1.0, min=0.0, max=1.0, step=0.01, round=False),
|
||||
io.Float.Input("s_noise", default=1.0, min=0.0, max=10.0, step=0.01, round=False),
|
||||
@@ -538,6 +580,8 @@ class SamplerLMS(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id="SamplerLMS",
|
||||
category="sampling/custom_sampling/samplers",
|
||||
description="Creates a Linear Multi-Step (LMS) sampler with a configurable order parameter.",
|
||||
short_description="Create a Linear Multi-Step (LMS) sampler.",
|
||||
inputs=[io.Int.Input("order", default=4, min=1, max=100)],
|
||||
outputs=[io.Sampler.Output()]
|
||||
)
|
||||
@@ -555,6 +599,8 @@ class SamplerDPMAdaptative(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id="SamplerDPMAdaptative",
|
||||
category="sampling/custom_sampling/samplers",
|
||||
description="Creates a DPM Adaptive sampler with configurable order, tolerances, PID coefficients, and stochastic noise parameters for adaptive step-size sampling.",
|
||||
short_description="Create a DPM Adaptive step-size sampler.",
|
||||
inputs=[
|
||||
io.Int.Input("order", default=3, min=2, max=3),
|
||||
io.Float.Input("rtol", default=0.05, min=0.0, max=100.0, step=0.01, round=False),
|
||||
@@ -586,6 +632,8 @@ class SamplerER_SDE(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id="SamplerER_SDE",
|
||||
category="sampling/custom_sampling/samplers",
|
||||
description="Creates an ER-SDE sampler supporting ER-SDE, reverse-time SDE, and ODE solver types with configurable stochastic strength and staging.",
|
||||
short_description="Create an ER-SDE, reverse-time SDE, or ODE sampler.",
|
||||
inputs=[
|
||||
io.Combo.Input("solver_type", options=["ER-SDE", "Reverse-time SDE", "ODE"]),
|
||||
io.Int.Input("max_stage", default=3, min=1, max=3),
|
||||
@@ -624,6 +672,8 @@ class SamplerSASolver(io.ComfyNode):
|
||||
node_id="SamplerSASolver",
|
||||
search_aliases=["sde"],
|
||||
category="sampling/custom_sampling/samplers",
|
||||
description="Creates an SA-Solver sampler with configurable predictor/corrector orders, SDE region, and PECE mode for high-order diffusion sampling.",
|
||||
short_description="Create an SA-Solver high-order diffusion sampler.",
|
||||
inputs=[
|
||||
io.Model.Input("model"),
|
||||
io.Float.Input("eta", default=1.0, min=0.0, max=10.0, step=0.01, round=False),
|
||||
@@ -684,7 +734,8 @@ class SamplerSEEDS2(io.ComfyNode):
|
||||
"- solver_type=phi_2, r=1.0, eta=0.0\n\n"
|
||||
"exp_heun_2_x0_sde\n"
|
||||
"- solver_type=phi_2, r=1.0, eta=1.0, s_noise=1.0"
|
||||
)
|
||||
),
|
||||
short_description="SEEDS2 sampler with configurable solver and SDE settings.",
|
||||
)
|
||||
|
||||
@classmethod
|
||||
@@ -728,6 +779,8 @@ class SamplerCustom(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id="SamplerCustom",
|
||||
category="sampling/custom_sampling",
|
||||
description="Runs a complete custom sampling pass by combining a model, sampler, sigmas, and conditioning with optional noise injection.",
|
||||
short_description="Run custom sampling with manual sampler and sigmas.",
|
||||
inputs=[
|
||||
io.Model.Input("model"),
|
||||
io.Boolean.Input("add_noise", default=True),
|
||||
@@ -794,6 +847,8 @@ class BasicGuider(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id="BasicGuider",
|
||||
category="sampling/custom_sampling/guiders",
|
||||
description="Creates a basic guider that applies a single conditioning input to guide the diffusion model without classifier-free guidance.",
|
||||
short_description="Create a single-conditioning guider without CFG.",
|
||||
inputs=[
|
||||
io.Model.Input("model"),
|
||||
io.Conditioning.Input("conditioning"),
|
||||
@@ -815,6 +870,8 @@ class CFGGuider(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id="CFGGuider",
|
||||
category="sampling/custom_sampling/guiders",
|
||||
description="Creates a classifier-free guidance guider that combines positive and negative conditioning with an adjustable CFG scale.",
|
||||
short_description="Create a CFG guider with positive/negative conditioning.",
|
||||
inputs=[
|
||||
io.Model.Input("model"),
|
||||
io.Conditioning.Input("positive"),
|
||||
@@ -869,6 +926,8 @@ class DualCFGGuider(io.ComfyNode):
|
||||
node_id="DualCFGGuider",
|
||||
search_aliases=["dual prompt guidance"],
|
||||
category="sampling/custom_sampling/guiders",
|
||||
description="Creates a dual classifier-free guidance guider that blends two conditioning inputs against a negative with independent CFG scales and regular or nested styles.",
|
||||
short_description="Create a dual CFG guider with two conditionings.",
|
||||
inputs=[
|
||||
io.Model.Input("model"),
|
||||
io.Conditioning.Input("cond1"),
|
||||
@@ -897,6 +956,8 @@ class DisableNoise(io.ComfyNode):
|
||||
node_id="DisableNoise",
|
||||
search_aliases=["zero noise"],
|
||||
category="sampling/custom_sampling/noise",
|
||||
description="Produces a zero-noise source that disables noise injection, useful for deterministic sampling or img2img without added noise.",
|
||||
short_description="Produce zero noise to disable noise injection.",
|
||||
inputs=[],
|
||||
outputs=[io.Noise.Output()]
|
||||
)
|
||||
@@ -914,6 +975,8 @@ class RandomNoise(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id="RandomNoise",
|
||||
category="sampling/custom_sampling/noise",
|
||||
description="Produces a random noise source from a seed value for use in custom sampling workflows.",
|
||||
short_description="Produce seeded random noise for sampling.",
|
||||
inputs=[io.Int.Input("noise_seed", default=0, min=0, max=0xffffffffffffffff, control_after_generate=True)],
|
||||
outputs=[io.Noise.Output()]
|
||||
)
|
||||
@@ -931,6 +994,8 @@ class SamplerCustomAdvanced(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id="SamplerCustomAdvanced",
|
||||
category="sampling/custom_sampling",
|
||||
description="Runs an advanced custom sampling pass using separate noise, guider, sampler, and sigmas inputs for maximum control over the diffusion process.",
|
||||
short_description="Run advanced custom sampling with separate components.",
|
||||
inputs=[
|
||||
io.Noise.Input("noise"),
|
||||
io.Guider.Input("guider"),
|
||||
@@ -985,6 +1050,8 @@ class AddNoise(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id="AddNoise",
|
||||
category="_for_testing/custom_sampling/noise",
|
||||
description="Adds scaled noise to a latent image using the model's noise schedule and sigma values for manual noise injection.",
|
||||
short_description="Add scaled noise to a latent image.",
|
||||
is_experimental=True,
|
||||
inputs=[
|
||||
io.Model.Input("model"),
|
||||
@@ -1035,6 +1102,8 @@ class ManualSigmas(io.ComfyNode):
|
||||
node_id="ManualSigmas",
|
||||
search_aliases=["custom noise schedule", "define sigmas"],
|
||||
category="_for_testing/custom_sampling",
|
||||
description="Defines a custom sigma sequence by manually entering comma-separated numeric values as a text string.",
|
||||
short_description="Define custom sigmas from comma-separated values.",
|
||||
is_experimental=True,
|
||||
inputs=[
|
||||
io.String.Input("sigmas", default="1, 0.5", multiline=False)
|
||||
|
||||
@@ -49,6 +49,8 @@ class LoadImageDataSetFromFolderNode(io.ComfyNode):
|
||||
node_id="LoadImageDataSetFromFolder",
|
||||
display_name="Load Image Dataset from Folder",
|
||||
category="dataset",
|
||||
description="Loads all images from a selected input subfolder and outputs them as a list of image tensors.",
|
||||
short_description="Loads images from a folder as a list.",
|
||||
is_experimental=True,
|
||||
inputs=[
|
||||
io.Combo.Input(
|
||||
@@ -86,6 +88,8 @@ class LoadImageTextDataSetFromFolderNode(io.ComfyNode):
|
||||
node_id="LoadImageTextDataSetFromFolder",
|
||||
display_name="Load Image and Text Dataset from Folder",
|
||||
category="dataset",
|
||||
description="Loads paired images and text captions from a folder, matching each image with its corresponding text file.",
|
||||
short_description="Loads paired images and text captions from folder.",
|
||||
is_experimental=True,
|
||||
inputs=[
|
||||
io.Combo.Input(
|
||||
@@ -208,6 +212,8 @@ class SaveImageDataSetToFolderNode(io.ComfyNode):
|
||||
node_id="SaveImageDataSetToFolder",
|
||||
display_name="Save Image Dataset to Folder",
|
||||
category="dataset",
|
||||
description="Saves a list of images to a named folder in the output directory with configurable filename prefix.",
|
||||
short_description="Saves image list to an output folder.",
|
||||
is_experimental=True,
|
||||
is_output_node=True,
|
||||
is_input_list=True, # Receive images as list
|
||||
@@ -247,6 +253,8 @@ class SaveImageTextDataSetToFolderNode(io.ComfyNode):
|
||||
node_id="SaveImageTextDataSetToFolder",
|
||||
display_name="Save Image and Text Dataset to Folder",
|
||||
category="dataset",
|
||||
description="Saves paired images and text captions to a named folder in the output directory with configurable filename prefix.",
|
||||
short_description="Saves paired images and text to output folder.",
|
||||
is_experimental=True,
|
||||
is_output_node=True,
|
||||
is_input_list=True, # Receive both images and texts as lists
|
||||
@@ -401,6 +409,8 @@ class ImageProcessingNode(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id=cls.node_id,
|
||||
display_name=cls.display_name or cls.node_id,
|
||||
description=getattr(cls, 'description', ''),
|
||||
short_description=getattr(cls, 'short_description', ''),
|
||||
category="dataset/image",
|
||||
is_experimental=True,
|
||||
is_input_list=is_group, # True for group, False for individual
|
||||
@@ -550,6 +560,8 @@ class TextProcessingNode(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id=cls.node_id,
|
||||
display_name=cls.display_name or cls.node_id,
|
||||
description=getattr(cls, 'description', ''),
|
||||
short_description=getattr(cls, 'short_description', ''),
|
||||
category="dataset/text",
|
||||
is_experimental=True,
|
||||
is_input_list=is_group, # True for group, False for individual
|
||||
@@ -627,6 +639,7 @@ class ResizeImagesByShorterEdgeNode(ImageProcessingNode):
|
||||
node_id = "ResizeImagesByShorterEdge"
|
||||
display_name = "Resize Images by Shorter Edge"
|
||||
description = "Resize images so that the shorter edge matches the specified length while preserving aspect ratio."
|
||||
short_description = "Resizes images by shorter edge preserving aspect ratio."
|
||||
extra_inputs = [
|
||||
io.Int.Input(
|
||||
"shorter_edge",
|
||||
@@ -655,6 +668,7 @@ class ResizeImagesByLongerEdgeNode(ImageProcessingNode):
|
||||
node_id = "ResizeImagesByLongerEdge"
|
||||
display_name = "Resize Images by Longer Edge"
|
||||
description = "Resize images so that the longer edge matches the specified length while preserving aspect ratio."
|
||||
short_description = "Resizes images by longer edge preserving aspect ratio."
|
||||
extra_inputs = [
|
||||
io.Int.Input(
|
||||
"longer_edge",
|
||||
@@ -686,6 +700,7 @@ class CenterCropImagesNode(ImageProcessingNode):
|
||||
node_id = "CenterCropImages"
|
||||
display_name = "Center Crop Images"
|
||||
description = "Center crop all images to the specified dimensions."
