mirror of
https://github.com/comfyanonymous/ComfyUI.git
synced 2026-02-15 04:30:02 +00:00
Compare commits
51 Commits
jk/control
...
glsl-cloud
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
40b247f046 | ||
|
|
e1ede29d82 | ||
|
|
df1e5e8514 | ||
|
|
dc9822b7df | ||
|
|
712efb466b | ||
|
|
726af73867 | ||
|
|
831351a29e | ||
|
|
e1add563f9 | ||
|
|
8902907d7a | ||
|
|
e03fe8b591 | ||
|
|
ae79e33345 | ||
|
|
117e214354 | ||
|
|
4a93a62371 | ||
|
|
66c18522fb | ||
|
|
e5ae670a40 | ||
|
|
3fe61cedda | ||
|
|
2a4328d639 | ||
|
|
d297a749a2 | ||
|
|
2b7cc7e3b6 | ||
|
|
4993411fd9 | ||
|
|
2c7cef4a23 | ||
|
|
76a7fa96db | ||
|
|
cdcf4119b3 | ||
|
|
dbe70b6821 | ||
|
|
00fff6019e | ||
|
|
c2d229a786 | ||
|
|
3c40ee0f02 | ||
|
|
43034b6881 | ||
|
|
bb048d4aaa | ||
|
|
7c1f02d1fa | ||
|
|
292a5918f4 | ||
|
|
0050b66a0b | ||
|
|
0c313f5293 | ||
|
|
1fcf9dca18 | ||
|
|
3b790d24d6 | ||
|
|
92b2b7198a | ||
|
|
309c3e4ec0 | ||
|
|
23591d4388 | ||
|
|
c3d07bec6d | ||
|
|
59b955ff54 | ||
|
|
1263d6fe88 | ||
|
|
23572c6314 | ||
|
|
d809ef8fb1 | ||
|
|
a4317314d2 | ||
|
|
aaea976f36 | ||
|
|
cee092213e | ||
|
|
3da0e9c367 | ||
|
|
9fa8202620 | ||
|
|
b4438c9baf | ||
|
|
cc30293d65 | ||
|
|
866d863128 |
36
.github/workflows/release-webhook.yml
vendored
36
.github/workflows/release-webhook.yml
vendored
@@ -7,6 +7,8 @@ on:
|
||||
jobs:
|
||||
send-webhook:
|
||||
runs-on: ubuntu-latest
|
||||
env:
|
||||
DESKTOP_REPO_DISPATCH_TOKEN: ${{ secrets.DESKTOP_REPO_DISPATCH_TOKEN }}
|
||||
steps:
|
||||
- name: Send release webhook
|
||||
env:
|
||||
@@ -106,3 +108,37 @@ jobs:
|
||||
--fail --silent --show-error
|
||||
|
||||
echo "✅ Release webhook sent successfully"
|
||||
|
||||
- name: Send repository dispatch to desktop
|
||||
env:
|
||||
DISPATCH_TOKEN: ${{ env.DESKTOP_REPO_DISPATCH_TOKEN }}
|
||||
RELEASE_TAG: ${{ github.event.release.tag_name }}
|
||||
RELEASE_URL: ${{ github.event.release.html_url }}
|
||||
run: |
|
||||
set -euo pipefail
|
||||
|
||||
if [ -z "${DISPATCH_TOKEN:-}" ]; then
|
||||
echo "::error::DESKTOP_REPO_DISPATCH_TOKEN is required but not set."
|
||||
exit 1
|
||||
fi
|
||||
|
||||
PAYLOAD="$(jq -n \
|
||||
--arg release_tag "$RELEASE_TAG" \
|
||||
--arg release_url "$RELEASE_URL" \
|
||||
'{
|
||||
event_type: "comfyui_release_published",
|
||||
client_payload: {
|
||||
release_tag: $release_tag,
|
||||
release_url: $release_url
|
||||
}
|
||||
}')"
|
||||
|
||||
curl -fsSL \
|
||||
-X POST \
|
||||
-H "Accept: application/vnd.github+json" \
|
||||
-H "Content-Type: application/json" \
|
||||
-H "Authorization: Bearer ${DISPATCH_TOKEN}" \
|
||||
https://api.github.com/repos/Comfy-Org/desktop/dispatches \
|
||||
-d "$PAYLOAD"
|
||||
|
||||
echo "✅ Dispatched ComfyUI release ${RELEASE_TAG} to Comfy-Org/desktop"
|
||||
|
||||
@@ -227,7 +227,7 @@ Put your VAE in: models/vae
|
||||
|
||||
AMD users can install rocm and pytorch with pip if you don't have it already installed, this is the command to install the stable version:
|
||||
|
||||
```pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm6.4```
|
||||
```pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm7.1```
|
||||
|
||||
This is the command to install the nightly with ROCm 7.1 which might have some performance improvements:
|
||||
|
||||
|
||||
44
blueprints/.glsl/Brightness_and_Contrast_1.frag
Normal file
44
blueprints/.glsl/Brightness_and_Contrast_1.frag
Normal file
@@ -0,0 +1,44 @@
|
||||
#version 300 es
|
||||
precision highp float;
|
||||
|
||||
uniform sampler2D u_image0;
|
||||
uniform float u_float0; // Brightness slider -100..100
|
||||
uniform float u_float1; // Contrast slider -100..100
|
||||
|
||||
in vec2 v_texCoord;
|
||||
out vec4 fragColor;
|
||||
|
||||
const float MID_GRAY = 0.18; // 18% reflectance
|
||||
|
||||
// sRGB gamma 2.2 approximation
|
||||
vec3 srgbToLinear(vec3 c) {
|
||||
return pow(max(c, 0.0), vec3(2.2));
|
||||
}
|
||||
|
||||
vec3 linearToSrgb(vec3 c) {
|
||||
return pow(max(c, 0.0), vec3(1.0/2.2));
|
||||
}
|
||||
|
||||
float mapBrightness(float b) {
|
||||
return clamp(b / 100.0, -1.0, 1.0);
|
||||
}
|
||||
|
||||
float mapContrast(float c) {
|
||||
return clamp(c / 100.0 + 1.0, 0.0, 2.0);
|
||||
}
|
||||
|
||||
void main() {
|
||||
vec4 orig = texture(u_image0, v_texCoord);
|
||||
|
||||
float brightness = mapBrightness(u_float0);
|
||||
float contrast = mapContrast(u_float1);
|
||||
|
||||
vec3 lin = srgbToLinear(orig.rgb);
|
||||
|
||||
lin = (lin - MID_GRAY) * contrast + brightness + MID_GRAY;
|
||||
|
||||
// Convert back to sRGB
|
||||
vec3 result = linearToSrgb(clamp(lin, 0.0, 1.0));
|
||||
|
||||
fragColor = vec4(result, orig.a);
|
||||
}
|
||||
72
blueprints/.glsl/Chromatic_Aberration_16.frag
Normal file
72
blueprints/.glsl/Chromatic_Aberration_16.frag
Normal file
@@ -0,0 +1,72 @@
|
||||
#version 300 es
|
||||
precision highp float;
|
||||
|
||||
uniform sampler2D u_image0;
|
||||
uniform vec2 u_resolution;
|
||||
uniform int u_int0; // Mode
|
||||
uniform float u_float0; // Amount (0 to 100)
|
||||
|
||||
in vec2 v_texCoord;
|
||||
out vec4 fragColor;
|
||||
|
||||
const int MODE_LINEAR = 0;
|
||||
const int MODE_RADIAL = 1;
|
||||
const int MODE_BARREL = 2;
|
||||
const int MODE_SWIRL = 3;
|
||||
const int MODE_DIAGONAL = 4;
|
||||
|
||||
const float AMOUNT_SCALE = 0.0005;
|
||||
const float RADIAL_MULT = 4.0;
|
||||
const float BARREL_MULT = 8.0;
|
||||
const float INV_SQRT2 = 0.70710678118;
|
||||
|
||||
void main() {
|
||||
vec2 uv = v_texCoord;
|
||||
vec4 original = texture(u_image0, uv);
|
||||
|
||||
float amount = u_float0 * AMOUNT_SCALE;
|
||||
|
||||
if (amount < 0.000001) {
|
||||
fragColor = original;
|
||||
return;
|
||||
}
|
||||
|
||||
// Aspect-corrected coordinates for circular effects
|
||||
float aspect = u_resolution.x / u_resolution.y;
|
||||
vec2 centered = uv - 0.5;
|
||||
vec2 corrected = vec2(centered.x * aspect, centered.y);
|
||||
float r = length(corrected);
|
||||
vec2 dir = r > 0.0001 ? corrected / r : vec2(0.0);
|
||||
vec2 offset = vec2(0.0);
|
||||
|
||||
if (u_int0 == MODE_LINEAR) {
|
||||
// Horizontal shift (no aspect correction needed)
|
||||
offset = vec2(amount, 0.0);
|
||||
}
|
||||
else if (u_int0 == MODE_RADIAL) {
|
||||
// Outward from center, stronger at edges
|
||||
offset = dir * r * amount * RADIAL_MULT;
|
||||
offset.x /= aspect; // Convert back to UV space
|
||||
}
|
||||
else if (u_int0 == MODE_BARREL) {
|
||||
// Lens distortion simulation (r² falloff)
|
||||
offset = dir * r * r * amount * BARREL_MULT;
|
||||
offset.x /= aspect; // Convert back to UV space
|
||||
}
|
||||
else if (u_int0 == MODE_SWIRL) {
|
||||
// Perpendicular to radial (rotational aberration)
|
||||
vec2 perp = vec2(-dir.y, dir.x);
|
||||
offset = perp * r * amount * RADIAL_MULT;
|
||||
offset.x /= aspect; // Convert back to UV space
|
||||
}
|
||||
else if (u_int0 == MODE_DIAGONAL) {
|
||||
// 45° offset (no aspect correction needed)
|
||||
offset = vec2(amount, amount) * INV_SQRT2;
|
||||
}
|
||||
|
||||
float red = texture(u_image0, uv + offset).r;
|
||||
float green = original.g;
|
||||
float blue = texture(u_image0, uv - offset).b;
|
||||
|
||||
fragColor = vec4(red, green, blue, original.a);
|
||||
}
|
||||
78
blueprints/.glsl/Color_Adjustment_15.frag
Normal file
78
blueprints/.glsl/Color_Adjustment_15.frag
Normal file
@@ -0,0 +1,78 @@
|
||||
#version 300 es
|
||||
precision highp float;
|
||||
|
||||
uniform sampler2D u_image0;
|
||||
uniform float u_float0; // temperature (-100 to 100)
|
||||
uniform float u_float1; // tint (-100 to 100)
|
||||
uniform float u_float2; // vibrance (-100 to 100)
|
||||
uniform float u_float3; // saturation (-100 to 100)
|
||||
|
||||
in vec2 v_texCoord;
|
||||
out vec4 fragColor;
|
||||
|
||||
const float INPUT_SCALE = 0.01;
|
||||
const float TEMP_TINT_PRIMARY = 0.3;
|
||||
const float TEMP_TINT_SECONDARY = 0.15;
|
||||
const float VIBRANCE_BOOST = 2.0;
|
||||
const float SATURATION_BOOST = 2.0;
|
||||
const float SKIN_PROTECTION = 0.5;
|
||||
const float EPSILON = 0.001;
|
||||
const vec3 LUMA_WEIGHTS = vec3(0.299, 0.587, 0.114);
|
||||
|
||||
void main() {
|
||||
vec4 tex = texture(u_image0, v_texCoord);
|
||||
vec3 color = tex.rgb;
|
||||
|
||||
// Scale inputs: -100/100 → -1/1
|
||||
float temperature = u_float0 * INPUT_SCALE;
|
||||
float tint = u_float1 * INPUT_SCALE;
|
||||
float vibrance = u_float2 * INPUT_SCALE;
|
||||
float saturation = u_float3 * INPUT_SCALE;
|
||||
|
||||
// Temperature (warm/cool): positive = warm, negative = cool
|
||||
color.r += temperature * TEMP_TINT_PRIMARY;
|
||||
color.b -= temperature * TEMP_TINT_PRIMARY;
|
||||
|
||||
// Tint (green/magenta): positive = green, negative = magenta
|
||||
color.g += tint * TEMP_TINT_PRIMARY;
|
||||
color.r -= tint * TEMP_TINT_SECONDARY;
|
||||
color.b -= tint * TEMP_TINT_SECONDARY;
|
||||
|
||||
// Single clamp after temperature/tint
|
||||
color = clamp(color, 0.0, 1.0);
|
||||
|
||||
// Vibrance with skin protection
|
||||
if (vibrance != 0.0) {
|
||||
float maxC = max(color.r, max(color.g, color.b));
|
||||
float minC = min(color.r, min(color.g, color.b));
|
||||
float sat = maxC - minC;
|
||||
float gray = dot(color, LUMA_WEIGHTS);
|
||||
|
||||
if (vibrance < 0.0) {
|
||||
// Desaturate: -100 → gray
|
||||
color = mix(vec3(gray), color, 1.0 + vibrance);
|
||||
} else {
|
||||
// Boost less saturated colors more
|
||||
float vibranceAmt = vibrance * (1.0 - sat);
|
||||
|
||||
// Branchless skin tone protection
|
||||
float isWarmTone = step(color.b, color.g) * step(color.g, color.r);
|
||||
float warmth = (color.r - color.b) / max(maxC, EPSILON);
|
||||
float skinTone = isWarmTone * warmth * sat * (1.0 - sat);
|
||||
vibranceAmt *= (1.0 - skinTone * SKIN_PROTECTION);
|
||||
|
||||
color = mix(vec3(gray), color, 1.0 + vibranceAmt * VIBRANCE_BOOST);
|
||||
}
|
||||
}
|
||||
|
||||
// Saturation
|
||||
if (saturation != 0.0) {
|
||||
float gray = dot(color, LUMA_WEIGHTS);
|
||||
float satMix = saturation < 0.0
|
||||
? 1.0 + saturation // -100 → gray
|
||||
: 1.0 + saturation * SATURATION_BOOST; // +100 → 3x boost
|
||||
color = mix(vec3(gray), color, satMix);
|
||||
}
|
||||
|
||||
fragColor = vec4(clamp(color, 0.0, 1.0), tex.a);
|
||||
}
|
||||
94
blueprints/.glsl/Edge-Preserving_Blur_128.frag
Normal file
94
blueprints/.glsl/Edge-Preserving_Blur_128.frag
Normal file
@@ -0,0 +1,94 @@
|
||||
#version 300 es
|
||||
precision highp float;
|
||||
|
||||
uniform sampler2D u_image0;
|
||||
uniform float u_float0; // Blur radius (0–20, default ~5)
|
||||
uniform float u_float1; // Edge threshold (0–100, default ~30)
|
||||
uniform int u_int0; // Step size (0/1 = every pixel, 2+ = skip pixels)
|
||||
|
||||
in vec2 v_texCoord;
|
||||
out vec4 fragColor;
|
||||
|
||||
const int MAX_RADIUS = 20;
|
||||
const float EPSILON = 0.0001;
|
||||
|
||||
// Perceptual luminance
|
||||
float getLuminance(vec3 rgb) {
|
||||
return dot(rgb, vec3(0.299, 0.587, 0.114));
|
||||
}
|
||||
|
||||
vec4 bilateralFilter(vec2 uv, vec2 texelSize, int radius,
|
||||
float sigmaSpatial, float sigmaColor)
|
||||
{
|
||||
vec4 center = texture(u_image0, uv);
|
||||
vec3 centerRGB = center.rgb;
|
||||
|
||||
float invSpatial2 = -0.5 / (sigmaSpatial * sigmaSpatial);
|
||||
float invColor2 = -0.5 / (sigmaColor * sigmaColor + EPSILON);
|
||||
|
||||
vec3 sumRGB = vec3(0.0);
|
||||
float sumWeight = 0.0;
|
||||
|
||||
int step = max(u_int0, 1);
|
||||
float radius2 = float(radius * radius);
|
||||
|
||||
for (int dy = -MAX_RADIUS; dy <= MAX_RADIUS; dy++) {
|
||||
if (dy < -radius || dy > radius) continue;
|
||||
if (abs(dy) % step != 0) continue;
|
||||
|
||||
for (int dx = -MAX_RADIUS; dx <= MAX_RADIUS; dx++) {
|
||||
if (dx < -radius || dx > radius) continue;
|
||||
if (abs(dx) % step != 0) continue;
|
||||
|
||||
vec2 offset = vec2(float(dx), float(dy));
|
||||
float dist2 = dot(offset, offset);
|
||||
if (dist2 > radius2) continue;
|
||||
|
||||
vec3 sampleRGB = texture(u_image0, uv + offset * texelSize).rgb;
|
||||
|
||||
// Spatial Gaussian
|
||||
float spatialWeight = exp(dist2 * invSpatial2);
|
||||
|
||||
// Perceptual color distance (weighted RGB)
|
||||
vec3 diff = sampleRGB - centerRGB;
|
||||
float colorDist = dot(diff * diff, vec3(0.299, 0.587, 0.114));
|
||||
float colorWeight = exp(colorDist * invColor2);
|
||||
|
||||
float w = spatialWeight * colorWeight;
|
||||
sumRGB += sampleRGB * w;
|
||||
sumWeight += w;
|
||||
}
|
||||
}
|
||||
|
||||
vec3 resultRGB = sumRGB / max(sumWeight, EPSILON);
|
||||
return vec4(resultRGB, center.a); // preserve center alpha
|
||||
}
|
||||
|
||||
void main() {
|
||||
vec2 texelSize = 1.0 / vec2(textureSize(u_image0, 0));
|
||||
|
||||
float radiusF = clamp(u_float0, 0.0, float(MAX_RADIUS));
|
||||
int radius = int(radiusF + 0.5);
|
||||
|
||||
if (radius == 0) {
|
||||
fragColor = texture(u_image0, v_texCoord);
|
||||
return;
|
||||
}
|
||||
|
||||
// Edge threshold → color sigma
|
||||
// Squared curve for better low-end control
|
||||
float t = clamp(u_float1, 0.0, 100.0) / 100.0;
|
||||
t *= t;
|
||||
float sigmaColor = mix(0.01, 0.5, t);
|
||||
|
||||
// Spatial sigma tied to radius
|
||||
float sigmaSpatial = max(radiusF * 0.75, 0.5);
|
||||
|
||||
fragColor = bilateralFilter(
|
||||
v_texCoord,
|
||||
texelSize,
|
||||
radius,
|
||||
sigmaSpatial,
|
||||
sigmaColor
|
||||
);
|
||||
}
|
||||
124
blueprints/.glsl/Film_Grain_15.frag
Normal file
124
blueprints/.glsl/Film_Grain_15.frag
Normal file
@@ -0,0 +1,124 @@
|
||||
#version 300 es
|
||||
precision highp float;
|
||||
|
||||
uniform sampler2D u_image0;
|
||||
uniform vec2 u_resolution;
|
||||
uniform float u_float0; // grain amount [0.0 – 1.0] typical: 0.2–0.8
|
||||
uniform float u_float1; // grain size [0.3 – 3.0] lower = finer grain
|
||||
uniform float u_float2; // color amount [0.0 – 1.0] 0 = monochrome, 1 = RGB grain
|
||||
uniform float u_float3; // luminance bias [0.0 – 1.0] 0 = uniform, 1 = shadows only
|
||||
uniform int u_int0; // noise mode [0 or 1] 0 = smooth, 1 = grainy
|
||||
|
||||
in vec2 v_texCoord;
|
||||
layout(location = 0) out vec4 fragColor0;
|
||||
|
||||
// High-quality integer hash (pcg-like)
|
||||
uint pcg(uint v) {
|
||||
uint state = v * 747796405u + 2891336453u;
|
||||
uint word = ((state >> ((state >> 28u) + 4u)) ^ state) * 277803737u;
|
||||
return (word >> 22u) ^ word;
|
||||
}
|
||||
|
||||
// 2D -> 1D hash input
|
||||
uint hash2d(uvec2 p) {
|
||||
return pcg(p.x + pcg(p.y));
|
||||
}
|
||||
|
||||
// Hash to float [0, 1]
|
||||
float hashf(uvec2 p) {
|
||||
return float(hash2d(p)) / float(0xffffffffu);
|
||||
}
|
||||
|
||||
// Hash to float with offset (for RGB channels)
|
||||
float hashf(uvec2 p, uint offset) {
|
||||
return float(pcg(hash2d(p) + offset)) / float(0xffffffffu);
|
||||
}
|
||||
|
||||
// Convert uniform [0,1] to roughly Gaussian distribution
|
||||
// Using simple approximation: average of multiple samples
|
||||
float toGaussian(uvec2 p) {
|
||||
float sum = hashf(p, 0u) + hashf(p, 1u) + hashf(p, 2u) + hashf(p, 3u);
|
||||
return (sum - 2.0) * 0.7; // Centered, scaled
|
||||
}
|
||||
|
||||
float toGaussian(uvec2 p, uint offset) {
|
||||
float sum = hashf(p, offset) + hashf(p, offset + 1u)
|
||||
+ hashf(p, offset + 2u) + hashf(p, offset + 3u);
|
||||
return (sum - 2.0) * 0.7;
|
||||
}
|
||||
|
||||
// Smooth noise with better interpolation
|
||||
float smoothNoise(vec2 p) {
|
||||
vec2 i = floor(p);
|
||||
vec2 f = fract(p);
|
||||
|
||||
// Quintic interpolation (less banding than cubic)
|
||||
f = f * f * f * (f * (f * 6.0 - 15.0) + 10.0);
|
||||
|
||||
uvec2 ui = uvec2(i);
|
||||
float a = toGaussian(ui);
|
||||
float b = toGaussian(ui + uvec2(1u, 0u));
|
||||
float c = toGaussian(ui + uvec2(0u, 1u));
|
||||
float d = toGaussian(ui + uvec2(1u, 1u));
|
||||
|
||||
return mix(mix(a, b, f.x), mix(c, d, f.x), f.y);
|
||||
}
|
||||
|
||||
float smoothNoise(vec2 p, uint offset) {
|
||||
vec2 i = floor(p);
|
||||
vec2 f = fract(p);
|
||||
|
||||
f = f * f * f * (f * (f * 6.0 - 15.0) + 10.0);
|
||||
|
||||
uvec2 ui = uvec2(i);
|
||||
float a = toGaussian(ui, offset);
|
||||
float b = toGaussian(ui + uvec2(1u, 0u), offset);
|
||||
float c = toGaussian(ui + uvec2(0u, 1u), offset);
|
||||
float d = toGaussian(ui + uvec2(1u, 1u), offset);
|
||||
|
||||
return mix(mix(a, b, f.x), mix(c, d, f.x), f.y);
|
||||
}
|
||||
|
||||
void main() {
|
||||
vec4 color = texture(u_image0, v_texCoord);
|
||||
|
||||
// Luminance (Rec.709)
|
||||
float luma = dot(color.rgb, vec3(0.2126, 0.7152, 0.0722));
|
||||
|
||||
// Grain UV (resolution-independent)
|
||||
vec2 grainUV = v_texCoord * u_resolution / max(u_float1, 0.01);
|
||||
uvec2 grainPixel = uvec2(grainUV);
|
||||
|
||||
float g;
|
||||
vec3 grainRGB;
|
||||
|
||||
if (u_int0 == 1) {
|
||||
// Grainy mode: pure hash noise (no interpolation = no banding)
|
||||
g = toGaussian(grainPixel);
|
||||
grainRGB = vec3(
|
||||
toGaussian(grainPixel, 100u),
|
||||
toGaussian(grainPixel, 200u),
|
||||
toGaussian(grainPixel, 300u)
|
||||
);
|
||||
} else {
|
||||
// Smooth mode: interpolated with quintic curve
|
||||
g = smoothNoise(grainUV);
|
||||
grainRGB = vec3(
|
||||
smoothNoise(grainUV, 100u),
|
||||
smoothNoise(grainUV, 200u),
|
||||
smoothNoise(grainUV, 300u)
|
||||
);
|
||||
}
|
||||
|
||||
// Luminance weighting (less grain in highlights)
|
||||
float lumWeight = mix(1.0, 1.0 - luma, clamp(u_float3, 0.0, 1.0));
|
||||
|
||||
// Strength
|
||||
float strength = u_float0 * 0.15;
|
||||
|
||||
// Color vs monochrome grain
|
||||
vec3 grainColor = mix(vec3(g), grainRGB, clamp(u_float2, 0.0, 1.0));
|
||||
|
||||
color.rgb += grainColor * strength * lumWeight;
|
||||
fragColor0 = vec4(clamp(color.rgb, 0.0, 1.0), color.a);
|
||||
}
|
||||
133
blueprints/.glsl/Glow_30.frag
Normal file
133
blueprints/.glsl/Glow_30.frag
Normal file
@@ -0,0 +1,133 @@
|
||||
#version 300 es
|
||||
precision mediump float;
|
||||
|
||||
uniform sampler2D u_image0;
|
||||
uniform vec2 u_resolution;
|
||||
uniform int u_int0; // Blend mode
|
||||
uniform int u_int1; // Color tint
|
||||
uniform float u_float0; // Intensity
|
||||
uniform float u_float1; // Radius
|
||||
uniform float u_float2; // Threshold
|
||||
|
||||
in vec2 v_texCoord;
|
||||
out vec4 fragColor;
|
||||
|
||||
const int BLEND_ADD = 0;
|
||||
const int BLEND_SCREEN = 1;
|
||||
const int BLEND_SOFT = 2;
|
||||
const int BLEND_OVERLAY = 3;
|
||||
const int BLEND_LIGHTEN = 4;
|
||||
|
||||
const float GOLDEN_ANGLE = 2.39996323;
|
||||
const int MAX_SAMPLES = 48;
|
||||
const vec3 LUMA = vec3(0.299, 0.587, 0.114);
|
||||
|
||||
float hash(vec2 p) {
|
||||
p = fract(p * vec2(123.34, 456.21));
|
||||
p += dot(p, p + 45.32);
|
||||
return fract(p.x * p.y);
|
||||
}
|
||||
|
||||
vec3 hexToRgb(int h) {
|
||||
return vec3(
|
||||
float((h >> 16) & 255),
|
||||
float((h >> 8) & 255),
|
||||
float(h & 255)
|
||||
) * (1.0 / 255.0);
|
||||
}
|
||||
|
||||
vec3 blend(vec3 base, vec3 glow, int mode) {
|
||||
if (mode == BLEND_SCREEN) {
|
||||
return 1.0 - (1.0 - base) * (1.0 - glow);
|
||||
}
|
||||
if (mode == BLEND_SOFT) {
|
||||
return mix(
|
||||
base - (1.0 - 2.0 * glow) * base * (1.0 - base),
|
||||
base + (2.0 * glow - 1.0) * (sqrt(base) - base),
|
||||
step(0.5, glow)
|
||||
);
|
||||
}
|
||||
if (mode == BLEND_OVERLAY) {
|
||||
return mix(
|
||||
2.0 * base * glow,
|
||||
1.0 - 2.0 * (1.0 - base) * (1.0 - glow),
|
||||
step(0.5, base)
|
||||
);
|
||||
}
|
||||
if (mode == BLEND_LIGHTEN) {
|
||||
return max(base, glow);
|
||||
}
|
||||
return base + glow;
|
||||
}
|
||||
|
||||
void main() {
|
||||
vec4 original = texture(u_image0, v_texCoord);
|
||||
|
||||
float intensity = u_float0 * 0.05;
|
||||
float radius = u_float1 * u_float1 * 0.012;
|
||||
|
||||
if (intensity < 0.001 || radius < 0.1) {
|
||||
fragColor = original;
|
||||
return;
|
||||
}
|
||||
|
||||
float threshold = 1.0 - u_float2 * 0.01;
|
||||
float t0 = threshold - 0.15;
|
||||
float t1 = threshold + 0.15;
|
||||
|
||||
vec2 texelSize = 1.0 / u_resolution;
|
||||
float radius2 = radius * radius;
|
||||
|
||||
float sampleScale = clamp(radius * 0.75, 0.35, 1.0);
|
||||
int samples = int(float(MAX_SAMPLES) * sampleScale);
|
||||
|
||||
float noise = hash(gl_FragCoord.xy);
|
||||
float angleOffset = noise * GOLDEN_ANGLE;
|
||||
float radiusJitter = 0.85 + noise * 0.3;
|
||||
|
||||
float ca = cos(GOLDEN_ANGLE);
|
||||
float sa = sin(GOLDEN_ANGLE);
|
||||
vec2 dir = vec2(cos(angleOffset), sin(angleOffset));
|
||||
|
||||
vec3 glow = vec3(0.0);
|
||||
float totalWeight = 0.0;
|
||||
|
||||
// Center tap
|
||||
float centerMask = smoothstep(t0, t1, dot(original.rgb, LUMA));
|
||||
glow += original.rgb * centerMask * 2.0;
|
||||
totalWeight += 2.0;
|
||||
|
||||
for (int i = 1; i < MAX_SAMPLES; i++) {
|
||||
if (i >= samples) break;
|
||||
|
||||
float fi = float(i);
|
||||
float dist = sqrt(fi / float(samples)) * radius * radiusJitter;
|
||||
|
||||
vec2 offset = dir * dist * texelSize;
|
||||
vec3 c = texture(u_image0, v_texCoord + offset).rgb;
|
||||
float mask = smoothstep(t0, t1, dot(c, LUMA));
|
||||
|
||||
float w = 1.0 - (dist * dist) / (radius2 * 1.5);
|
||||
w = max(w, 0.0);
|
||||
w *= w;
|
||||
|
||||
glow += c * mask * w;
|
||||
totalWeight += w;
|
||||
|
||||
dir = vec2(
|
||||
dir.x * ca - dir.y * sa,
|
||||
dir.x * sa + dir.y * ca
|
||||
);
|
||||
}
|
||||
|
||||
glow *= intensity / max(totalWeight, 0.001);
|
||||
|
||||
if (u_int1 > 0) {
|
||||
glow *= hexToRgb(u_int1);
|
||||
}
|
||||
|
||||
vec3 result = blend(original.rgb, glow, u_int0);
|
||||
result += (noise - 0.5) * (1.0 / 255.0);
|
||||
|
||||
fragColor = vec4(clamp(result, 0.0, 1.0), original.a);
|
||||
}
|
||||
222
blueprints/.glsl/Hue_and_Saturation_1.frag
Normal file
222
blueprints/.glsl/Hue_and_Saturation_1.frag
Normal file
@@ -0,0 +1,222 @@
|
||||
#version 300 es
|
||||
precision highp float;
|
||||
|
||||
uniform sampler2D u_image0;
|
||||
uniform int u_int0; // Mode: 0=Master, 1=Reds, 2=Yellows, 3=Greens, 4=Cyans, 5=Blues, 6=Magentas, 7=Colorize
|
||||
uniform int u_int1; // Color Space: 0=HSL, 1=HSB/HSV
|
||||
uniform float u_float0; // Hue (-180 to 180)
|
||||
uniform float u_float1; // Saturation (-100 to 100)
|
||||
uniform float u_float2; // Lightness/Brightness (-100 to 100)
|
||||
uniform float u_float3; // Overlap (0 to 100) - feathering between adjacent color ranges
|
||||
|
||||
in vec2 v_texCoord;
|
||||
out vec4 fragColor;
|
||||
|
||||
// Color range modes
|
||||
const int MODE_MASTER = 0;
|
||||
const int MODE_RED = 1;
|
||||
const int MODE_YELLOW = 2;
|
||||
const int MODE_GREEN = 3;
|
||||
const int MODE_CYAN = 4;
|
||||
const int MODE_BLUE = 5;
|
||||
const int MODE_MAGENTA = 6;
|
||||
const int MODE_COLORIZE = 7;
|
||||
|
||||
// Color space modes
|
||||
const int COLORSPACE_HSL = 0;
|
||||
const int COLORSPACE_HSB = 1;
|
||||
|
||||
const float EPSILON = 0.0001;
|
||||
|
||||
//=============================================================================
|
||||
// RGB <-> HSL Conversions
|
||||
//=============================================================================
|
||||
|
||||
vec3 rgb2hsl(vec3 c) {
|
||||
float maxC = max(max(c.r, c.g), c.b);
|
||||
float minC = min(min(c.r, c.g), c.b);
|
||||
float delta = maxC - minC;
|
||||
|
||||
float h = 0.0;
|
||||
float s = 0.0;
|
||||
float l = (maxC + minC) * 0.5;
|
||||
|
||||
if (delta > EPSILON) {
|
||||
s = l < 0.5
|
||||
? delta / (maxC + minC)
|
||||
: delta / (2.0 - maxC - minC);
|
||||
|
||||
if (maxC == c.r) {
|
||||
h = (c.g - c.b) / delta + (c.g < c.b ? 6.0 : 0.0);
|
||||
} else if (maxC == c.g) {
|
||||
h = (c.b - c.r) / delta + 2.0;
|
||||
} else {
|
||||
h = (c.r - c.g) / delta + 4.0;
|
||||
}
|
||||
h /= 6.0;
|
||||
}
|
||||
|
||||
return vec3(h, s, l);
|
||||
}
|
||||
|
||||
float hue2rgb(float p, float q, float t) {
|
||||
t = fract(t);
|
||||
if (t < 1.0/6.0) return p + (q - p) * 6.0 * t;
|
||||
if (t < 0.5) return q;
|
||||
if (t < 2.0/3.0) return p + (q - p) * (2.0/3.0 - t) * 6.0;
|
||||
return p;
|
||||
}
|
||||
|
||||
vec3 hsl2rgb(vec3 hsl) {
|
||||
if (hsl.y < EPSILON) return vec3(hsl.z);
|
||||
|
||||
float q = hsl.z < 0.5
|
||||
? hsl.z * (1.0 + hsl.y)
|
||||
: hsl.z + hsl.y - hsl.z * hsl.y;
|
||||
float p = 2.0 * hsl.z - q;
|
||||
|
||||
return vec3(
|
||||
hue2rgb(p, q, hsl.x + 1.0/3.0),
|
||||
hue2rgb(p, q, hsl.x),
|
||||
hue2rgb(p, q, hsl.x - 1.0/3.0)
|
||||
);
|
||||
}
|
||||
|
||||
vec3 rgb2hsb(vec3 c) {
|
||||
float maxC = max(max(c.r, c.g), c.b);
|
||||
float minC = min(min(c.r, c.g), c.b);
|
||||
float delta = maxC - minC;
|
||||
|
||||
float h = 0.0;
|
||||
float s = (maxC > EPSILON) ? delta / maxC : 0.0;
|
||||
float b = maxC;
|
||||
|
||||
if (delta > EPSILON) {
|
||||
if (maxC == c.r) {
|
||||
h = (c.g - c.b) / delta + (c.g < c.b ? 6.0 : 0.0);
|
||||
} else if (maxC == c.g) {
|
||||
h = (c.b - c.r) / delta + 2.0;
|
||||
} else {
|
||||
h = (c.r - c.g) / delta + 4.0;
|
||||
}
|
||||
h /= 6.0;
|
||||
}
|
||||
|
||||
return vec3(h, s, b);
|
||||
}
|
||||
|
||||
vec3 hsb2rgb(vec3 hsb) {
|
||||
vec3 rgb = clamp(abs(mod(hsb.x * 6.0 + vec3(0.0, 4.0, 2.0), 6.0) - 3.0) - 1.0, 0.0, 1.0);
|
||||
return hsb.z * mix(vec3(1.0), rgb, hsb.y);
|
||||
}
|
||||
|
||||
//=============================================================================
|
||||
// Color Range Weight Calculation
|
||||
//=============================================================================
|
||||
|
||||
float hueDistance(float a, float b) {
|
||||
float d = abs(a - b);
|
||||
return min(d, 1.0 - d);
|
||||
}
|
||||
|
||||
float getHueWeight(float hue, float center, float overlap) {
|
||||
float baseWidth = 1.0 / 6.0;
|
||||
float feather = baseWidth * overlap;
|
||||
|
||||
float d = hueDistance(hue, center);
|
||||
|
||||
float inner = baseWidth * 0.5;
|
||||
float outer = inner + feather;
|
||||
|
||||
return 1.0 - smoothstep(inner, outer, d);
|
||||
}
|
||||
|
||||
float getModeWeight(float hue, int mode, float overlap) {
|
||||
if (mode == MODE_MASTER || mode == MODE_COLORIZE) return 1.0;
|
||||
|
||||
if (mode == MODE_RED) {
|
||||
return max(
|
||||
getHueWeight(hue, 0.0, overlap),
|
||||
getHueWeight(hue, 1.0, overlap)
|
||||
);
|
||||
}
|
||||
|
||||
float center = float(mode - 1) / 6.0;
|
||||
return getHueWeight(hue, center, overlap);
|
||||
}
|
||||
|
||||
//=============================================================================
|
||||
// Adjustment Functions
|
||||
//=============================================================================
|
||||
|
||||
float adjustLightness(float l, float amount) {
|
||||
return amount > 0.0
|
||||
? l + (1.0 - l) * amount
|
||||
: l + l * amount;
|
||||
}
|
||||
|
||||
float adjustBrightness(float b, float amount) {
|
||||
return clamp(b + amount, 0.0, 1.0);
|
||||
}
|
||||
|
||||
float adjustSaturation(float s, float amount) {
|
||||
return amount > 0.0
|
||||
? s + (1.0 - s) * amount
|
||||
: s + s * amount;
|
||||
}
|
||||
|
||||
vec3 colorize(vec3 rgb, float hue, float sat, float light) {
|
||||
float lum = dot(rgb, vec3(0.299, 0.587, 0.114));
|
||||
float l = adjustLightness(lum, light);
|
||||
|
||||
vec3 hsl = vec3(fract(hue), clamp(abs(sat), 0.0, 1.0), clamp(l, 0.0, 1.0));
|
||||
return hsl2rgb(hsl);
|
||||
}
|
||||
|
||||
//=============================================================================
|
||||
// Main
|
||||
//=============================================================================
|
||||
|
||||
void main() {
|
||||
vec4 original = texture(u_image0, v_texCoord);
|
||||
|
||||
float hueShift = u_float0 / 360.0; // -180..180 -> -0.5..0.5
|
||||
float satAmount = u_float1 / 100.0; // -100..100 -> -1..1
|
||||
float lightAmount= u_float2 / 100.0; // -100..100 -> -1..1
|
||||
float overlap = u_float3 / 100.0; // 0..100 -> 0..1
|
||||
|
||||
vec3 result;
|
||||
|
||||
if (u_int0 == MODE_COLORIZE) {
|
||||
result = colorize(original.rgb, hueShift, satAmount, lightAmount);
|
||||
fragColor = vec4(result, original.a);
|
||||
return;
|
||||
}
|
||||
|
||||
vec3 hsx = (u_int1 == COLORSPACE_HSL)
|
||||
? rgb2hsl(original.rgb)
|
||||
: rgb2hsb(original.rgb);
|
||||
|
||||
float weight = getModeWeight(hsx.x, u_int0, overlap);
|
||||
|
||||
if (u_int0 != MODE_MASTER && hsx.y < EPSILON) {
|
||||
weight = 0.0;
|
||||
}
|
||||
|
||||
if (weight > EPSILON) {
|
||||
float h = fract(hsx.x + hueShift * weight);
|
||||
float s = clamp(adjustSaturation(hsx.y, satAmount * weight), 0.0, 1.0);
|
||||
float v = (u_int1 == COLORSPACE_HSL)
|
||||
? clamp(adjustLightness(hsx.z, lightAmount * weight), 0.0, 1.0)
|
||||
: clamp(adjustBrightness(hsx.z, lightAmount * weight), 0.0, 1.0);
|
||||
|
||||
vec3 adjusted = vec3(h, s, v);
|
||||
result = (u_int1 == COLORSPACE_HSL)
|
||||
? hsl2rgb(adjusted)
|
||||
: hsb2rgb(adjusted);
|
||||
} else {
|
||||
result = original.rgb;
|
||||
}
|
||||
|
||||
fragColor = vec4(result, original.a);
|
||||
}
|
||||
111
blueprints/.glsl/Image_Blur_1.frag
Normal file
111
blueprints/.glsl/Image_Blur_1.frag
Normal file
@@ -0,0 +1,111 @@
|
||||
#version 300 es
|
||||
#pragma passes 2
|
||||
precision highp float;
|
||||
|
||||
// Blur type constants
|
||||
const int BLUR_GAUSSIAN = 0;
|
||||
const int BLUR_BOX = 1;
|
||||
const int BLUR_RADIAL = 2;
|
||||
|
||||
// Radial blur config
|
||||
const int RADIAL_SAMPLES = 12;
|
||||
const float RADIAL_STRENGTH = 0.0003;
|
||||
|
||||
uniform sampler2D u_image0;
|
||||
uniform vec2 u_resolution;
|
||||
uniform int u_int0; // Blur type (BLUR_GAUSSIAN, BLUR_BOX, BLUR_RADIAL)
|
||||
uniform float u_float0; // Blur radius/amount
|
||||
uniform int u_pass; // Pass index (0 = horizontal, 1 = vertical)
|
||||
|
||||
in vec2 v_texCoord;
|
||||
layout(location = 0) out vec4 fragColor0;
|
||||
|
||||
float gaussian(float x, float sigma) {
|
||||
return exp(-(x * x) / (2.0 * sigma * sigma));
|
||||
}
|
||||
|
||||
void main() {
|
||||
vec2 texelSize = 1.0 / u_resolution;
|
||||
float radius = max(u_float0, 0.0);
|
||||
|
||||
// Radial (angular) blur - single pass, doesn't use separable
|
||||
if (u_int0 == BLUR_RADIAL) {
|
||||
// Only execute on first pass
|
||||
if (u_pass > 0) {
|
||||
fragColor0 = texture(u_image0, v_texCoord);
|
||||
return;
|
||||
}
|
||||
|
||||
vec2 center = vec2(0.5);
|
||||
vec2 dir = v_texCoord - center;
|
||||
float dist = length(dir);
|
||||
|
||||
if (dist < 1e-4) {
|
||||
fragColor0 = texture(u_image0, v_texCoord);
|
||||
return;
|
||||
}
|
||||
|
||||
vec4 sum = vec4(0.0);
|
||||
float totalWeight = 0.0;
|
||||
float angleStep = radius * RADIAL_STRENGTH;
|
||||
|
||||
dir /= dist;
|
||||
|
||||
float cosStep = cos(angleStep);
|
||||
float sinStep = sin(angleStep);
|
||||
|
||||
float negAngle = -float(RADIAL_SAMPLES) * angleStep;
|
||||
vec2 rotDir = vec2(
|
||||
dir.x * cos(negAngle) - dir.y * sin(negAngle),
|
||||
dir.x * sin(negAngle) + dir.y * cos(negAngle)
|
||||
);
|
||||
|
||||
for (int i = -RADIAL_SAMPLES; i <= RADIAL_SAMPLES; i++) {
|
||||
vec2 uv = center + rotDir * dist;
|
||||
float w = 1.0 - abs(float(i)) / float(RADIAL_SAMPLES);
|
||||
sum += texture(u_image0, uv) * w;
|
||||
totalWeight += w;
|
||||
|
||||
rotDir = vec2(
|
||||
rotDir.x * cosStep - rotDir.y * sinStep,
|
||||
rotDir.x * sinStep + rotDir.y * cosStep
|
||||
);
|
||||
}
|
||||
|
||||
fragColor0 = sum / max(totalWeight, 0.001);
|
||||
return;
|
||||
}
|
||||
|
||||
// Separable Gaussian / Box blur
|
||||
int samples = int(ceil(radius));
|
||||
|
||||
if (samples == 0) {
|
||||
fragColor0 = texture(u_image0, v_texCoord);
|
||||
return;
|
||||
}
|
||||
|
||||
// Direction: pass 0 = horizontal, pass 1 = vertical
|
||||
vec2 dir = (u_pass == 0) ? vec2(1.0, 0.0) : vec2(0.0, 1.0);
|
||||
|
||||
vec4 color = vec4(0.0);
|
||||
float totalWeight = 0.0;
|
||||
float sigma = radius / 2.0;
|
||||
|
||||
for (int i = -samples; i <= samples; i++) {
|
||||
vec2 offset = dir * float(i) * texelSize;
|
||||
vec4 sample_color = texture(u_image0, v_texCoord + offset);
|
||||
|
||||
float weight;
|
||||
if (u_int0 == BLUR_GAUSSIAN) {
|
||||
weight = gaussian(float(i), sigma);
|
||||
} else {
|
||||
// BLUR_BOX
|
||||
weight = 1.0;
|
||||
}
|
||||
|
||||
color += sample_color * weight;
|
||||
totalWeight += weight;
|
||||
}
|
||||
|
||||
fragColor0 = color / totalWeight;
|
||||
}
|
||||
19
blueprints/.glsl/Image_Channels_23.frag
Normal file
19
blueprints/.glsl/Image_Channels_23.frag
Normal file
@@ -0,0 +1,19 @@
|
||||
#version 300 es
|
||||
precision highp float;
|
||||
|
||||
uniform sampler2D u_image0;
|
||||
|
||||
in vec2 v_texCoord;
|
||||
layout(location = 0) out vec4 fragColor0;
|
||||
layout(location = 1) out vec4 fragColor1;
|
||||
layout(location = 2) out vec4 fragColor2;
|
||||
layout(location = 3) out vec4 fragColor3;
|
||||
|
||||
void main() {
|
||||
vec4 color = texture(u_image0, v_texCoord);
|
||||
// Output each channel as grayscale to separate render targets
|
||||
fragColor0 = vec4(vec3(color.r), 1.0); // Red channel
|
||||
fragColor1 = vec4(vec3(color.g), 1.0); // Green channel
|
||||
fragColor2 = vec4(vec3(color.b), 1.0); // Blue channel
|
||||
fragColor3 = vec4(vec3(color.a), 1.0); // Alpha channel
|
||||
}
|
||||
71
blueprints/.glsl/Image_Levels_1.frag
Normal file
71
blueprints/.glsl/Image_Levels_1.frag
Normal file
@@ -0,0 +1,71 @@
|
||||
#version 300 es
|
||||
precision highp float;
|
||||
|
||||
// Levels Adjustment
|
||||
// u_int0: channel (0=RGB, 1=R, 2=G, 3=B) default: 0
|
||||
// u_float0: input black (0-255) default: 0
|
||||
// u_float1: input white (0-255) default: 255
|
||||
// u_float2: gamma (0.01-9.99) default: 1.0
|
||||
// u_float3: output black (0-255) default: 0
|
||||
// u_float4: output white (0-255) default: 255
|
||||
|
||||
uniform sampler2D u_image0;
|
||||
uniform int u_int0;
|
||||
uniform float u_float0;
|
||||
uniform float u_float1;
|
||||
uniform float u_float2;
|
||||
uniform float u_float3;
|
||||
uniform float u_float4;
|
||||
|
||||
in vec2 v_texCoord;
|
||||
out vec4 fragColor;
|
||||
|
||||
vec3 applyLevels(vec3 color, float inBlack, float inWhite, float gamma, float outBlack, float outWhite) {
|
||||
float inRange = max(inWhite - inBlack, 0.0001);
|
||||
vec3 result = clamp((color - inBlack) / inRange, 0.0, 1.0);
|
||||
result = pow(result, vec3(1.0 / gamma));
|
||||
result = mix(vec3(outBlack), vec3(outWhite), result);
|
||||
return result;
|
||||
}
|
||||
|
||||
float applySingleChannel(float value, float inBlack, float inWhite, float gamma, float outBlack, float outWhite) {
|
||||
float inRange = max(inWhite - inBlack, 0.0001);
|
||||
float result = clamp((value - inBlack) / inRange, 0.0, 1.0);
|
||||
result = pow(result, 1.0 / gamma);
|
||||
result = mix(outBlack, outWhite, result);
|
||||
return result;
|
||||
}
|
||||
|
||||
void main() {
|
||||
vec4 texColor = texture(u_image0, v_texCoord);
|
||||
vec3 color = texColor.rgb;
|
||||
|
||||
float inBlack = u_float0 / 255.0;
|
||||
float inWhite = u_float1 / 255.0;
|
||||
float gamma = u_float2;
|
||||
float outBlack = u_float3 / 255.0;
|
||||
float outWhite = u_float4 / 255.0;
|
||||
|
||||
vec3 result;
|
||||
|
||||
if (u_int0 == 0) {
|
||||
result = applyLevels(color, inBlack, inWhite, gamma, outBlack, outWhite);
|
||||
}
|
||||
else if (u_int0 == 1) {
|
||||
result = color;
|
||||
result.r = applySingleChannel(color.r, inBlack, inWhite, gamma, outBlack, outWhite);
|
||||
}
|
||||
else if (u_int0 == 2) {
|
||||
result = color;
|
||||
result.g = applySingleChannel(color.g, inBlack, inWhite, gamma, outBlack, outWhite);
|
||||
}
|
||||
else if (u_int0 == 3) {
|
||||
result = color;
|
||||
result.b = applySingleChannel(color.b, inBlack, inWhite, gamma, outBlack, outWhite);
|
||||
}
|
||||
else {
|
||||
result = color;
|
||||
}
|
||||
|
||||
fragColor = vec4(result, texColor.a);
|
||||
}
|
||||
28
blueprints/.glsl/README.md
Normal file
28
blueprints/.glsl/README.md
Normal file
@@ -0,0 +1,28 @@
|
||||
# GLSL Shader Sources
|
||||
|
||||
This folder contains the GLSL fragment shaders extracted from blueprint JSON files for easier editing and version control.
|
||||
|
||||
## File Naming Convention
|
||||
|
||||
`{Blueprint_Name}_{node_id}.frag`
|
||||
|
||||
- **Blueprint_Name**: The JSON filename with spaces/special chars replaced by underscores
|
||||
- **node_id**: The GLSLShader node ID within the subgraph
|
||||
|
||||
## Usage
|
||||
|
||||
```bash
|
||||
# Extract shaders from blueprint JSONs to this folder
|
||||
python update_blueprints.py extract
|
||||
|
||||
# Patch edited shaders back into blueprint JSONs
|
||||
python update_blueprints.py patch
|
||||
```
|
||||
|
||||
## Workflow
|
||||
|
||||
1. Run `extract` to pull current shaders from JSONs
|
||||
2. Edit `.frag` files
|
||||
3. Run `patch` to update the blueprint JSONs
|
||||
4. Test
|
||||
5. Commit both `.frag` files and updated JSONs
|
||||
28
blueprints/.glsl/Sharpen_23.frag
Normal file
28
blueprints/.glsl/Sharpen_23.frag
Normal file
@@ -0,0 +1,28 @@
|
||||
#version 300 es
|
||||
precision highp float;
|
||||
|
||||
uniform sampler2D u_image0;
|
||||
uniform vec2 u_resolution;
|
||||
uniform float u_float0; // strength [0.0 – 2.0] typical: 0.3–1.0
|
||||
|
||||
in vec2 v_texCoord;
|
||||
layout(location = 0) out vec4 fragColor0;
|
||||
|
||||
void main() {
|
||||
vec2 texel = 1.0 / u_resolution;
|
||||
|
||||
// Sample center and neighbors
|
||||
vec4 center = texture(u_image0, v_texCoord);
|
||||
vec4 top = texture(u_image0, v_texCoord + vec2( 0.0, -texel.y));
|
||||
vec4 bottom = texture(u_image0, v_texCoord + vec2( 0.0, texel.y));
|
||||
vec4 left = texture(u_image0, v_texCoord + vec2(-texel.x, 0.0));
|
||||
vec4 right = texture(u_image0, v_texCoord + vec2( texel.x, 0.0));
|
||||
|
||||
// Edge enhancement (Laplacian)
|
||||
vec4 edges = center * 4.0 - top - bottom - left - right;
|
||||
|
||||
// Add edges back scaled by strength
|
||||
vec4 sharpened = center + edges * u_float0;
|
||||
|
||||
fragColor0 = vec4(clamp(sharpened.rgb, 0.0, 1.0), center.a);
|
||||
}
|
||||
61
blueprints/.glsl/Unsharp_Mask_26.frag
Normal file
61
blueprints/.glsl/Unsharp_Mask_26.frag
Normal file
@@ -0,0 +1,61 @@
|
||||
#version 300 es
|
||||
precision highp float;
|
||||
|
||||
uniform sampler2D u_image0;
|
||||
uniform vec2 u_resolution;
|
||||
uniform float u_float0; // amount [0.0 - 3.0] typical: 0.5-1.5
|
||||
uniform float u_float1; // radius [0.5 - 10.0] blur radius in pixels
|
||||
uniform float u_float2; // threshold [0.0 - 0.1] min difference to sharpen
|
||||
|
||||
in vec2 v_texCoord;
|
||||
layout(location = 0) out vec4 fragColor0;
|
||||
|
||||
float gaussian(float x, float sigma) {
|
||||
return exp(-(x * x) / (2.0 * sigma * sigma));
|
||||
}
|
||||
|
||||
float getLuminance(vec3 color) {
|
||||
return dot(color, vec3(0.2126, 0.7152, 0.0722));
|
||||
}
|
||||
|
||||
void main() {
|
||||
vec2 texel = 1.0 / u_resolution;
|
||||
float radius = max(u_float1, 0.5);
|
||||
float amount = u_float0;
|
||||
float threshold = u_float2;
|
||||
|
||||
vec4 original = texture(u_image0, v_texCoord);
|
||||
|
||||
// Gaussian blur for the "unsharp" mask
|
||||
int samples = int(ceil(radius));
|
||||
float sigma = radius / 2.0;
|
||||
|
||||
vec4 blurred = vec4(0.0);
|
||||
float totalWeight = 0.0;
|
||||
|
||||
for (int x = -samples; x <= samples; x++) {
|
||||
for (int y = -samples; y <= samples; y++) {
|
||||
vec2 offset = vec2(float(x), float(y)) * texel;
|
||||
vec4 sample_color = texture(u_image0, v_texCoord + offset);
|
||||
|
||||
float dist = length(vec2(float(x), float(y)));
|
||||
float weight = gaussian(dist, sigma);
|
||||
blurred += sample_color * weight;
|
||||
totalWeight += weight;
|
||||
}
|
||||
}
|
||||
blurred /= totalWeight;
|
||||
|
||||
// Unsharp mask = original - blurred
|
||||
vec3 mask = original.rgb - blurred.rgb;
|
||||
|
||||
// Luminance-based threshold with smooth falloff
|
||||
float lumaDelta = abs(getLuminance(original.rgb) - getLuminance(blurred.rgb));
|
||||
float thresholdScale = smoothstep(0.0, threshold, lumaDelta);
|
||||
mask *= thresholdScale;
|
||||
|
||||
// Sharpen: original + mask * amount
|
||||
vec3 sharpened = original.rgb + mask * amount;
|
||||
|
||||
fragColor0 = vec4(clamp(sharpened, 0.0, 1.0), original.a);
|
||||
}
|
||||
159
blueprints/.glsl/update_blueprints.py
Normal file
159
blueprints/.glsl/update_blueprints.py
Normal file
@@ -0,0 +1,159 @@
|
||||
#!/usr/bin/env python3
|
||||
"""
|
||||
Shader Blueprint Updater
|
||||
|
||||
Syncs GLSL shader files between this folder and blueprint JSON files.
|
||||
|
||||
File naming convention:
|
||||
{Blueprint Name}_{node_id}.frag
|
||||
|
||||
Usage:
|
||||
python update_blueprints.py extract # Extract shaders from JSONs to here
|
||||
python update_blueprints.py patch # Patch shaders back into JSONs
|
||||
python update_blueprints.py # Same as patch (default)
|
||||
"""
|
||||
|
||||
import json
|
||||
import logging
|
||||
import sys
|
||||
import re
|
||||
from pathlib import Path
|
||||
|
||||
logging.basicConfig(level=logging.INFO, format='%(message)s')
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
GLSL_DIR = Path(__file__).parent
|
||||
BLUEPRINTS_DIR = GLSL_DIR.parent
|
||||
|
||||
|
||||
def get_blueprint_files():
|
||||
"""Get all blueprint JSON files."""
|
||||
return sorted(BLUEPRINTS_DIR.glob("*.json"))
|
||||
|
||||
|
||||
def sanitize_filename(name):
|
||||
"""Convert blueprint name to safe filename."""
|
||||
return re.sub(r'[^\w\-]', '_', name)
|
||||
|
||||
|
||||
def extract_shaders():
|
||||
"""Extract all shaders from blueprint JSONs to this folder."""
|
||||
extracted = 0
|
||||
for json_path in get_blueprint_files():
|
||||
blueprint_name = json_path.stem
|
||||
|
||||
try:
|
||||
with open(json_path, 'r') as f:
|
||||
data = json.load(f)
|
||||
except (json.JSONDecodeError, IOError) as e:
|
||||
logger.warning("Skipping %s: %s", json_path.name, e)
|
||||
continue
|
||||
|
||||
# Find GLSLShader nodes in subgraphs
|
||||
for subgraph in data.get('definitions', {}).get('subgraphs', []):
|
||||
for node in subgraph.get('nodes', []):
|
||||
if node.get('type') == 'GLSLShader':
|
||||
node_id = node.get('id')
|
||||
widgets = node.get('widgets_values', [])
|
||||
|
||||
# Find shader code (first string that looks like GLSL)
|
||||
for widget in widgets:
|
||||
if isinstance(widget, str) and widget.startswith('#version'):
|
||||
safe_name = sanitize_filename(blueprint_name)
|
||||
frag_name = f"{safe_name}_{node_id}.frag"
|
||||
frag_path = GLSL_DIR / frag_name
|
||||
|
||||
with open(frag_path, 'w') as f:
|
||||
f.write(widget)
|
||||
|
||||
logger.info(" Extracted: %s", frag_name)
|
||||
extracted += 1
|
||||
break
|
||||
|
||||
logger.info("\nExtracted %d shader(s)", extracted)
|
||||
|
||||
|
||||
def patch_shaders():
|
||||
"""Patch shaders from this folder back into blueprint JSONs."""
|
||||
# Build lookup: blueprint_name -> [(node_id, shader_code), ...]
|
||||
shader_updates = {}
|
||||
|
||||
for frag_path in sorted(GLSL_DIR.glob("*.frag")):
|
||||
# Parse filename: {blueprint_name}_{node_id}.frag
|
||||
parts = frag_path.stem.rsplit('_', 1)
|
||||
if len(parts) != 2:
|
||||
logger.warning("Skipping %s: invalid filename format", frag_path.name)
|
||||
continue
|
||||
|
||||
blueprint_name, node_id_str = parts
|
||||
|
||||
try:
|
||||
node_id = int(node_id_str)
|
||||
except ValueError:
|
||||
logger.warning("Skipping %s: invalid node_id", frag_path.name)
|
||||
continue
|
||||
|
||||
with open(frag_path, 'r') as f:
|
||||
shader_code = f.read()
|
||||
|
||||
if blueprint_name not in shader_updates:
|
||||
shader_updates[blueprint_name] = []
|
||||
shader_updates[blueprint_name].append((node_id, shader_code))
|
||||
|
||||
# Apply updates to JSON files
|
||||
patched = 0
|
||||
for json_path in get_blueprint_files():
|
||||
blueprint_name = sanitize_filename(json_path.stem)
|
||||
|
||||
if blueprint_name not in shader_updates:
|
||||
continue
|
||||
|
||||
try:
|
||||
with open(json_path, 'r') as f:
|
||||
data = json.load(f)
|
||||
except (json.JSONDecodeError, IOError) as e:
|
||||
logger.error("Error reading %s: %s", json_path.name, e)
|
||||
continue
|
||||
|
||||
modified = False
|
||||
for node_id, shader_code in shader_updates[blueprint_name]:
|
||||
# Find the node and update
|
||||
for subgraph in data.get('definitions', {}).get('subgraphs', []):
|
||||
for node in subgraph.get('nodes', []):
|
||||
if node.get('id') == node_id and node.get('type') == 'GLSLShader':
|
||||
widgets = node.get('widgets_values', [])
|
||||
if len(widgets) > 0 and widgets[0] != shader_code:
|
||||
widgets[0] = shader_code
|
||||
modified = True
|
||||
logger.info(" Patched: %s (node %d)", json_path.name, node_id)
|
||||
patched += 1
|
||||
|
||||
if modified:
|
||||
with open(json_path, 'w') as f:
|
||||
json.dump(data, f)
|
||||
|
||||
if patched == 0:
|
||||
logger.info("No changes to apply.")
|
||||
else:
|
||||
logger.info("\nPatched %d shader(s)", patched)
|
||||
|
||||
|
||||
def main():
|
||||
if len(sys.argv) < 2:
|
||||
command = "patch"
|
||||
else:
|
||||
command = sys.argv[1].lower()
|
||||
|
||||
if command == "extract":
|
||||
logger.info("Extracting shaders from blueprints...")
|
||||
extract_shaders()
|
||||
elif command in ("patch", "update", "apply"):
|
||||
logger.info("Patching shaders into blueprints...")