|
||||
short_description = None
|
||||
extra_inputs = [
|
||||
io.Int.Input("width", default=512, min=1, max=8192, tooltip="Crop width."),
|
||||
io.Int.Input("height", default=512, min=1, max=8192, tooltip="Crop height."),
|
||||
@@ -708,6 +723,7 @@ class RandomCropImagesNode(ImageProcessingNode):
|
||||
description = (
|
||||
"Randomly crop all images to the specified dimensions (for data augmentation)."
|
||||
)
|
||||
short_description = None
|
||||
extra_inputs = [
|
||||
io.Int.Input("width", default=512, min=1, max=8192, tooltip="Crop width."),
|
||||
io.Int.Input("height", default=512, min=1, max=8192, tooltip="Crop height."),
|
||||
@@ -734,6 +750,7 @@ class NormalizeImagesNode(ImageProcessingNode):
|
||||
node_id = "NormalizeImages"
|
||||
display_name = "Normalize Images"
|
||||
description = "Normalize images using mean and standard deviation."
|
||||
short_description = None
|
||||
extra_inputs = [
|
||||
io.Float.Input(
|
||||
"mean",
|
||||
@@ -760,6 +777,7 @@ class AdjustBrightnessNode(ImageProcessingNode):
|
||||
node_id = "AdjustBrightness"
|
||||
display_name = "Adjust Brightness"
|
||||
description = "Adjust brightness of all images."
|
||||
short_description = None
|
||||
extra_inputs = [
|
||||
io.Float.Input(
|
||||
"factor",
|
||||
@@ -779,6 +797,7 @@ class AdjustContrastNode(ImageProcessingNode):
|
||||
node_id = "AdjustContrast"
|
||||
display_name = "Adjust Contrast"
|
||||
description = "Adjust contrast of all images."
|
||||
short_description = None
|
||||
extra_inputs = [
|
||||
io.Float.Input(
|
||||
"factor",
|
||||
@@ -798,6 +817,7 @@ class ShuffleDatasetNode(ImageProcessingNode):
|
||||
node_id = "ShuffleDataset"
|
||||
display_name = "Shuffle Image Dataset"
|
||||
description = "Randomly shuffle the order of images in the dataset."
|
||||
short_description = None
|
||||
is_group_process = True # Requires full list to shuffle
|
||||
extra_inputs = [
|
||||
io.Int.Input(
|
||||
@@ -821,6 +841,8 @@ class ShuffleImageTextDatasetNode(io.ComfyNode):
|
||||
node_id="ShuffleImageTextDataset",
|
||||
display_name="Shuffle Image-Text Dataset",
|
||||
category="dataset/image",
|
||||
description="Randomly shuffles paired image and text lists together using a seed, preserving their correspondence.",
|
||||
short_description="Shuffles paired image-text lists together.",
|
||||
is_experimental=True,
|
||||
is_input_list=True,
|
||||
inputs=[
|
||||
@@ -863,6 +885,7 @@ class TextToLowercaseNode(TextProcessingNode):
|
||||
node_id = "TextToLowercase"
|
||||
display_name = "Text to Lowercase"
|
||||
description = "Convert all texts to lowercase."
|
||||
short_description = None
|
||||
|
||||
@classmethod
|
||||
def _process(cls, text):
|
||||
@@ -873,6 +896,7 @@ class TextToUppercaseNode(TextProcessingNode):
|
||||
node_id = "TextToUppercase"
|
||||
display_name = "Text to Uppercase"
|
||||
description = "Convert all texts to uppercase."
|
||||
short_description = None
|
||||
|
||||
@classmethod
|
||||
def _process(cls, text):
|
||||
@@ -883,6 +907,7 @@ class TruncateTextNode(TextProcessingNode):
|
||||
node_id = "TruncateText"
|
||||
display_name = "Truncate Text"
|
||||
description = "Truncate all texts to a maximum length."
|
||||
short_description = None
|
||||
extra_inputs = [
|
||||
io.Int.Input(
|
||||
"max_length", default=77, min=1, max=10000, tooltip="Maximum text length."
|
||||
@@ -898,6 +923,7 @@ class AddTextPrefixNode(TextProcessingNode):
|
||||
node_id = "AddTextPrefix"
|
||||
display_name = "Add Text Prefix"
|
||||
description = "Add a prefix to all texts."
|
||||
short_description = None
|
||||
extra_inputs = [
|
||||
io.String.Input("prefix", default="", tooltip="Prefix to add."),
|
||||
]
|
||||
@@ -911,6 +937,7 @@ class AddTextSuffixNode(TextProcessingNode):
|
||||
node_id = "AddTextSuffix"
|
||||
display_name = "Add Text Suffix"
|
||||
description = "Add a suffix to all texts."
|
||||
short_description = None
|
||||
extra_inputs = [
|
||||
io.String.Input("suffix", default="", tooltip="Suffix to add."),
|
||||
]
|
||||
@@ -924,6 +951,7 @@ class ReplaceTextNode(TextProcessingNode):
|
||||
node_id = "ReplaceText"
|
||||
display_name = "Replace Text"
|
||||
description = "Replace text in all texts."
|
||||
short_description = None
|
||||
extra_inputs = [
|
||||
io.String.Input("find", default="", tooltip="Text to find."),
|
||||
io.String.Input("replace", default="", tooltip="Text to replace with."),
|
||||
@@ -938,6 +966,7 @@ class StripWhitespaceNode(TextProcessingNode):
|
||||
node_id = "StripWhitespace"
|
||||
display_name = "Strip Whitespace"
|
||||
description = "Strip leading and trailing whitespace from all texts."
|
||||
short_description = None
|
||||
|
||||
@classmethod
|
||||
def _process(cls, text):
|
||||
@@ -953,6 +982,7 @@ class ImageDeduplicationNode(ImageProcessingNode):
|
||||
node_id = "ImageDeduplication"
|
||||
display_name = "Image Deduplication"
|
||||
description = "Remove duplicate or very similar images from the dataset."
|
||||
short_description = None
|
||||
is_group_process = True # Requires full list to compare images
|
||||
extra_inputs = [
|
||||
io.Float.Input(
|
||||
@@ -1023,6 +1053,7 @@ class ImageGridNode(ImageProcessingNode):
|
||||
node_id = "ImageGrid"
|
||||
display_name = "Image Grid"
|
||||
description = "Arrange multiple images into a grid layout."
|
||||
short_description = None
|
||||
is_group_process = True # Requires full list to create grid
|
||||
is_output_list = False # Outputs single grid image
|
||||
extra_inputs = [
|
||||
@@ -1097,6 +1128,7 @@ class MergeImageListsNode(ImageProcessingNode):
|
||||
node_id = "MergeImageLists"
|
||||
display_name = "Merge Image Lists"
|
||||
description = "Concatenate multiple image lists into one."
|
||||
short_description = None
|
||||
is_group_process = True # Receives images as list
|
||||
|
||||
@classmethod
|
||||
@@ -1114,6 +1146,7 @@ class MergeTextListsNode(TextProcessingNode):
|
||||
node_id = "MergeTextLists"
|
||||
display_name = "Merge Text Lists"
|
||||
description = "Concatenate multiple text lists into one."
|
||||
short_description = None
|
||||
is_group_process = True # Receives texts as list
|
||||
|
||||
@classmethod
|
||||
@@ -1137,6 +1170,8 @@ class ResolutionBucket(io.ComfyNode):
|
||||
node_id="ResolutionBucket",
|
||||
display_name="Resolution Bucket",
|
||||
category="dataset",
|
||||
description="Groups latents and conditioning by resolution into batched buckets for efficient training with mixed aspect ratios.",
|
||||
short_description="Groups latents by resolution into training buckets.",
|
||||
is_experimental=True,
|
||||
is_input_list=True,
|
||||
inputs=[
|
||||
@@ -1230,6 +1265,8 @@ class MakeTrainingDataset(io.ComfyNode):
|
||||
search_aliases=["encode dataset"],
|
||||
display_name="Make Training Dataset",
|
||||
category="dataset",
|
||||
description="Encodes images with a VAE and text captions with CLIP to create paired latent and conditioning training data.",
|
||||
short_description="Encodes images and text into training data.",
|
||||
is_experimental=True,
|
||||
is_input_list=True, # images and texts as lists
|
||||
inputs=[
|
||||
@@ -1316,6 +1353,8 @@ class SaveTrainingDataset(io.ComfyNode):
|
||||
search_aliases=["export training data"],
|
||||
display_name="Save Training Dataset",
|
||||
category="dataset",
|
||||
description="Saves encoded latent and conditioning training data to disk in sharded files with configurable shard size.",
|
||||
short_description="Saves encoded training data to sharded files.",
|
||||
is_experimental=True,
|
||||
is_output_node=True,
|
||||
is_input_list=True, # Receive lists
|
||||
@@ -1417,6 +1456,8 @@ class LoadTrainingDataset(io.ComfyNode):
|
||||
search_aliases=["import dataset", "training data"],
|
||||
display_name="Load Training Dataset",
|
||||
category="dataset",
|
||||
description="Loads a previously saved training dataset of latents and conditioning from sharded files on disk.",
|
||||
short_description="Loads saved training dataset from disk.",
|
||||
is_experimental=True,
|
||||
inputs=[
|
||||
io.String.Input(
|
||||
|
||||
@@ -14,6 +14,8 @@ class DifferentialDiffusion(io.ComfyNode):
|
||||
search_aliases=["inpaint gradient", "variable denoise strength"],
|
||||
display_name="Differential Diffusion",
|
||||
category="_for_testing",
|
||||
description="Enables per-pixel variable denoise strength using a mask, where mask intensity controls how much each region is denoised during sampling.",
|
||||
short_description="Per-pixel variable denoise strength via mask.",
|
||||
inputs=[
|
||||
io.Model.Input("model"),
|
||||
io.Float.Input(
|
||||
|
||||
@@ -363,6 +363,7 @@ class EasyCacheNode(io.ComfyNode):
|
||||
node_id="EasyCache",
|
||||
display_name="EasyCache",
|
||||
description="Native EasyCache implementation.",
|
||||
short_description=None,
|
||||
category="advanced/debug/model",
|
||||
is_experimental=True,
|
||||
inputs=[
|
||||
@@ -496,6 +497,7 @@ class LazyCacheNode(io.ComfyNode):
|
||||
node_id="LazyCache",
|
||||
display_name="LazyCache",
|
||||
description="A homebrew version of EasyCache - even 'easier' version of EasyCache to implement. Overall works worse than EasyCache, but better in some rare cases AND universal compatibility with everything in ComfyUI.",
|
||||
short_description="Simpler EasyCache alternative with universal ComfyUI compatibility.",
|
||||
category="advanced/debug/model",
|
||||
is_experimental=True,
|
||||
inputs=[
|
||||
|
||||
@@ -10,6 +10,7 @@ class ReferenceLatent(io.ComfyNode):
|
||||
node_id="ReferenceLatent",
|
||||
category="advanced/conditioning/edit_models",
|
||||
description="This node sets the guiding latent for an edit model. If the model supports it you can chain multiple to set multiple reference images.",
|
||||
short_description="Sets guiding latent for edit models with chaining support.",
|
||||
inputs=[
|
||||
io.Conditioning.Input("conditioning"),
|
||||
io.Latent.Input("latent", optional=True),
|
||||
|
||||
@@ -19,6 +19,8 @@ class EpsilonScaling(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id="Epsilon Scaling",
|
||||
category="model_patches/unet",
|
||||
description="Applies epsilon scaling to mitigate exposure bias in diffusion models by scaling the predicted noise after CFG, improving sample quality.",