|
||||
patch_shaders()
|
||||
else:
|
||||
logger.info(__doc__)
|
||||
sys.exit(1)
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
main()
|
||||
1
blueprints/Brightness and Contrast.json
Normal file
1
blueprints/Brightness and Contrast.json
Normal file
File diff suppressed because one or more lines are too long
1
blueprints/Chromatic Aberration.json
Normal file
1
blueprints/Chromatic Aberration.json
Normal file
File diff suppressed because one or more lines are too long
1
blueprints/Color Adjustment.json
Normal file
1
blueprints/Color Adjustment.json
Normal file
File diff suppressed because one or more lines are too long
1
blueprints/Edge-Preserving Blur.json
Normal file
1
blueprints/Edge-Preserving Blur.json
Normal file
File diff suppressed because one or more lines are too long
1
blueprints/Film Grain.json
Normal file
1
blueprints/Film Grain.json
Normal file
File diff suppressed because one or more lines are too long
1
blueprints/Glow.json
Normal file
1
blueprints/Glow.json
Normal file
File diff suppressed because one or more lines are too long
1
blueprints/Hue and Saturation.json
Normal file
1
blueprints/Hue and Saturation.json
Normal file
File diff suppressed because one or more lines are too long
1
blueprints/Image Blur.json
Normal file
1
blueprints/Image Blur.json
Normal file
File diff suppressed because one or more lines are too long
1
blueprints/Image Channels.json
Normal file
1
blueprints/Image Channels.json
Normal file
@@ -0,0 +1 @@
|
||||
{"revision": 0, "last_node_id": 29, "last_link_id": 0, "nodes": [{"id": 29, "type": "4c9d6ea4-b912-40e5-8766-6793a9758c53", "pos": [1970, -230], "size": [180, 86], "flags": {}, "order": 5, "mode": 0, "inputs": [{"label": "image", "localized_name": "images.image0", "name": "images.image0", "type": "IMAGE", "link": null}], "outputs": [{"label": "R", "localized_name": "IMAGE0", "name": "IMAGE0", "type": "IMAGE", "links": []}, {"label": "G", "localized_name": "IMAGE1", "name": "IMAGE1", "type": "IMAGE", "links": []}, {"label": "B", "localized_name": "IMAGE2", "name": "IMAGE2", "type": "IMAGE", "links": []}, {"label": "A", "localized_name": "IMAGE3", "name": "IMAGE3", "type": "IMAGE", "links": []}], "title": "Image Channels", "properties": {"proxyWidgets": []}, "widgets_values": []}], "links": [], "version": 0.4, "definitions": {"subgraphs": [{"id": "4c9d6ea4-b912-40e5-8766-6793a9758c53", "version": 1, "state": {"lastGroupId": 0, "lastNodeId": 28, "lastLinkId": 39, "lastRerouteId": 0}, "revision": 0, "config": {}, "name": "Image Channels", "inputNode": {"id": -10, "bounding": [1820, -185, 120, 60]}, "outputNode": {"id": -20, "bounding": [2460, -215, 120, 120]}, "inputs": [{"id": "3522932b-2d86-4a1f-a02a-cb29f3a9d7fe", "name": "images.image0", "type": "IMAGE", "linkIds": [39], "localized_name": "images.image0", "label": "image", "pos": [1920, -165]}], "outputs": [{"id": "605cb9c3-b065-4d9b-81d2-3ec331889b2b", "name": "IMAGE0", "type": "IMAGE", "linkIds": [26], "localized_name": "IMAGE0", "label": "R", "pos": [2480, -195]}, {"id": "fb44a77e-0522-43e9-9527-82e7465b3596", "name": "IMAGE1", "type": "IMAGE", "linkIds": [27], "localized_name": "IMAGE1", "label": "G", "pos": [2480, -175]}, {"id": "81460ee6-0131-402a-874f-6bf3001fc4ff", "name": "IMAGE2", "type": "IMAGE", "linkIds": [28], "localized_name": "IMAGE2", "label": "B", "pos": [2480, -155]}, {"id": "ae690246-80d4-4951-b1d9-9306d8a77417", "name": "IMAGE3", "type": "IMAGE", "linkIds": [29], "localized_name": "IMAGE3", "label": "A", "pos": [2480, -135]}], "widgets": [], "nodes": [{"id": 23, "type": "GLSLShader", "pos": [2000, -330], "size": [400, 172], "flags": {}, "order": 0, "mode": 0, "inputs": [{"label": "image", "localized_name": "images.image0", "name": "images.image0", "type": "IMAGE", "link": 39}, {"localized_name": "fragment_shader", "name": "fragment_shader", "type": "STRING", "widget": {"name": "fragment_shader"}, "link": null}, {"localized_name": "size_mode", "name": "size_mode", "type": "COMFY_DYNAMICCOMBO_V3", "widget": {"name": "size_mode"}, "link": null}, {"label": "image1", "localized_name": "images.image1", "name": "images.image1", "shape": 7, "type": "IMAGE", "link": null}], "outputs": [{"label": "R", "localized_name": "IMAGE0", "name": "IMAGE0", "type": "IMAGE", "links": [26]}, {"label": "G", "localized_name": "IMAGE1", "name": "IMAGE1", "type": "IMAGE", "links": [27]}, {"label": "B", "localized_name": "IMAGE2", "name": "IMAGE2", "type": "IMAGE", "links": [28]}, {"label": "A", "localized_name": "IMAGE3", "name": "IMAGE3", "type": "IMAGE", "links": [29]}], "properties": {"Node name for S&R": "GLSLShader"}, "widgets_values": ["#version 300 es\nprecision highp float;\n\nuniform sampler2D u_image0;\n\nin vec2 v_texCoord;\nlayout(location = 0) out vec4 fragColor0;\nlayout(location = 1) out vec4 fragColor1;\nlayout(location = 2) out vec4 fragColor2;\nlayout(location = 3) out vec4 fragColor3;\n\nvoid main() {\n vec4 color = texture(u_image0, v_texCoord);\n // Output each channel as grayscale to separate render targets\n fragColor0 = vec4(vec3(color.r), 1.0); // Red channel\n fragColor1 = vec4(vec3(color.g), 1.0); // Green channel\n fragColor2 = vec4(vec3(color.b), 1.0); // Blue channel\n fragColor3 = vec4(vec3(color.a), 1.0); // Alpha channel\n}\n", "from_input"]}], "groups": [], "links": [{"id": 39, "origin_id": -10, "origin_slot": 0, "target_id": 23, "target_slot": 0, "type": "IMAGE"}, {"id": 26, "origin_id": 23, "origin_slot": 0, "target_id": -20, "target_slot": 0, "type": "IMAGE"}, {"id": 27, "origin_id": 23, "origin_slot": 1, "target_id": -20, "target_slot": 1, "type": "IMAGE"}, {"id": 28, "origin_id": 23, "origin_slot": 2, "target_id": -20, "target_slot": 2, "type": "IMAGE"}, {"id": 29, "origin_id": 23, "origin_slot": 3, "target_id": -20, "target_slot": 3, "type": "IMAGE"}], "extra": {"workflowRendererVersion": "LG"}}]}}
|
||||
1
blueprints/Image Levels.json
Normal file
1
blueprints/Image Levels.json
Normal file
File diff suppressed because one or more lines are too long
1
blueprints/Sharpen.json
Normal file
1
blueprints/Sharpen.json
Normal file
@@ -0,0 +1 @@
|
||||
{"revision":0,"last_node_id":25,"last_link_id":0,"nodes":[{"id":25,"type":"621ba4e2-22a8-482d-a369-023753198b7b","pos":[4610,-790],"size":[230,58],"flags":{},"order":4,"mode":0,"inputs":[{"label":"image","localized_name":"images.image0","name":"images.image0","type":"IMAGE","link":null}],"outputs":[{"label":"IMAGE","localized_name":"IMAGE0","name":"IMAGE0","type":"IMAGE","links":[]}],"title":"Sharpen","properties":{"proxyWidgets":[["24","value"]]},"widgets_values":[]}],"links":[],"version":0.4,"definitions":{"subgraphs":[{"id":"621ba4e2-22a8-482d-a369-023753198b7b","version":1,"state":{"lastGroupId":0,"lastNodeId":24,"lastLinkId":36,"lastRerouteId":0},"revision":0,"config":{},"name":"Sharpen","inputNode":{"id":-10,"bounding":[4090,-825,120,60]},"outputNode":{"id":-20,"bounding":[5150,-825,120,60]},"inputs":[{"id":"37011fb7-14b7-4e0e-b1a0-6a02e8da1fd7","name":"images.image0","type":"IMAGE","linkIds":[34],"localized_name":"images.image0","label":"image","pos":[4190,-805]}],"outputs":[{"id":"e9182b3f-635c-4cd4-a152-4b4be17ae4b9","name":"IMAGE0","type":"IMAGE","linkIds":[35],"localized_name":"IMAGE0","label":"IMAGE","pos":[5170,-805]}],"widgets":[],"nodes":[{"id":24,"type":"PrimitiveFloat","pos":[4280,-1240],"size":[270,58],"flags":{},"order":0,"mode":0,"inputs":[{"label":"strength","localized_name":"value","name":"value","type":"FLOAT","widget":{"name":"value"},"link":null}],"outputs":[{"localized_name":"FLOAT","name":"FLOAT","type":"FLOAT","links":[36]}],"properties":{"Node name for S&R":"PrimitiveFloat","min":0,"max":3,"precision":2,"step":0.05},"widgets_values":[0.5]},{"id":23,"type":"GLSLShader","pos":[4570,-1240],"size":[370,192],"flags":{},"order":1,"mode":0,"inputs":[{"label":"image0","localized_name":"images.image0","name":"images.image0","type":"IMAGE","link":34},{"label":"image1","localized_name":"images.image1","name":"images.image1","shape":7,"type":"IMAGE","link":null},{"label":"u_float0","localized_name":"floats.u_float0","name":"floats.u_float0","shape":7,"type":"FLOAT","link":36},{"label":"u_float1","localized_name":"floats.u_float1","name":"floats.u_float1","shape":7,"type":"FLOAT","link":null},{"label":"u_int0","localized_name":"ints.u_int0","name":"ints.u_int0","shape":7,"type":"INT","link":null},{"localized_name":"fragment_shader","name":"fragment_shader","type":"STRING","widget":{"name":"fragment_shader"},"link":null},{"localized_name":"size_mode","name":"size_mode","type":"COMFY_DYNAMICCOMBO_V3","widget":{"name":"size_mode"},"link":null}],"outputs":[{"localized_name":"IMAGE0","name":"IMAGE0","type":"IMAGE","links":[35]},{"localized_name":"IMAGE1","name":"IMAGE1","type":"IMAGE","links":null},{"localized_name":"IMAGE2","name":"IMAGE2","type":"IMAGE","links":null},{"localized_name":"IMAGE3","name":"IMAGE3","type":"IMAGE","links":null}],"properties":{"Node name for S&R":"GLSLShader"},"widgets_values":["#version 300 es\nprecision highp float;\n\nuniform sampler2D u_image0;\nuniform vec2 u_resolution;\nuniform float u_float0; // strength [0.0 – 2.0] typical: 0.3–1.0\n\nin vec2 v_texCoord;\nlayout(location = 0) out vec4 fragColor0;\n\nvoid main() {\n vec2 texel = 1.0 / u_resolution;\n \n // Sample center and neighbors\n vec4 center = texture(u_image0, v_texCoord);\n vec4 top = texture(u_image0, v_texCoord + vec2( 0.0, -texel.y));\n vec4 bottom = texture(u_image0, v_texCoord + vec2( 0.0, texel.y));\n vec4 left = texture(u_image0, v_texCoord + vec2(-texel.x, 0.0));\n vec4 right = texture(u_image0, v_texCoord + vec2( texel.x, 0.0));\n \n // Edge enhancement (Laplacian)\n vec4 edges = center * 4.0 - top - bottom - left - right;\n \n // Add edges back scaled by strength\n vec4 sharpened = center + edges * u_float0;\n \n fragColor0 = vec4(clamp(sharpened.rgb, 0.0, 1.0), center.a);\n}","from_input"]}],"groups":[],"links":[{"id":36,"origin_id":24,"origin_slot":0,"target_id":23,"target_slot":2,"type":"FLOAT"},{"id":34,"origin_id":-10,"origin_slot":0,"target_id":23,"target_slot":0,"type":"IMAGE"},{"id":35,"origin_id":23,"origin_slot":0,"target_id":-20,"target_slot":0,"type":"IMAGE"}],"extra":{"workflowRendererVersion":"LG"}}]}}
|
||||
1
blueprints/Unsharp Mask.json
Normal file
1
blueprints/Unsharp Mask.json
Normal file
File diff suppressed because one or more lines are too long
@@ -1,13 +0,0 @@
|
||||
import pickle
|
||||
|
||||
load = pickle.load
|
||||
|
||||
class Empty:
|
||||
pass
|
||||
|
||||
class Unpickler(pickle.Unpickler):
|
||||
def find_class(self, module, name):
|
||||
#TODO: safe unpickle
|
||||
if module.startswith("pytorch_lightning"):
|
||||
return Empty
|
||||
return super().find_class(module, name)
|
||||
@@ -297,6 +297,30 @@ class ControlNet(ControlBase):
|
||||
self.model_sampling_current = None
|
||||
super().cleanup()
|
||||
|
||||
|
||||
class QwenFunControlNet(ControlNet):
|
||||
def get_control(self, x_noisy, t, cond, batched_number, transformer_options):
|
||||
# Fun checkpoints are more sensitive to high strengths in the generic
|
||||
# ControlNet merge path. Use a soft response curve so strength=1.0 stays
|
||||
# unchanged while >1 grows more gently.
|
||||
original_strength = self.strength
|
||||
self.strength = math.sqrt(max(self.strength, 0.0))
|
||||
try:
|
||||
return super().get_control(x_noisy, t, cond, batched_number, transformer_options)
|
||||
finally:
|
||||
self.strength = original_strength
|
||||
|
||||
def pre_run(self, model, percent_to_timestep_function):
|
||||
super().pre_run(model, percent_to_timestep_function)
|
||||
self.set_extra_arg("base_model", model.diffusion_model)
|
||||
|
||||
def copy(self):
|
||||
c = QwenFunControlNet(None, global_average_pooling=self.global_average_pooling, load_device=self.load_device, manual_cast_dtype=self.manual_cast_dtype)
|
||||
c.control_model = self.control_model
|
||||
c.control_model_wrapped = self.control_model_wrapped
|
||||
self.copy_to(c)
|
||||
return c
|
||||
|
||||
class ControlLoraOps:
|
||||
class Linear(torch.nn.Module, comfy.ops.CastWeightBiasOp):
|
||||
def __init__(self, in_features: int, out_features: int, bias: bool = True,
|
||||
@@ -560,6 +584,7 @@ def load_controlnet_hunyuandit(controlnet_data, model_options={}):
|
||||
def load_controlnet_flux_xlabs_mistoline(sd, mistoline=False, model_options={}):
|
||||
model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device = controlnet_config(sd, model_options=model_options)
|
||||
control_model = comfy.ldm.flux.controlnet.ControlNetFlux(mistoline=mistoline, operations=operations, device=offload_device, dtype=unet_dtype, **model_config.unet_config)
|
||||
sd = model_config.process_unet_state_dict(sd)
|
||||
control_model = controlnet_load_state_dict(control_model, sd)
|
||||
extra_conds = ['y', 'guidance']
|
||||
control = ControlNet(control_model, load_device=load_device, manual_cast_dtype=manual_cast_dtype, extra_conds=extra_conds)
|
||||
@@ -605,6 +630,53 @@ def load_controlnet_qwen_instantx(sd, model_options={}):
|
||||
control = ControlNet(control_model, compression_ratio=1, latent_format=latent_format, concat_mask=concat_mask, load_device=load_device, manual_cast_dtype=manual_cast_dtype, extra_conds=extra_conds)
|
||||
return control
|
||||
|
||||
|
||||
def load_controlnet_qwen_fun(sd, model_options={}):
|
||||
load_device = comfy.model_management.get_torch_device()
|
||||
weight_dtype = comfy.utils.weight_dtype(sd)
|
||||
unet_dtype = model_options.get("dtype", weight_dtype)
|
||||
manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device)
|
||||
|
||||
operations = model_options.get("custom_operations", None)
|
||||
if operations is None:
|
||||
operations = comfy.ops.pick_operations(unet_dtype, manual_cast_dtype, disable_fast_fp8=True)
|
||||
|
||||
in_features = sd["control_img_in.weight"].shape[1]
|
||||
inner_dim = sd["control_img_in.weight"].shape[0]
|
||||
|
||||
block_weight = sd["control_blocks.0.attn.to_q.weight"]
|
||||
attention_head_dim = sd["control_blocks.0.attn.norm_q.weight"].shape[0]
|
||||
num_attention_heads = max(1, block_weight.shape[0] // max(1, attention_head_dim))
|
||||
|
||||
model = comfy.ldm.qwen_image.controlnet.QwenImageFunControlNetModel(
|
||||
control_in_features=in_features,
|
||||
inner_dim=inner_dim,
|
||||
num_attention_heads=num_attention_heads,
|
||||
attention_head_dim=attention_head_dim,
|
||||
num_control_blocks=5,
|
||||
main_model_double=60,
|
||||
injection_layers=(0, 12, 24, 36, 48),
|
||||
operations=operations,
|
||||
device=comfy.model_management.unet_offload_device(),
|
||||
dtype=unet_dtype,
|
||||
)
|
||||
model = controlnet_load_state_dict(model, sd)
|
||||
|
||||
latent_format = comfy.latent_formats.Wan21()
|
||||
control = QwenFunControlNet(
|
||||
model,
|
||||
compression_ratio=1,
|
||||
latent_format=latent_format,
|
||||
# Fun checkpoints already expect their own 33-channel context handling.
|
||||
# Enabling generic concat_mask injects an extra mask channel at apply-time
|
||||
# and breaks the intended fallback packing path.
|
||||
concat_mask=False,
|
||||
load_device=load_device,
|
||||
manual_cast_dtype=manual_cast_dtype,
|
||||
extra_conds=[],
|
||||
)
|
||||
return control
|
||||
|
||||
def convert_mistoline(sd):
|
||||
return comfy.utils.state_dict_prefix_replace(sd, {"single_controlnet_blocks.": "controlnet_single_blocks."})
|
||||
|
||||
@@ -682,6 +754,8 @@ def load_controlnet_state_dict(state_dict, model=None, model_options={}):
|
||||
return load_controlnet_qwen_instantx(controlnet_data, model_options=model_options)
|
||||
elif "controlnet_x_embedder.weight" in controlnet_data:
|
||||
return load_controlnet_flux_instantx(controlnet_data, model_options=model_options)
|
||||
elif "control_blocks.0.after_proj.weight" in controlnet_data and "control_img_in.weight" in controlnet_data:
|
||||
return load_controlnet_qwen_fun(controlnet_data, model_options=model_options)
|
||||
|
||||
elif "controlnet_blocks.0.linear.weight" in controlnet_data: #mistoline flux
|
||||
return load_controlnet_flux_xlabs_mistoline(convert_mistoline(controlnet_data), mistoline=True, model_options=model_options)
|
||||
|
||||
@@ -1,12 +1,11 @@
|
||||
import math
|
||||
import time
|
||||
from functools import partial
|
||||
|
||||
from scipy import integrate
|
||||
import torch
|
||||
from torch import nn
|
||||
import torchsde
|
||||
from tqdm.auto import trange as trange_, tqdm
|
||||
from tqdm.auto import tqdm
|
||||
|
||||
from . import utils
|
||||
from . import deis
|
||||
@@ -15,34 +14,7 @@ import comfy.model_patcher
|
||||
import comfy.model_sampling
|
||||
|
||||
import comfy.memory_management
|
||||
|
||||
|
||||
def trange(*args, **kwargs):
|
||||
if comfy.memory_management.aimdo_allocator is None:
|
||||
return trange_(*args, **kwargs)
|
||||
|
||||
pbar = trange_(*args, **kwargs, smoothing=1.0)
|
||||
pbar._i = 0
|
||||
pbar.set_postfix_str(" Model Initializing ... ")
|
||||
|
||||
_update = pbar.update
|
||||
|
||||
def warmup_update(n=1):
|
||||
pbar._i += 1
|
||||
if pbar._i == 1:
|
||||
pbar.i1_time = time.time()
|
||||
pbar.set_postfix_str(" Model Initialization complete! ")
|
||||
elif pbar._i == 2:
|
||||
#bring forward the effective start time based the the diff between first and second iteration
|
||||
#to attempt to remove load overhead from the final step rate estimate.
|
||||
pbar.start_t = pbar.i1_time - (time.time() - pbar.i1_time)
|
||||
pbar.set_postfix_str("")
|
||||
|
||||
_update(n)
|
||||
|
||||
pbar.update = warmup_update
|
||||
return pbar
|
||||
|
||||
from comfy.utils import model_trange as trange
|
||||
|
||||
def append_zero(x):
|
||||
return torch.cat([x, x.new_zeros([1])])
|
||||
|
||||
@@ -195,8 +195,20 @@ class Anima(MiniTrainDIT):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.llm_adapter = LLMAdapter(device=kwargs.get("device"), dtype=kwargs.get("dtype"), operations=kwargs.get("operations"))
|
||||
|
||||
def preprocess_text_embeds(self, text_embeds, text_ids):
|
||||
def preprocess_text_embeds(self, text_embeds, text_ids, t5xxl_weights=None):
|
||||
if text_ids is not None:
|
||||
return self.llm_adapter(text_embeds, text_ids)
|
||||
out = self.llm_adapter(text_embeds, text_ids)
|
||||
if t5xxl_weights is not None:
|
||||
out = out * t5xxl_weights
|
||||
|
||||
if out.shape[1] < 512:
|
||||
out = torch.nn.functional.pad(out, (0, 0, 0, 512 - out.shape[1]))
|
||||
return out
|
||||
else:
|
||||
return text_embeds
|
||||
|
||||
def forward(self, x, timesteps, context, **kwargs):
|
||||
t5xxl_ids = kwargs.pop("t5xxl_ids", None)
|
||||
if t5xxl_ids is not None:
|
||||
context = self.preprocess_text_embeds(context, t5xxl_ids, t5xxl_weights=kwargs.pop("t5xxl_weights", None))
|
||||
return super().forward(x, timesteps, context, **kwargs)
|
||||
|
||||
@@ -3,7 +3,6 @@ from torch import Tensor, nn
|
||||
|
||||
from comfy.ldm.flux.layers import (
|
||||
MLPEmbedder,
|
||||
RMSNorm,
|
||||
ModulationOut,
|
||||
)
|
||||
|
||||
@@ -29,7 +28,7 @@ class Approximator(nn.Module):
|
||||
super().__init__()
|
||||
self.in_proj = operations.Linear(in_dim, hidden_dim, bias=True, dtype=dtype, device=device)
|
||||
self.layers = nn.ModuleList([MLPEmbedder(hidden_dim, hidden_dim, dtype=dtype, device=device, operations=operations) for x in range( n_layers)])
|
||||
self.norms = nn.ModuleList([RMSNorm(hidden_dim, dtype=dtype, device=device, operations=operations) for x in range( n_layers)])
|
||||
self.norms = nn.ModuleList([operations.RMSNorm(hidden_dim, dtype=dtype, device=device) for x in range( n_layers)])
|
||||
self.out_proj = operations.Linear(hidden_dim, out_dim, dtype=dtype, device=device)
|
||||
|
||||
@property
|
||||
|
||||
@@ -4,8 +4,6 @@ from functools import lru_cache
|
||||
import torch
|
||||
from torch import nn
|
||||
|
||||
from comfy.ldm.flux.layers import RMSNorm
|
||||
|
||||
|
||||
class NerfEmbedder(nn.Module):
|
||||
"""
|
||||
@@ -145,7 +143,7 @@ class NerfGLUBlock(nn.Module):
|
||||
# We now need to generate parameters for 3 matrices.
|
||||
total_params = 3 * hidden_size_x**2 * mlp_ratio
|
||||
self.param_generator = operations.Linear(hidden_size_s, total_params, dtype=dtype, device=device)
|
||||
self.norm = RMSNorm(hidden_size_x, dtype=dtype, device=device, operations=operations)
|
||||
self.norm = operations.RMSNorm(hidden_size_x, dtype=dtype, device=device)
|
||||
self.mlp_ratio = mlp_ratio
|
||||
|
||||
|
||||
@@ -178,7 +176,7 @@ class NerfGLUBlock(nn.Module):
|
||||
class NerfFinalLayer(nn.Module):
|
||||
def __init__(self, hidden_size, out_channels, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.norm = RMSNorm(hidden_size, dtype=dtype, device=device, operations=operations)
|
||||
self.norm = operations.RMSNorm(hidden_size, dtype=dtype, device=device)
|
||||
self.linear = operations.Linear(hidden_size, out_channels, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
||||
@@ -190,7 +188,7 @@ class NerfFinalLayer(nn.Module):
|
||||
class NerfFinalLayerConv(nn.Module):
|
||||
def __init__(self, hidden_size: int, out_channels: int, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.norm = RMSNorm(hidden_size, dtype=dtype, device=device, operations=operations)
|
||||
self.norm = operations.RMSNorm(hidden_size, dtype=dtype, device=device)
|
||||
self.conv = operations.Conv2d(
|
||||
in_channels=hidden_size,
|
||||
out_channels=out_channels,
|
||||
|
||||
@@ -5,9 +5,9 @@ import torch
|
||||
from torch import Tensor, nn
|
||||
|
||||
from .math import attention, rope
|
||||
import comfy.ops
|
||||
import comfy.ldm.common_dit
|
||||
|
||||
# Fix import for some custom nodes, TODO: delete eventually.
|
||||
RMSNorm = None
|
||||
|
||||
class EmbedND(nn.Module):
|
||||
def __init__(self, dim: int, theta: int, axes_dim: list):
|
||||
@@ -87,20 +87,12 @@ def build_mlp(hidden_size, mlp_hidden_dim, mlp_silu_act=False, yak_mlp=False, dt
|
||||
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
|
||||
)
|
||||
|
||||
class RMSNorm(torch.nn.Module):
|
||||
def __init__(self, dim: int, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.scale = nn.Parameter(torch.empty((dim), dtype=dtype, device=device))
|
||||
|
||||
def forward(self, x: Tensor):
|
||||
return comfy.ldm.common_dit.rms_norm(x, self.scale, 1e-6)
|
||||
|
||||
|
||||
class QKNorm(torch.nn.Module):
|
||||
def __init__(self, dim: int, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
self.query_norm = RMSNorm(dim, dtype=dtype, device=device, operations=operations)
|
||||
self.key_norm = RMSNorm(dim, dtype=dtype, device=device, operations=operations)
|
||||
self.query_norm = operations.RMSNorm(dim, dtype=dtype, device=device)
|
||||
self.key_norm = operations.RMSNorm(dim, dtype=dtype, device=device)
|
||||
|
||||
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple:
|
||||
q = self.query_norm(q)
|
||||
@@ -169,7 +161,7 @@ class SiLUActivation(nn.Module):
|
||||
|
||||
|
||||
class DoubleStreamBlock(nn.Module):
|
||||
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, flipped_img_txt=False, modulation=True, mlp_silu_act=False, proj_bias=True, yak_mlp=False, dtype=None, device=None, operations=None):
|
||||
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, modulation=True, mlp_silu_act=False, proj_bias=True, yak_mlp=False, dtype=None, device=None, operations=None):
|
||||
super().__init__()
|
||||
|
||||
mlp_hidden_dim = int(hidden_size * mlp_ratio)
|
||||
@@ -197,8 +189,6 @@ class DoubleStreamBlock(nn.Module):
|
||||
|
||||
self.txt_mlp = build_mlp(hidden_size, mlp_hidden_dim, mlp_silu_act=mlp_silu_act, yak_mlp=yak_mlp, dtype=dtype, device=device, operations=operations)
|
||||
|
||||
self.flipped_img_txt = flipped_img_txt
|
||||
|
||||
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims_img=None, modulation_dims_txt=None, transformer_options={}):
|
||||
if self.modulation:
|
||||
img_mod1, img_mod2 = self.img_mod(vec)
|
||||
@@ -224,32 +214,17 @@ class DoubleStreamBlock(nn.Module):
|
||||
del txt_qkv
|
||||
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
|
||||
|
||||
if self.flipped_img_txt:
|
||||
q = torch.cat((img_q, txt_q), dim=2)
|
||||
del img_q, txt_q
|
||||
k = torch.cat((img_k, txt_k), dim=2)
|
||||
del img_k, txt_k
|
||||
v = torch.cat((img_v, txt_v), dim=2)
|
||||
del img_v, txt_v
|
||||
# run actual attention
|
||||
attn = attention(q, k, v,
|
||||
pe=pe, mask=attn_mask, transformer_options=transformer_options)
|
||||
del q, k, v
|
||||
q = torch.cat((txt_q, img_q), dim=2)
|
||||
del txt_q, img_q
|
||||
k = torch.cat((txt_k, img_k), dim=2)
|
||||
del txt_k, img_k
|
||||
v = torch.cat((txt_v, img_v), dim=2)
|
||||
del txt_v, img_v
|
||||
# run actual attention
|
||||
attn = attention(q, k, v, pe=pe, mask=attn_mask, transformer_options=transformer_options)
|
||||
del q, k, v
|
||||
|
||||
img_attn, txt_attn = attn[:, : img.shape[1]], attn[:, img.shape[1]:]
|
||||
else:
|
||||
q = torch.cat((txt_q, img_q), dim=2)
|
||||
del txt_q, img_q
|
||||
k = torch.cat((txt_k, img_k), dim=2)
|
||||
del txt_k, img_k
|
||||
v = torch.cat((txt_v, img_v), dim=2)
|
||||
del txt_v, img_v
|
||||
# run actual attention
|
||||
attn = attention(q, k, v,
|
||||
pe=pe, mask=attn_mask, transformer_options=transformer_options)
|
||||
del q, k, v
|
||||
|
||||
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1]:]
|
||||
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1]:]
|
||||
|
||||
# calculate the img bloks
|
||||
img += apply_mod(self.img_attn.proj(img_attn), img_mod1.gate, None, modulation_dims_img)
|
||||
|
||||
@@ -29,19 +29,34 @@ def rope(pos: Tensor, dim: int, theta: int) -> Tensor:
|
||||
return out.to(dtype=torch.float32, device=pos.device)
|
||||
|
||||
|
||||
def _apply_rope1(x: Tensor, freqs_cis: Tensor):
|
||||
x_ = x.to(dtype=freqs_cis.dtype).reshape(*x.shape[:-1], -1, 1, 2)
|
||||
|
||||
x_out = freqs_cis[..., 0] * x_[..., 0]
|
||||
x_out.addcmul_(freqs_cis[..., 1], x_[..., 1])
|
||||
|
||||
return x_out.reshape(*x.shape).type_as(x)
|
||||
|
||||
|
||||
def _apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor):
|
||||
return apply_rope1(xq, freqs_cis), apply_rope1(xk, freqs_cis)
|
||||
|
||||
|
||||
try:
|
||||
import comfy.quant_ops
|
||||
apply_rope = comfy.quant_ops.ck.apply_rope
|
||||
apply_rope1 = comfy.quant_ops.ck.apply_rope1
|
||||
q_apply_rope = comfy.quant_ops.ck.apply_rope
|
||||
q_apply_rope1 = comfy.quant_ops.ck.apply_rope1
|
||||
def apply_rope(xq, xk, freqs_cis):
|
||||
if comfy.model_management.in_training:
|
||||
return _apply_rope(xq, xk, freqs_cis)
|
||||
else:
|
||||
return apply_rope1(xq, freqs_cis), apply_rope1(xk, freqs_cis)
|
||||
def apply_rope1(x, freqs_cis):
|
||||
if comfy.model_management.in_training:
|
||||
return _apply_rope1(x, freqs_cis)
|
||||
else:
|
||||
return q_apply_rope1(x, freqs_cis)
|
||||
except:
|
||||
logging.warning("No comfy kitchen, using old apply_rope functions.")
|
||||
def apply_rope1(x: Tensor, freqs_cis: Tensor):
|
||||
x_ = x.to(dtype=freqs_cis.dtype).reshape(*x.shape[:-1], -1, 1, 2)
|
||||
|
||||
x_out = freqs_cis[..., 0] * x_[..., 0]
|
||||
x_out.addcmul_(freqs_cis[..., 1], x_[..., 1])
|
||||
|
||||
return x_out.reshape(*x.shape).type_as(x)
|
||||
|
||||
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor):
|
||||
return apply_rope1(xq, freqs_cis), apply_rope1(xk, freqs_cis)
|
||||
apply_rope = _apply_rope
|
||||
apply_rope1 = _apply_rope1
|
||||
|
||||
@@ -16,7 +16,6 @@ from .layers import (
|
||||
SingleStreamBlock,
|
||||
timestep_embedding,
|
||||
Modulation,
|
||||
RMSNorm
|
||||
)
|
||||
|
||||
@dataclass
|
||||
@@ -81,7 +80,7 @@ class Flux(nn.Module):
|
||||
self.txt_in = operations.Linear(params.context_in_dim, self.hidden_size, bias=params.ops_bias, dtype=dtype, device=device)
|
||||
|
||||
if params.txt_norm:
|
||||
self.txt_norm = RMSNorm(params.context_in_dim, dtype=dtype, device=device, operations=operations)
|
||||
self.txt_norm = operations.RMSNorm(params.context_in_dim, dtype=dtype, device=device)
|
||||
else:
|
||||
self.txt_norm = None
|
||||
|
||||
|
||||
@@ -241,7 +241,6 @@ class HunyuanVideo(nn.Module):
|
||||
self.num_heads,
|
||||
mlp_ratio=params.mlp_ratio,
|
||||
qkv_bias=params.qkv_bias,
|
||||
flipped_img_txt=True,
|
||||
dtype=dtype, device=device, operations=operations
|
||||
)
|
||||
for _ in range(params.depth)
|
||||
@@ -378,14 +377,14 @@ class HunyuanVideo(nn.Module):
|
||||
extra_txt_ids = torch.zeros((txt_ids.shape[0], txt_vision_states.shape[1], txt_ids.shape[-1]), device=txt_ids.device, dtype=txt_ids.dtype)
|
||||
txt_ids = torch.cat((txt_ids, extra_txt_ids), dim=1)
|
||||
|
||||
ids = torch.cat((img_ids, txt_ids), dim=1)
|
||||
ids = torch.cat((txt_ids, img_ids), dim=1)
|
||||
pe = self.pe_embedder(ids)
|
||||
|
||||
img_len = img.shape[1]
|
||||
if txt_mask is not None:
|
||||
attn_mask_len = img_len + txt.shape[1]
|
||||
attn_mask = torch.zeros((1, 1, attn_mask_len), dtype=img.dtype, device=img.device)
|
||||
attn_mask[:, 0, img_len:] = txt_mask
|
||||
attn_mask[:, 0, :txt.shape[1]] = txt_mask
|
||||
else:
|
||||
attn_mask = None
|
||||
|
||||
@@ -413,7 +412,7 @@ class HunyuanVideo(nn.Module):
|
||||
if add is not None:
|
||||
img += add
|
||||
|
||||
img = torch.cat((img, txt), 1)
|
||||
img = torch.cat((txt, img), 1)
|
||||
|
||||
transformer_options["total_blocks"] = len(self.single_blocks)
|
||||
transformer_options["block_type"] = "single"
|
||||
@@ -435,9 +434,9 @@ class HunyuanVideo(nn.Module):
|
||||
if i < len(control_o):
|
||||
add = control_o[i]
|
||||
if add is not None:
|
||||
img[:, : img_len] += add
|
||||
img[:, txt.shape[1]: img_len + txt.shape[1]] += add
|
||||
|
||||
img = img[:, : img_len]
|
||||
img = img[:, txt.shape[1]: img_len + txt.shape[1]]
|
||||
if ref_latent is not None:
|
||||
img = img[:, ref_latent.shape[1]:]
|
||||
|
||||
|
||||
@@ -2,6 +2,196 @@ import torch
|
||||
import math
|
||||
|
||||
from .model import QwenImageTransformer2DModel
|
||||
from .model import QwenImageTransformerBlock
|
||||
|
||||
|
||||
class QwenImageFunControlBlock(QwenImageTransformerBlock):
|
||||
def __init__(self, dim, num_attention_heads, attention_head_dim, has_before_proj=False, dtype=None, device=None, operations=None):
|
||||
super().__init__(
|
||||
dim=dim,
|
||||
num_attention_heads=num_attention_heads,
|
||||
attention_head_dim=attention_head_dim,
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations,
|
||||
)
|
||||
self.has_before_proj = has_before_proj
|
||||
if has_before_proj:
|
||||
self.before_proj = operations.Linear(dim, dim, device=device, dtype=dtype)
|
||||
self.after_proj = operations.Linear(dim, dim, device=device, dtype=dtype)
|
||||
|
||||
|
||||
class QwenImageFunControlNetModel(torch.nn.Module):
|
||||
def __init__(
|
||||
self,
|
||||
control_in_features=132,
|
||||
inner_dim=3072,
|
||||
num_attention_heads=24,
|
||||
attention_head_dim=128,
|
||||
num_control_blocks=5,
|
||||
main_model_double=60,
|
||||
injection_layers=(0, 12, 24, 36, 48),
|
||||
dtype=None,
|
||||
device=None,
|
||||
operations=None,
|
||||
):
|
||||
super().__init__()
|
||||
self.dtype = dtype
|
||||
self.main_model_double = main_model_double
|
||||
self.injection_layers = tuple(injection_layers)
|
||||
# Keep base hint scaling at 1.0 so user-facing strength behaves similarly
|
||||
# to the reference Gen2/VideoX implementation around strength=1.
|
||||
self.hint_scale = 1.0
|
||||
self.control_img_in = operations.Linear(control_in_features, inner_dim, device=device, dtype=dtype)
|
||||
|
||||
self.control_blocks = torch.nn.ModuleList([])
|
||||
for i in range(num_control_blocks):
|
||||
self.control_blocks.append(
|
||||
QwenImageFunControlBlock(
|
||||
dim=inner_dim,
|
||||
num_attention_heads=num_attention_heads,
|
||||
attention_head_dim=attention_head_dim,
|
||||
has_before_proj=(i == 0),
|
||||
dtype=dtype,
|
||||
device=device,
|
||||
operations=operations,
|
||||
)
|
||||
)
|
||||
|
||||
def _process_hint_tokens(self, hint):
|
||||
if hint is None:
|
||||
return None
|
||||
if hint.ndim == 4:
|
||||
hint = hint.unsqueeze(2)
|
||||
|
||||
# Fun checkpoints are trained with 33 latent channels before 2x2 packing:
|
||||
# [control_latent(16), mask(1), inpaint_latent(16)] -> 132 features.
|
||||
# Default behavior (no inpaint input in stock Apply ControlNet) should use
|
||||
# zeros for mask/inpaint branches, matching VideoX fallback semantics.
|
||||
expected_c = self.control_img_in.weight.shape[1] // 4
|
||||
if hint.shape[1] == 16 and expected_c == 33:
|
||||
zeros_mask = torch.zeros_like(hint[:, :1])
|
||||
zeros_inpaint = torch.zeros_like(hint)
|
||||
hint = torch.cat([hint, zeros_mask, zeros_inpaint], dim=1)
|
||||
|
||||
bs, c, t, h, w = hint.shape
|
||||
hidden_states = torch.nn.functional.pad(hint, (0, w % 2, 0, h % 2))
|
||||
orig_shape = hidden_states.shape
|
||||
hidden_states = hidden_states.view(
|
||||
orig_shape[0],
|
||||
orig_shape[1],
|
||||
orig_shape[-3],
|
||||
orig_shape[-2] // 2,
|
||||
2,
|
||||
orig_shape[-1] // 2,
|
||||
2,
|
||||
)
|
||||
hidden_states = hidden_states.permute(0, 2, 3, 5, 1, 4, 6)
|
||||
hidden_states = hidden_states.reshape(
|
||||
bs,
|
||||
t * ((h + 1) // 2) * ((w + 1) // 2),
|
||||
c * 4,
|
||||
)
|
||||
|
||||
expected_in = self.control_img_in.weight.shape[1]
|
||||
cur_in = hidden_states.shape[-1]
|
||||
if cur_in < expected_in:
|
||||
pad = torch.zeros(
|
||||
(hidden_states.shape[0], hidden_states.shape[1], expected_in - cur_in),
|
||||
device=hidden_states.device,
|
||||
dtype=hidden_states.dtype,
|
||||
)
|
||||
hidden_states = torch.cat([hidden_states, pad], dim=-1)
|
||||
elif cur_in > expected_in:
|
||||
hidden_states = hidden_states[:, :, :expected_in]
|
||||
|
||||
return hidden_states
|
||||
|
||||
def forward(
|
||||
self,
|
||||
x,
|
||||
timesteps,
|
||||
context,
|
||||
attention_mask=None,
|
||||
guidance: torch.Tensor = None,
|
||||
hint=None,
|
||||
transformer_options={},
|
||||
base_model=None,
|
||||
**kwargs,
|
||||
):
|
||||
if base_model is None:
|
||||
raise RuntimeError("Qwen Fun ControlNet requires a QwenImage base model at runtime.")
|
||||
|
||||
encoder_hidden_states_mask = attention_mask
|
||||
# Keep attention mask disabled inside Fun control blocks to mirror
|
||||
# VideoX behavior (they rely on seq lengths for RoPE, not masked attention).
|
||||
encoder_hidden_states_mask = None
|
||||
|
||||
hidden_states, img_ids, _ = base_model.process_img(x)
|
||||
hint_tokens = self._process_hint_tokens(hint)
|
||||
if hint_tokens is None:
|
||||
raise RuntimeError("Qwen Fun ControlNet requires a control hint image.")
|
||||
|
||||
if hint_tokens.shape[1] != hidden_states.shape[1]:
|
||||
max_tokens = min(hint_tokens.shape[1], hidden_states.shape[1])
|
||||
hint_tokens = hint_tokens[:, :max_tokens]
|
||||
hidden_states = hidden_states[:, :max_tokens]
|
||||
img_ids = img_ids[:, :max_tokens]
|
||||
|
||||
txt_start = round(
|
||||
max(
|
||||
((x.shape[-1] + (base_model.patch_size // 2)) // base_model.patch_size) // 2,
|
||||
((x.shape[-2] + (base_model.patch_size // 2)) // base_model.patch_size) // 2,
|
||||
)
|
||||
)
|
||||
txt_ids = torch.arange(txt_start, txt_start + context.shape[1], device=x.device).reshape(1, -1, 1).repeat(x.shape[0], 1, 3)
|
||||
ids = torch.cat((txt_ids, img_ids), dim=1)
|
||||
image_rotary_emb = base_model.pe_embedder(ids).to(x.dtype).contiguous()
|
||||
|
||||
hidden_states = base_model.img_in(hidden_states)
|
||||
encoder_hidden_states = base_model.txt_norm(context)
|
||||
encoder_hidden_states = base_model.txt_in(encoder_hidden_states)
|
||||
|
||||
if guidance is not None:
|
||||
guidance = guidance * 1000
|
||||
|
||||
temb = (
|
||||
base_model.time_text_embed(timesteps, hidden_states)
|
||||
if guidance is None
|
||||
else base_model.time_text_embed(timesteps, guidance, hidden_states)
|
||||
)
|
||||
|
||||
c = self.control_img_in(hint_tokens)
|
||||
|
||||
for i, block in enumerate(self.control_blocks):
|
||||
if i == 0:
|
||||
c_in = block.before_proj(c) + hidden_states
|
||||
all_c = []
|
||||
else:
|
||||
all_c = list(torch.unbind(c, dim=0))
|
||||
c_in = all_c.pop(-1)
|
||||
|
||||
encoder_hidden_states, c_out = block(
|
||||
hidden_states=c_in,
|
||||
encoder_hidden_states=encoder_hidden_states,
|
||||
encoder_hidden_states_mask=encoder_hidden_states_mask,
|
||||
temb=temb,
|
||||
image_rotary_emb=image_rotary_emb,
|
||||
transformer_options=transformer_options,
|
||||
)
|
||||
|
||||
c_skip = block.after_proj(c_out) * self.hint_scale
|
||||
all_c += [c_skip, c_out]
|
||||
c = torch.stack(all_c, dim=0)
|
||||
|
||||
hints = torch.unbind(c, dim=0)[:-1]
|
||||
|
||||
controlnet_block_samples = [None] * self.main_model_double
|
||||
for local_idx, base_idx in enumerate(self.injection_layers):
|
||||
if local_idx < len(hints) and base_idx < len(controlnet_block_samples):
|
||||
controlnet_block_samples[base_idx] = hints[local_idx]
|
||||
|
||||
return {"input": controlnet_block_samples}
|
||||
|
||||
|
||||
class QwenImageControlNetModel(QwenImageTransformer2DModel):
|
||||
|
||||
@@ -5,7 +5,7 @@ import comfy.utils
|
||||
def convert_lora_bfl_control(sd): #BFL loras for Flux
|
||||
sd_out = {}
|
||||
for k in sd:
|
||||
k_to = "diffusion_model.{}".format(k.replace(".lora_B.bias", ".diff_b").replace("_norm.scale", "_norm.scale.set_weight"))
|
||||
k_to = "diffusion_model.{}".format(k.replace(".lora_B.bias", ".diff_b").replace("_norm.scale", "_norm.set_weight"))
|
||||
sd_out[k_to] = sd[k]
|
||||
|
||||
sd_out["diffusion_model.img_in.reshape_weight"] = torch.tensor([sd["img_in.lora_B.weight"].shape[0], sd["img_in.lora_A.weight"].shape[1]])
|
||||
|
||||
@@ -1160,12 +1160,16 @@ class Anima(BaseModel):
|
||||
device = kwargs["device"]
|
||||
if cross_attn is not None:
|
||||
if t5xxl_ids is not None:
|
||||
cross_attn = self.diffusion_model.preprocess_text_embeds(cross_attn.to(device=device, dtype=self.get_dtype()), t5xxl_ids.unsqueeze(0).to(device=device))
|
||||
if t5xxl_weights is not None:
|
||||
cross_attn *= t5xxl_weights.unsqueeze(0).unsqueeze(-1).to(cross_attn)
|
||||
t5xxl_weights = t5xxl_weights.unsqueeze(0).unsqueeze(-1).to(cross_attn)
|
||||
t5xxl_ids = t5xxl_ids.unsqueeze(0)
|
||||
|
||||
if torch.is_inference_mode_enabled(): # if not we are training
|
||||
cross_attn = self.diffusion_model.preprocess_text_embeds(cross_attn.to(device=device, dtype=self.get_dtype()), t5xxl_ids.to(device=device), t5xxl_weights=t5xxl_weights.to(device=device, dtype=self.get_dtype()))
|
||||
else:
|
||||
out['t5xxl_ids'] = comfy.conds.CONDRegular(t5xxl_ids)
|
||||
out['t5xxl_weights'] = comfy.conds.CONDRegular(t5xxl_weights)
|
||||
|
||||
if cross_attn.shape[1] < 512:
|
||||
cross_attn = torch.nn.functional.pad(cross_attn, (0, 0, 0, 512 - cross_attn.shape[1]))
|
||||
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
|
||||
return out
|
||||
|
||||
|
||||
@@ -19,6 +19,12 @@ def count_blocks(state_dict_keys, prefix_string):
|
||||
count += 1
|
||||
return count
|
||||
|
||||
def any_suffix_in(keys, prefix, main, suffix_list=[]):
|
||||
for x in suffix_list:
|
||||
if "{}{}{}".format(prefix, main, x) in keys:
|
||||
return True
|
||||
return False
|
||||
|
||||
def calculate_transformer_depth(prefix, state_dict_keys, state_dict):
|
||||
context_dim = None
|
||||
use_linear_in_transformer = False
|
||||
@@ -186,7 +192,7 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
|
||||
dit_config["meanflow_sum"] = False
|
||||
return dit_config
|
||||
|
||||
if '{}double_blocks.0.img_attn.norm.key_norm.scale'.format(key_prefix) in state_dict_keys and ('{}img_in.weight'.format(key_prefix) in state_dict_keys or f"{key_prefix}distilled_guidance_layer.norms.0.scale" in state_dict_keys): #Flux, Chroma or Chroma Radiance (has no img_in.weight)
|
||||
if any_suffix_in(state_dict_keys, key_prefix, 'double_blocks.0.img_attn.norm.key_norm.', ["weight", "scale"]) and ('{}img_in.weight'.format(key_prefix) in state_dict_keys or any_suffix_in(state_dict_keys, key_prefix, 'distilled_guidance_layer.norms.0.', ["weight", "scale"])): #Flux, Chroma or Chroma Radiance (has no img_in.weight)
|
||||
dit_config = {}
|
||||
if '{}double_stream_modulation_img.lin.weight'.format(key_prefix) in state_dict_keys:
|
||||
dit_config["image_model"] = "flux2"
|
||||
@@ -241,7 +247,8 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
|
||||
|
||||
dit_config["depth"] = count_blocks(state_dict_keys, '{}double_blocks.'.format(key_prefix) + '{}.')
|
||||
dit_config["depth_single_blocks"] = count_blocks(state_dict_keys, '{}single_blocks.'.format(key_prefix) + '{}.')
|
||||
if '{}distilled_guidance_layer.0.norms.0.scale'.format(key_prefix) in state_dict_keys or '{}distilled_guidance_layer.norms.0.scale'.format(key_prefix) in state_dict_keys: #Chroma
|
||||
|
||||
if any_suffix_in(state_dict_keys, key_prefix, 'distilled_guidance_layer.0.norms.0.', ["weight", "scale"]) or any_suffix_in(state_dict_keys, key_prefix, 'distilled_guidance_layer.norms.0.', ["weight", "scale"]): #Chroma
|
||||
dit_config["image_model"] = "chroma"
|
||||
dit_config["in_channels"] = 64
|
||||
dit_config["out_channels"] = 64
|
||||
@@ -249,7 +256,8 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
|
||||
dit_config["out_dim"] = 3072
|
||||
dit_config["hidden_dim"] = 5120
|
||||
dit_config["n_layers"] = 5
|
||||
if f"{key_prefix}nerf_blocks.0.norm.scale" in state_dict_keys: #Chroma Radiance
|
||||
|
||||
if any_suffix_in(state_dict_keys, key_prefix, 'nerf_blocks.0.norm.', ["weight", "scale"]): #Chroma Radiance
|
||||
dit_config["image_model"] = "chroma_radiance"
|
||||
dit_config["in_channels"] = 3
|
||||
dit_config["out_channels"] = 3
|
||||
@@ -259,7 +267,7 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
|
||||
dit_config["nerf_depth"] = 4
|
||||
dit_config["nerf_max_freqs"] = 8
|
||||
dit_config["nerf_tile_size"] = 512
|
||||
dit_config["nerf_final_head_type"] = "conv" if f"{key_prefix}nerf_final_layer_conv.norm.scale" in state_dict_keys else "linear"
|
||||
dit_config["nerf_final_head_type"] = "conv" if any_suffix_in(state_dict_keys, key_prefix, 'nerf_final_layer_conv.norm.', ["weight", "scale"]) else "linear"
|
||||
dit_config["nerf_embedder_dtype"] = torch.float32
|
||||
if "{}__x0__".format(key_prefix) in state_dict_keys: # x0 pred
|
||||
dit_config["use_x0"] = True
|
||||
@@ -268,7 +276,7 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
|
||||
else:
|
||||
dit_config["guidance_embed"] = "{}guidance_in.in_layer.weight".format(key_prefix) in state_dict_keys
|
||||
dit_config["yak_mlp"] = '{}double_blocks.0.img_mlp.gate_proj.weight'.format(key_prefix) in state_dict_keys
|
||||
dit_config["txt_norm"] = "{}txt_norm.scale".format(key_prefix) in state_dict_keys
|
||||
dit_config["txt_norm"] = any_suffix_in(state_dict_keys, key_prefix, 'txt_norm.', ["weight", "scale"])
|
||||
if dit_config["yak_mlp"] and dit_config["txt_norm"]: # Ovis model
|
||||
dit_config["txt_ids_dims"] = [1, 2]
|
||||
|
||||
|
||||
@@ -55,6 +55,11 @@ cpu_state = CPUState.GPU
|
||||
|
||||
total_vram = 0
|
||||
|
||||
|
||||
# Training Related State
|
||||
in_training = False
|
||||
|
||||
|
||||
def get_supported_float8_types():
|
||||
float8_types = []
|
||||
try:
|
||||
@@ -1208,8 +1213,12 @@ def cast_to(weight, dtype=None, device=None, non_blocking=False, copy=False, str
|
||||
|
||||
signature = comfy_aimdo.model_vbar.vbar_fault(weight._v)
|
||||
if signature is not None:
|
||||
v_tensor = comfy.memory_management.interpret_gathered_like(cast_geometry, weight._v_tensor)[0]
|
||||
if not comfy_aimdo.model_vbar.vbar_signature_compare(signature, weight._v_signature):
|
||||
if comfy_aimdo.model_vbar.vbar_signature_compare(signature, weight._v_signature):
|
||||
v_tensor = weight._v_tensor
|
||||
else:
|
||||
raw_tensor = comfy_aimdo.torch.aimdo_to_tensor(weight._v, device)
|
||||
v_tensor = comfy.memory_management.interpret_gathered_like(cast_geometry, raw_tensor)[0]
|
||||
weight._v_tensor = v_tensor
|
||||
weight._v_signature = signature
|
||||
#Send it over
|
||||
v_tensor.copy_(weight, non_blocking=non_blocking)
|
||||
|
||||
@@ -679,18 +679,19 @@ class ModelPatcher:
|
||||
for key in list(self.pinned):
|
||||
self.unpin_weight(key)
|
||||
|
||||
def _load_list(self, prio_comfy_cast_weights=False):
|
||||
def _load_list(self, prio_comfy_cast_weights=False, default_device=None):
|
||||
loading = []
|
||||
for n, m in self.model.named_modules():
|
||||
params = []
|
||||
skip = False
|
||||
for name, param in m.named_parameters(recurse=False):
|
||||
params.append(name)
|
||||
default = False
|
||||
params = { name: param for name, param in m.named_parameters(recurse=False) }
|
||||
for name, param in m.named_parameters(recurse=True):
|
||||
if name not in params:
|
||||
skip = True # skip random weights in non leaf modules
|
||||
default = True # default random weights in non leaf modules
|
||||
break
|
||||
if not skip and (hasattr(m, "comfy_cast_weights") or len(params) > 0):
|
||||
if default and default_device is not None:
|
||||
for param in params.values():
|
||||
param.data = param.data.to(device=default_device)
|
||||
if not default and (hasattr(m, "comfy_cast_weights") or len(params) > 0):
|
||||
module_mem = comfy.model_management.module_size(m)
|
||||
module_offload_mem = module_mem
|
||||
if hasattr(m, "comfy_cast_weights"):
|
||||
@@ -1495,7 +1496,7 @@ class ModelPatcherDynamic(ModelPatcher):
|
||||
#with pin and unpin syncrhonization which can be expensive for small weights
|
||||
#with a high layer rate (e.g. autoregressive LLMs).
|
||||
#prioritize the non-comfy weights (note the order reverse).
|
||||
loading = self._load_list(prio_comfy_cast_weights=True)
|
||||
loading = self._load_list(prio_comfy_cast_weights=True, default_device=device_to)
|
||||
loading.sort(reverse=True)
|
||||
|
||||
for x in loading:
|
||||
@@ -1525,7 +1526,7 @@ class ModelPatcherDynamic(ModelPatcher):
|
||||
setattr(m, param_key + "_function", weight_function)
|
||||
geometry = weight
|
||||
if not isinstance(weight, QuantizedTensor):
|
||||
model_dtype = getattr(m, param_key + "_comfy_model_dtype", weight.dtype)
|
||||
model_dtype = getattr(m, param_key + "_comfy_model_dtype", None) or weight.dtype
|
||||
weight._model_dtype = model_dtype
|
||||
geometry = comfy.memory_management.TensorGeometry(shape=weight.shape, dtype=model_dtype)
|
||||
return comfy.memory_management.vram_aligned_size(geometry)
|
||||
@@ -1542,7 +1543,6 @@ class ModelPatcherDynamic(ModelPatcher):
|
||||
|
||||
if vbar is not None and not hasattr(m, "_v"):
|
||||
m._v = vbar.alloc(v_weight_size)
|
||||
m._v_tensor = comfy_aimdo.torch.aimdo_to_tensor(m._v, device_to)
|
||||
allocated_size += v_weight_size
|
||||
|
||||
else:
|
||||
@@ -1552,16 +1552,17 @@ class ModelPatcherDynamic(ModelPatcher):
|
||||
weight.seed_key = key
|
||||
set_dirty(weight, dirty)
|
||||
geometry = weight
|
||||
model_dtype = getattr(m, param + "_comfy_model_dtype", weight.dtype)
|
||||
model_dtype = getattr(m, param + "_comfy_model_dtype", None) or weight.dtype
|
||||
geometry = comfy.memory_management.TensorGeometry(shape=weight.shape, dtype=model_dtype)
|
||||
weight_size = geometry.numel() * geometry.element_size()
|
||||
if vbar is not None and not hasattr(weight, "_v"):
|
||||
weight._v = vbar.alloc(weight_size)
|
||||
weight._v_tensor = comfy_aimdo.torch.aimdo_to_tensor(weight._v, device_to)
|
||||
weight._model_dtype = model_dtype
|
||||
allocated_size += weight_size
|
||||
vbar.set_watermark_limit(allocated_size)
|
||||
|
||||
move_weight_functions(m, device_to)
|
||||
|
||||
logging.info(f"Model {self.model.__class__.__name__} prepared for dynamic VRAM loading. {allocated_size // (1024 ** 2)}MB Staged. {num_patches} patches attached.")
|
||||
|
||||
self.model.device = device_to
|
||||
@@ -1581,7 +1582,7 @@ class ModelPatcherDynamic(ModelPatcher):
|
||||
return 0 if vbar is None else vbar.free_memory(memory_to_free)
|
||||
|
||||
def partially_unload_ram(self, ram_to_unload):
|
||||
loading = self._load_list(prio_comfy_cast_weights=True)
|
||||
loading = self._load_list(prio_comfy_cast_weights=True, default_device=self.offload_device)
|
||||
for x in loading:
|
||||
_, _, _, _, m, _ = x
|
||||
ram_to_unload -= comfy.pinned_memory.unpin_memory(m)
|
||||
@@ -1602,6 +1603,8 @@ class ModelPatcherDynamic(ModelPatcher):
|
||||
if unpatch_weights:
|
||||
self.partially_unload_ram(1e32)
|
||||
self.partially_unload(None, 1e32)
|
||||
for m in self.model.modules():
|
||||
move_weight_functions(m, device_to)
|
||||
|
||||
def partially_load(self, device_to, extra_memory=0, force_patch_weights=False):
|
||||
assert not force_patch_weights #See above
|
||||
|
||||
21
comfy/ops.py
21
comfy/ops.py
@@ -83,14 +83,18 @@ def cast_to_input(weight, input, non_blocking=False, copy=True):
|
||||
def cast_bias_weight_with_vbar(s, dtype, device, bias_dtype, non_blocking, compute_dtype):
|
||||
offload_stream = None
|
||||
xfer_dest = None
|
||||
cast_geometry = comfy.memory_management.tensors_to_geometries([ s.weight, s.bias ])
|
||||
|
||||
signature = comfy_aimdo.model_vbar.vbar_fault(s._v)
|
||||
if signature is not None:
|
||||
xfer_dest = s._v_tensor
|
||||
resident = comfy_aimdo.model_vbar.vbar_signature_compare(signature, s._v_signature)
|
||||
if signature is not None:
|
||||
if resident:
|
||||
weight = s._v_weight
|
||||
bias = s._v_bias
|
||||
else:
|
||||
xfer_dest = comfy_aimdo.torch.aimdo_to_tensor(s._v, device)
|
||||
|
||||
if not resident:
|
||||
cast_geometry = comfy.memory_management.tensors_to_geometries([ s.weight, s.bias ])
|
||||
cast_dest = None
|
||||
|
||||
xfer_source = [ s.weight, s.bias ]
|
||||
@@ -140,9 +144,13 @@ def cast_bias_weight_with_vbar(s, dtype, device, bias_dtype, non_blocking, compu
|
||||
post_cast.copy_(pre_cast)
|
||||
xfer_dest = cast_dest
|
||||
|
||||
params = comfy.memory_management.interpret_gathered_like(cast_geometry, xfer_dest)
|
||||
weight = params[0]
|
||||
bias = params[1]
|
||||
params = comfy.memory_management.interpret_gathered_like(cast_geometry, xfer_dest)
|
||||
weight = params[0]
|
||||
bias = params[1]
|
||||
if signature is not None:
|
||||
s._v_weight = weight
|
||||
s._v_bias = bias
|
||||
s._v_signature=signature
|
||||
|
||||
def post_cast(s, param_key, x, dtype, resident, update_weight):
|
||||
lowvram_fn = getattr(s, param_key + "_lowvram_function", None)
|
||||
@@ -182,7 +190,6 @@ def cast_bias_weight_with_vbar(s, dtype, device, bias_dtype, non_blocking, compu
|
||||
weight = post_cast(s, "weight", weight, dtype, resident, update_weight)
|
||||
if s.bias is not None:
|
||||
bias = post_cast(s, "bias", bias, bias_dtype, resident, update_weight)
|
||||
s._v_signature=signature
|
||||
|
||||
#FIXME: weird offload return protocol
|
||||
return weight, bias, (offload_stream, device if signature is not None else None, None)
|
||||
|
||||
@@ -122,20 +122,26 @@ def estimate_memory(model, noise_shape, conds):
|
||||
minimum_memory_required = model.model.memory_required([noise_shape[0]] + list(noise_shape[1:]), cond_shapes=cond_shapes_min)
|
||||
return memory_required, minimum_memory_required
|
||||
|
||||
def prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None, force_full_load=False):
|
||||
def prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None, force_full_load=False, force_offload=False):
|
||||
executor = comfy.patcher_extension.WrapperExecutor.new_executor(
|
||||
_prepare_sampling,
|
||||
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.PREPARE_SAMPLING, model_options, is_model_options=True)
|
||||
)
|
||||
return executor.execute(model, noise_shape, conds, model_options=model_options, force_full_load=force_full_load)
|
||||
return executor.execute(model, noise_shape, conds, model_options=model_options, force_full_load=force_full_load, force_offload=force_offload)
|
||||
|
||||
def _prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None, force_full_load=False):
|
||||
def _prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None, force_full_load=False, force_offload=False):
|
||||
real_model: BaseModel = None
|
||||
models, inference_memory = get_additional_models(conds, model.model_dtype())
|
||||
models += get_additional_models_from_model_options(model_options)
|
||||
models += model.get_nested_additional_models() # TODO: does this require inference_memory update?