|
||||
short_description="Scale predicted noise to reduce exposure bias.",
|
||||
inputs=[
|
||||
io.Model.Input("model"),
|
||||
io.Float.Input(
|
||||
@@ -121,6 +123,7 @@ class TemporalScoreRescaling(io.ComfyNode):
|
||||
"TSR - Temporal Score Rescaling (2510.01184)\n\n"
|
||||
"Rescaling the model's score or noise to steer the sampling diversity.\n"
|
||||
),
|
||||
short_description="Rescales temporal scores to control sampling diversity.",
|
||||
)
|
||||
|
||||
@classmethod
|
||||
|
||||
@@ -13,6 +13,8 @@ class CLIPTextEncodeFlux(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id="CLIPTextEncodeFlux",
|
||||
category="advanced/conditioning/flux",
|
||||
description="Encodes separate CLIP-L and T5-XXL text prompts with a guidance value into Flux conditioning.",
|
||||
short_description="Encodes CLIP-L and T5-XXL prompts for Flux.",
|
||||
inputs=[
|
||||
io.Clip.Input("clip"),
|
||||
io.String.Input("clip_l", multiline=True, dynamic_prompts=True),
|
||||
@@ -40,6 +42,8 @@ class EmptyFlux2LatentImage(io.ComfyNode):
|
||||
node_id="EmptyFlux2LatentImage",
|
||||
display_name="Empty Flux 2 Latent",
|
||||
category="latent",
|
||||
description="Creates an empty Flux 2 latent image tensor with the specified width, height, and batch size.",
|
||||
short_description="Creates an empty Flux 2 latent image tensor.",
|
||||
inputs=[
|
||||
io.Int.Input("width", default=1024, min=16, max=nodes.MAX_RESOLUTION, step=16),
|
||||
io.Int.Input("height", default=1024, min=16, max=nodes.MAX_RESOLUTION, step=16),
|
||||
@@ -61,6 +65,8 @@ class FluxGuidance(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id="FluxGuidance",
|
||||
category="advanced/conditioning/flux",
|
||||
description="Sets the guidance strength value on Flux conditioning to control how closely generation follows the prompt.",
|
||||
short_description="Sets guidance strength on Flux conditioning.",
|
||||
inputs=[
|
||||
io.Conditioning.Input("conditioning"),
|
||||
io.Float.Input("guidance", default=3.5, min=0.0, max=100.0, step=0.1),
|
||||
@@ -85,6 +91,7 @@ class FluxDisableGuidance(io.ComfyNode):
|
||||
node_id="FluxDisableGuidance",
|
||||
category="advanced/conditioning/flux",
|
||||
description="This node completely disables the guidance embed on Flux and Flux like models",
|
||||
short_description="Disables guidance embed on Flux and Flux-like models.",
|
||||
inputs=[
|
||||
io.Conditioning.Input("conditioning"),
|
||||
],
|
||||
@@ -129,6 +136,7 @@ class FluxKontextImageScale(io.ComfyNode):
|
||||
node_id="FluxKontextImageScale",
|
||||
category="advanced/conditioning/flux",
|
||||
description="This node resizes the image to one that is more optimal for flux kontext.",
|
||||
short_description="Resizes images to optimal dimensions for Flux Kontext.",
|
||||
inputs=[
|
||||
io.Image.Input("image"),
|
||||
],
|
||||
@@ -156,6 +164,8 @@ class FluxKontextMultiReferenceLatentMethod(io.ComfyNode):
|
||||
node_id="FluxKontextMultiReferenceLatentMethod",
|
||||
display_name="Edit Model Reference Method",
|
||||
category="advanced/conditioning/flux",
|
||||
description="Selects the method used for handling multiple reference latents in Flux Kontext edit models.",
|
||||
short_description="Selects reference latent method for Flux Kontext.",
|
||||
inputs=[
|
||||
io.Conditioning.Input("conditioning"),
|
||||
io.Combo.Input(
|
||||
@@ -214,6 +224,8 @@ class Flux2Scheduler(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id="Flux2Scheduler",
|
||||
category="sampling/custom_sampling/schedulers",
|
||||
description="Generates a sigma schedule for Flux 2 sampling based on step count and image resolution.",
|
||||
short_description="Generates a sigma schedule for Flux 2 sampling.",
|
||||
inputs=[
|
||||
io.Int.Input("steps", default=20, min=1, max=4096),
|
||||
io.Int.Input("width", default=1024, min=16, max=nodes.MAX_RESOLUTION, step=1),
|
||||
|
||||
@@ -30,6 +30,8 @@ class FreeU(IO.ComfyNode):
|
||||
return IO.Schema(
|
||||
node_id="FreeU",
|
||||
category="model_patches/unet",
|
||||
description="Applies FreeU v1 to a UNet model, boosting backbone features and filtering skip connections using Fourier transforms for improved quality.",
|
||||
short_description="Applies FreeU v1 backbone boost and skip filtering.",
|
||||
inputs=[
|
||||
IO.Model.Input("model"),
|
||||
IO.Float.Input("b1", default=1.1, min=0.0, max=10.0, step=0.01),
|
||||
@@ -77,6 +79,8 @@ class FreeU_V2(IO.ComfyNode):
|
||||
return IO.Schema(
|
||||
node_id="FreeU_V2",
|
||||
category="model_patches/unet",
|
||||
description="Applies FreeU v2 to a UNet model with adaptive backbone scaling based on hidden state magnitude and Fourier skip filtering.",
|
||||
short_description="Applies FreeU v2 with adaptive scaling.",
|
||||
inputs=[
|
||||
IO.Model.Input("model"),
|
||||
IO.Float.Input("b1", default=1.3, min=0.0, max=10.0, step=0.01),
|
||||
|
||||
@@ -62,6 +62,7 @@ class FreSca(io.ComfyNode):
|
||||
display_name="FreSca",
|
||||
category="_for_testing",
|
||||
description="Applies frequency-dependent scaling to the guidance",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
io.Model.Input("model"),
|
||||
io.Float.Input("scale_low", default=1.0, min=0, max=10, step=0.01,
|
||||
|
||||
@@ -341,6 +341,8 @@ class GITSScheduler(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id="GITSScheduler",
|
||||
category="sampling/custom_sampling/schedulers",
|
||||
description="Generates a noise schedule using the GITS method with precomputed optimal sigma levels and configurable coefficient.",
|
||||
short_description="Generates a GITS noise schedule with optimal sigma levels.",
|
||||
inputs=[
|
||||
io.Float.Input("coeff", default=1.20, min=0.80, max=1.50, step=0.05),
|
||||
io.Int.Input("steps", default=10, min=2, max=1000),
|
||||
|
||||
@@ -1,897 +0,0 @@
|
||||
import os
|
||||
import sys
|
||||
import re
|
||||
import logging
|
||||
import ctypes.util
|
||||
import importlib.util
|
||||
from typing import TypedDict
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
import nodes
|
||||
from comfy_api.latest import ComfyExtension, io, ui
|
||||
from typing_extensions import override
|
||||
from utils.install_util import get_missing_requirements_message
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def _check_opengl_availability():
|
||||
"""Early check for OpenGL availability. Raises RuntimeError if unlikely to work."""
|
||||
logger.debug("_check_opengl_availability: starting")
|
||||
missing = []
|
||||
|
||||
# Check Python packages (using find_spec to avoid importing)
|
||||
logger.debug("_check_opengl_availability: checking for glfw package")
|
||||
if importlib.util.find_spec("glfw") is None:
|
||||
missing.append("glfw")
|
||||
|
||||
logger.debug("_check_opengl_availability: checking for OpenGL package")
|
||||
if importlib.util.find_spec("OpenGL") is None:
|
||||
missing.append("PyOpenGL")
|
||||
|
||||
if missing:
|
||||
raise RuntimeError(
|
||||
f"OpenGL dependencies not available.\n{get_missing_requirements_message()}\n"
|
||||
)
|
||||
|
||||
# On Linux without display, check if headless backends are available
|
||||
logger.debug(f"_check_opengl_availability: platform={sys.platform}")
|
||||
if sys.platform.startswith("linux"):
|
||||
has_display = os.environ.get("DISPLAY") or os.environ.get("WAYLAND_DISPLAY")
|
||||
logger.debug(f"_check_opengl_availability: has_display={bool(has_display)}")
|
||||
if not has_display:
|
||||
# Check for EGL or OSMesa libraries
|
||||
logger.debug("_check_opengl_availability: checking for EGL library")
|
||||
has_egl = ctypes.util.find_library("EGL")
|
||||
logger.debug("_check_opengl_availability: checking for OSMesa library")
|
||||
has_osmesa = ctypes.util.find_library("OSMesa")
|
||||
|
||||
# Error disabled for CI as it fails this check
|
||||
# if not has_egl and not has_osmesa:
|
||||
# raise RuntimeError(
|
||||
# "GLSL Shader node: No display and no headless backend (EGL/OSMesa) found.\n"
|
||||
# "See error below for installation instructions."
|
||||
# )
|
||||
logger.debug(f"Headless mode: EGL={'yes' if has_egl else 'no'}, OSMesa={'yes' if has_osmesa else 'no'}")
|
||||
|
||||
logger.debug("_check_opengl_availability: completed")
|
||||
|
||||
|
||||
# Run early check at import time
|
||||
logger.debug("nodes_glsl: running _check_opengl_availability at import time")
|
||||
_check_opengl_availability()
|
||||
|
||||
# OpenGL modules - initialized lazily when context is created
|
||||
gl = None
|
||||
glfw = None
|
||||
EGL = None
|
||||
|
||||
|
||||
def _import_opengl():
|
||||
"""Import OpenGL module. Called after context is created."""
|
||||
global gl
|
||||
if gl is None:
|
||||
logger.debug("_import_opengl: importing OpenGL.GL")
|
||||
import OpenGL.GL as _gl
|
||||
gl = _gl
|
||||
logger.debug("_import_opengl: import completed")
|
||||
return gl
|
||||
|
||||
|
||||
class SizeModeInput(TypedDict):
|
||||
size_mode: str
|
||||
width: int
|
||||
height: int
|
||||
|
||||
|
||||
MAX_IMAGES = 5 # u_image0-4
|
||||
MAX_UNIFORMS = 5 # u_float0-4, u_int0-4
|
||||
MAX_OUTPUTS = 4 # fragColor0-3 (MRT)
|
||||
|
||||
# Vertex shader using gl_VertexID trick - no VBO needed.
|
||||
# Draws a single triangle that covers the entire screen:
|
||||
#
|
||||
# (-1,3)
|
||||
# /|
|
||||
# / | <- visible area is the unit square from (-1,-1) to (1,1)
|
||||
# / | parts outside get clipped away
|
||||
# (-1,-1)---(3,-1)
|
||||
#
|
||||
# v_texCoord is computed from clip space: * 0.5 + 0.5 maps (-1,1) -> (0,1)
|
||||
VERTEX_SHADER = """#version 330 core
|
||||
out vec2 v_texCoord;
|
||||
void main() {
|
||||
vec2 verts[3] = vec2[](vec2(-1, -1), vec2(3, -1), vec2(-1, 3));
|
||||
v_texCoord = verts[gl_VertexID] * 0.5 + 0.5;
|
||||
gl_Position = vec4(verts[gl_VertexID], 0, 1);
|
||||
}
|
||||
"""
|
||||
|
||||
DEFAULT_FRAGMENT_SHADER = """#version 300 es
|
||||
precision highp float;
|
||||
|
||||
uniform sampler2D u_image0;
|
||||
uniform vec2 u_resolution;
|
||||
|
||||
in vec2 v_texCoord;
|
||||
layout(location = 0) out vec4 fragColor0;
|
||||
|
||||
void main() {
|
||||
fragColor0 = texture(u_image0, v_texCoord);
|
||||
}
|
||||
"""
|
||||
|
||||
|
||||
def _convert_es_to_desktop(source: str) -> str:
|
||||
"""Convert GLSL ES (WebGL) shader source to desktop GLSL 330 core."""