|
||||
memory_required, minimum_memory_required = estimate_memory(model, noise_shape, conds)
|
||||
comfy.model_management.load_models_gpu([model] + models, memory_required=memory_required + inference_memory, minimum_memory_required=minimum_memory_required + inference_memory, force_full_load=force_full_load)
|
||||
if force_offload: # In training + offload enabled, we want to force prepare sampling to trigger partial load
|
||||
memory_required = 1e20
|
||||
minimum_memory_required = None
|
||||
else:
|
||||
memory_required, minimum_memory_required = estimate_memory(model, noise_shape, conds)
|
||||
memory_required += inference_memory
|
||||
minimum_memory_required += inference_memory
|
||||
comfy.model_management.load_models_gpu([model] + models, memory_required=memory_required, minimum_memory_required=minimum_memory_required, force_full_load=force_full_load)
|
||||
real_model = model.model
|
||||
|
||||
return real_model, conds, models
|
||||
|
||||
@@ -171,8 +171,9 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
||||
|
||||
def process_tokens(self, tokens, device):
|
||||
end_token = self.special_tokens.get("end", None)
|
||||
pad_token = self.special_tokens.get("pad", -1)
|
||||
if end_token is None:
|
||||
cmp_token = self.special_tokens.get("pad", -1)
|
||||
cmp_token = pad_token
|
||||
else:
|
||||
cmp_token = end_token
|
||||
|
||||
@@ -186,15 +187,21 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
|
||||
other_embeds = []
|
||||
eos = False
|
||||
index = 0
|
||||
left_pad = False
|
||||
for y in x:
|
||||
if isinstance(y, numbers.Integral):
|
||||
if eos:
|
||||
token = int(y)
|
||||
if index == 0 and token == pad_token:
|
||||
left_pad = True
|
||||
|
||||
if eos or (left_pad and token == pad_token):
|
||||
attention_mask.append(0)
|
||||
else:
|
||||
attention_mask.append(1)
|
||||
token = int(y)
|
||||
left_pad = False
|
||||
|
||||
tokens_temp += [token]
|
||||
if not eos and token == cmp_token:
|
||||
if not eos and token == cmp_token and not left_pad:
|
||||
if end_token is None:
|
||||
attention_mask[-1] = 0
|
||||
eos = True
|
||||
|
||||
@@ -710,6 +710,15 @@ class Flux(supported_models_base.BASE):
|
||||
|
||||
supported_inference_dtypes = [torch.bfloat16, torch.float16, torch.float32]
|
||||
|
||||
def process_unet_state_dict(self, state_dict):
|
||||
out_sd = {}
|
||||
for k in list(state_dict.keys()):
|
||||
key_out = k
|
||||
if key_out.endswith("_norm.scale"):
|
||||
key_out = "{}.weight".format(key_out[:-len(".scale")])
|
||||
out_sd[key_out] = state_dict[k]
|
||||
return out_sd
|
||||
|
||||
vae_key_prefix = ["vae."]
|
||||
text_encoder_key_prefix = ["text_encoders."]
|
||||
|
||||
@@ -898,11 +907,13 @@ class HunyuanVideo(supported_models_base.BASE):
|
||||
key_out = key_out.replace("txt_in.c_embedder.linear_1.", "txt_in.c_embedder.in_layer.").replace("txt_in.c_embedder.linear_2.", "txt_in.c_embedder.out_layer.")
|
||||
key_out = key_out.replace("_mod.linear.", "_mod.lin.").replace("_attn_qkv.", "_attn.qkv.")
|
||||
key_out = key_out.replace("mlp.fc1.", "mlp.0.").replace("mlp.fc2.", "mlp.2.")
|
||||
key_out = key_out.replace("_attn_q_norm.weight", "_attn.norm.query_norm.scale").replace("_attn_k_norm.weight", "_attn.norm.key_norm.scale")
|
||||
key_out = key_out.replace(".q_norm.weight", ".norm.query_norm.scale").replace(".k_norm.weight", ".norm.key_norm.scale")
|
||||
key_out = key_out.replace("_attn_q_norm.weight", "_attn.norm.query_norm.weight").replace("_attn_k_norm.weight", "_attn.norm.key_norm.weight")
|
||||
key_out = key_out.replace(".q_norm.weight", ".norm.query_norm.weight").replace(".k_norm.weight", ".norm.key_norm.weight")
|
||||
key_out = key_out.replace("_attn_proj.", "_attn.proj.")
|
||||
key_out = key_out.replace(".modulation.linear.", ".modulation.lin.")
|
||||
key_out = key_out.replace("_in.mlp.2.", "_in.out_layer.").replace("_in.mlp.0.", "_in.in_layer.")
|
||||
if key_out.endswith(".scale"):
|
||||
key_out = "{}.weight".format(key_out[:-len(".scale")])
|
||||
out_sd[key_out] = state_dict[k]
|
||||
return out_sd
|
||||
|
||||
@@ -1264,6 +1275,15 @@ class Hunyuan3Dv2(supported_models_base.BASE):
|
||||
|
||||
latent_format = latent_formats.Hunyuan3Dv2
|
||||
|
||||
def process_unet_state_dict(self, state_dict):
|
||||
out_sd = {}
|
||||
for k in list(state_dict.keys()):
|
||||
key_out = k
|
||||
if key_out.endswith(".scale"):
|
||||
key_out = "{}.weight".format(key_out[:-len(".scale")])
|
||||
out_sd[key_out] = state_dict[k]
|
||||
return out_sd
|
||||
|
||||
def process_unet_state_dict_for_saving(self, state_dict):
|
||||
replace_prefix = {"": "model."}
|
||||
return utils.state_dict_prefix_replace(state_dict, replace_prefix)
|
||||
@@ -1341,6 +1361,14 @@ class Chroma(supported_models_base.BASE):
|
||||
|
||||
supported_inference_dtypes = [torch.bfloat16, torch.float16, torch.float32]
|
||||
|
||||
def process_unet_state_dict(self, state_dict):
|
||||
out_sd = {}
|
||||
for k in list(state_dict.keys()):
|
||||
key_out = k
|
||||
if key_out.endswith(".scale"):
|
||||
key_out = "{}.weight".format(key_out[:-len(".scale")])
|
||||
out_sd[key_out] = state_dict[k]
|
||||
return out_sd
|
||||
|
||||
def get_model(self, state_dict, prefix="", device=None):
|
||||
out = model_base.Chroma(self, device=device)
|
||||
|
||||
@@ -3,7 +3,6 @@ import comfy.text_encoders.llama
|
||||
from comfy import sd1_clip
|
||||
import torch
|
||||
import math
|
||||
from tqdm.auto import trange
|
||||
import yaml
|
||||
import comfy.utils
|
||||
|
||||
@@ -11,12 +10,12 @@ import comfy.utils
|
||||
def sample_manual_loop_no_classes(
|
||||
model,
|
||||
ids=None,
|
||||
paddings=[],
|
||||
execution_dtype=None,
|
||||
cfg_scale: float = 2.0,
|
||||
temperature: float = 0.85,
|
||||
top_p: float = 0.9,
|
||||
top_k: int = None,
|
||||
min_p: float = 0.000,
|
||||
seed: int = 1,
|
||||
min_tokens: int = 1,
|
||||
max_new_tokens: int = 2048,
|
||||
@@ -36,9 +35,6 @@ def sample_manual_loop_no_classes(
|
||||
|
||||
embeds, attention_mask, num_tokens, embeds_info = model.process_tokens(ids, device)
|
||||
embeds_batch = embeds.shape[0]
|
||||
for i, t in enumerate(paddings):
|
||||
attention_mask[i, :t] = 0
|
||||
attention_mask[i, t:] = 1
|
||||
|
||||
output_audio_codes = []
|
||||
past_key_values = []
|
||||
@@ -52,7 +48,7 @@ def sample_manual_loop_no_classes(
|
||||
|
||||
progress_bar = comfy.utils.ProgressBar(max_new_tokens)
|
||||
|
||||
for step in trange(max_new_tokens, desc="LM sampling"):
|
||||
for step in comfy.utils.model_trange(max_new_tokens, desc="LM sampling"):
|
||||
outputs = model.transformer(None, attention_mask, embeds=embeds.to(execution_dtype), num_tokens=num_tokens, intermediate_output=None, dtype=execution_dtype, embeds_info=embeds_info, past_key_values=past_key_values)
|
||||
next_token_logits = model.transformer.logits(outputs[0])[:, -1]
|
||||
past_key_values = outputs[2]
|
||||
@@ -81,6 +77,12 @@ def sample_manual_loop_no_classes(
|
||||
min_val = top_k_vals[..., -1, None]
|
||||
cfg_logits[cfg_logits < min_val] = remove_logit_value
|
||||
|
||||
if min_p is not None and min_p > 0:
|
||||
probs = torch.softmax(cfg_logits, dim=-1)
|
||||
p_max = probs.max(dim=-1, keepdim=True).values
|
||||
indices_to_remove = probs < (min_p * p_max)
|
||||
cfg_logits[indices_to_remove] = remove_logit_value
|
||||
|
||||
if top_p is not None and top_p < 1.0:
|
||||
sorted_logits, sorted_indices = torch.sort(cfg_logits, descending=True)
|
||||
cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
|
||||
@@ -111,7 +113,7 @@ def sample_manual_loop_no_classes(
|
||||
return output_audio_codes
|
||||
|
||||
|
||||
def generate_audio_codes(model, positive, negative, min_tokens=1, max_tokens=1024, seed=0, cfg_scale=2.0, temperature=0.85, top_p=0.9, top_k=0):
|
||||
def generate_audio_codes(model, positive, negative, min_tokens=1, max_tokens=1024, seed=0, cfg_scale=2.0, temperature=0.85, top_p=0.9, top_k=0, min_p=0.000):
|
||||
positive = [[token for token, _ in inner_list] for inner_list in positive]
|
||||
positive = positive[0]
|
||||
|
||||
@@ -129,13 +131,11 @@ def generate_audio_codes(model, positive, negative, min_tokens=1, max_tokens=102
|
||||
pos_pad = (len(negative) - len(positive))
|
||||
positive = [model.special_tokens["pad"]] * pos_pad + positive
|
||||
|
||||
paddings = [pos_pad, neg_pad]
|
||||
ids = [positive, negative]
|
||||
else:
|
||||
paddings = []
|
||||
ids = [positive]
|
||||
|
||||
return sample_manual_loop_no_classes(model, ids, paddings, cfg_scale=cfg_scale, temperature=temperature, top_p=top_p, top_k=top_k, seed=seed, min_tokens=min_tokens, max_new_tokens=max_tokens)
|
||||
return sample_manual_loop_no_classes(model, ids, cfg_scale=cfg_scale, temperature=temperature, top_p=top_p, top_k=top_k, min_p=min_p, seed=seed, min_tokens=min_tokens, max_new_tokens=max_tokens)
|
||||
|
||||
|
||||
class ACE15Tokenizer(sd1_clip.SD1Tokenizer):
|
||||
@@ -193,6 +193,7 @@ class ACE15Tokenizer(sd1_clip.SD1Tokenizer):
|
||||
temperature = kwargs.get("temperature", 0.85)
|
||||
top_p = kwargs.get("top_p", 0.9)
|
||||
top_k = kwargs.get("top_k", 0.0)
|
||||
min_p = kwargs.get("min_p", 0.000)
|
||||
|
||||
duration = math.ceil(duration)
|
||||
kwargs["duration"] = duration
|
||||
@@ -240,6 +241,7 @@ class ACE15Tokenizer(sd1_clip.SD1Tokenizer):
|
||||
"temperature": temperature,
|
||||
"top_p": top_p,
|
||||
"top_k": top_k,
|
||||
"min_p": min_p,
|
||||
}
|
||||
return out
|
||||
|
||||
@@ -300,7 +302,7 @@ class ACE15TEModel(torch.nn.Module):
|
||||
|
||||
lm_metadata = token_weight_pairs["lm_metadata"]
|
||||
if lm_metadata["generate_audio_codes"]:
|
||||
audio_codes = generate_audio_codes(getattr(self, self.lm_model, self.qwen3_06b), token_weight_pairs["lm_prompt"], token_weight_pairs["lm_prompt_negative"], min_tokens=lm_metadata["min_tokens"], max_tokens=lm_metadata["max_tokens"], seed=lm_metadata["seed"], cfg_scale=lm_metadata["cfg_scale"], temperature=lm_metadata["temperature"], top_p=lm_metadata["top_p"], top_k=lm_metadata["top_k"])
|
||||
audio_codes = generate_audio_codes(getattr(self, self.lm_model, self.qwen3_06b), token_weight_pairs["lm_prompt"], token_weight_pairs["lm_prompt_negative"], min_tokens=lm_metadata["min_tokens"], max_tokens=lm_metadata["min_tokens"], seed=lm_metadata["seed"], cfg_scale=lm_metadata["cfg_scale"], temperature=lm_metadata["temperature"], top_p=lm_metadata["top_p"], top_k=lm_metadata["top_k"], min_p=lm_metadata["min_p"])
|
||||
out["audio_codes"] = [audio_codes]
|
||||
|
||||
return base_out, None, out
|
||||
|
||||
@@ -355,13 +355,6 @@ class RMSNorm(nn.Module):
|
||||
|
||||
|
||||
|
||||
def rotate_half(x):
|
||||
"""Rotates half the hidden dims of the input."""
|
||||
x1 = x[..., : x.shape[-1] // 2]
|
||||
x2 = x[..., x.shape[-1] // 2 :]
|
||||
return torch.cat((-x2, x1), dim=-1)
|
||||
|
||||
|
||||
def precompute_freqs_cis(head_dim, position_ids, theta, rope_scale=None, rope_dims=None, device=None):
|
||||
if not isinstance(theta, list):
|
||||
theta = [theta]
|
||||
@@ -390,20 +383,30 @@ def precompute_freqs_cis(head_dim, position_ids, theta, rope_scale=None, rope_di
|
||||
else:
|
||||
cos = cos.unsqueeze(1)
|
||||
sin = sin.unsqueeze(1)
|
||||
out.append((cos, sin))
|
||||
sin_split = sin.shape[-1] // 2
|
||||
out.append((cos, sin[..., : sin_split], -sin[..., sin_split :]))
|
||||
|
||||
if len(out) == 1:
|
||||
return out[0]
|
||||
|
||||
return out
|
||||
|
||||
|
||||
def apply_rope(xq, xk, freqs_cis):
|
||||
org_dtype = xq.dtype
|
||||
cos = freqs_cis[0]
|
||||
sin = freqs_cis[1]
|
||||
q_embed = (xq * cos) + (rotate_half(xq) * sin)
|
||||
k_embed = (xk * cos) + (rotate_half(xk) * sin)
|
||||
nsin = freqs_cis[2]
|
||||
|
||||
q_embed = (xq * cos)
|
||||
q_split = q_embed.shape[-1] // 2
|
||||
q_embed[..., : q_split].addcmul_(xq[..., q_split :], nsin)
|
||||
q_embed[..., q_split :].addcmul_(xq[..., : q_split], sin)
|
||||
|
||||
k_embed = (xk * cos)
|
||||
k_split = k_embed.shape[-1] // 2
|
||||
k_embed[..., : k_split].addcmul_(xk[..., k_split :], nsin)
|
||||
k_embed[..., k_split :].addcmul_(xk[..., : k_split], sin)
|
||||
|
||||
return q_embed.to(org_dtype), k_embed.to(org_dtype)
|
||||
|
||||
|
||||
|
||||
@@ -25,7 +25,7 @@ def ltxv_te(*args, **kwargs):
|
||||
class Gemma3_12BTokenizer(sd1_clip.SDTokenizer):
|
||||
def __init__(self, embedding_directory=None, tokenizer_data={}):
|
||||
tokenizer = tokenizer_data.get("spiece_model", None)
|
||||
super().__init__(tokenizer, pad_with_end=False, embedding_size=3840, embedding_key='gemma3_12b', tokenizer_class=SPieceTokenizer, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, disable_weights=True, tokenizer_args={"add_bos": True, "add_eos": False}, tokenizer_data=tokenizer_data)
|
||||
super().__init__(tokenizer, pad_with_end=False, embedding_size=3840, embedding_key='gemma3_12b', tokenizer_class=SPieceTokenizer, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=512, pad_left=True, disable_weights=True, tokenizer_args={"add_bos": True, "add_eos": False}, tokenizer_data=tokenizer_data)
|
||||
|
||||
def state_dict(self):
|
||||
return {"spiece_model": self.tokenizer.serialize_model()}
|
||||
@@ -97,6 +97,7 @@ class LTXAVTEModel(torch.nn.Module):
|
||||
token_weight_pairs = token_weight_pairs["gemma3_12b"]
|
||||
|
||||
out, pooled, extra = self.gemma3_12b.encode_token_weights(token_weight_pairs)
|
||||
out = out[:, :, -torch.sum(extra["attention_mask"]).item():]
|
||||
out_device = out.device
|
||||
if comfy.model_management.should_use_bf16(self.execution_device):
|
||||
out = out.to(device=self.execution_device, dtype=torch.bfloat16)
|
||||
@@ -138,6 +139,7 @@ class LTXAVTEModel(torch.nn.Module):
|
||||
|
||||
token_weight_pairs = token_weight_pairs.get("gemma3_12b", [])
|
||||
num_tokens = sum(map(lambda a: len(a), token_weight_pairs))
|
||||
num_tokens = max(num_tokens, 64)
|
||||
return num_tokens * constant * 1024 * 1024
|
||||
|
||||
def ltxav_te(dtype_llama=None, llama_quantization_metadata=None):
|
||||
|
||||
@@ -20,13 +20,14 @@
|
||||
import torch
|
||||
import math
|
||||
import struct
|
||||
import comfy.checkpoint_pickle
|
||||
import comfy.memory_management
|
||||
import safetensors.torch
|
||||
import numpy as np
|
||||
from PIL import Image
|
||||
import logging
|
||||
import itertools
|
||||
from torch.nn.functional import interpolate
|
||||
from tqdm.auto import trange
|
||||
from einops import rearrange
|
||||
from comfy.cli_args import args, enables_dynamic_vram
|
||||
import json
|
||||
@@ -37,26 +38,26 @@ import warnings
|
||||
MMAP_TORCH_FILES = args.mmap_torch_files
|
||||
DISABLE_MMAP = args.disable_mmap
|
||||
|
||||
ALWAYS_SAFE_LOAD = False
|
||||
if hasattr(torch.serialization, "add_safe_globals"): # TODO: this was added in pytorch 2.4, the unsafe path should be removed once earlier versions are deprecated
|
||||
|
||||
if True: # ckpt/pt file whitelist for safe loading of old sd files
|
||||
class ModelCheckpoint:
|
||||
pass
|
||||
ModelCheckpoint.__module__ = "pytorch_lightning.callbacks.model_checkpoint"
|
||||
|
||||
def scalar(*args, **kwargs):
|
||||
from numpy.core.multiarray import scalar as sc
|
||||
return sc(*args, **kwargs)
|
||||
return None
|
||||
scalar.__module__ = "numpy.core.multiarray"
|
||||
|
||||
from numpy import dtype
|
||||
from numpy.dtypes import Float64DType
|
||||
from _codecs import encode
|
||||
|
||||
def encode(*args, **kwargs): # no longer necessary on newer torch
|
||||
return None
|
||||
encode.__module__ = "_codecs"
|
||||
|
||||
torch.serialization.add_safe_globals([ModelCheckpoint, scalar, dtype, Float64DType, encode])
|
||||
ALWAYS_SAFE_LOAD = True
|
||||
logging.info("Checkpoint files will always be loaded safely.")
|
||||
else:
|
||||
logging.warning("Warning, you are using an old pytorch version and some ckpt/pt files might be loaded unsafely. Upgrading to 2.4 or above is recommended as older versions of pytorch are no longer supported.")
|
||||
|
||||
|
||||
# Current as of safetensors 0.7.0
|
||||
_TYPES = {
|
||||
@@ -139,11 +140,8 @@ def load_torch_file(ckpt, safe_load=False, device=None, return_metadata=False):
|
||||
if MMAP_TORCH_FILES:
|
||||
torch_args["mmap"] = True
|
||||
|
||||
if safe_load or ALWAYS_SAFE_LOAD:
|
||||
pl_sd = torch.load(ckpt, map_location=device, weights_only=True, **torch_args)
|
||||
else:
|
||||
logging.warning("WARNING: loading {} unsafely, upgrade your pytorch to 2.4 or newer to load this file safely.".format(ckpt))
|
||||
pl_sd = torch.load(ckpt, map_location=device, pickle_module=comfy.checkpoint_pickle)
|
||||
pl_sd = torch.load(ckpt, map_location=device, weights_only=True, **torch_args)
|
||||
|
||||
if "state_dict" in pl_sd:
|
||||
sd = pl_sd["state_dict"]
|
||||
else:
|
||||
@@ -674,10 +672,10 @@ def flux_to_diffusers(mmdit_config, output_prefix=""):
|
||||
"ff_context.linear_in.bias": "txt_mlp.0.bias",
|
||||
"ff_context.linear_out.weight": "txt_mlp.2.weight",
|
||||
"ff_context.linear_out.bias": "txt_mlp.2.bias",
|
||||
"attn.norm_q.weight": "img_attn.norm.query_norm.scale",
|
||||
"attn.norm_k.weight": "img_attn.norm.key_norm.scale",
|
||||
"attn.norm_added_q.weight": "txt_attn.norm.query_norm.scale",
|
||||
"attn.norm_added_k.weight": "txt_attn.norm.key_norm.scale",
|
||||
"attn.norm_q.weight": "img_attn.norm.query_norm.weight",
|
||||
"attn.norm_k.weight": "img_attn.norm.key_norm.weight",
|
||||
"attn.norm_added_q.weight": "txt_attn.norm.query_norm.weight",
|
||||
"attn.norm_added_k.weight": "txt_attn.norm.key_norm.weight",
|
||||
}
|
||||
|
||||
for k in block_map:
|
||||
@@ -700,8 +698,8 @@ def flux_to_diffusers(mmdit_config, output_prefix=""):
|
||||
"norm.linear.bias": "modulation.lin.bias",
|
||||
"proj_out.weight": "linear2.weight",
|
||||
"proj_out.bias": "linear2.bias",
|
||||
"attn.norm_q.weight": "norm.query_norm.scale",
|
||||
"attn.norm_k.weight": "norm.key_norm.scale",
|
||||
"attn.norm_q.weight": "norm.query_norm.weight",
|
||||
"attn.norm_k.weight": "norm.key_norm.weight",
|
||||
"attn.to_qkv_mlp_proj.weight": "linear1.weight", # Flux 2
|
||||
"attn.to_out.weight": "linear2.weight", # Flux 2
|
||||
}
|
||||
@@ -1155,6 +1153,32 @@ def tiled_scale_multidim(samples, function, tile=(64, 64), overlap=8, upscale_am
|
||||
def tiled_scale(samples, function, tile_x=64, tile_y=64, overlap = 8, upscale_amount = 4, out_channels = 3, output_device="cpu", pbar = None):
|
||||
return tiled_scale_multidim(samples, function, (tile_y, tile_x), overlap=overlap, upscale_amount=upscale_amount, out_channels=out_channels, output_device=output_device, pbar=pbar)
|
||||
|
||||
def model_trange(*args, **kwargs):
|
||||
if comfy.memory_management.aimdo_allocator is None:
|
||||
return trange(*args, **kwargs)
|
||||
|
||||
pbar = trange(*args, **kwargs, smoothing=1.0)
|
||||
pbar._i = 0
|
||||
pbar.set_postfix_str(" Model Initializing ... ")
|
||||
|
||||
_update = pbar.update
|
||||
|
||||
def warmup_update(n=1):
|
||||
pbar._i += 1
|
||||
if pbar._i == 1:
|
||||
pbar.i1_time = time.time()
|
||||
pbar.set_postfix_str(" Model Initialization complete! ")
|
||||
elif pbar._i == 2:
|
||||
#bring forward the effective start time based the the diff between first and second iteration
|
||||
#to attempt to remove load overhead from the final step rate estimate.
|
||||
pbar.start_t = pbar.i1_time - (time.time() - pbar.i1_time)
|
||||
pbar.set_postfix_str("")
|
||||
|
||||
_update(n)
|
||||
|
||||
pbar.update = warmup_update
|
||||
return pbar
|
||||
|
||||
PROGRESS_BAR_ENABLED = True
|
||||
def set_progress_bar_enabled(enabled):
|
||||
global PROGRESS_BAR_ENABLED
|
||||
|
||||
@@ -21,6 +21,7 @@ from typing import Optional, Union
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
|
||||
import comfy.model_management
|
||||
from .base import WeightAdapterBase, WeightAdapterTrainBase
|
||||
from comfy.patcher_extension import PatcherInjection
|
||||
|
||||
@@ -181,18 +182,21 @@ class BypassForwardHook:
|
||||
)
|
||||
return # Already injected
|
||||
|
||||
# Move adapter weights to module's device to avoid CPU-GPU transfer on every forward
|
||||
device = None
|
||||
# Move adapter weights to compute device (GPU)
|
||||
# Use get_torch_device() instead of module.weight.device because
|
||||
# with offloading, module weights may be on CPU while compute happens on GPU
|
||||
device = comfy.model_management.get_torch_device()
|
||||
|
||||
# Get dtype from module weight if available
|
||||
dtype = None
|
||||
if hasattr(self.module, "weight") and self.module.weight is not None:
|
||||
device = self.module.weight.device
|
||||
dtype = self.module.weight.dtype
|
||||
elif hasattr(self.module, "W_q"): # Quantized layers might use different attr
|
||||
device = self.module.W_q.device
|
||||
dtype = self.module.W_q.dtype
|
||||
|
||||
if device is not None:
|
||||
self._move_adapter_weights_to_device(device, dtype)
|
||||
# Only use dtype if it's a standard float type, not quantized
|
||||
if dtype is not None and dtype not in (torch.float32, torch.float16, torch.bfloat16):
|
||||
dtype = None
|
||||
|
||||
self._move_adapter_weights_to_device(device, dtype)
|
||||
|
||||
self.original_forward = self.module.forward
|
||||
self.module.forward = self._bypass_forward
|
||||
|
||||
@@ -34,6 +34,21 @@ class VideoInput(ABC):
|
||||
"""
|
||||
pass
|
||||
|
||||
@abstractmethod
|
||||
def as_trimmed(
|
||||
self,
|
||||
start_time: float | None = None,
|
||||
duration: float | None = None,
|
||||
strict_duration: bool = False,
|
||||
) -> VideoInput | None:
|
||||
"""
|
||||
Create a new VideoInput which is trimmed to have the corresponding start_time and duration
|
||||
|
||||
Returns:
|
||||
A new VideoInput, or None if the result would have negative duration
|
||||
"""
|
||||
pass
|
||||
|
||||
def get_stream_source(self) -> Union[str, io.BytesIO]:
|
||||
"""
|
||||
Get a streamable source for the video. This allows processing without
|
||||
|
||||
@@ -6,6 +6,7 @@ from typing import Optional
|
||||
from .._input import AudioInput, VideoInput
|
||||
import av
|
||||
import io
|
||||
import itertools
|
||||
import json
|
||||
import numpy as np
|
||||
import math
|
||||
@@ -29,7 +30,6 @@ def container_to_output_format(container_format: str | None) -> str | None:
|
||||
formats = container_format.split(",")
|
||||
return formats[0]
|
||||
|
||||
|
||||
def get_open_write_kwargs(
|
||||
dest: str | io.BytesIO, container_format: str, to_format: str | None
|
||||
) -> dict:
|
||||
@@ -57,12 +57,14 @@ class VideoFromFile(VideoInput):
|
||||
Class representing video input from a file.
|
||||
"""
|
||||
|
||||
def __init__(self, file: str | io.BytesIO):
|
||||
def __init__(self, file: str | io.BytesIO, *, start_time: float=0, duration: float=0):
|
||||
"""
|
||||
Initialize the VideoFromFile object based off of either a path on disk or a BytesIO object
|
||||
containing the file contents.
|
||||
"""
|
||||
self.__file = file
|
||||
self.__start_time = start_time
|
||||
self.__duration = duration
|
||||
|
||||
def get_stream_source(self) -> str | io.BytesIO:
|
||||
"""
|
||||
@@ -96,6 +98,16 @@ class VideoFromFile(VideoInput):
|
||||
Returns:
|
||||
Duration in seconds
|
||||
"""
|
||||
raw_duration = self._get_raw_duration()
|
||||
if self.__start_time < 0:
|
||||
duration_from_start = min(raw_duration, -self.__start_time)
|
||||
else:
|
||||
duration_from_start = raw_duration - self.__start_time
|
||||
if self.__duration:
|
||||
return min(self.__duration, duration_from_start)
|
||||
return duration_from_start
|
||||
|
||||
def _get_raw_duration(self) -> float:
|
||||
if isinstance(self.__file, io.BytesIO):
|
||||
self.__file.seek(0)
|
||||
with av.open(self.__file, mode="r") as container:
|
||||
@@ -113,9 +125,13 @@ class VideoFromFile(VideoInput):
|
||||
if video_stream and video_stream.average_rate:
|
||||
frame_count = 0
|
||||
container.seek(0)
|
||||
for packet in container.demux(video_stream):
|
||||
for _ in packet.decode():
|
||||
frame_count += 1
|
||||
frame_iterator = (
|
||||
container.decode(video_stream)
|
||||
if video_stream.codec.capabilities & 0x100
|
||||
else container.demux(video_stream)
|
||||
)
|
||||
for packet in frame_iterator:
|
||||
frame_count += 1
|
||||
if frame_count > 0:
|
||||
return float(frame_count / video_stream.average_rate)
|
||||
|
||||
@@ -131,36 +147,54 @@ class VideoFromFile(VideoInput):
|
||||
|
||||
with av.open(self.__file, mode="r") as container:
|
||||
video_stream = self._get_first_video_stream(container)
|
||||
# 1. Prefer the frames field if available
|
||||
if video_stream.frames and video_stream.frames > 0:
|
||||
# 1. Prefer the frames field if available and usable
|
||||
if (
|
||||
video_stream.frames
|
||||
and video_stream.frames > 0
|
||||
and not self.__start_time
|
||||
and not self.__duration
|
||||
):
|
||||
return int(video_stream.frames)
|
||||
|
||||
# 2. Try to estimate from duration and average_rate using only metadata
|
||||
if container.duration is not None and video_stream.average_rate:
|
||||
duration_seconds = float(container.duration / av.time_base)
|
||||
estimated_frames = int(round(duration_seconds * float(video_stream.average_rate)))
|
||||
if estimated_frames > 0:
|
||||
return estimated_frames
|
||||
|
||||
if (
|
||||
getattr(video_stream, "duration", None) is not None
|
||||
and getattr(video_stream, "time_base", None) is not None
|
||||
and video_stream.average_rate
|
||||
):
|
||||
duration_seconds = float(video_stream.duration * video_stream.time_base)
|
||||
raw_duration = float(video_stream.duration * video_stream.time_base)
|
||||
if self.__start_time < 0:
|
||||
duration_from_start = min(raw_duration, -self.__start_time)
|
||||
else:
|
||||
duration_from_start = raw_duration - self.__start_time
|
||||
duration_seconds = min(self.__duration, duration_from_start)
|
||||
estimated_frames = int(round(duration_seconds * float(video_stream.average_rate)))
|
||||
if estimated_frames > 0:
|
||||
return estimated_frames
|
||||
|
||||
# 3. Last resort: decode frames and count them (streaming)
|
||||
frame_count = 0
|
||||
container.seek(0)
|
||||
for packet in container.demux(video_stream):
|
||||
for _ in packet.decode():
|
||||
frame_count += 1
|
||||
|
||||
if frame_count == 0:
|
||||
raise ValueError(f"Could not determine frame count for file '{self.__file}'")
|
||||
if self.__start_time < 0:
|
||||
start_time = max(self._get_raw_duration() + self.__start_time, 0)
|
||||
else:
|
||||
start_time = self.__start_time
|
||||
frame_count = 1
|
||||
start_pts = int(start_time / video_stream.time_base)
|
||||
end_pts = int((start_time + self.__duration) / video_stream.time_base)
|
||||
container.seek(start_pts, stream=video_stream)
|
||||
frame_iterator = (
|
||||
container.decode(video_stream)
|
||||
if video_stream.codec.capabilities & 0x100
|
||||
else container.demux(video_stream)
|
||||
)
|
||||
for frame in frame_iterator:
|
||||
if frame.pts >= start_pts:
|
||||
break
|
||||
else:
|
||||
raise ValueError(f"Could not determine frame count for file '{self.__file}'\nNo frames exist for start_time {self.__start_time}")
|
||||
for frame in frame_iterator:
|
||||
if frame.pts >= end_pts:
|
||||
break
|
||||
frame_count += 1
|
||||
return frame_count
|
||||
|
||||
def get_frame_rate(self) -> Fraction:
|
||||
@@ -199,9 +233,21 @@ class VideoFromFile(VideoInput):
|
||||
return container.format.name
|
||||
|
||||
def get_components_internal(self, container: InputContainer) -> VideoComponents:
|
||||
video_stream = self._get_first_video_stream(container)
|
||||
if self.__start_time < 0:
|
||||
start_time = max(self._get_raw_duration() + self.__start_time, 0)
|
||||
else:
|
||||
start_time = self.__start_time
|
||||
# Get video frames
|
||||
frames = []
|
||||
for frame in container.decode(video=0):
|
||||
start_pts = int(start_time / video_stream.time_base)
|
||||
end_pts = int((start_time + self.__duration) / video_stream.time_base)
|
||||
container.seek(start_pts, stream=video_stream)
|
||||
for frame in container.decode(video_stream):
|
||||
if frame.pts < start_pts:
|
||||
continue
|
||||
if self.__duration and frame.pts >= end_pts:
|
||||
break
|
||||
img = frame.to_ndarray(format='rgb24') # shape: (H, W, 3)
|
||||
img = torch.from_numpy(img) / 255.0 # shape: (H, W, 3)
|
||||
frames.append(img)
|
||||
@@ -209,31 +255,44 @@ class VideoFromFile(VideoInput):
|
||||
images = torch.stack(frames) if len(frames) > 0 else torch.zeros(0, 3, 0, 0)
|
||||
|
||||
# Get frame rate
|
||||
video_stream = next(s for s in container.streams if s.type == 'video')
|
||||
frame_rate = Fraction(video_stream.average_rate) if video_stream and video_stream.average_rate else Fraction(1)
|
||||
frame_rate = Fraction(video_stream.average_rate) if video_stream.average_rate else Fraction(1)
|
||||
|
||||
# Get audio if available
|
||||
audio = None
|
||||
try:
|
||||
container.seek(0) # Reset the container to the beginning
|
||||
for stream in container.streams:
|
||||
if stream.type != 'audio':
|
||||
continue
|
||||
assert isinstance(stream, av.AudioStream)
|
||||
audio_frames = []
|
||||
for packet in container.demux(stream):
|
||||
for frame in packet.decode():
|
||||
assert isinstance(frame, av.AudioFrame)
|
||||
audio_frames.append(frame.to_ndarray()) # shape: (channels, samples)
|
||||
if len(audio_frames) > 0:
|
||||
audio_data = np.concatenate(audio_frames, axis=1) # shape: (channels, total_samples)
|
||||
audio_tensor = torch.from_numpy(audio_data).unsqueeze(0) # shape: (1, channels, total_samples)
|
||||
audio = AudioInput({
|
||||
"waveform": audio_tensor,
|
||||
"sample_rate": int(stream.sample_rate) if stream.sample_rate else 1,
|
||||
})
|
||||
except StopIteration:
|
||||
pass # No audio stream
|
||||
container.seek(start_pts, stream=video_stream)
|
||||
# Use last stream for consistency
|
||||
if len(container.streams.audio):
|
||||
audio_stream = container.streams.audio[-1]
|
||||
audio_frames = []
|
||||
resample = av.audio.resampler.AudioResampler(format='fltp').resample
|
||||
frames = itertools.chain.from_iterable(
|
||||
map(resample, container.decode(audio_stream))
|
||||
)
|
||||
|
||||
has_first_frame = False
|
||||
for frame in frames:
|
||||
offset_seconds = start_time - frame.pts * audio_stream.time_base
|
||||
to_skip = int(offset_seconds * audio_stream.sample_rate)
|
||||
if to_skip < frame.samples:
|
||||
has_first_frame = True
|
||||
break
|
||||
if has_first_frame:
|
||||
audio_frames.append(frame.to_ndarray()[..., to_skip:])
|
||||
|
||||
for frame in frames:
|
||||
if frame.time > start_time + self.__duration:
|
||||
break
|
||||
audio_frames.append(frame.to_ndarray()) # shape: (channels, samples)
|
||||
if len(audio_frames) > 0:
|
||||
audio_data = np.concatenate(audio_frames, axis=1) # shape: (channels, total_samples)
|
||||
if self.__duration:
|
||||
audio_data = audio_data[..., :int(self.__duration * audio_stream.sample_rate)]
|
||||
|
||||
audio_tensor = torch.from_numpy(audio_data).unsqueeze(0) # shape: (1, channels, total_samples)
|
||||
audio = AudioInput({
|
||||
"waveform": audio_tensor,
|
||||
"sample_rate": int(audio_stream.sample_rate) if audio_stream.sample_rate else 1,
|
||||
})
|
||||
|
||||
metadata = container.metadata
|
||||
return VideoComponents(images=images, audio=audio, frame_rate=frame_rate, metadata=metadata)
|
||||
@@ -250,7 +309,7 @@ class VideoFromFile(VideoInput):
|
||||
path: str | io.BytesIO,
|
||||
format: VideoContainer = VideoContainer.AUTO,
|
||||
codec: VideoCodec = VideoCodec.AUTO,
|
||||
metadata: Optional[dict] = None
|
||||
metadata: Optional[dict] = None,
|
||||
):
|
||||
if isinstance(self.__file, io.BytesIO):
|
||||
self.__file.seek(0) # Reset the BytesIO object to the beginning
|
||||
@@ -262,15 +321,14 @@ class VideoFromFile(VideoInput):
|
||||
reuse_streams = False
|
||||
if codec != VideoCodec.AUTO and codec != video_encoding and video_encoding is not None:
|
||||
reuse_streams = False
|
||||
if self.__start_time or self.__duration:
|
||||
reuse_streams = False
|
||||
|
||||
if not reuse_streams:
|
||||
components = self.get_components_internal(container)
|
||||
video = VideoFromComponents(components)
|
||||
return video.save_to(
|
||||
path,
|
||||
format=format,
|
||||
codec=codec,
|
||||
metadata=metadata
|
||||
path, format=format, codec=codec, metadata=metadata
|
||||
)
|
||||
|
||||
streams = container.streams
|
||||
@@ -304,10 +362,21 @@ class VideoFromFile(VideoInput):
|
||||
output_container.mux(packet)
|
||||
|
||||
def _get_first_video_stream(self, container: InputContainer):
|
||||
video_stream = next((s for s in container.streams if s.type == "video"), None)
|
||||
if video_stream is None:
|
||||
raise ValueError(f"No video stream found in file '{self.__file}'")
|
||||
return video_stream
|
||||
if len(container.streams.video):
|
||||
return container.streams.video[0]
|
||||
raise ValueError(f"No video stream found in file '{self.__file}'")
|
||||
|
||||
def as_trimmed(
|
||||
self, start_time: float = 0, duration: float = 0, strict_duration: bool = True
|
||||
) -> VideoInput | None:
|
||||
trimmed = VideoFromFile(
|
||||
self.get_stream_source(),
|
||||
start_time=start_time + self.__start_time,
|
||||
duration=duration,
|
||||
)
|
||||
if trimmed.get_duration() < duration and strict_duration:
|
||||
return None
|
||||
return trimmed
|
||||
|
||||
|
||||
class VideoFromComponents(VideoInput):
|
||||
@@ -322,7 +391,7 @@ class VideoFromComponents(VideoInput):
|
||||
return VideoComponents(
|
||||
images=self.__components.images,
|
||||
audio=self.__components.audio,
|
||||
frame_rate=self.__components.frame_rate
|
||||
frame_rate=self.__components.frame_rate,
|
||||
)
|
||||
|
||||
def save_to(
|
||||
@@ -330,7 +399,7 @@ class VideoFromComponents(VideoInput):
|
||||
path: str,
|
||||
format: VideoContainer = VideoContainer.AUTO,
|
||||
codec: VideoCodec = VideoCodec.AUTO,
|
||||
metadata: Optional[dict] = None
|
||||
metadata: Optional[dict] = None,
|
||||
):
|
||||
if format != VideoContainer.AUTO and format != VideoContainer.MP4:
|
||||
raise ValueError("Only MP4 format is supported for now")
|
||||
@@ -357,7 +426,10 @@ class VideoFromComponents(VideoInput):
|
||||
audio_stream: Optional[av.AudioStream] = None
|
||||
if self.__components.audio:
|
||||
audio_sample_rate = int(self.__components.audio['sample_rate'])
|
||||
audio_stream = output.add_stream('aac', rate=audio_sample_rate)
|
||||
waveform = self.__components.audio['waveform']
|
||||
waveform = waveform[0, :, :math.ceil((audio_sample_rate / frame_rate) * self.__components.images.shape[0])]
|
||||
layout = {1: 'mono', 2: 'stereo', 6: '5.1'}.get(waveform.shape[0], 'stereo')
|
||||
audio_stream = output.add_stream('aac', rate=audio_sample_rate, layout=layout)
|
||||
|
||||
# Encode video
|
||||
for i, frame in enumerate(self.__components.images):
|
||||
@@ -372,12 +444,21 @@ class VideoFromComponents(VideoInput):
|
||||
output.mux(packet)
|
||||
|
||||
if audio_stream and self.__components.audio:
|
||||
waveform = self.__components.audio['waveform']
|
||||
waveform = waveform[:, :, :math.ceil((audio_sample_rate / frame_rate) * self.__components.images.shape[0])]
|
||||
frame = av.AudioFrame.from_ndarray(waveform.movedim(2, 1).reshape(1, -1).float().cpu().numpy(), format='flt', layout='mono' if waveform.shape[1] == 1 else 'stereo')
|
||||
frame = av.AudioFrame.from_ndarray(waveform.float().cpu().numpy(), format='fltp', layout=layout)
|
||||
frame.sample_rate = audio_sample_rate
|
||||
frame.pts = 0
|
||||
output.mux(audio_stream.encode(frame))
|
||||
|
||||
# Flush encoder
|
||||
output.mux(audio_stream.encode(None))
|
||||
|
||||
def as_trimmed(
|
||||
self,
|
||||
start_time: float | None = None,
|
||||
duration: float | None = None,
|
||||
strict_duration: bool = True,
|
||||
) -> VideoInput | None:
|
||||
if self.get_duration() < start_time + duration:
|
||||
return None
|
||||
#TODO Consider tracking duration and trimming at time of save?
|
||||
return VideoFromFile(self.get_stream_source(), start_time=start_time, duration=duration)
|
||||
|
||||
@@ -75,12 +75,6 @@ class NumberDisplay(str, Enum):
|
||||
slider = "slider"
|
||||
|
||||
|
||||
class ControlAfterGenerate(str, Enum):
|
||||
fixed = "fixed"
|
||||
increment = "increment"
|
||||
decrement = "decrement"
|
||||
randomize = "randomize"
|
||||
|
||||
class _ComfyType(ABC):
|
||||
Type = Any
|
||||
io_type: str = None
|
||||
@@ -269,7 +263,7 @@ class Int(ComfyTypeIO):
|
||||
class Input(WidgetInput):
|
||||
'''Integer input.'''
|
||||
def __init__(self, id: str, display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None,
|
||||
default: int=None, min: int=None, max: int=None, step: int=None, control_after_generate: bool | ControlAfterGenerate=None,
|
||||
default: int=None, min: int=None, max: int=None, step: int=None, control_after_generate: bool=None,
|
||||
display_mode: NumberDisplay=None, socketless: bool=None, force_input: bool=None, extra_dict=None, raw_link: bool=None, advanced: bool=None):
|
||||
super().__init__(id, display_name, optional, tooltip, lazy, default, socketless, None, force_input, extra_dict, raw_link, advanced)
|
||||
self.min = min
|
||||
@@ -351,7 +345,7 @@ class Combo(ComfyTypeIO):
|
||||
tooltip: str=None,
|
||||
lazy: bool=None,
|
||||
default: str | int | Enum = None,
|
||||
control_after_generate: bool | ControlAfterGenerate=None,
|
||||
control_after_generate: bool=None,
|
||||
upload: UploadType=None,
|
||||
image_folder: FolderType=None,
|
||||
remote: RemoteOptions=None,
|
||||
@@ -395,7 +389,7 @@ class MultiCombo(ComfyTypeI):
|
||||
Type = list[str]
|
||||
class Input(Combo.Input):
|
||||
def __init__(self, id: str, options: list[str], display_name: str=None, optional=False, tooltip: str=None, lazy: bool=None,
|
||||
default: list[str]=None, placeholder: str=None, chip: bool=None, control_after_generate: bool | ControlAfterGenerate=None,
|
||||
default: list[str]=None, placeholder: str=None, chip: bool=None, control_after_generate: bool=None,
|
||||
socketless: bool=None, extra_dict=None, raw_link: bool=None, advanced: bool=None):
|
||||
super().__init__(id, options, display_name, optional, tooltip, lazy, default, control_after_generate, socketless=socketless, extra_dict=extra_dict, raw_link=raw_link, advanced=advanced)
|
||||
self.multiselect = True
|
||||
@@ -2041,7 +2035,6 @@ __all__ = [
|
||||
"UploadType",
|
||||
"RemoteOptions",
|
||||
"NumberDisplay",
|
||||
"ControlAfterGenerate",
|
||||
|
||||
"comfytype",
|
||||
"Custom",
|
||||
|
||||
@@ -30,6 +30,30 @@ from comfy_api_nodes.util import (
|
||||
validate_image_dimensions,
|
||||
)
|
||||
|
||||
_EUR_TO_USD = 1.19
|
||||
|
||||
|
||||
def _tier_price_eur(megapixels: float) -> float:
|
||||
"""Price in EUR for a single Magnific upscaling step based on input megapixels."""
|
||||
if megapixels <= 1.3:
|
||||
return 0.143
|
||||
if megapixels <= 3.0:
|
||||
return 0.286
|
||||
if megapixels <= 6.4:
|
||||
return 0.429
|
||||
return 1.716
|
||||
|
||||
|
||||
def _calculate_magnific_upscale_price_usd(width: int, height: int, scale: int) -> float:
|
||||
"""Calculate total Magnific upscale price in USD for given input dimensions and scale factor."""
|
||||
num_steps = int(math.log2(scale))
|
||||
total_eur = 0.0
|
||||
pixels = width * height
|
||||
for _ in range(num_steps):
|
||||
total_eur += _tier_price_eur(pixels / 1_000_000)
|
||||
pixels *= 4
|
||||
return round(total_eur * _EUR_TO_USD, 2)
|
||||
|
||||
|
||||
class MagnificImageUpscalerCreativeNode(IO.ComfyNode):
|
||||
@classmethod
|
||||
@@ -103,11 +127,20 @@ class MagnificImageUpscalerCreativeNode(IO.ComfyNode):
|
||||
],
|
||||
is_api_node=True,
|
||||
price_badge=IO.PriceBadge(
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["scale_factor"]),
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["scale_factor", "auto_downscale"]),
|
||||
expr="""
|
||||
(
|
||||
$max := widgets.scale_factor = "2x" ? 1.326 : 1.657;
|
||||
{"type": "range_usd", "min_usd": 0.11, "max_usd": $max}
|
||||
$ad := widgets.auto_downscale;
|
||||
$mins := $ad
|
||||
? {"2x": 0.172, "4x": 0.343, "8x": 0.515, "16x": 0.515}
|
||||
: {"2x": 0.172, "4x": 0.343, "8x": 0.515, "16x": 0.844};
|
||||
$maxs := {"2x": 0.515, "4x": 0.844, "8x": 1.015, "16x": 1.187};
|
||||
{
|
||||
"type": "range_usd",
|
||||
"min_usd": $lookup($mins, widgets.scale_factor),
|
||||
"max_usd": $lookup($maxs, widgets.scale_factor),
|
||||
"format": { "approximate": true }
|
||||
}
|
||||
)
|
||||
""",
|
||||
),
|
||||
@@ -168,6 +201,10 @@ class MagnificImageUpscalerCreativeNode(IO.ComfyNode):
|
||||
f"Use a smaller input image or lower scale factor."
|
||||
)
|
||||
|
||||
final_height, final_width = get_image_dimensions(image)
|
||||
actual_scale = int(scale_factor.rstrip("x"))
|
||||
price_usd = _calculate_magnific_upscale_price_usd(final_width, final_height, actual_scale)
|
||||
|
||||
initial_res = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/freepik/v1/ai/image-upscaler", method="POST"),
|
||||
@@ -189,6 +226,7 @@ class MagnificImageUpscalerCreativeNode(IO.ComfyNode):
|
||||
ApiEndpoint(path=f"/proxy/freepik/v1/ai/image-upscaler/{initial_res.task_id}"),
|
||||
response_model=TaskResponse,
|
||||
status_extractor=lambda x: x.status,
|
||||
price_extractor=lambda _: price_usd,
|
||||
poll_interval=10.0,
|
||||
max_poll_attempts=480,
|
||||
)
|
||||
@@ -257,8 +295,14 @@ class MagnificImageUpscalerPreciseV2Node(IO.ComfyNode):
|
||||
depends_on=IO.PriceBadgeDepends(widgets=["scale_factor"]),
|
||||
expr="""
|
||||
(
|
||||
$max := widgets.scale_factor = "2x" ? 1.326 : 1.657;
|
||||
{"type": "range_usd", "min_usd": 0.11, "max_usd": $max}
|
||||
$mins := {"2x": 0.172, "4x": 0.343, "8x": 0.515, "16x": 0.844};
|
||||
$maxs := {"2x": 2.045, "4x": 2.545, "8x": 2.889, "16x": 3.06};
|
||||
{
|
||||
"type": "range_usd",
|
||||
"min_usd": $lookup($mins, widgets.scale_factor),
|
||||
"max_usd": $lookup($maxs, widgets.scale_factor),
|
||||
"format": { "approximate": true }
|
||||
}
|
||||
)
|
||||
""",
|
||||
),
|
||||
@@ -321,6 +365,9 @@ class MagnificImageUpscalerPreciseV2Node(IO.ComfyNode):
|
||||
f"Use a smaller input image or lower scale factor."
|
||||
)
|
||||
|
||||
final_height, final_width = get_image_dimensions(image)
|
||||
price_usd = _calculate_magnific_upscale_price_usd(final_width, final_height, requested_scale)
|
||||
|
||||
initial_res = await sync_op(
|
||||
cls,
|
||||
ApiEndpoint(path="/proxy/freepik/v1/ai/image-upscaler-precision-v2", method="POST"),
|
||||
@@ -339,6 +386,7 @@ class MagnificImageUpscalerPreciseV2Node(IO.ComfyNode):
|
||||
ApiEndpoint(path=f"/proxy/freepik/v1/ai/image-upscaler-precision-v2/{initial_res.task_id}"),
|
||||
response_model=TaskResponse,
|
||||
status_extractor=lambda x: x.status,
|
||||
price_extractor=lambda _: price_usd,
|
||||
poll_interval=10.0,
|
||||
max_poll_attempts=480,
|
||||
)
|
||||
@@ -877,8 +925,8 @@ class MagnificExtension(ComfyExtension):
|
||||
@override
|
||||
async def get_node_list(self) -> list[type[IO.ComfyNode]]:
|
||||
return [
|
||||
# MagnificImageUpscalerCreativeNode,
|
||||
# MagnificImageUpscalerPreciseV2Node,
|
||||
MagnificImageUpscalerCreativeNode,
|
||||
MagnificImageUpscalerPreciseV2Node,
|
||||
MagnificImageStyleTransferNode,
|
||||
MagnificImageRelightNode,
|
||||
MagnificImageSkinEnhancerNode,
|
||||
|
||||
@@ -57,6 +57,7 @@ class _RequestConfig:
|
||||
files: dict[str, Any] | list[tuple[str, Any]] | None
|
||||
multipart_parser: Callable | None
|
||||
max_retries: int
|
||||
max_retries_on_rate_limit: int
|
||||
retry_delay: float
|
||||
retry_backoff: float
|
||||
wait_label: str = "Waiting"
|
||||
@@ -65,6 +66,7 @@ class _RequestConfig:
|
||||
final_label_on_success: str | None = "Completed"
|
||||
progress_origin_ts: float | None = None
|
||||
price_extractor: Callable[[dict[str, Any]], float | None] | None = None
|
||||
is_rate_limited: Callable[[int, Any], bool] | None = None
|
||||
|
||||
|
||||
@dataclass
|
||||
@@ -78,7 +80,7 @@ class _PollUIState:
|
||||
active_since: float | None = None # start time of current active interval (None if queued)
|
||||
|
||||
|
||||
_RETRY_STATUS = {408, 429, 500, 502, 503, 504}
|
||||
_RETRY_STATUS = {408, 500, 502, 503, 504} # status 429 is handled separately
|
||||
COMPLETED_STATUSES = ["succeeded", "succeed", "success", "completed", "finished", "done", "complete"]
|
||||
FAILED_STATUSES = ["cancelled", "canceled", "canceling", "fail", "failed", "error"]
|
||||
QUEUED_STATUSES = ["created", "queued", "queueing", "submitted", "initializing"]
|
||||
@@ -103,6 +105,8 @@ async def sync_op(
|
||||
final_label_on_success: str | None = "Completed",
|
||||
progress_origin_ts: float | None = None,
|
||||
monitor_progress: bool = True,
|
||||
max_retries_on_rate_limit: int = 16,
|
||||
is_rate_limited: Callable[[int, Any], bool] | None = None,
|
||||
) -> M:
|
||||
raw = await sync_op_raw(
|
||||
cls,
|
||||
@@ -122,6 +126,8 @@ async def sync_op(
|
||||
final_label_on_success=final_label_on_success,
|
||||
progress_origin_ts=progress_origin_ts,
|
||||
monitor_progress=monitor_progress,
|
||||
max_retries_on_rate_limit=max_retries_on_rate_limit,
|
||||
is_rate_limited=is_rate_limited,
|
||||
)
|
||||
if not isinstance(raw, dict):
|
||||
raise Exception("Expected JSON response to validate into a Pydantic model, got non-JSON (binary or text).")
|
||||
@@ -143,9 +149,9 @@ async def poll_op(
|
||||
poll_interval: float = 5.0,
|
||||
max_poll_attempts: int = 160,
|
||||
timeout_per_poll: float = 120.0,
|
||||
max_retries_per_poll: int = 3,
|
||||
max_retries_per_poll: int = 10,
|
||||
retry_delay_per_poll: float = 1.0,
|
||||
retry_backoff_per_poll: float = 2.0,
|
||||
retry_backoff_per_poll: float = 1.4,
|
||||
estimated_duration: int | None = None,
|
||||
cancel_endpoint: ApiEndpoint | None = None,
|
||||
cancel_timeout: float = 10.0,
|
||||
@@ -194,6 +200,8 @@ async def sync_op_raw(
|
||||
final_label_on_success: str | None = "Completed",
|
||||
progress_origin_ts: float | None = None,
|
||||
monitor_progress: bool = True,
|
||||
max_retries_on_rate_limit: int = 16,
|
||||
is_rate_limited: Callable[[int, Any], bool] | None = None,
|
||||
) -> dict[str, Any] | bytes:
|
||||
"""
|
||||
Make a single network request.
|
||||
@@ -222,6 +230,8 @@ async def sync_op_raw(
|
||||
final_label_on_success=final_label_on_success,
|
||||
progress_origin_ts=progress_origin_ts,
|
||||
price_extractor=price_extractor,
|
||||
max_retries_on_rate_limit=max_retries_on_rate_limit,
|
||||
is_rate_limited=is_rate_limited,
|
||||
)
|
||||
return await _request_base(cfg, expect_binary=as_binary)
|
||||
|
||||
@@ -240,9 +250,9 @@ async def poll_op_raw(
|
||||
poll_interval: float = 5.0,
|
||||
max_poll_attempts: int = 160,
|
||||
timeout_per_poll: float = 120.0,
|
||||
max_retries_per_poll: int = 3,
|
||||
max_retries_per_poll: int = 10,
|
||||
retry_delay_per_poll: float = 1.0,
|
||||
retry_backoff_per_poll: float = 2.0,
|
||||
retry_backoff_per_poll: float = 1.4,
|
||||
estimated_duration: int | None = None,
|
||||
cancel_endpoint: ApiEndpoint | None = None,
|
||||
cancel_timeout: float = 10.0,
|
||||
@@ -506,7 +516,7 @@ def _friendly_http_message(status: int, body: Any) -> str:
|
||||
if status == 409:
|
||||
return "There is a problem with your account. Please contact support@comfy.org."
|
||||
if status == 429:
|
||||
return "Rate Limit Exceeded: Please try again later."
|
||||
return "Rate Limit Exceeded: The server returned 429 after all retry attempts. Please wait and try again."