|
||||
# Remove any existing #version directive
|
||||
source = re.sub(r"#version\s+\d+(\s+es)?\s*\n?", "", source, flags=re.IGNORECASE)
|
||||
# Remove precision qualifiers (not needed in desktop GLSL)
|
||||
source = re.sub(r"precision\s+(lowp|mediump|highp)\s+\w+\s*;\s*\n?", "", source)
|
||||
# Prepend desktop GLSL version
|
||||
return "#version 330 core\n" + source
|
||||
|
||||
|
||||
def _detect_output_count(source: str) -> int:
|
||||
"""Detect how many fragColor outputs are used in the shader.
|
||||
|
||||
Returns the count of outputs needed (1 to MAX_OUTPUTS).
|
||||
"""
|
||||
matches = re.findall(r"fragColor(\d+)", source)
|
||||
if not matches:
|
||||
return 1 # Default to 1 output if none found
|
||||
max_index = max(int(m) for m in matches)
|
||||
return min(max_index + 1, MAX_OUTPUTS)
|
||||
|
||||
|
||||
def _detect_pass_count(source: str) -> int:
|
||||
"""Detect multi-pass rendering from #pragma passes N directive.
|
||||
|
||||
Returns the number of passes (1 if not specified).
|
||||
"""
|
||||
match = re.search(r'#pragma\s+passes\s+(\d+)', source)
|
||||
if match:
|
||||
return max(1, int(match.group(1)))
|
||||
return 1
|
||||
|
||||
|
||||
def _init_glfw():
|
||||
"""Initialize GLFW. Returns (window, glfw_module). Raises RuntimeError on failure."""
|
||||
logger.debug("_init_glfw: starting")
|
||||
# On macOS, glfw.init() must be called from main thread or it hangs forever
|
||||
if sys.platform == "darwin":
|
||||
logger.debug("_init_glfw: skipping on macOS")
|
||||
raise RuntimeError("GLFW backend not supported on macOS")
|
||||
|
||||
logger.debug("_init_glfw: importing glfw module")
|
||||
import glfw as _glfw
|
||||
|
||||
logger.debug("_init_glfw: calling glfw.init()")
|
||||
if not _glfw.init():
|
||||
raise RuntimeError("glfw.init() failed")
|
||||
|
||||
try:
|
||||
logger.debug("_init_glfw: setting window hints")
|
||||
_glfw.window_hint(_glfw.VISIBLE, _glfw.FALSE)
|
||||
_glfw.window_hint(_glfw.CONTEXT_VERSION_MAJOR, 3)
|
||||
_glfw.window_hint(_glfw.CONTEXT_VERSION_MINOR, 3)
|
||||
_glfw.window_hint(_glfw.OPENGL_PROFILE, _glfw.OPENGL_CORE_PROFILE)
|
||||
|
||||
logger.debug("_init_glfw: calling create_window()")
|
||||
window = _glfw.create_window(64, 64, "ComfyUI GLSL", None, None)
|
||||
if not window:
|
||||
raise RuntimeError("glfw.create_window() failed")
|
||||
|
||||
logger.debug("_init_glfw: calling make_context_current()")
|
||||
_glfw.make_context_current(window)
|
||||
logger.debug("_init_glfw: completed successfully")
|
||||
return window, _glfw
|
||||
except Exception:
|
||||
logger.debug("_init_glfw: failed, terminating glfw")
|
||||
_glfw.terminate()
|
||||
raise
|
||||
|
||||
|
||||
def _init_egl():
|
||||
"""Initialize EGL for headless rendering. Returns (display, context, surface, EGL_module). Raises RuntimeError on failure."""
|
||||
logger.debug("_init_egl: starting")
|
||||
from OpenGL import EGL as _EGL
|
||||
from OpenGL.EGL import (
|
||||
eglGetDisplay, eglInitialize, eglChooseConfig, eglCreateContext,
|
||||
eglMakeCurrent, eglCreatePbufferSurface, eglBindAPI,
|
||||
eglTerminate, eglDestroyContext, eglDestroySurface,
|
||||
EGL_DEFAULT_DISPLAY, EGL_NO_CONTEXT, EGL_NONE,
|
||||
EGL_SURFACE_TYPE, EGL_PBUFFER_BIT, EGL_RENDERABLE_TYPE, EGL_OPENGL_BIT,
|
||||
EGL_RED_SIZE, EGL_GREEN_SIZE, EGL_BLUE_SIZE, EGL_ALPHA_SIZE, EGL_DEPTH_SIZE,
|
||||
EGL_WIDTH, EGL_HEIGHT, EGL_OPENGL_API,
|
||||
)
|
||||
logger.debug("_init_egl: imports completed")
|
||||
|
||||
display = None
|
||||
context = None
|
||||
surface = None
|
||||
|
||||
try:
|
||||
logger.debug("_init_egl: calling eglGetDisplay()")
|
||||
display = eglGetDisplay(EGL_DEFAULT_DISPLAY)
|
||||
if display == _EGL.EGL_NO_DISPLAY:
|
||||
raise RuntimeError("eglGetDisplay() failed")
|
||||
|
||||
logger.debug("_init_egl: calling eglInitialize()")
|
||||
major, minor = _EGL.EGLint(), _EGL.EGLint()
|
||||
if not eglInitialize(display, major, minor):
|
||||
display = None # Not initialized, don't terminate
|
||||
raise RuntimeError("eglInitialize() failed")
|
||||
logger.debug(f"_init_egl: EGL version {major.value}.{minor.value}")
|
||||
|
||||
config_attribs = [
|
||||
EGL_SURFACE_TYPE, EGL_PBUFFER_BIT,
|
||||
EGL_RENDERABLE_TYPE, EGL_OPENGL_BIT,
|
||||
EGL_RED_SIZE, 8, EGL_GREEN_SIZE, 8, EGL_BLUE_SIZE, 8, EGL_ALPHA_SIZE, 8,
|
||||
EGL_DEPTH_SIZE, 0, EGL_NONE
|
||||
]
|
||||
configs = (_EGL.EGLConfig * 1)()
|
||||
num_configs = _EGL.EGLint()
|
||||
if not eglChooseConfig(display, config_attribs, configs, 1, num_configs) or num_configs.value == 0:
|
||||
raise RuntimeError("eglChooseConfig() failed")
|
||||
config = configs[0]
|
||||
logger.debug(f"_init_egl: config chosen, num_configs={num_configs.value}")
|
||||
|
||||
if not eglBindAPI(EGL_OPENGL_API):
|
||||
raise RuntimeError("eglBindAPI() failed")
|
||||
|
||||
logger.debug("_init_egl: calling eglCreateContext()")
|
||||
context_attribs = [
|
||||
_EGL.EGL_CONTEXT_MAJOR_VERSION, 3,
|
||||
_EGL.EGL_CONTEXT_MINOR_VERSION, 3,
|
||||
_EGL.EGL_CONTEXT_OPENGL_PROFILE_MASK, _EGL.EGL_CONTEXT_OPENGL_CORE_PROFILE_BIT,
|
||||
EGL_NONE
|
||||
]
|
||||
context = eglCreateContext(display, config, EGL_NO_CONTEXT, context_attribs)
|
||||
if context == EGL_NO_CONTEXT:
|
||||
raise RuntimeError("eglCreateContext() failed")
|
||||
|
||||
logger.debug("_init_egl: calling eglCreatePbufferSurface()")
|
||||
pbuffer_attribs = [EGL_WIDTH, 64, EGL_HEIGHT, 64, EGL_NONE]
|
||||
surface = eglCreatePbufferSurface(display, config, pbuffer_attribs)
|
||||
if surface == _EGL.EGL_NO_SURFACE:
|
||||
raise RuntimeError("eglCreatePbufferSurface() failed")
|
||||
|
||||
logger.debug("_init_egl: calling eglMakeCurrent()")
|
||||
if not eglMakeCurrent(display, surface, surface, context):
|
||||
raise RuntimeError("eglMakeCurrent() failed")
|
||||
|
||||
logger.debug("_init_egl: completed successfully")
|
||||
return display, context, surface, _EGL
|
||||
|
||||
except Exception:
|
||||
logger.debug("_init_egl: failed, cleaning up")
|
||||
# Clean up any resources on failure
|
||||
if surface is not None:
|
||||
eglDestroySurface(display, surface)
|
||||
if context is not None:
|
||||
eglDestroyContext(display, context)
|
||||
if display is not None:
|
||||
eglTerminate(display)
|
||||
raise
|
||||
|
||||
|
||||
def _init_osmesa():
|
||||
"""Initialize OSMesa for software rendering. Returns (context, buffer). Raises RuntimeError on failure."""
|
||||
import ctypes
|
||||
|
||||
logger.debug("_init_osmesa: starting")
|
||||
os.environ["PYOPENGL_PLATFORM"] = "osmesa"
|
||||
|
||||
logger.debug("_init_osmesa: importing OpenGL.osmesa")
|
||||
from OpenGL import GL as _gl
|
||||
from OpenGL.osmesa import (
|
||||
OSMesaCreateContextExt, OSMesaMakeCurrent, OSMesaDestroyContext,
|
||||
OSMESA_RGBA,
|
||||
)
|
||||
logger.debug("_init_osmesa: imports completed")
|
||||
|
||||
ctx = OSMesaCreateContextExt(OSMESA_RGBA, 24, 0, 0, None)
|
||||
if not ctx:
|
||||
raise RuntimeError("OSMesaCreateContextExt() failed")
|
||||
|
||||
width, height = 64, 64
|
||||
buffer = (ctypes.c_ubyte * (width * height * 4))()
|
||||
|
||||
logger.debug("_init_osmesa: calling OSMesaMakeCurrent()")
|
||||
if not OSMesaMakeCurrent(ctx, buffer, _gl.GL_UNSIGNED_BYTE, width, height):
|
||||
OSMesaDestroyContext(ctx)
|
||||
raise RuntimeError("OSMesaMakeCurrent() failed")
|
||||
|
||||
logger.debug("_init_osmesa: completed successfully")
|
||||
return ctx, buffer
|
||||
|
||||
|
||||
class GLContext:
|
||||
"""Manages OpenGL context and resources for shader execution.
|
||||
|
||||
Tries backends in order: GLFW (desktop) → EGL (headless GPU) → OSMesa (software).
|
||||
"""
|
||||
|
||||
_instance = None
|
||||
_initialized = False
|
||||
|
||||
def __new__(cls):
|
||||
if cls._instance is None:
|
||||
cls._instance = super().__new__(cls)
|
||||
return cls._instance
|
||||
|
||||
def __init__(self):
|
||||
if GLContext._initialized:
|
||||
logger.debug("GLContext.__init__: already initialized, skipping")
|
||||
return
|
||||
|
||||
logger.debug("GLContext.__init__: starting initialization")
|
||||
|
||||
global glfw, EGL
|
||||
|
||||
import time
|
||||
start = time.perf_counter()
|
||||
|
||||
self._backend = None
|
||||
self._window = None
|
||||
self._egl_display = None
|
||||
self._egl_context = None
|
||||
self._egl_surface = None
|
||||
self._osmesa_ctx = None
|
||||
self._osmesa_buffer = None
|
||||
self._vao = None
|
||||
|
||||
# Try backends in order: GLFW → EGL → OSMesa
|
||||
errors = []
|
||||
|
||||
logger.debug("GLContext.__init__: trying GLFW backend")
|
||||
try:
|
||||
self._window, glfw = _init_glfw()
|
||||
self._backend = "glfw"
|
||||
logger.debug("GLContext.__init__: GLFW backend succeeded")
|
||||
except Exception as e:
|
||||
logger.debug(f"GLContext.__init__: GLFW backend failed: {e}")
|
||||
errors.append(("GLFW", e))
|
||||
|
||||
if self._backend is None:
|
||||
logger.debug("GLContext.__init__: trying EGL backend")
|
||||
try:
|
||||
self._egl_display, self._egl_context, self._egl_surface, EGL = _init_egl()
|
||||
self._backend = "egl"
|
||||
logger.debug("GLContext.__init__: EGL backend succeeded")
|
||||
except Exception as e:
|
||||
logger.debug(f"GLContext.__init__: EGL backend failed: {e}")
|
||||
errors.append(("EGL", e))
|
||||
|
||||
if self._backend is None:
|
||||
logger.debug("GLContext.__init__: trying OSMesa backend")
|
||||
try:
|
||||
self._osmesa_ctx, self._osmesa_buffer = _init_osmesa()
|
||||
self._backend = "osmesa"
|
||||
logger.debug("GLContext.__init__: OSMesa backend succeeded")
|
||||
except Exception as e:
|
||||
logger.debug(f"GLContext.__init__: OSMesa backend failed: {e}")
|
||||
errors.append(("OSMesa", e))
|
||||
|
||||
if self._backend is None:
|
||||
if sys.platform == "win32":
|
||||
platform_help = (
|
||||
"Windows: Ensure GPU drivers are installed and display is available.\n"
|
||||
" CPU-only/headless mode is not supported on Windows."