|
||||
try:
|
||||
if isinstance(body, dict):
|
||||
err = body.get("error")
|
||||
@@ -586,6 +596,8 @@ async def _request_base(cfg: _RequestConfig, expect_binary: bool):
|
||||
start_time = cfg.progress_origin_ts if cfg.progress_origin_ts is not None else time.monotonic()
|
||||
attempt = 0
|
||||
delay = cfg.retry_delay
|
||||
rate_limit_attempts = 0
|
||||
rate_limit_delay = cfg.retry_delay
|
||||
operation_succeeded: bool = False
|
||||
final_elapsed_seconds: int | None = None
|
||||
extracted_price: float | None = None
|
||||
@@ -653,17 +665,14 @@ async def _request_base(cfg: _RequestConfig, expect_binary: bool):
|
||||
payload_headers["Content-Type"] = "application/json"
|
||||
payload_kw["json"] = cfg.data or {}
|
||||
|
||||
try:
|
||||
request_logger.log_request_response(
|
||||
operation_id=operation_id,
|
||||
request_method=method,
|
||||
request_url=url,
|
||||
request_headers=dict(payload_headers) if payload_headers else None,
|
||||
request_params=dict(params) if params else None,
|
||||
request_data=request_body_log,
|
||||
)
|
||||
except Exception as _log_e:
|
||||
logging.debug("[DEBUG] request logging failed: %s", _log_e)
|
||||
request_logger.log_request_response(
|
||||
operation_id=operation_id,
|
||||
request_method=method,
|
||||
request_url=url,
|
||||
request_headers=dict(payload_headers) if payload_headers else None,
|
||||
request_params=dict(params) if params else None,
|
||||
request_data=request_body_log,
|
||||
)
|
||||
|
||||
req_coro = sess.request(method, url, params=params, **payload_kw)
|
||||
req_task = asyncio.create_task(req_coro)
|
||||
@@ -688,41 +697,33 @@ async def _request_base(cfg: _RequestConfig, expect_binary: bool):
|
||||
body = await resp.json()
|
||||
except (ContentTypeError, json.JSONDecodeError):
|
||||
body = await resp.text()
|
||||
if resp.status in _RETRY_STATUS and attempt <= cfg.max_retries:
|
||||
should_retry = False
|
||||
wait_time = 0.0
|
||||
retry_label = ""
|
||||
is_rl = resp.status == 429 or (
|
||||
cfg.is_rate_limited is not None and cfg.is_rate_limited(resp.status, body)
|
||||
)
|
||||
if is_rl and rate_limit_attempts < cfg.max_retries_on_rate_limit:
|
||||
rate_limit_attempts += 1
|
||||
wait_time = min(rate_limit_delay, 30.0)
|
||||
rate_limit_delay *= cfg.retry_backoff
|
||||
retry_label = f"rate-limit retry {rate_limit_attempts} of {cfg.max_retries_on_rate_limit}"
|
||||
should_retry = True
|
||||
elif resp.status in _RETRY_STATUS and (attempt - rate_limit_attempts) <= cfg.max_retries:
|
||||
wait_time = delay
|
||||
delay *= cfg.retry_backoff
|
||||
retry_label = f"retry {attempt - rate_limit_attempts} of {cfg.max_retries}"
|
||||
should_retry = True
|
||||
|
||||
if should_retry:
|
||||
logging.warning(
|
||||
"HTTP %s %s -> %s. Retrying in %.2fs (retry %d of %d).",
|
||||
"HTTP %s %s -> %s. Waiting %.2fs (%s).",
|
||||
method,
|
||||
url,
|
||||
resp.status,
|
||||
delay,
|
||||
attempt,
|
||||
cfg.max_retries,
|
||||
wait_time,
|
||||
retry_label,
|
||||
)
|
||||
try:
|
||||
request_logger.log_request_response(
|
||||
operation_id=operation_id,
|
||||
request_method=method,
|
||||
request_url=url,
|
||||
response_status_code=resp.status,
|
||||
response_headers=dict(resp.headers),
|
||||
response_content=body,
|
||||
error_message=_friendly_http_message(resp.status, body),
|
||||
)
|
||||
except Exception as _log_e:
|
||||
logging.debug("[DEBUG] response logging failed: %s", _log_e)
|
||||
|
||||
await sleep_with_interrupt(
|
||||
delay,
|
||||
cfg.node_cls,
|
||||
cfg.wait_label if cfg.monitor_progress else None,
|
||||
start_time if cfg.monitor_progress else None,
|
||||
cfg.estimated_total,
|
||||
display_callback=_display_time_progress if cfg.monitor_progress else None,
|
||||
)
|
||||
delay *= cfg.retry_backoff
|
||||
continue
|
||||
msg = _friendly_http_message(resp.status, body)
|
||||
try:
|
||||
request_logger.log_request_response(
|
||||
operation_id=operation_id,
|
||||
request_method=method,
|
||||
@@ -730,10 +731,27 @@ async def _request_base(cfg: _RequestConfig, expect_binary: bool):
|
||||
response_status_code=resp.status,
|
||||
response_headers=dict(resp.headers),
|
||||
response_content=body,
|
||||
error_message=msg,
|
||||
error_message=f"HTTP {resp.status} ({retry_label}, will retry in {wait_time:.1f}s)",
|
||||
)
|
||||
except Exception as _log_e:
|
||||
logging.debug("[DEBUG] response logging failed: %s", _log_e)
|
||||
await sleep_with_interrupt(
|
||||
wait_time,
|
||||
cfg.node_cls,
|
||||
cfg.wait_label if cfg.monitor_progress else None,
|
||||
start_time if cfg.monitor_progress else None,
|
||||
cfg.estimated_total,
|
||||
display_callback=_display_time_progress if cfg.monitor_progress else None,
|
||||
)
|
||||
continue
|
||||
msg = _friendly_http_message(resp.status, body)
|
||||
request_logger.log_request_response(
|
||||
operation_id=operation_id,
|
||||
request_method=method,
|
||||
request_url=url,
|
||||
response_status_code=resp.status,
|
||||
response_headers=dict(resp.headers),
|
||||
response_content=body,
|
||||
error_message=msg,
|
||||
)
|
||||
raise Exception(msg)
|
||||
|
||||
if expect_binary:
|
||||
@@ -753,17 +771,14 @@ async def _request_base(cfg: _RequestConfig, expect_binary: bool):
|
||||
bytes_payload = bytes(buff)
|
||||
operation_succeeded = True
|
||||
final_elapsed_seconds = int(time.monotonic() - start_time)
|
||||
try:
|
||||
request_logger.log_request_response(
|
||||
operation_id=operation_id,
|
||||
request_method=method,
|
||||
request_url=url,
|
||||
response_status_code=resp.status,
|
||||
response_headers=dict(resp.headers),
|
||||
response_content=bytes_payload,
|
||||
)
|
||||
except Exception as _log_e:
|
||||
logging.debug("[DEBUG] response logging failed: %s", _log_e)
|
||||
request_logger.log_request_response(
|
||||
operation_id=operation_id,
|
||||
request_method=method,
|
||||
request_url=url,
|
||||
response_status_code=resp.status,
|
||||
response_headers=dict(resp.headers),
|
||||
response_content=bytes_payload,
|
||||
)
|
||||
return bytes_payload
|
||||
else:
|
||||
try:
|
||||
@@ -780,45 +795,39 @@ async def _request_base(cfg: _RequestConfig, expect_binary: bool):
|
||||
extracted_price = cfg.price_extractor(payload) if cfg.price_extractor else None
|
||||
operation_succeeded = True
|
||||
final_elapsed_seconds = int(time.monotonic() - start_time)
|
||||
try:
|
||||
request_logger.log_request_response(
|
||||
operation_id=operation_id,
|
||||
request_method=method,
|
||||
request_url=url,
|
||||
response_status_code=resp.status,
|
||||
response_headers=dict(resp.headers),
|
||||
response_content=response_content_to_log,
|
||||
)
|
||||
except Exception as _log_e:
|
||||
logging.debug("[DEBUG] response logging failed: %s", _log_e)
|
||||
request_logger.log_request_response(
|
||||
operation_id=operation_id,
|
||||
request_method=method,
|
||||
request_url=url,
|
||||
response_status_code=resp.status,
|
||||
response_headers=dict(resp.headers),
|
||||
response_content=response_content_to_log,
|
||||
)
|
||||
return payload
|
||||
|
||||
except ProcessingInterrupted:
|
||||
logging.debug("Polling was interrupted by user")
|
||||
raise
|
||||
except (ClientError, OSError) as e:
|
||||
if attempt <= cfg.max_retries:
|
||||
if (attempt - rate_limit_attempts) <= cfg.max_retries:
|
||||
logging.warning(
|
||||
"Connection error calling %s %s. Retrying in %.2fs (%d/%d): %s",
|
||||
method,
|
||||
url,
|
||||
delay,
|
||||
attempt,
|
||||
attempt - rate_limit_attempts,
|
||||
cfg.max_retries,
|
||||
str(e),
|
||||
)
|
||||
try:
|
||||
request_logger.log_request_response(
|
||||
operation_id=operation_id,
|
||||
request_method=method,
|
||||
request_url=url,
|
||||
request_headers=dict(payload_headers) if payload_headers else None,
|
||||
request_params=dict(params) if params else None,
|
||||
request_data=request_body_log,
|
||||
error_message=f"{type(e).__name__}: {str(e)} (will retry)",
|
||||
)
|
||||
except Exception as _log_e:
|
||||
logging.debug("[DEBUG] request error logging failed: %s", _log_e)
|
||||
request_logger.log_request_response(
|
||||
operation_id=operation_id,
|
||||
request_method=method,
|
||||
request_url=url,
|
||||
request_headers=dict(payload_headers) if payload_headers else None,
|
||||
request_params=dict(params) if params else None,
|
||||
request_data=request_body_log,
|
||||
error_message=f"{type(e).__name__}: {str(e)} (will retry)",
|
||||
)
|
||||
await sleep_with_interrupt(
|
||||
delay,
|
||||
cfg.node_cls,
|
||||
@@ -831,23 +840,6 @@ async def _request_base(cfg: _RequestConfig, expect_binary: bool):
|
||||
continue
|
||||
diag = await _diagnose_connectivity()
|
||||
if not diag["internet_accessible"]:
|
||||
try:
|
||||
request_logger.log_request_response(
|
||||
operation_id=operation_id,
|
||||
request_method=method,
|
||||
request_url=url,
|
||||
request_headers=dict(payload_headers) if payload_headers else None,
|
||||
request_params=dict(params) if params else None,
|
||||
request_data=request_body_log,
|
||||
error_message=f"LocalNetworkError: {str(e)}",
|
||||
)
|
||||
except Exception as _log_e:
|
||||
logging.debug("[DEBUG] final error logging failed: %s", _log_e)
|
||||
raise LocalNetworkError(
|
||||
"Unable to connect to the API server due to local network issues. "
|
||||
"Please check your internet connection and try again."
|
||||
) from e
|
||||
try:
|
||||
request_logger.log_request_response(
|
||||
operation_id=operation_id,
|
||||
request_method=method,
|
||||
@@ -855,10 +847,21 @@ async def _request_base(cfg: _RequestConfig, expect_binary: bool):
|
||||
request_headers=dict(payload_headers) if payload_headers else None,
|
||||
request_params=dict(params) if params else None,
|
||||
request_data=request_body_log,
|
||||
error_message=f"ApiServerError: {str(e)}",
|
||||
error_message=f"LocalNetworkError: {str(e)}",
|
||||
)
|
||||
except Exception as _log_e:
|
||||
logging.debug("[DEBUG] final error logging failed: %s", _log_e)
|
||||
raise LocalNetworkError(
|
||||
"Unable to connect to the API server due to local network issues. "
|
||||
"Please check your internet connection and try again."
|
||||
) from e
|
||||
request_logger.log_request_response(
|
||||
operation_id=operation_id,
|
||||
request_method=method,
|
||||
request_url=url,
|
||||
request_headers=dict(payload_headers) if payload_headers else None,
|
||||
request_params=dict(params) if params else None,
|
||||
request_data=request_body_log,
|
||||
error_message=f"ApiServerError: {str(e)}",
|
||||
)
|
||||
raise ApiServerError(
|
||||
f"The API server at {default_base_url()} is currently unreachable. "
|
||||
f"The service may be experiencing issues."
|
||||
|
||||
@@ -167,27 +167,25 @@ async def download_url_to_bytesio(
|
||||
with contextlib.suppress(Exception):
|
||||
dest.seek(0)
|
||||
|
||||
with contextlib.suppress(Exception):
|
||||
request_logger.log_request_response(
|
||||
operation_id=op_id,
|
||||
request_method="GET",
|
||||
request_url=url,
|
||||
response_status_code=resp.status,
|
||||
response_headers=dict(resp.headers),
|
||||
response_content=f"[streamed {written} bytes to dest]",
|
||||
)
|
||||
request_logger.log_request_response(
|
||||
operation_id=op_id,
|
||||
request_method="GET",
|
||||
request_url=url,
|
||||
response_status_code=resp.status,
|
||||
response_headers=dict(resp.headers),
|
||||
response_content=f"[streamed {written} bytes to dest]",
|
||||
)
|
||||
return
|
||||
except asyncio.CancelledError:
|
||||
raise ProcessingInterrupted("Task cancelled") from None
|
||||
except (ClientError, OSError) as e:
|
||||
if attempt <= max_retries:
|
||||
with contextlib.suppress(Exception):
|
||||
request_logger.log_request_response(
|
||||
operation_id=op_id,
|
||||
request_method="GET",
|
||||
request_url=url,
|
||||
error_message=f"{type(e).__name__}: {str(e)} (will retry)",
|
||||
)
|
||||
request_logger.log_request_response(
|
||||
operation_id=op_id,
|
||||
request_method="GET",
|
||||
request_url=url,
|
||||
error_message=f"{type(e).__name__}: {str(e)} (will retry)",
|
||||
)
|
||||
await sleep_with_interrupt(delay, cls, None, None, None)
|
||||
delay *= retry_backoff
|
||||
continue
|
||||
|
||||
@@ -8,7 +8,6 @@ from typing import Any
|
||||
|
||||
import folder_paths
|
||||
|
||||
# Get the logger instance
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
@@ -91,38 +90,41 @@ def log_request_response(
|
||||
Filenames are sanitized and length-limited for cross-platform safety.
|
||||
If we still fail to write, we fall back to appending into api.log.
|
||||
"""
|
||||
log_dir = get_log_directory()
|
||||
filepath = _build_log_filepath(log_dir, operation_id, request_url)
|
||||
|
||||
log_content: list[str] = []
|
||||
log_content.append(f"Timestamp: {datetime.datetime.now().isoformat()}")
|
||||
log_content.append(f"Operation ID: {operation_id}")
|
||||
log_content.append("-" * 30 + " REQUEST " + "-" * 30)
|
||||
log_content.append(f"Method: {request_method}")
|
||||
log_content.append(f"URL: {request_url}")
|
||||
if request_headers:
|
||||
log_content.append(f"Headers:\n{_format_data_for_logging(request_headers)}")
|
||||
if request_params:
|
||||
log_content.append(f"Params:\n{_format_data_for_logging(request_params)}")
|
||||
if request_data is not None:
|
||||
log_content.append(f"Data/Body:\n{_format_data_for_logging(request_data)}")
|
||||
|
||||
log_content.append("\n" + "-" * 30 + " RESPONSE " + "-" * 30)
|
||||
if response_status_code is not None:
|
||||
log_content.append(f"Status Code: {response_status_code}")
|
||||
if response_headers:
|
||||
log_content.append(f"Headers:\n{_format_data_for_logging(response_headers)}")
|
||||
if response_content is not None:
|
||||
log_content.append(f"Content:\n{_format_data_for_logging(response_content)}")
|
||||
if error_message:
|
||||
log_content.append(f"Error:\n{error_message}")
|
||||
|
||||
try:
|
||||
with open(filepath, "w", encoding="utf-8") as f:
|
||||
f.write("\n".join(log_content))
|
||||
logger.debug("API log saved to: %s", filepath)
|
||||
except Exception as e:
|
||||
logger.error("Error writing API log to %s: %s", filepath, str(e))
|
||||
log_dir = get_log_directory()
|
||||
filepath = _build_log_filepath(log_dir, operation_id, request_url)
|
||||
|
||||
log_content: list[str] = []
|
||||
log_content.append(f"Timestamp: {datetime.datetime.now().isoformat()}")
|
||||
log_content.append(f"Operation ID: {operation_id}")
|
||||
log_content.append("-" * 30 + " REQUEST " + "-" * 30)
|
||||
log_content.append(f"Method: {request_method}")
|
||||
log_content.append(f"URL: {request_url}")
|
||||
if request_headers:
|
||||
log_content.append(f"Headers:\n{_format_data_for_logging(request_headers)}")
|
||||
if request_params:
|
||||
log_content.append(f"Params:\n{_format_data_for_logging(request_params)}")
|
||||
if request_data is not None:
|
||||
log_content.append(f"Data/Body:\n{_format_data_for_logging(request_data)}")
|
||||
|
||||
log_content.append("\n" + "-" * 30 + " RESPONSE " + "-" * 30)
|
||||
if response_status_code is not None:
|
||||
log_content.append(f"Status Code: {response_status_code}")
|
||||
if response_headers:
|
||||
log_content.append(f"Headers:\n{_format_data_for_logging(response_headers)}")
|
||||
if response_content is not None:
|
||||
log_content.append(f"Content:\n{_format_data_for_logging(response_content)}")
|
||||
if error_message:
|
||||
log_content.append(f"Error:\n{error_message}")
|
||||
|
||||
try:
|
||||
with open(filepath, "w", encoding="utf-8") as f:
|
||||
f.write("\n".join(log_content))
|
||||
logger.debug("API log saved to: %s", filepath)
|
||||
except Exception as e:
|
||||
logger.error("Error writing API log to %s: %s", filepath, str(e))
|
||||
except Exception as _log_e:
|
||||
logging.debug("[DEBUG] log_request_response failed: %s", _log_e)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
|
||||
@@ -255,17 +255,14 @@ async def upload_file(
|
||||
monitor_task = asyncio.create_task(_monitor())
|
||||
sess: aiohttp.ClientSession | None = None
|
||||
try:
|
||||
try:
|
||||
request_logger.log_request_response(
|
||||
operation_id=operation_id,
|
||||
request_method="PUT",
|
||||
request_url=upload_url,
|
||||
request_headers=headers or None,
|
||||
request_params=None,
|
||||
request_data=f"[File data {len(data)} bytes]",
|
||||
)
|
||||
except Exception as e:
|
||||
logging.debug("[DEBUG] upload request logging failed: %s", e)
|
||||
request_logger.log_request_response(
|
||||
operation_id=operation_id,
|
||||
request_method="PUT",
|
||||
request_url=upload_url,
|
||||
request_headers=headers or None,
|
||||
request_params=None,
|
||||
request_data=f"[File data {len(data)} bytes]",
|
||||
)
|
||||
|
||||
sess = aiohttp.ClientSession(timeout=timeout)
|
||||
req = sess.put(upload_url, data=data, headers=headers, skip_auto_headers=skip_auto_headers)
|
||||
@@ -311,31 +308,27 @@ async def upload_file(
|
||||
delay *= retry_backoff
|
||||
continue
|
||||
raise Exception(f"Failed to upload (HTTP {resp.status}).")
|
||||
try:
|
||||
request_logger.log_request_response(
|
||||
operation_id=operation_id,
|
||||
request_method="PUT",
|
||||
request_url=upload_url,
|
||||
response_status_code=resp.status,
|
||||
response_headers=dict(resp.headers),
|
||||
response_content="File uploaded successfully.",
|
||||
)
|
||||
except Exception as e:
|
||||
logging.debug("[DEBUG] upload response logging failed: %s", e)
|
||||
request_logger.log_request_response(
|
||||
operation_id=operation_id,
|
||||
request_method="PUT",
|
||||
request_url=upload_url,
|
||||
response_status_code=resp.status,
|
||||
response_headers=dict(resp.headers),
|
||||
response_content="File uploaded successfully.",
|
||||
)
|
||||
return
|
||||
except asyncio.CancelledError:
|
||||
raise ProcessingInterrupted("Task cancelled") from None
|
||||
except (aiohttp.ClientError, OSError) as e:
|
||||
if attempt <= max_retries:
|
||||
with contextlib.suppress(Exception):
|
||||
request_logger.log_request_response(
|
||||
operation_id=operation_id,
|
||||
request_method="PUT",
|
||||
request_url=upload_url,
|
||||
request_headers=headers or None,
|
||||
request_data=f"[File data {len(data)} bytes]",
|
||||
error_message=f"{type(e).__name__}: {str(e)} (will retry)",
|
||||
)
|
||||
request_logger.log_request_response(
|
||||
operation_id=operation_id,
|
||||
request_method="PUT",
|
||||
request_url=upload_url,
|
||||
request_headers=headers or None,
|
||||
request_data=f"[File data {len(data)} bytes]",
|
||||
error_message=f"{type(e).__name__}: {str(e)} (will retry)",
|
||||
)
|
||||
await sleep_with_interrupt(
|
||||
delay,
|
||||
cls,
|
||||
|
||||
@@ -20,10 +20,60 @@ class JobStatus:
|
||||
|
||||
|
||||
# Media types that can be previewed in the frontend
|
||||
PREVIEWABLE_MEDIA_TYPES = frozenset({'images', 'video', 'audio'})
|
||||
PREVIEWABLE_MEDIA_TYPES = frozenset({'images', 'video', 'audio', '3d'})
|
||||
|
||||
# 3D file extensions for preview fallback (no dedicated media_type exists)
|
||||
THREE_D_EXTENSIONS = frozenset({'.obj', '.fbx', '.gltf', '.glb'})
|
||||
THREE_D_EXTENSIONS = frozenset({'.obj', '.fbx', '.gltf', '.glb', '.usdz'})
|
||||
|
||||
|
||||
def has_3d_extension(filename: str) -> bool:
|
||||
lower = filename.lower()
|
||||
return any(lower.endswith(ext) for ext in THREE_D_EXTENSIONS)
|
||||
|
||||
|
||||
def normalize_output_item(item):
|
||||
"""Normalize a single output list item for the jobs API.
|
||||
|
||||
Returns the normalized item, or None to exclude it.
|
||||
String items with 3D extensions become {filename, type, subfolder} dicts.
|
||||
"""
|
||||
if item is None:
|
||||
return None
|
||||
if isinstance(item, str):
|
||||
if has_3d_extension(item):
|
||||
return {'filename': item, 'type': 'output', 'subfolder': '', 'mediaType': '3d'}
|
||||
return None
|
||||
if isinstance(item, dict):
|
||||
return item
|
||||
return None
|
||||
|
||||
|
||||
def normalize_outputs(outputs: dict) -> dict:
|
||||
"""Normalize raw node outputs for the jobs API.
|
||||
|
||||
Transforms string 3D filenames into file output dicts and removes
|
||||
None items. All other items (non-3D strings, dicts, etc.) are
|
||||
preserved as-is.
|
||||
"""
|
||||
normalized = {}
|
||||
for node_id, node_outputs in outputs.items():
|
||||
if not isinstance(node_outputs, dict):
|
||||
normalized[node_id] = node_outputs
|
||||
continue
|
||||
normalized_node = {}
|
||||
for media_type, items in node_outputs.items():
|
||||
if media_type == 'animated' or not isinstance(items, list):
|
||||
normalized_node[media_type] = items
|
||||
continue
|
||||
normalized_items = []
|
||||
for item in items:
|
||||
if item is None:
|
||||
continue
|
||||
norm = normalize_output_item(item)
|
||||
normalized_items.append(norm if norm is not None else item)
|
||||
normalized_node[media_type] = normalized_items
|
||||
normalized[node_id] = normalized_node
|
||||
return normalized
|
||||
|
||||
|
||||
def _extract_job_metadata(extra_data: dict) -> tuple[Optional[int], Optional[str]]:
|
||||
@@ -45,9 +95,9 @@ def is_previewable(media_type: str, item: dict) -> bool:
|
||||
Maintains backwards compatibility with existing logic.
|
||||
|
||||
Priority:
|
||||
1. media_type is 'images', 'video', or 'audio'
|
||||
1. media_type is 'images', 'video', 'audio', or '3d'
|
||||
2. format field starts with 'video/' or 'audio/'
|
||||
3. filename has a 3D extension (.obj, .fbx, .gltf, .glb)
|
||||
3. filename has a 3D extension (.obj, .fbx, .gltf, .glb, .usdz)
|
||||
"""
|
||||
if media_type in PREVIEWABLE_MEDIA_TYPES:
|
||||
return True
|
||||
@@ -139,7 +189,7 @@ def normalize_history_item(prompt_id: str, history_item: dict, include_outputs:
|
||||
})
|
||||
|
||||
if include_outputs:
|
||||
job['outputs'] = outputs
|
||||
job['outputs'] = normalize_outputs(outputs)
|
||||
job['execution_status'] = status_info
|
||||
job['workflow'] = {
|
||||
'prompt': prompt,
|
||||
@@ -171,18 +221,23 @@ def get_outputs_summary(outputs: dict) -> tuple[int, Optional[dict]]:
|
||||
continue
|
||||
|
||||
for item in items:
|
||||
count += 1
|
||||
|
||||
if not isinstance(item, dict):
|
||||
normalized = normalize_output_item(item)
|
||||
if normalized is None:
|
||||
continue
|
||||
|
||||
if preview_output is None and is_previewable(media_type, item):
|
||||
count += 1
|
||||
|
||||
if preview_output is not None:
|
||||
continue
|
||||
|
||||
if isinstance(normalized, dict) and is_previewable(media_type, normalized):
|
||||
enriched = {
|
||||
**item,
|
||||
**normalized,
|
||||
'nodeId': node_id,
|
||||
'mediaType': media_type
|
||||
}
|
||||
if item.get('type') == 'output':
|
||||
if 'mediaType' not in normalized:
|
||||
enriched['mediaType'] = media_type
|
||||
if normalized.get('type') == 'output':
|
||||
preview_output = enriched
|
||||
elif fallback_preview is None:
|
||||
fallback_preview = enriched
|
||||
|
||||
@@ -49,13 +49,14 @@ class TextEncodeAceStepAudio15(io.ComfyNode):
|
||||
io.Float.Input("temperature", default=0.85, min=0.0, max=2.0, step=0.01, advanced=True),
|
||||
io.Float.Input("top_p", default=0.9, min=0.0, max=2000.0, step=0.01, advanced=True),
|
||||
io.Int.Input("top_k", default=0, min=0, max=100, advanced=True),
|
||||
io.Float.Input("min_p", default=0.000, min=0.0, max=1.0, step=0.001, advanced=True),
|
||||
],
|
||||
outputs=[io.Conditioning.Output()],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, clip, tags, lyrics, seed, bpm, duration, timesignature, language, keyscale, generate_audio_codes, cfg_scale, temperature, top_p, top_k) -> io.NodeOutput:
|
||||
tokens = clip.tokenize(tags, lyrics=lyrics, bpm=bpm, duration=duration, timesignature=int(timesignature), language=language, keyscale=keyscale, seed=seed, generate_audio_codes=generate_audio_codes, cfg_scale=cfg_scale, temperature=temperature, top_p=top_p, top_k=top_k)
|
||||
def execute(cls, clip, tags, lyrics, seed, bpm, duration, timesignature, language, keyscale, generate_audio_codes, cfg_scale, temperature, top_p, top_k, min_p) -> io.NodeOutput:
|
||||
tokens = clip.tokenize(tags, lyrics=lyrics, bpm=bpm, duration=duration, timesignature=int(timesignature), language=language, keyscale=keyscale, seed=seed, generate_audio_codes=generate_audio_codes, cfg_scale=cfg_scale, temperature=temperature, top_p=top_p, top_k=top_k, min_p=min_p)
|
||||
conditioning = clip.encode_from_tokens_scheduled(tokens)
|
||||
return io.NodeOutput(conditioning)
|
||||
|
||||
|
||||
897
comfy_extras/nodes_glsl.py
Normal file
897
comfy_extras/nodes_glsl.py
Normal file
@@ -0,0 +1,897 @@
|
||||
import os
|
||||
import sys
|
||||
import re
|
||||
import logging
|
||||
import ctypes.util
|
||||
import importlib.util
|
||||
from typing import TypedDict
|
||||
|
||||
import numpy as np
|
||||
import torch
|
||||
|
||||
import nodes
|
||||
from comfy_api.latest import ComfyExtension, io, ui
|
||||
from typing_extensions import override
|
||||
from utils.install_util import get_missing_requirements_message
|
||||
|
||||
logger = logging.getLogger(__name__)
|
||||
|
||||
|
||||
def _check_opengl_availability():
|
||||
"""Early check for OpenGL availability. Raises RuntimeError if unlikely to work."""
|
||||
logger.debug("_check_opengl_availability: starting")
|
||||
missing = []
|
||||
|
||||
# Check Python packages (using find_spec to avoid importing)
|
||||
logger.debug("_check_opengl_availability: checking for glfw package")
|
||||
if importlib.util.find_spec("glfw") is None:
|
||||
missing.append("glfw")
|
||||
|
||||
logger.debug("_check_opengl_availability: checking for OpenGL package")
|
||||
if importlib.util.find_spec("OpenGL") is None:
|
||||
missing.append("PyOpenGL")
|
||||
|
||||
if missing:
|
||||
raise RuntimeError(
|
||||
f"OpenGL dependencies not available.\n{get_missing_requirements_message()}\n"
|
||||
)
|
||||
|
||||
# On Linux without display, check if headless backends are available
|
||||
logger.debug(f"_check_opengl_availability: platform={sys.platform}")
|
||||
if sys.platform.startswith("linux"):
|
||||
has_display = os.environ.get("DISPLAY") or os.environ.get("WAYLAND_DISPLAY")
|
||||
logger.debug(f"_check_opengl_availability: has_display={bool(has_display)}")
|
||||
if not has_display:
|
||||
# Check for EGL or OSMesa libraries
|
||||
logger.debug("_check_opengl_availability: checking for EGL library")
|
||||
has_egl = ctypes.util.find_library("EGL")
|
||||
logger.debug("_check_opengl_availability: checking for OSMesa library")
|
||||
has_osmesa = ctypes.util.find_library("OSMesa")
|
||||
|
||||
# Error disabled for CI as it fails this check
|
||||
# if not has_egl and not has_osmesa:
|
||||
# raise RuntimeError(
|
||||
# "GLSL Shader node: No display and no headless backend (EGL/OSMesa) found.\n"
|
||||
# "See error below for installation instructions."
|
||||
# )
|
||||
logger.debug(f"Headless mode: EGL={'yes' if has_egl else 'no'}, OSMesa={'yes' if has_osmesa else 'no'}")
|
||||
|
||||
logger.debug("_check_opengl_availability: completed")
|
||||
|
||||
|
||||
# Run early check at import time
|
||||
logger.debug("nodes_glsl: running _check_opengl_availability at import time")
|
||||
_check_opengl_availability()
|
||||
|
||||
# OpenGL modules - initialized lazily when context is created
|
||||
gl = None
|
||||
glfw = None
|
||||
EGL = None
|
||||
|
||||
|
||||
def _import_opengl():
|
||||
"""Import OpenGL module. Called after context is created."""
|
||||
global gl
|
||||
if gl is None:
|
||||
logger.debug("_import_opengl: importing OpenGL.GL")
|
||||
import OpenGL.GL as _gl
|
||||
gl = _gl
|
||||
logger.debug("_import_opengl: import completed")
|
||||
return gl
|
||||
|
||||
|
||||
class SizeModeInput(TypedDict):
|
||||
size_mode: str
|
||||
width: int
|
||||
height: int
|
||||
|
||||
|
||||
MAX_IMAGES = 5 # u_image0-4
|
||||
MAX_UNIFORMS = 5 # u_float0-4, u_int0-4
|
||||
MAX_OUTPUTS = 4 # fragColor0-3 (MRT)
|
||||
|
||||
# Vertex shader using gl_VertexID trick - no VBO needed.
|
||||
# Draws a single triangle that covers the entire screen:
|
||||
#
|
||||
# (-1,3)
|
||||
# /|
|
||||
# / | <- visible area is the unit square from (-1,-1) to (1,1)
|
||||
# / | parts outside get clipped away
|
||||
# (-1,-1)---(3,-1)
|
||||
#
|
||||
# v_texCoord is computed from clip space: * 0.5 + 0.5 maps (-1,1) -> (0,1)
|
||||
VERTEX_SHADER = """#version 330 core
|
||||
out vec2 v_texCoord;
|
||||
void main() {
|
||||
vec2 verts[3] = vec2[](vec2(-1, -1), vec2(3, -1), vec2(-1, 3));
|
||||
v_texCoord = verts[gl_VertexID] * 0.5 + 0.5;
|
||||
gl_Position = vec4(verts[gl_VertexID], 0, 1);
|
||||
}
|
||||
"""
|
||||
|
||||
DEFAULT_FRAGMENT_SHADER = """#version 300 es
|
||||
precision highp float;
|
||||
|
||||
uniform sampler2D u_image0;
|
||||
uniform vec2 u_resolution;
|
||||
|
||||
in vec2 v_texCoord;
|
||||
layout(location = 0) out vec4 fragColor0;
|
||||
|
||||
void main() {
|
||||
fragColor0 = texture(u_image0, v_texCoord);
|
||||
}
|
||||
"""
|
||||
|
||||
|
||||
def _convert_es_to_desktop(source: str) -> str:
|
||||
"""Convert GLSL ES (WebGL) shader source to desktop GLSL 330 core."""