|
||||
)
|
||||
elif sys.platform == "darwin":
|
||||
platform_help = (
|
||||
"macOS: GLFW is not supported.\n"
|
||||
" Install OSMesa via Homebrew: brew install mesa\n"
|
||||
" Then: pip install PyOpenGL PyOpenGL-accelerate"
|
||||
)
|
||||
else:
|
||||
platform_help = (
|
||||
"Linux: Install one of these backends:\n"
|
||||
" Desktop: sudo apt install libgl1-mesa-glx libglfw3\n"
|
||||
" Headless with GPU: sudo apt install libegl1-mesa libgl1-mesa-dri\n"
|
||||
" Headless (CPU): sudo apt install libosmesa6"
|
||||
)
|
||||
|
||||
error_details = "\n".join(f" {name}: {err}" for name, err in errors)
|
||||
raise RuntimeError(
|
||||
f"Failed to create OpenGL context.\n\n"
|
||||
f"Backend errors:\n{error_details}\n\n"
|
||||
f"{platform_help}"
|
||||
)
|
||||
|
||||
# Now import OpenGL.GL (after context is current)
|
||||
logger.debug("GLContext.__init__: importing OpenGL.GL")
|
||||
_import_opengl()
|
||||
|
||||
# Create VAO (required for core profile, but OSMesa may use compat profile)
|
||||
logger.debug("GLContext.__init__: creating VAO")
|
||||
try:
|
||||
vao = gl.glGenVertexArrays(1)
|
||||
gl.glBindVertexArray(vao)
|
||||
self._vao = vao # Only store after successful bind
|
||||
logger.debug("GLContext.__init__: VAO created successfully")
|
||||
except Exception as e:
|
||||
logger.debug(f"GLContext.__init__: VAO creation failed (may be expected for OSMesa): {e}")
|
||||
# OSMesa with older Mesa may not support VAOs
|
||||
# Clean up if we created but couldn't bind
|
||||
if vao:
|
||||
try:
|
||||
gl.glDeleteVertexArrays(1, [vao])
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
elapsed = (time.perf_counter() - start) * 1000
|
||||
|
||||
# Log device info
|
||||
renderer = gl.glGetString(gl.GL_RENDERER)
|
||||
vendor = gl.glGetString(gl.GL_VENDOR)
|
||||
version = gl.glGetString(gl.GL_VERSION)
|
||||
renderer = renderer.decode() if renderer else "Unknown"
|
||||
vendor = vendor.decode() if vendor else "Unknown"
|
||||
version = version.decode() if version else "Unknown"
|
||||
|
||||
GLContext._initialized = True
|
||||
logger.info(f"GLSL context initialized in {elapsed:.1f}ms ({self._backend}) - {renderer} ({vendor}), GL {version}")
|
||||
|
||||
def make_current(self):
|
||||
if self._backend == "glfw":
|
||||
glfw.make_context_current(self._window)
|
||||
elif self._backend == "egl":
|
||||
from OpenGL.EGL import eglMakeCurrent
|
||||
eglMakeCurrent(self._egl_display, self._egl_surface, self._egl_surface, self._egl_context)
|
||||
elif self._backend == "osmesa":
|
||||
from OpenGL.osmesa import OSMesaMakeCurrent
|
||||
OSMesaMakeCurrent(self._osmesa_ctx, self._osmesa_buffer, gl.GL_UNSIGNED_BYTE, 64, 64)
|
||||
|
||||
if self._vao is not None:
|
||||
gl.glBindVertexArray(self._vao)
|
||||
|
||||
|
||||
def _compile_shader(source: str, shader_type: int) -> int:
|
||||
"""Compile a shader and return its ID."""
|
||||
shader = gl.glCreateShader(shader_type)
|
||||
gl.glShaderSource(shader, source)
|
||||
gl.glCompileShader(shader)
|
||||
|
||||
if gl.glGetShaderiv(shader, gl.GL_COMPILE_STATUS) != gl.GL_TRUE:
|
||||
error = gl.glGetShaderInfoLog(shader).decode()
|
||||
gl.glDeleteShader(shader)
|
||||
raise RuntimeError(f"Shader compilation failed:\n{error}")
|
||||
|
||||
return shader
|
||||
|
||||
|
||||
def _create_program(vertex_source: str, fragment_source: str) -> int:
|
||||
"""Create and link a shader program."""
|
||||
vertex_shader = _compile_shader(vertex_source, gl.GL_VERTEX_SHADER)
|
||||
try:
|
||||
fragment_shader = _compile_shader(fragment_source, gl.GL_FRAGMENT_SHADER)
|
||||
except RuntimeError:
|
||||
gl.glDeleteShader(vertex_shader)
|
||||
raise
|
||||
|
||||
program = gl.glCreateProgram()
|
||||
gl.glAttachShader(program, vertex_shader)
|
||||
gl.glAttachShader(program, fragment_shader)
|
||||
gl.glLinkProgram(program)
|
||||
|
||||
gl.glDeleteShader(vertex_shader)
|
||||
gl.glDeleteShader(fragment_shader)
|
||||
|
||||
if gl.glGetProgramiv(program, gl.GL_LINK_STATUS) != gl.GL_TRUE:
|
||||
error = gl.glGetProgramInfoLog(program).decode()
|
||||
gl.glDeleteProgram(program)
|
||||
raise RuntimeError(f"Program linking failed:\n{error}")
|
||||
|
||||
return program
|
||||
|
||||
|
||||
def _render_shader_batch(
|
||||
fragment_code: str,
|
||||
width: int,
|
||||
height: int,
|
||||
image_batches: list[list[np.ndarray]],
|
||||
floats: list[float],
|
||||
ints: list[int],
|
||||
) -> list[list[np.ndarray]]:
|
||||
"""
|
||||
Render a fragment shader for multiple batches efficiently.
|
||||
|
||||
Compiles shader once, reuses framebuffer/textures across batches.
|
||||
Supports multi-pass rendering via #pragma passes N directive.
|
||||
|
||||
Args:
|
||||
fragment_code: User's fragment shader code
|
||||
width: Output width
|
||||
height: Output height
|
||||
image_batches: List of batches, each batch is a list of input images (H, W, C) float32 [0,1]
|
||||
floats: List of float uniforms
|
||||
ints: List of int uniforms
|
||||
|
||||
Returns:
|
||||
List of batch outputs, each is a list of output images (H, W, 4) float32 [0,1]
|
||||
"""
|
||||
import time
|
||||
start_time = time.perf_counter()
|
||||
|
||||
if not image_batches:
|
||||
return []
|
||||
|
||||
ctx = GLContext()
|
||||
ctx.make_current()
|
||||
|
||||
# Convert from GLSL ES to desktop GLSL 330
|
||||
fragment_source = _convert_es_to_desktop(fragment_code)
|
||||
|
||||
# Detect how many outputs the shader actually uses
|
||||
num_outputs = _detect_output_count(fragment_code)
|
||||
|
||||
# Detect multi-pass rendering
|
||||
num_passes = _detect_pass_count(fragment_code)
|
||||
|
||||
# Track resources for cleanup
|
||||
program = None
|
||||
fbo = None
|
||||
output_textures = []
|
||||
input_textures = []
|
||||
ping_pong_textures = []
|
||||
ping_pong_fbos = []
|
||||
|
||||
num_inputs = len(image_batches[0])
|
||||
|
||||
try:
|
||||
# Compile shaders (once for all batches)
|
||||
try:
|
||||
program = _create_program(VERTEX_SHADER, fragment_source)
|
||||
except RuntimeError:
|
||||
logger.error(f"Fragment shader:\n{fragment_source}")
|
||||
raise
|
||||
|
||||
gl.glUseProgram(program)
|
||||
|
||||
# Create framebuffer with only the needed color attachments
|
||||
fbo = gl.glGenFramebuffers(1)
|
||||
gl.glBindFramebuffer(gl.GL_FRAMEBUFFER, fbo)
|
||||
|
||||
draw_buffers = []
|
||||
for i in range(num_outputs):
|
||||
tex = gl.glGenTextures(1)
|
||||
output_textures.append(tex)
|
||||
gl.glBindTexture(gl.GL_TEXTURE_2D, tex)
|
||||
gl.glTexImage2D(gl.GL_TEXTURE_2D, 0, gl.GL_RGBA32F, width, height, 0, gl.GL_RGBA, gl.GL_FLOAT, None)
|
||||
gl.glTexParameteri(gl.GL_TEXTURE_2D, gl.GL_TEXTURE_MIN_FILTER, gl.GL_LINEAR)
|
||||
gl.glTexParameteri(gl.GL_TEXTURE_2D, gl.GL_TEXTURE_MAG_FILTER, gl.GL_LINEAR)
|
||||
gl.glFramebufferTexture2D(gl.GL_FRAMEBUFFER, gl.GL_COLOR_ATTACHMENT0 + i, gl.GL_TEXTURE_2D, tex, 0)
|
||||
draw_buffers.append(gl.GL_COLOR_ATTACHMENT0 + i)
|
||||
|
||||
gl.glDrawBuffers(num_outputs, draw_buffers)
|
||||
|
||||
if gl.glCheckFramebufferStatus(gl.GL_FRAMEBUFFER) != gl.GL_FRAMEBUFFER_COMPLETE:
|
||||
raise RuntimeError("Framebuffer is not complete")
|
||||
|
||||
# Create ping-pong resources for multi-pass rendering
|
||||
if num_passes > 1:
|
||||
for _ in range(2):
|
||||
pp_tex = gl.glGenTextures(1)
|
||||
ping_pong_textures.append(pp_tex)
|
||||
gl.glBindTexture(gl.GL_TEXTURE_2D, pp_tex)
|
||||
gl.glTexImage2D(gl.GL_TEXTURE_2D, 0, gl.GL_RGBA32F, width, height, 0, gl.GL_RGBA, gl.GL_FLOAT, None)
|
||||
gl.glTexParameteri(gl.GL_TEXTURE_2D, gl.GL_TEXTURE_MIN_FILTER, gl.GL_LINEAR)
|
||||
gl.glTexParameteri(gl.GL_TEXTURE_2D, gl.GL_TEXTURE_MAG_FILTER, gl.GL_LINEAR)
|
||||
gl.glTexParameteri(gl.GL_TEXTURE_2D, gl.GL_TEXTURE_WRAP_S, gl.GL_CLAMP_TO_EDGE)
|
||||
gl.glTexParameteri(gl.GL_TEXTURE_2D, gl.GL_TEXTURE_WRAP_T, gl.GL_CLAMP_TO_EDGE)
|
||||
|
||||
pp_fbo = gl.glGenFramebuffers(1)
|
||||
ping_pong_fbos.append(pp_fbo)
|
||||
gl.glBindFramebuffer(gl.GL_FRAMEBUFFER, pp_fbo)
|
||||
gl.glFramebufferTexture2D(gl.GL_FRAMEBUFFER, gl.GL_COLOR_ATTACHMENT0, gl.GL_TEXTURE_2D, pp_tex, 0)
|
||||
gl.glDrawBuffers(1, [gl.GL_COLOR_ATTACHMENT0])
|
||||
|
||||
if gl.glCheckFramebufferStatus(gl.GL_FRAMEBUFFER) != gl.GL_FRAMEBUFFER_COMPLETE:
|
||||
raise RuntimeError("Ping-pong framebuffer is not complete")
|
||||
|
||||
# Create input textures (reused for all batches)
|
||||
for i in range(num_inputs):
|
||||
tex = gl.glGenTextures(1)
|
||||
input_textures.append(tex)
|
||||
gl.glActiveTexture(gl.GL_TEXTURE0 + i)
|
||||
gl.glBindTexture(gl.GL_TEXTURE_2D, tex)
|
||||
gl.glTexParameteri(gl.GL_TEXTURE_2D, gl.GL_TEXTURE_MIN_FILTER, gl.GL_LINEAR)
|
||||
gl.glTexParameteri(gl.GL_TEXTURE_2D, gl.GL_TEXTURE_MAG_FILTER, gl.GL_LINEAR)
|
||||
gl.glTexParameteri(gl.GL_TEXTURE_2D, gl.GL_TEXTURE_WRAP_S, gl.GL_CLAMP_TO_EDGE)
|
||||
gl.glTexParameteri(gl.GL_TEXTURE_2D, gl.GL_TEXTURE_WRAP_T, gl.GL_CLAMP_TO_EDGE)
|
||||
|
||||
loc = gl.glGetUniformLocation(program, f"u_image{i}")
|
||||
if loc >= 0:
|
||||
gl.glUniform1i(loc, i)
|
||||
|
||||
# Set static uniforms (once for all batches)
|
||||
loc = gl.glGetUniformLocation(program, "u_resolution")
|
||||
if loc >= 0:
|
||||
gl.glUniform2f(loc, float(width), float(height))
|
||||
|
||||
for i, v in enumerate(floats):
|
||||
loc = gl.glGetUniformLocation(program, f"u_float{i}")
|
||||
if loc >= 0:
|
||||
gl.glUniform1f(loc, v)
|
||||
|
||||
for i, v in enumerate(ints):
|
||||
loc = gl.glGetUniformLocation(program, f"u_int{i}")
|
||||
if loc >= 0:
|
||||
gl.glUniform1i(loc, v)
|
||||
|
||||
# Get u_pass uniform location for multi-pass
|
||||
pass_loc = gl.glGetUniformLocation(program, "u_pass")
|
||||
|
||||
gl.glViewport(0, 0, width, height)
|
||||
gl.glDisable(gl.GL_BLEND) # Ensure no alpha blending - write output directly
|
||||
|
||||
# Process each batch
|
||||
all_batch_outputs = []
|
||||
for images in image_batches:
|
||||
# Update input textures with this batch's images
|
||||
for i, img in enumerate(images):
|
||||
gl.glActiveTexture(gl.GL_TEXTURE0 + i)
|
||||
gl.glBindTexture(gl.GL_TEXTURE_2D, input_textures[i])
|
||||
|
||||
# Flip vertically for GL coordinates, ensure RGBA
|
||||
h, w, c = img.shape
|
||||
if c == 3:
|
||||
img_upload = np.empty((h, w, 4), dtype=np.float32)
|
||||
img_upload[:, :, :3] = img[::-1, :, :]
|
||||
img_upload[:, :, 3] = 1.0
|
||||
else:
|
||||
img_upload = np.ascontiguousarray(img[::-1, :, :])
|
||||
|
||||
gl.glTexImage2D(gl.GL_TEXTURE_2D, 0, gl.GL_RGBA32F, w, h, 0, gl.GL_RGBA, gl.GL_FLOAT, img_upload)
|
||||
|
||||
if num_passes == 1:
|
||||
# Single pass - render directly to output FBO
|
||||
gl.glBindFramebuffer(gl.GL_FRAMEBUFFER, fbo)
|
||||
if pass_loc >= 0:
|
||||
gl.glUniform1i(pass_loc, 0)
|
||||
gl.glClearColor(0, 0, 0, 0)
|
||||
gl.glClear(gl.GL_COLOR_BUFFER_BIT)
|
||||
gl.glDrawArrays(gl.GL_TRIANGLES, 0, 3)
|
||||
else:
|
||||
# Multi-pass rendering with ping-pong
|
||||
for p in range(num_passes):
|
||||
is_last_pass = (p == num_passes - 1)
|
||||
|
||||
# Set pass uniform
|
||||
if pass_loc >= 0:
|
||||
gl.glUniform1i(pass_loc, p)
|
||||
|
||||
if is_last_pass:
|
||||
# Last pass renders to the main output FBO
|
||||
gl.glBindFramebuffer(gl.GL_FRAMEBUFFER, fbo)
|
||||
else:
|
||||
# Intermediate passes render to ping-pong FBO
|
||||
target_fbo = ping_pong_fbos[p % 2]
|
||||
gl.glBindFramebuffer(gl.GL_FRAMEBUFFER, target_fbo)
|
||||
|
||||
# Set input texture for this pass
|
||||
gl.glActiveTexture(gl.GL_TEXTURE0)
|
||||
if p == 0:
|
||||
# First pass reads from original input
|
||||
gl.glBindTexture(gl.GL_TEXTURE_2D, input_textures[0])
|
||||
else:
|
||||
# Subsequent passes read from previous pass output
|
||||
source_tex = ping_pong_textures[(p - 1) % 2]
|
||||
gl.glBindTexture(gl.GL_TEXTURE_2D, source_tex)
|
||||
|
||||
gl.glClearColor(0, 0, 0, 0)
|
||||
gl.glClear(gl.GL_COLOR_BUFFER_BIT)
|
||||
gl.glDrawArrays(gl.GL_TRIANGLES, 0, 3)
|
||||
|
||||
# Read back outputs for this batch
|
||||
# (glGetTexImage is synchronous, implicitly waits for rendering)
|
||||
batch_outputs = []
|
||||
for tex in output_textures:
|
||||
gl.glBindTexture(gl.GL_TEXTURE_2D, tex)
|
||||
data = gl.glGetTexImage(gl.GL_TEXTURE_2D, 0, gl.GL_RGBA, gl.GL_FLOAT)
|
||||
img = np.frombuffer(data, dtype=np.float32).reshape(height, width, 4)
|
||||
batch_outputs.append(np.ascontiguousarray(img[::-1, :, :]))
|
||||
|
||||
# Pad with black images for unused outputs
|
||||
black_img = np.zeros((height, width, 4), dtype=np.float32)
|
||||
for _ in range(num_outputs, MAX_OUTPUTS):
|
||||
batch_outputs.append(black_img)
|
||||
|
||||
all_batch_outputs.append(batch_outputs)
|
||||
|
||||
elapsed = (time.perf_counter() - start_time) * 1000
|
||||
num_batches = len(image_batches)
|
||||
pass_info = f", {num_passes} passes" if num_passes > 1 else ""
|
||||
logger.info(f"GLSL shader executed in {elapsed:.1f}ms ({num_batches} batch{'es' if num_batches != 1 else ''}, {width}x{height}{pass_info})")
|
||||
|
||||
return all_batch_outputs
|
||||
|
||||
finally:
|
||||
# Unbind before deleting
|
||||
gl.glBindFramebuffer(gl.GL_FRAMEBUFFER, 0)
|
||||
gl.glUseProgram(0)
|
||||
|
||||
if input_textures:
|
||||
gl.glDeleteTextures(len(input_textures), input_textures)
|
||||
if output_textures:
|
||||
gl.glDeleteTextures(len(output_textures), output_textures)
|
||||
if ping_pong_textures:
|
||||
gl.glDeleteTextures(len(ping_pong_textures), ping_pong_textures)
|
||||
if fbo is not None:
|
||||
gl.glDeleteFramebuffers(1, [fbo])
|
||||
for pp_fbo in ping_pong_fbos:
|
||||
gl.glDeleteFramebuffers(1, [pp_fbo])
|
||||
if program is not None:
|
||||
gl.glDeleteProgram(program)
|
||||
|
||||
class GLSLShader(io.ComfyNode):
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls) -> io.Schema:
|
||||
image_template = io.Autogrow.TemplatePrefix(
|
||||
io.Image.Input("image"),
|
||||
prefix="image",
|
||||
min=1,
|
||||
max=MAX_IMAGES,
|
||||
)
|
||||
|
||||
float_template = io.Autogrow.TemplatePrefix(
|
||||
io.Float.Input("float", default=0.0),
|
||||
prefix="u_float",
|
||||
min=0,
|
||||
max=MAX_UNIFORMS,
|
||||
)
|
||||
|
||||
int_template = io.Autogrow.TemplatePrefix(
|
||||
io.Int.Input("int", default=0),
|
||||
prefix="u_int",
|
||||
min=0,
|
||||
max=MAX_UNIFORMS,
|
||||
)
|
||||
|
||||
return io.Schema(
|
||||
node_id="GLSLShader",
|
||||
display_name="GLSL Shader",
|
||||
category="image/shader",
|
||||
description=(
|
||||
f"Apply GLSL fragment shaders to images. "
|
||||
f"Inputs: u_image0-{MAX_IMAGES-1} (sampler2D), u_resolution (vec2), "
|
||||
f"u_float0-{MAX_UNIFORMS-1}, u_int0-{MAX_UNIFORMS-1}. "
|
||||
f"Outputs: layout(location = 0-{MAX_OUTPUTS-1}) out vec4 fragColor0-{MAX_OUTPUTS-1}."
|
||||
),
|
||||
inputs=[
|
||||
io.String.Input(
|
||||
"fragment_shader",
|
||||
default=DEFAULT_FRAGMENT_SHADER,
|
||||
multiline=True,
|
||||
tooltip="GLSL fragment shader source code (GLSL ES 3.00 / WebGL 2.0 compatible)",
|
||||
),
|
||||
io.DynamicCombo.Input(
|
||||
"size_mode",
|
||||
options=[
|
||||
io.DynamicCombo.Option("from_input", []),
|
||||
io.DynamicCombo.Option(
|
||||
"custom",
|
||||
[
|
||||
io.Int.Input(
|
||||
"width",
|
||||
default=512,
|
||||
min=1,
|
||||
max=nodes.MAX_RESOLUTION,
|
||||
),
|
||||
io.Int.Input(
|
||||
"height",
|
||||
default=512,
|
||||
min=1,
|
||||
max=nodes.MAX_RESOLUTION,
|
||||
),
|
||||
],
|
||||
),
|
||||
],
|
||||
tooltip="Output size: 'from_input' uses first input image dimensions, 'custom' allows manual size",
|
||||
),
|
||||
io.Autogrow.Input("images", template=image_template),
|
||||
io.Autogrow.Input("floats", template=float_template),
|
||||
io.Autogrow.Input("ints", template=int_template),
|
||||
],
|
||||
outputs=[
|
||||
io.Image.Output(display_name="IMAGE0"),
|
||||
io.Image.Output(display_name="IMAGE1"),
|
||||
io.Image.Output(display_name="IMAGE2"),
|
||||
io.Image.Output(display_name="IMAGE3"),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(
|
||||
cls,
|
||||
fragment_shader: str,
|
||||
size_mode: SizeModeInput,
|
||||
images: io.Autogrow.Type,
|
||||
floats: io.Autogrow.Type = None,
|
||||
ints: io.Autogrow.Type = None,
|
||||
**kwargs,
|
||||
) -> io.NodeOutput:
|
||||
image_list = [v for v in images.values() if v is not None]
|
||||
float_list = (
|
||||
[v if v is not None else 0.0 for v in floats.values()] if floats else []
|
||||
)
|
||||
int_list = [v if v is not None else 0 for v in ints.values()] if ints else []
|
||||
|
||||
if not image_list:
|
||||
raise ValueError("At least one input image is required")
|
||||
|
||||
# Determine output dimensions
|
||||
if size_mode["size_mode"] == "custom":
|
||||
out_width = size_mode["width"]
|
||||
out_height = size_mode["height"]
|
||||
else:
|
||||
out_height, out_width = image_list[0].shape[1:3]
|
||||
|
||||
batch_size = image_list[0].shape[0]
|
||||
|
||||
# Prepare batches
|
||||
image_batches = []
|
||||
for batch_idx in range(batch_size):
|
||||
batch_images = [img_tensor[batch_idx].cpu().numpy().astype(np.float32) for img_tensor in image_list]
|
||||
image_batches.append(batch_images)
|
||||
|
||||
all_batch_outputs = _render_shader_batch(
|
||||
fragment_shader,
|
||||
out_width,
|
||||
out_height,
|
||||
image_batches,
|
||||
float_list,
|
||||
int_list,
|
||||
)
|
||||
|
||||
# Collect outputs into tensors
|
||||
all_outputs = [[] for _ in range(MAX_OUTPUTS)]
|
||||
for batch_outputs in all_batch_outputs:
|
||||
for i, out_img in enumerate(batch_outputs):
|
||||
all_outputs[i].append(torch.from_numpy(out_img))
|
||||
|
||||
output_tensors = [torch.stack(all_outputs[i], dim=0) for i in range(MAX_OUTPUTS)]
|
||||
return io.NodeOutput(
|
||||
*output_tensors,
|
||||
ui=cls._build_ui_output(image_list, output_tensors[0]),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def _build_ui_output(
|
||||
cls, image_list: list[torch.Tensor], output_batch: torch.Tensor
|
||||
) -> dict[str, list]:
|
||||
"""Build UI output with input and output images for client-side shader execution."""
|
||||
combined_inputs = torch.cat(image_list, dim=0)
|
||||
input_images_ui = ui.ImageSaveHelper.save_images(
|
||||
combined_inputs,
|
||||
filename_prefix="GLSLShader_input",
|
||||
folder_type=io.FolderType.temp,
|
||||
cls=None,
|
||||
compress_level=1,
|
||||
)
|
||||
|
||||
output_images_ui = ui.ImageSaveHelper.save_images(
|
||||
output_batch,
|
||||
filename_prefix="GLSLShader_output",
|
||||
folder_type=io.FolderType.temp,
|
||||
cls=None,
|
||||
compress_level=1,
|
||||
)
|
||||
|
||||
return {"input_images": input_images_ui, "images": output_images_ui}
|
||||
|
||||
|
||||
class GLSLExtension(ComfyExtension):
|
||||
@override
|
||||
async def get_node_list(self) -> list[type[io.ComfyNode]]:
|
||||
return [GLSLShader]
|
||||
|
||||
|
||||
async def comfy_entrypoint() -> GLSLExtension:
|
||||
return GLSLExtension()
|
||||
@@ -13,6 +13,7 @@ class QuadrupleCLIPLoader(io.ComfyNode):
|
||||
node_id="QuadrupleCLIPLoader",
|
||||
category="advanced/loaders",
|
||||
description="[Recipes]\n\nhidream: long clip-l, long clip-g, t5xxl, llama_8b_3.1_instruct",
|
||||
short_description=None,
|
||||
inputs=[
|
||||
io.Combo.Input("clip_name1", options=folder_paths.get_filename_list("text_encoders")),
|
||||
io.Combo.Input("clip_name2", options=folder_paths.get_filename_list("text_encoders")),
|
||||
@@ -40,6 +41,8 @@ class CLIPTextEncodeHiDream(io.ComfyNode):
|
||||
node_id="CLIPTextEncodeHiDream",
|
||||
search_aliases=["hidream prompt"],
|
||||
category="advanced/conditioning",
|
||||
description="Encodes separate CLIP-L, CLIP-G, T5-XXL, and Llama text prompts into HiDream conditioning.",
|
||||
short_description="Encodes multi-encoder text prompts for HiDream.",
|
||||
inputs=[
|
||||
io.Clip.Input("clip"),
|
||||
io.String.Input("clip_l", multiline=True, dynamic_prompts=True),
|
||||
|
||||
@@ -38,6 +38,8 @@ class PairConditioningSetProperties:
|
||||
RETURN_TYPES = ("CONDITIONING", "CONDITIONING")
|
||||
RETURN_NAMES = ("positive", "negative")
|
||||
CATEGORY = "advanced/hooks/cond pair"
|
||||
DESCRIPTION = "Set properties like strength, mask, hooks, and timesteps on a positive/negative conditioning pair."
|
||||
SHORT_DESCRIPTION = "Set properties on a positive/negative conditioning pair."
|
||||
FUNCTION = "set_properties"
|
||||
|
||||
def set_properties(self, positive_NEW, negative_NEW,
|
||||
@@ -73,6 +75,8 @@ class PairConditioningSetPropertiesAndCombine:
|
||||
RETURN_TYPES = ("CONDITIONING", "CONDITIONING")
|
||||
RETURN_NAMES = ("positive", "negative")
|
||||
CATEGORY = "advanced/hooks/cond pair"
|
||||
DESCRIPTION = "Set properties on new conditioning pair and combine with existing positive/negative conditioning."
|
||||
SHORT_DESCRIPTION = "Set properties on new cond pair, combine with existing."
|
||||
FUNCTION = "set_properties"
|
||||
|
||||
def set_properties(self, positive, negative, positive_NEW, negative_NEW,
|
||||
@@ -104,6 +108,8 @@ class ConditioningSetProperties:
|
||||
EXPERIMENTAL = True
|
||||
RETURN_TYPES = ("CONDITIONING",)
|
||||
CATEGORY = "advanced/hooks/cond single"
|
||||
DESCRIPTION = "Set properties like strength, mask, hooks, and timesteps on a single conditioning input."
|
||||
SHORT_DESCRIPTION = "Set properties on a single conditioning input."
|
||||
FUNCTION = "set_properties"
|
||||
|
||||
def set_properties(self, cond_NEW,
|
||||
@@ -136,6 +142,8 @@ class ConditioningSetPropertiesAndCombine:
|
||||
EXPERIMENTAL = True
|
||||
RETURN_TYPES = ("CONDITIONING",)
|
||||
CATEGORY = "advanced/hooks/cond single"
|
||||
DESCRIPTION = "Set properties on new conditioning and combine it with an existing conditioning input."
|
||||
SHORT_DESCRIPTION = "Set properties on new conditioning, combine with existing."
|
||||
FUNCTION = "set_properties"
|
||||
|
||||
def set_properties(self, cond, cond_NEW,
|
||||
@@ -164,6 +172,8 @@ class PairConditioningCombine:
|
||||
RETURN_TYPES = ("CONDITIONING", "CONDITIONING")
|
||||
RETURN_NAMES = ("positive", "negative")
|
||||
CATEGORY = "advanced/hooks/cond pair"
|
||||
DESCRIPTION = "Combine two positive/negative conditioning pairs into a single pair."
|
||||
SHORT_DESCRIPTION = None
|
||||
FUNCTION = "combine"
|
||||
|
||||
def combine(self, positive_A, negative_A, positive_B, negative_B):
|
||||
@@ -191,6 +201,8 @@ class PairConditioningSetDefaultAndCombine:
|
||||
RETURN_TYPES = ("CONDITIONING", "CONDITIONING")
|
||||
RETURN_NAMES = ("positive", "negative")
|
||||
CATEGORY = "advanced/hooks/cond pair"
|
||||
DESCRIPTION = "Set default conditioning pair and combine it with existing positive/negative conditioning and optional hooks."
|
||||
SHORT_DESCRIPTION = "Set default cond pair and combine with existing."
|
||||
FUNCTION = "set_default_and_combine"
|
||||
|
||||
def set_default_and_combine(self, positive, negative, positive_DEFAULT, negative_DEFAULT,
|
||||
@@ -217,6 +229,8 @@ class ConditioningSetDefaultAndCombine:
|
||||
EXPERIMENTAL = True
|
||||
RETURN_TYPES = ("CONDITIONING",)
|
||||
CATEGORY = "advanced/hooks/cond single"
|
||||
DESCRIPTION = "Set default conditioning and combine it with existing conditioning input and optional hooks."
|
||||
SHORT_DESCRIPTION = "Set default conditioning and combine with existing."
|
||||
FUNCTION = "set_default_and_combine"
|
||||
|
||||
def set_default_and_combine(self, cond, cond_DEFAULT,
|
||||
@@ -244,6 +258,8 @@ class SetClipHooks:
|
||||
EXPERIMENTAL = True
|
||||
RETURN_TYPES = ("CLIP",)
|
||||
CATEGORY = "advanced/hooks/clip"
|
||||
DESCRIPTION = "Apply hooks to a CLIP model, optionally propagating them to conditioning outputs and enabling CLIP scheduling."
|
||||
SHORT_DESCRIPTION = "Apply hooks to a CLIP model with scheduling options."
|
||||
FUNCTION = "apply_hooks"
|
||||
|
||||
def apply_hooks(self, clip: CLIP, schedule_clip: bool, apply_to_conds: bool, hooks: comfy.hooks.HookGroup=None):
|
||||
@@ -275,6 +291,8 @@ class ConditioningTimestepsRange:
|
||||
RETURN_TYPES = ("TIMESTEPS_RANGE", "TIMESTEPS_RANGE", "TIMESTEPS_RANGE")
|
||||
RETURN_NAMES = ("TIMESTEPS_RANGE", "BEFORE_RANGE", "AFTER_RANGE")
|
||||
CATEGORY = "advanced/hooks"
|
||||
DESCRIPTION = "Define a timestep percentage range and output the range plus its complement before and after segments."
|
||||
SHORT_DESCRIPTION = "Define a timestep range with before/after complements."
|
||||
FUNCTION = "create_range"
|
||||
|
||||
def create_range(self, start_percent: float, end_percent: float):
|
||||
@@ -308,6 +326,8 @@ class CreateHookLora:
|
||||
EXPERIMENTAL = True
|
||||
RETURN_TYPES = ("HOOKS",)
|
||||
CATEGORY = "advanced/hooks/create"
|
||||
DESCRIPTION = "Create a LoRA hook with separate model and CLIP strength that can be scheduled on conditioning."
|
||||
SHORT_DESCRIPTION = "Create a LoRA hook with model and CLIP strength."
|
||||
FUNCTION = "create_hook"
|
||||
|
||||
def create_hook(self, lora_name: str, strength_model: float, strength_clip: float, prev_hooks: comfy.hooks.HookGroup=None):
|
||||
@@ -353,6 +373,8 @@ class CreateHookLoraModelOnly(CreateHookLora):
|
||||
EXPERIMENTAL = True
|
||||
RETURN_TYPES = ("HOOKS",)
|
||||
CATEGORY = "advanced/hooks/create"
|
||||
DESCRIPTION = "Create a LoRA hook that only affects the model (not CLIP) for scheduling on conditioning."
|
||||
SHORT_DESCRIPTION = "Create a model-only LoRA hook."
|
||||
FUNCTION = "create_hook_model_only"
|
||||
|
||||
def create_hook_model_only(self, lora_name: str, strength_model: float, prev_hooks: comfy.hooks.HookGroup=None):
|
||||
@@ -383,6 +405,8 @@ class CreateHookModelAsLora:
|
||||
EXPERIMENTAL = True
|
||||
RETURN_TYPES = ("HOOKS",)
|
||||
CATEGORY = "advanced/hooks/create"
|
||||
DESCRIPTION = "Create a hook from a full checkpoint treated as a LoRA, with separate model and CLIP strength controls."
|
||||
SHORT_DESCRIPTION = "Create a hook from a checkpoint treated as LoRA."
|
||||
FUNCTION = "create_hook"
|
||||
|
||||
def create_hook(self, ckpt_name: str, strength_model: float, strength_clip: float,
|
||||
@@ -431,6 +455,8 @@ class CreateHookModelAsLoraModelOnly(CreateHookModelAsLora):
|
||||
EXPERIMENTAL = True
|
||||
RETURN_TYPES = ("HOOKS",)
|
||||
CATEGORY = "advanced/hooks/create"
|
||||
DESCRIPTION = "Create a model-only hook from a full checkpoint treated as a LoRA, without affecting CLIP."
|
||||
SHORT_DESCRIPTION = "Create a model-only hook from a checkpoint as LoRA."
|
||||
FUNCTION = "create_hook_model_only"
|
||||
|
||||
def create_hook_model_only(self, ckpt_name: str, strength_model: float,
|
||||
@@ -460,6 +486,8 @@ class SetHookKeyframes:
|
||||
EXPERIMENTAL = True
|
||||
RETURN_TYPES = ("HOOKS",)
|
||||
CATEGORY = "advanced/hooks/scheduling"
|
||||
DESCRIPTION = "Assign keyframe schedules to hooks for controlling their strength over time during sampling."
|
||||
SHORT_DESCRIPTION = "Assign keyframe schedules to hooks over time."
|
||||
FUNCTION = "set_hook_keyframes"
|
||||
|
||||
def set_hook_keyframes(self, hooks: comfy.hooks.HookGroup, hook_kf: comfy.hooks.HookKeyframeGroup=None):
|
||||
@@ -488,6 +516,8 @@ class CreateHookKeyframe:
|
||||
RETURN_TYPES = ("HOOK_KEYFRAMES",)
|
||||
RETURN_NAMES = ("HOOK_KF",)
|
||||
CATEGORY = "advanced/hooks/scheduling"
|
||||
DESCRIPTION = "Create a single hook keyframe with a strength multiplier at a specific timestep percentage."
|
||||
SHORT_DESCRIPTION = "Create a hook keyframe at a specific timestep."
|
||||
FUNCTION = "create_hook_keyframe"
|
||||
|
||||
def create_hook_keyframe(self, strength_mult: float, start_percent: float, prev_hook_kf: comfy.hooks.HookKeyframeGroup=None):
|
||||
@@ -523,6 +553,8 @@ class CreateHookKeyframesInterpolated:
|
||||
RETURN_TYPES = ("HOOK_KEYFRAMES",)
|
||||
RETURN_NAMES = ("HOOK_KF",)
|
||||
CATEGORY = "advanced/hooks/scheduling"
|
||||
DESCRIPTION = "Generate multiple interpolated hook keyframes between start and end strength values over a timestep range."
|
||||
SHORT_DESCRIPTION = "Generate interpolated hook keyframes over a timestep range."
|
||||
FUNCTION = "create_hook_keyframes"
|
||||
|
||||
def create_hook_keyframes(self, strength_start: float, strength_end: float, interpolation: str,
|
||||
@@ -568,6 +600,8 @@ class CreateHookKeyframesFromFloats:
|
||||
RETURN_TYPES = ("HOOK_KEYFRAMES",)
|
||||
RETURN_NAMES = ("HOOK_KF",)
|
||||
CATEGORY = "advanced/hooks/scheduling"
|
||||
DESCRIPTION = "Create hook keyframes from a list of float values distributed evenly across a timestep percentage range."
|
||||
SHORT_DESCRIPTION = "Create hook keyframes from a list of float values."
|
||||
FUNCTION = "create_hook_keyframes"
|
||||
|
||||
def create_hook_keyframes(self, floats_strength: Union[float, list[float]],
|
||||
@@ -639,6 +673,8 @@ class CombineHooks:
|
||||
EXPERIMENTAL = True
|
||||
RETURN_TYPES = ("HOOKS",)
|
||||
CATEGORY = "advanced/hooks/combine"
|
||||
DESCRIPTION = "Combine two hook groups into one."
|
||||
SHORT_DESCRIPTION = None
|
||||
FUNCTION = "combine_hooks"
|
||||
|
||||
def combine_hooks(self,
|
||||
@@ -666,6 +702,8 @@ class CombineHooksFour:
|
||||
EXPERIMENTAL = True
|
||||
RETURN_TYPES = ("HOOKS",)
|
||||
CATEGORY = "advanced/hooks/combine"
|
||||
DESCRIPTION = "Combine up to four hook groups into one."
|
||||
SHORT_DESCRIPTION = None
|
||||
FUNCTION = "combine_hooks"
|
||||
|
||||
def combine_hooks(self,
|
||||
@@ -699,6 +737,8 @@ class CombineHooksEight:
|
||||
EXPERIMENTAL = True
|
||||
RETURN_TYPES = ("HOOKS",)
|
||||
CATEGORY = "advanced/hooks/combine"
|
||||
DESCRIPTION = "Combine up to eight hook groups into one."
|
||||
SHORT_DESCRIPTION = None
|
||||
FUNCTION = "combine_hooks"
|
||||
|
||||
def combine_hooks(self,
|
||||
|
||||
@@ -15,6 +15,8 @@ class CLIPTextEncodeHunyuanDiT(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id="CLIPTextEncodeHunyuanDiT",
|
||||
category="advanced/conditioning",
|
||||
description="Encodes text using both BERT and mT5-XL tokenizers for Hunyuan DiT conditioning.",
|
||||
short_description="Dual-tokenizer text encoding for Hunyuan DiT.",
|
||||
inputs=[
|
||||
io.Clip.Input("clip"),
|
||||
io.String.Input("bert", multiline=True, dynamic_prompts=True),
|
||||
@@ -42,6 +44,8 @@ class EmptyHunyuanLatentVideo(io.ComfyNode):
|
||||
node_id="EmptyHunyuanLatentVideo",
|
||||
display_name="Empty HunyuanVideo 1.0 Latent",
|
||||
category="latent/video",
|
||||
description="Creates an empty latent tensor sized for HunyuanVideo 1.0 video generation.",
|
||||
short_description="Empty latent for HunyuanVideo 1.0 generation.",
|
||||
inputs=[
|
||||
io.Int.Input("width", default=848, min=16, max=nodes.MAX_RESOLUTION, step=16),
|
||||
io.Int.Input("height", default=480, min=16, max=nodes.MAX_RESOLUTION, step=16),
|
||||
@@ -67,6 +71,8 @@ class EmptyHunyuanVideo15Latent(EmptyHunyuanLatentVideo):
|
||||
schema = super().define_schema()
|
||||
schema.node_id = "EmptyHunyuanVideo15Latent"
|
||||
schema.display_name = "Empty HunyuanVideo 1.5 Latent"
|
||||
schema.description = "Creates an empty latent tensor sized for HunyuanVideo 1.5 video generation with 16x spatial downscale."
|
||||
schema.short_description = "Empty latent for HunyuanVideo 1.5 generation."
|
||||
return schema
|
||||
|
||||
@classmethod
|
||||
@@ -82,6 +88,8 @@ class HunyuanVideo15ImageToVideo(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id="HunyuanVideo15ImageToVideo",
|
||||
category="conditioning/video_models",
|
||||
description="Prepares conditioning and latent for HunyuanVideo 1.5 image-to-video generation with start image and CLIP vision support.",
|
||||
short_description="HunyuanVideo 1.5 image-to-video conditioning setup.",
|
||||
inputs=[
|
||||
io.Conditioning.Input("positive"),
|
||||
io.Conditioning.Input("negative"),
|
||||
@@ -131,6 +139,9 @@ class HunyuanVideo15SuperResolution(io.ComfyNode):
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="HunyuanVideo15SuperResolution",
|
||||
category="conditioning/video_models",
|
||||
description="Sets up conditioning for HunyuanVideo 1.5 super-resolution upscaling of a latent with noise augmentation and optional image guidance.",
|
||||
short_description="HunyuanVideo 1.5 super-resolution latent conditioning.",
|
||||
inputs=[
|
||||
io.Conditioning.Input("positive"),
|
||||
io.Conditioning.Input("negative"),
|
||||
@@ -177,6 +188,8 @@ class LatentUpscaleModelLoader(io.ComfyNode):
|
||||
node_id="LatentUpscaleModelLoader",
|
||||
display_name="Load Latent Upscale Model",
|
||||
category="loaders",
|
||||
description="Loads a latent upscale model from disk, supporting HunyuanVideo 720p, 1080p, and other latent upsampler architectures.",
|
||||
short_description="Load a latent upscale model from file.",
|
||||
inputs=[
|
||||
io.Combo.Input("model_name", options=folder_paths.get_filename_list("latent_upscale_models")),
|
||||
],
|
||||
@@ -226,6 +239,8 @@ class HunyuanVideo15LatentUpscaleWithModel(io.ComfyNode):
|
||||
node_id="HunyuanVideo15LatentUpscaleWithModel",
|
||||
display_name="Hunyuan Video 15 Latent Upscale With Model",
|
||||
category="latent",
|
||||
description="Upscales a video latent to a target resolution using a loaded latent upscale model and configurable upscale method.",
|
||||
short_description="Upscale video latent using a latent upscale model.",
|
||||
inputs=[
|
||||
io.LatentUpscaleModel.Input("model"),
|
||||
io.Latent.Input("samples"),
|
||||
@@ -275,6 +290,8 @@ class TextEncodeHunyuanVideo_ImageToVideo(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id="TextEncodeHunyuanVideo_ImageToVideo",
|
||||
category="advanced/conditioning",
|
||||
description="Encodes text with CLIP vision image embeddings for HunyuanVideo image-to-video conditioning using an interleaved template.",
|
||||
short_description="Text and image encoding for HunyuanVideo image-to-video.",
|
||||
inputs=[
|
||||
io.Clip.Input("clip"),
|
||||
io.ClipVisionOutput.Input("clip_vision_output"),
|
||||
@@ -306,6 +323,8 @@ class HunyuanImageToVideo(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id="HunyuanImageToVideo",
|
||||
category="conditioning/video_models",
|
||||
description="Prepares conditioning and latent for Hunyuan image-to-video generation with selectable guidance type.",
|
||||
short_description="Hunyuan image-to-video conditioning with guidance options.",
|
||||
inputs=[
|
||||
io.Conditioning.Input("positive"),
|
||||
io.Vae.Input("vae"),
|
||||
@@ -357,6 +376,8 @@ class EmptyHunyuanImageLatent(io.ComfyNode):
|
||||
return io.Schema(
|
||||
node_id="EmptyHunyuanImageLatent",
|
||||
category="latent",
|
||||
description="Creates an empty latent tensor sized for Hunyuan image generation.",
|
||||
short_description="Empty latent for Hunyuan image generation.",
|
||||
inputs=[
|
||||
io.Int.Input("width", default=2048, min=64, max=nodes.MAX_RESOLUTION, step=32),
|
||||
io.Int.Input("height", default=2048, min=64, max=nodes.MAX_RESOLUTION, step=32),
|
||||
@@ -380,6 +401,9 @@ class HunyuanRefinerLatent(io.ComfyNode):
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="HunyuanRefinerLatent",
|
||||
category="conditioning/video_models",
|
||||
description="Prepares conditioning for a Hunyuan refiner pass by concatenating the input latent with noise augmentation settings.",
|
||||
short_description="Hunyuan refiner conditioning with noise augmentation.",
|
||||
inputs=[
|
||||
io.Conditioning.Input("positive"),
|
||||
io.Conditioning.Input("negative"),
|
||||
|
||||
Some files were not shown because too many files have changed in this diff Show More
Reference in New Issue
Block a user