|
||||
# Remove any existing #version directive
|
||||
source = re.sub(r"#version\s+\d+(\s+es)?\s*\n?", "", source, flags=re.IGNORECASE)
|
||||
# Remove precision qualifiers (not needed in desktop GLSL)
|
||||
source = re.sub(r"precision\s+(lowp|mediump|highp)\s+\w+\s*;\s*\n?", "", source)
|
||||
# Prepend desktop GLSL version
|
||||
return "#version 330 core\n" + source
|
||||
|
||||
|
||||
def _detect_output_count(source: str) -> int:
|
||||
"""Detect how many fragColor outputs are used in the shader.
|
||||
|
||||
Returns the count of outputs needed (1 to MAX_OUTPUTS).
|
||||
"""
|
||||
matches = re.findall(r"fragColor(\d+)", source)
|
||||
if not matches:
|
||||
return 1 # Default to 1 output if none found
|
||||
max_index = max(int(m) for m in matches)
|
||||
return min(max_index + 1, MAX_OUTPUTS)
|
||||
|
||||
|
||||
def _detect_pass_count(source: str) -> int:
|
||||
"""Detect multi-pass rendering from #pragma passes N directive.
|
||||
|
||||
Returns the number of passes (1 if not specified).
|
||||
"""
|
||||
match = re.search(r'#pragma\s+passes\s+(\d+)', source)
|
||||
if match:
|
||||
return max(1, int(match.group(1)))
|
||||
return 1
|
||||
|
||||
|
||||
def _init_glfw():
|
||||
"""Initialize GLFW. Returns (window, glfw_module). Raises RuntimeError on failure."""
|
||||
logger.debug("_init_glfw: starting")
|
||||
# On macOS, glfw.init() must be called from main thread or it hangs forever
|
||||
if sys.platform == "darwin":
|
||||
logger.debug("_init_glfw: skipping on macOS")
|
||||
raise RuntimeError("GLFW backend not supported on macOS")
|
||||
|
||||
logger.debug("_init_glfw: importing glfw module")
|
||||
import glfw as _glfw
|
||||
|
||||
logger.debug("_init_glfw: calling glfw.init()")
|
||||
if not _glfw.init():
|
||||
raise RuntimeError("glfw.init() failed")
|
||||
|
||||
try:
|
||||
logger.debug("_init_glfw: setting window hints")
|
||||
_glfw.window_hint(_glfw.VISIBLE, _glfw.FALSE)
|
||||
_glfw.window_hint(_glfw.CONTEXT_VERSION_MAJOR, 3)
|
||||
_glfw.window_hint(_glfw.CONTEXT_VERSION_MINOR, 3)
|
||||
_glfw.window_hint(_glfw.OPENGL_PROFILE, _glfw.OPENGL_CORE_PROFILE)
|
||||
|
||||
logger.debug("_init_glfw: calling create_window()")
|
||||
window = _glfw.create_window(64, 64, "ComfyUI GLSL", None, None)
|
||||
if not window:
|
||||
raise RuntimeError("glfw.create_window() failed")
|
||||
|
||||
logger.debug("_init_glfw: calling make_context_current()")
|
||||
_glfw.make_context_current(window)
|
||||
logger.debug("_init_glfw: completed successfully")
|
||||
return window, _glfw
|
||||
except Exception:
|
||||
logger.debug("_init_glfw: failed, terminating glfw")
|
||||
_glfw.terminate()
|
||||
raise
|
||||
|
||||
|
||||
def _init_egl():
|
||||
"""Initialize EGL for headless rendering. Returns (display, context, surface, EGL_module). Raises RuntimeError on failure."""
|
||||
logger.debug("_init_egl: starting")
|
||||
from OpenGL import EGL as _EGL
|
||||
from OpenGL.EGL import (
|
||||
eglGetDisplay, eglInitialize, eglChooseConfig, eglCreateContext,
|
||||
eglMakeCurrent, eglCreatePbufferSurface, eglBindAPI,
|
||||
eglTerminate, eglDestroyContext, eglDestroySurface,
|
||||
EGL_DEFAULT_DISPLAY, EGL_NO_CONTEXT, EGL_NONE,
|
||||
EGL_SURFACE_TYPE, EGL_PBUFFER_BIT, EGL_RENDERABLE_TYPE, EGL_OPENGL_BIT,
|
||||
EGL_RED_SIZE, EGL_GREEN_SIZE, EGL_BLUE_SIZE, EGL_ALPHA_SIZE, EGL_DEPTH_SIZE,
|
||||
EGL_WIDTH, EGL_HEIGHT, EGL_OPENGL_API,
|
||||
)
|
||||
logger.debug("_init_egl: imports completed")
|
||||
|
||||
display = None
|
||||
context = None
|
||||
surface = None
|
||||
|
||||
try:
|
||||
logger.debug("_init_egl: calling eglGetDisplay()")
|
||||
display = eglGetDisplay(EGL_DEFAULT_DISPLAY)
|
||||
if display == _EGL.EGL_NO_DISPLAY:
|
||||
raise RuntimeError("eglGetDisplay() failed")
|
||||
|
||||
logger.debug("_init_egl: calling eglInitialize()")
|
||||
major, minor = _EGL.EGLint(), _EGL.EGLint()
|
||||
if not eglInitialize(display, major, minor):
|
||||
display = None # Not initialized, don't terminate
|
||||
raise RuntimeError("eglInitialize() failed")
|
||||
logger.debug(f"_init_egl: EGL version {major.value}.{minor.value}")
|
||||
|
||||
config_attribs = [
|
||||
EGL_SURFACE_TYPE, EGL_PBUFFER_BIT,
|
||||
EGL_RENDERABLE_TYPE, EGL_OPENGL_BIT,
|
||||
EGL_RED_SIZE, 8, EGL_GREEN_SIZE, 8, EGL_BLUE_SIZE, 8, EGL_ALPHA_SIZE, 8,
|
||||
EGL_DEPTH_SIZE, 0, EGL_NONE
|
||||
]
|
||||
configs = (_EGL.EGLConfig * 1)()
|
||||
num_configs = _EGL.EGLint()
|
||||
if not eglChooseConfig(display, config_attribs, configs, 1, num_configs) or num_configs.value == 0:
|
||||
raise RuntimeError("eglChooseConfig() failed")
|
||||
config = configs[0]
|
||||
logger.debug(f"_init_egl: config chosen, num_configs={num_configs.value}")
|
||||
|
||||
if not eglBindAPI(EGL_OPENGL_API):
|
||||
raise RuntimeError("eglBindAPI() failed")
|
||||
|
||||
logger.debug("_init_egl: calling eglCreateContext()")
|
||||
context_attribs = [
|
||||
_EGL.EGL_CONTEXT_MAJOR_VERSION, 3,
|
||||
_EGL.EGL_CONTEXT_MINOR_VERSION, 3,
|
||||
_EGL.EGL_CONTEXT_OPENGL_PROFILE_MASK, _EGL.EGL_CONTEXT_OPENGL_CORE_PROFILE_BIT,
|
||||
EGL_NONE
|
||||
]
|
||||
context = eglCreateContext(display, config, EGL_NO_CONTEXT, context_attribs)
|
||||
if context == EGL_NO_CONTEXT:
|
||||
raise RuntimeError("eglCreateContext() failed")
|
||||
|
||||
logger.debug("_init_egl: calling eglCreatePbufferSurface()")
|
||||
pbuffer_attribs = [EGL_WIDTH, 64, EGL_HEIGHT, 64, EGL_NONE]
|
||||
surface = eglCreatePbufferSurface(display, config, pbuffer_attribs)
|
||||
if surface == _EGL.EGL_NO_SURFACE:
|
||||
raise RuntimeError("eglCreatePbufferSurface() failed")
|
||||
|
||||
logger.debug("_init_egl: calling eglMakeCurrent()")
|
||||
if not eglMakeCurrent(display, surface, surface, context):
|
||||
raise RuntimeError("eglMakeCurrent() failed")
|
||||
|
||||
logger.debug("_init_egl: completed successfully")
|
||||
return display, context, surface, _EGL
|
||||
|
||||
except Exception:
|
||||
logger.debug("_init_egl: failed, cleaning up")
|
||||
# Clean up any resources on failure
|
||||
if surface is not None:
|
||||
eglDestroySurface(display, surface)
|
||||
if context is not None:
|
||||
eglDestroyContext(display, context)
|
||||
if display is not None:
|
||||
eglTerminate(display)
|
||||
raise
|
||||
|
||||
|
||||
def _init_osmesa():
|
||||
"""Initialize OSMesa for software rendering. Returns (context, buffer). Raises RuntimeError on failure."""
|
||||
import ctypes
|
||||
|
||||
logger.debug("_init_osmesa: starting")
|
||||
os.environ["PYOPENGL_PLATFORM"] = "osmesa"
|
||||
|
||||
logger.debug("_init_osmesa: importing OpenGL.osmesa")
|
||||
from OpenGL import GL as _gl
|
||||
from OpenGL.osmesa import (
|
||||
OSMesaCreateContextExt, OSMesaMakeCurrent, OSMesaDestroyContext,
|
||||
OSMESA_RGBA,
|
||||
)
|
||||
logger.debug("_init_osmesa: imports completed")
|
||||
|
||||
ctx = OSMesaCreateContextExt(OSMESA_RGBA, 24, 0, 0, None)
|
||||
if not ctx:
|
||||
raise RuntimeError("OSMesaCreateContextExt() failed")
|
||||
|
||||
width, height = 64, 64
|
||||
buffer = (ctypes.c_ubyte * (width * height * 4))()
|
||||
|
||||
logger.debug("_init_osmesa: calling OSMesaMakeCurrent()")
|
||||
if not OSMesaMakeCurrent(ctx, buffer, _gl.GL_UNSIGNED_BYTE, width, height):
|
||||
OSMesaDestroyContext(ctx)
|
||||
raise RuntimeError("OSMesaMakeCurrent() failed")
|
||||
|
||||
logger.debug("_init_osmesa: completed successfully")
|
||||
return ctx, buffer
|
||||
|
||||
|
||||
class GLContext:
|
||||
"""Manages OpenGL context and resources for shader execution.
|
||||
|
||||
Tries backends in order: GLFW (desktop) → EGL (headless GPU) → OSMesa (software).
|
||||
"""
|
||||
|
||||
_instance = None
|
||||
_initialized = False
|
||||
|
||||
def __new__(cls):
|
||||
if cls._instance is None:
|
||||
cls._instance = super().__new__(cls)
|
||||
return cls._instance
|
||||
|
||||
def __init__(self):
|
||||
if GLContext._initialized:
|
||||
logger.debug("GLContext.__init__: already initialized, skipping")
|
||||
return
|
||||
GLContext._initialized = True
|
||||
|
||||
logger.debug("GLContext.__init__: starting initialization")
|
||||
|
||||
global glfw, EGL
|
||||
|
||||
import time
|
||||
start = time.perf_counter()
|
||||
|
||||
self._backend = None
|
||||
self._window = None
|
||||
self._egl_display = None
|
||||
self._egl_context = None
|
||||
self._egl_surface = None
|
||||
self._osmesa_ctx = None
|
||||
self._osmesa_buffer = None
|
||||
|
||||
# Try backends in order: GLFW → EGL → OSMesa
|
||||
errors = []
|
||||
|
||||
logger.debug("GLContext.__init__: trying GLFW backend")
|
||||
try:
|
||||
self._window, glfw = _init_glfw()
|
||||
self._backend = "glfw"
|
||||
logger.debug("GLContext.__init__: GLFW backend succeeded")
|
||||
except Exception as e:
|
||||
logger.debug(f"GLContext.__init__: GLFW backend failed: {e}")
|
||||
errors.append(("GLFW", e))
|
||||
|
||||
if self._backend is None:
|
||||
logger.debug("GLContext.__init__: trying EGL backend")
|
||||
try:
|
||||
self._egl_display, self._egl_context, self._egl_surface, EGL = _init_egl()
|
||||
self._backend = "egl"
|
||||
logger.debug("GLContext.__init__: EGL backend succeeded")
|
||||
except Exception as e:
|
||||
logger.debug(f"GLContext.__init__: EGL backend failed: {e}")
|
||||
errors.append(("EGL", e))
|
||||
|
||||
if self._backend is None:
|
||||
logger.debug("GLContext.__init__: trying OSMesa backend")
|
||||
try:
|
||||
self._osmesa_ctx, self._osmesa_buffer = _init_osmesa()
|
||||
self._backend = "osmesa"
|
||||
logger.debug("GLContext.__init__: OSMesa backend succeeded")
|
||||
except Exception as e:
|
||||
logger.debug(f"GLContext.__init__: OSMesa backend failed: {e}")
|
||||
errors.append(("OSMesa", e))
|
||||
|
||||
if self._backend is None:
|
||||
if sys.platform == "win32":
|
||||
platform_help = (
|
||||
"Windows: Ensure GPU drivers are installed and display is available.\n"
|
||||
" CPU-only/headless mode is not supported on Windows."
|
||||
)
|
||||
elif sys.platform == "darwin":
|
||||
platform_help = (
|
||||
"macOS: GLFW is not supported.\n"
|
||||
" Install OSMesa via Homebrew: brew install mesa\n"
|
||||
" Then: pip install PyOpenGL PyOpenGL-accelerate"
|
||||
)
|
||||
else:
|
||||
platform_help = (
|
||||
"Linux: Install one of these backends:\n"
|
||||
" Desktop: sudo apt install libgl1-mesa-glx libglfw3\n"
|
||||
" Headless with GPU: sudo apt install libegl1-mesa libgl1-mesa-dri\n"
|
||||
" Headless (CPU): sudo apt install libosmesa6"
|
||||
)
|
||||
|
||||
error_details = "\n".join(f" {name}: {err}" for name, err in errors)
|
||||
raise RuntimeError(
|
||||
f"Failed to create OpenGL context.\n\n"
|
||||
f"Backend errors:\n{error_details}\n\n"
|
||||
f"{platform_help}"
|
||||
)
|
||||
|
||||
# Now import OpenGL.GL (after context is current)
|
||||
logger.debug("GLContext.__init__: importing OpenGL.GL")
|
||||
_import_opengl()
|
||||
|
||||
# Create VAO (required for core profile, but OSMesa may use compat profile)
|
||||
logger.debug("GLContext.__init__: creating VAO")
|
||||
self._vao = None
|
||||
try:
|
||||
vao = gl.glGenVertexArrays(1)
|
||||
gl.glBindVertexArray(vao)
|
||||
self._vao = vao # Only store after successful bind
|
||||
logger.debug("GLContext.__init__: VAO created successfully")
|
||||
except Exception as e:
|
||||
logger.debug(f"GLContext.__init__: VAO creation failed (may be expected for OSMesa): {e}")
|
||||
# OSMesa with older Mesa may not support VAOs
|
||||
# Clean up if we created but couldn't bind
|
||||
if vao:
|
||||
try:
|
||||
gl.glDeleteVertexArrays(1, [vao])
|
||||
except Exception:
|
||||
pass
|
||||
|
||||
elapsed = (time.perf_counter() - start) * 1000
|
||||
|
||||
# Log device info
|
||||
renderer = gl.glGetString(gl.GL_RENDERER)
|
||||
vendor = gl.glGetString(gl.GL_VENDOR)
|
||||
version = gl.glGetString(gl.GL_VERSION)
|
||||
renderer = renderer.decode() if renderer else "Unknown"
|
||||
vendor = vendor.decode() if vendor else "Unknown"
|
||||
version = version.decode() if version else "Unknown"
|
||||
|
||||
logger.info(f"GLSL context initialized in {elapsed:.1f}ms ({self._backend}) - {renderer} ({vendor}), GL {version}")
|
||||
|
||||
def make_current(self):
|
||||
if self._backend == "glfw":
|
||||
glfw.make_context_current(self._window)
|
||||
elif self._backend == "egl":
|
||||
from OpenGL.EGL import eglMakeCurrent
|
||||
eglMakeCurrent(self._egl_display, self._egl_surface, self._egl_surface, self._egl_context)
|
||||
elif self._backend == "osmesa":
|
||||
from OpenGL.osmesa import OSMesaMakeCurrent
|
||||
OSMesaMakeCurrent(self._osmesa_ctx, self._osmesa_buffer, gl.GL_UNSIGNED_BYTE, 64, 64)
|
||||
|
||||
if self._vao is not None:
|
||||
gl.glBindVertexArray(self._vao)
|
||||
|
||||
|
||||
def _compile_shader(source: str, shader_type: int) -> int:
|
||||
"""Compile a shader and return its ID."""
|
||||
shader = gl.glCreateShader(shader_type)
|
||||
gl.glShaderSource(shader, source)
|
||||
gl.glCompileShader(shader)
|
||||
|
||||
if gl.glGetShaderiv(shader, gl.GL_COMPILE_STATUS) != gl.GL_TRUE:
|
||||
error = gl.glGetShaderInfoLog(shader).decode()
|
||||
gl.glDeleteShader(shader)
|
||||
raise RuntimeError(f"Shader compilation failed:\n{error}")
|
||||
|
||||
return shader
|
||||
|
||||
|
||||
def _create_program(vertex_source: str, fragment_source: str) -> int:
|
||||
"""Create and link a shader program."""
|
||||
vertex_shader = _compile_shader(vertex_source, gl.GL_VERTEX_SHADER)
|
||||
try:
|
||||
fragment_shader = _compile_shader(fragment_source, gl.GL_FRAGMENT_SHADER)
|
||||
except RuntimeError:
|
||||
gl.glDeleteShader(vertex_shader)
|
||||
raise
|
||||
|
||||
program = gl.glCreateProgram()
|
||||
gl.glAttachShader(program, vertex_shader)
|
||||
gl.glAttachShader(program, fragment_shader)
|
||||
gl.glLinkProgram(program)
|
||||
|
||||
gl.glDeleteShader(vertex_shader)
|
||||
gl.glDeleteShader(fragment_shader)
|
||||
|
||||
if gl.glGetProgramiv(program, gl.GL_LINK_STATUS) != gl.GL_TRUE:
|
||||
error = gl.glGetProgramInfoLog(program).decode()
|
||||
gl.glDeleteProgram(program)
|
||||
raise RuntimeError(f"Program linking failed:\n{error}")
|
||||
|
||||
return program
|
||||
|
||||
|
||||
def _render_shader_batch(
|
||||
fragment_code: str,
|
||||
width: int,
|
||||
height: int,
|
||||
image_batches: list[list[np.ndarray]],
|
||||
floats: list[float],
|
||||
ints: list[int],
|
||||
) -> list[list[np.ndarray]]:
|
||||
"""
|
||||
Render a fragment shader for multiple batches efficiently.
|
||||
|
||||
Compiles shader once, reuses framebuffer/textures across batches.
|
||||
Supports multi-pass rendering via #pragma passes N directive.
|
||||
|
||||
Args:
|
||||
fragment_code: User's fragment shader code
|
||||
width: Output width
|
||||
height: Output height
|
||||
image_batches: List of batches, each batch is a list of input images (H, W, C) float32 [0,1]
|
||||
floats: List of float uniforms
|
||||
ints: List of int uniforms
|
||||
|
||||
Returns:
|
||||
List of batch outputs, each is a list of output images (H, W, 4) float32 [0,1]
|
||||
"""
|
||||
import time
|
||||
start_time = time.perf_counter()
|
||||
|
||||
if not image_batches:
|
||||
return []
|
||||
|
||||
ctx = GLContext()
|
||||
ctx.make_current()
|
||||
|
||||
# Convert from GLSL ES to desktop GLSL 330
|
||||
fragment_source = _convert_es_to_desktop(fragment_code)
|
||||
|
||||
# Detect how many outputs the shader actually uses
|
||||
num_outputs = _detect_output_count(fragment_code)
|
||||
|
||||
# Detect multi-pass rendering
|
||||
num_passes = _detect_pass_count(fragment_code)
|
||||
|
||||
# Track resources for cleanup
|
||||
program = None
|
||||
fbo = None
|
||||
output_textures = []
|
||||
input_textures = []
|
||||
ping_pong_textures = []
|
||||
ping_pong_fbos = []
|
||||
|
||||
num_inputs = len(image_batches[0])
|
||||
|
||||
try:
|
||||
# Compile shaders (once for all batches)
|
||||
try:
|
||||
program = _create_program(VERTEX_SHADER, fragment_source)
|
||||
except RuntimeError:
|
||||
logger.error(f"Fragment shader:\n{fragment_source}")
|
||||
raise
|
||||
|
||||
gl.glUseProgram(program)
|
||||
|
||||
# Create framebuffer with only the needed color attachments
|
||||
fbo = gl.glGenFramebuffers(1)
|
||||
gl.glBindFramebuffer(gl.GL_FRAMEBUFFER, fbo)
|
||||
|
||||
draw_buffers = []
|
||||
for i in range(num_outputs):
|
||||
tex = gl.glGenTextures(1)
|
||||
output_textures.append(tex)
|
||||
gl.glBindTexture(gl.GL_TEXTURE_2D, tex)
|
||||
gl.glTexImage2D(gl.GL_TEXTURE_2D, 0, gl.GL_RGBA32F, width, height, 0, gl.GL_RGBA, gl.GL_FLOAT, None)
|
||||
gl.glTexParameteri(gl.GL_TEXTURE_2D, gl.GL_TEXTURE_MIN_FILTER, gl.GL_LINEAR)
|
||||
gl.glTexParameteri(gl.GL_TEXTURE_2D, gl.GL_TEXTURE_MAG_FILTER, gl.GL_LINEAR)
|
||||
gl.glFramebufferTexture2D(gl.GL_FRAMEBUFFER, gl.GL_COLOR_ATTACHMENT0 + i, gl.GL_TEXTURE_2D, tex, 0)
|
||||
draw_buffers.append(gl.GL_COLOR_ATTACHMENT0 + i)
|
||||
|
||||
gl.glDrawBuffers(num_outputs, draw_buffers)
|
||||
|
||||
if gl.glCheckFramebufferStatus(gl.GL_FRAMEBUFFER) != gl.GL_FRAMEBUFFER_COMPLETE:
|
||||
raise RuntimeError("Framebuffer is not complete")
|
||||
|
||||
# Create ping-pong resources for multi-pass rendering
|
||||
if num_passes > 1:
|
||||
for _ in range(2):
|
||||
pp_tex = gl.glGenTextures(1)
|
||||
ping_pong_textures.append(pp_tex)
|
||||
gl.glBindTexture(gl.GL_TEXTURE_2D, pp_tex)
|
||||
gl.glTexImage2D(gl.GL_TEXTURE_2D, 0, gl.GL_RGBA32F, width, height, 0, gl.GL_RGBA, gl.GL_FLOAT, None)
|
||||
gl.glTexParameteri(gl.GL_TEXTURE_2D, gl.GL_TEXTURE_MIN_FILTER, gl.GL_LINEAR)
|
||||
gl.glTexParameteri(gl.GL_TEXTURE_2D, gl.GL_TEXTURE_MAG_FILTER, gl.GL_LINEAR)
|
||||
gl.glTexParameteri(gl.GL_TEXTURE_2D, gl.GL_TEXTURE_WRAP_S, gl.GL_CLAMP_TO_EDGE)
|
||||
gl.glTexParameteri(gl.GL_TEXTURE_2D, gl.GL_TEXTURE_WRAP_T, gl.GL_CLAMP_TO_EDGE)
|
||||
|
||||
pp_fbo = gl.glGenFramebuffers(1)
|
||||
ping_pong_fbos.append(pp_fbo)
|
||||
gl.glBindFramebuffer(gl.GL_FRAMEBUFFER, pp_fbo)
|
||||
gl.glFramebufferTexture2D(gl.GL_FRAMEBUFFER, gl.GL_COLOR_ATTACHMENT0, gl.GL_TEXTURE_2D, pp_tex, 0)
|
||||
gl.glDrawBuffers(1, [gl.GL_COLOR_ATTACHMENT0])
|
||||
|
||||
if gl.glCheckFramebufferStatus(gl.GL_FRAMEBUFFER) != gl.GL_FRAMEBUFFER_COMPLETE:
|
||||
raise RuntimeError("Ping-pong framebuffer is not complete")
|
||||
|
||||
# Create input textures (reused for all batches)
|
||||
for i in range(num_inputs):
|
||||
tex = gl.glGenTextures(1)
|
||||
input_textures.append(tex)
|
||||
gl.glActiveTexture(gl.GL_TEXTURE0 + i)
|
||||
gl.glBindTexture(gl.GL_TEXTURE_2D, tex)
|
||||
gl.glTexParameteri(gl.GL_TEXTURE_2D, gl.GL_TEXTURE_MIN_FILTER, gl.GL_LINEAR)
|
||||
gl.glTexParameteri(gl.GL_TEXTURE_2D, gl.GL_TEXTURE_MAG_FILTER, gl.GL_LINEAR)
|
||||
gl.glTexParameteri(gl.GL_TEXTURE_2D, gl.GL_TEXTURE_WRAP_S, gl.GL_CLAMP_TO_EDGE)
|
||||
gl.glTexParameteri(gl.GL_TEXTURE_2D, gl.GL_TEXTURE_WRAP_T, gl.GL_CLAMP_TO_EDGE)
|
||||
|
||||
loc = gl.glGetUniformLocation(program, f"u_image{i}")
|
||||
if loc >= 0:
|
||||
gl.glUniform1i(loc, i)
|
||||
|
||||
# Set static uniforms (once for all batches)
|
||||
loc = gl.glGetUniformLocation(program, "u_resolution")
|
||||
if loc >= 0:
|
||||
gl.glUniform2f(loc, float(width), float(height))
|
||||
|
||||
for i, v in enumerate(floats):
|
||||
loc = gl.glGetUniformLocation(program, f"u_float{i}")
|
||||
if loc >= 0:
|
||||
gl.glUniform1f(loc, v)
|
||||
|
||||
for i, v in enumerate(ints):
|
||||
loc = gl.glGetUniformLocation(program, f"u_int{i}")
|
||||
if loc >= 0:
|
||||
gl.glUniform1i(loc, v)
|
||||
|
||||
# Get u_pass uniform location for multi-pass
|
||||
pass_loc = gl.glGetUniformLocation(program, "u_pass")
|
||||
|
||||
gl.glViewport(0, 0, width, height)
|
||||
gl.glDisable(gl.GL_BLEND) # Ensure no alpha blending - write output directly
|
||||
|
||||
# Process each batch
|
||||
all_batch_outputs = []
|
||||
for images in image_batches:
|
||||
# Update input textures with this batch's images
|
||||
for i, img in enumerate(images):
|
||||
gl.glActiveTexture(gl.GL_TEXTURE0 + i)
|
||||
gl.glBindTexture(gl.GL_TEXTURE_2D, input_textures[i])
|
||||
|
||||
# Flip vertically for GL coordinates, ensure RGBA
|
||||
h, w, c = img.shape
|
||||
if c == 3:
|
||||
img_upload = np.empty((h, w, 4), dtype=np.float32)
|
||||
img_upload[:, :, :3] = img[::-1, :, :]
|
||||
img_upload[:, :, 3] = 1.0
|
||||
else:
|
||||
img_upload = np.ascontiguousarray(img[::-1, :, :])
|
||||
|
||||
gl.glTexImage2D(gl.GL_TEXTURE_2D, 0, gl.GL_RGBA32F, w, h, 0, gl.GL_RGBA, gl.GL_FLOAT, img_upload)
|
||||
|
||||
if num_passes == 1:
|
||||
# Single pass - render directly to output FBO
|
||||
gl.glBindFramebuffer(gl.GL_FRAMEBUFFER, fbo)
|
||||
if pass_loc >= 0:
|
||||
gl.glUniform1i(pass_loc, 0)
|
||||
gl.glClearColor(0, 0, 0, 0)
|
||||
gl.glClear(gl.GL_COLOR_BUFFER_BIT)
|
||||
gl.glDrawArrays(gl.GL_TRIANGLES, 0, 3)
|
||||
else:
|
||||
# Multi-pass rendering with ping-pong
|
||||
for p in range(num_passes):
|
||||
is_last_pass = (p == num_passes - 1)
|
||||
|
||||
# Set pass uniform
|
||||
if pass_loc >= 0:
|
||||
gl.glUniform1i(pass_loc, p)
|
||||
|
||||
if is_last_pass:
|
||||
# Last pass renders to the main output FBO
|
||||
gl.glBindFramebuffer(gl.GL_FRAMEBUFFER, fbo)
|
||||
else:
|
||||
# Intermediate passes render to ping-pong FBO
|
||||
target_fbo = ping_pong_fbos[p % 2]
|
||||
gl.glBindFramebuffer(gl.GL_FRAMEBUFFER, target_fbo)
|
||||
|
||||
# Set input texture for this pass
|
||||
gl.glActiveTexture(gl.GL_TEXTURE0)
|
||||
if p == 0:
|
||||
# First pass reads from original input
|
||||
gl.glBindTexture(gl.GL_TEXTURE_2D, input_textures[0])
|
||||
else:
|
||||
# Subsequent passes read from previous pass output
|
||||
source_tex = ping_pong_textures[(p - 1) % 2]
|
||||
gl.glBindTexture(gl.GL_TEXTURE_2D, source_tex)
|
||||
|
||||
gl.glClearColor(0, 0, 0, 0)
|
||||
gl.glClear(gl.GL_COLOR_BUFFER_BIT)
|
||||
gl.glDrawArrays(gl.GL_TRIANGLES, 0, 3)
|
||||
|
||||
# Read back outputs for this batch
|
||||
# (glGetTexImage is synchronous, implicitly waits for rendering)
|
||||
batch_outputs = []
|
||||
for tex in output_textures:
|
||||
gl.glBindTexture(gl.GL_TEXTURE_2D, tex)
|
||||
data = gl.glGetTexImage(gl.GL_TEXTURE_2D, 0, gl.GL_RGBA, gl.GL_FLOAT)
|
||||
img = np.frombuffer(data, dtype=np.float32).reshape(height, width, 4)
|
||||
batch_outputs.append(np.ascontiguousarray(img[::-1, :, :]))
|
||||
|
||||
# Pad with black images for unused outputs
|
||||
black_img = np.zeros((height, width, 4), dtype=np.float32)
|
||||
for _ in range(num_outputs, MAX_OUTPUTS):
|
||||
batch_outputs.append(black_img)
|
||||
|
||||
all_batch_outputs.append(batch_outputs)
|
||||
|
||||
elapsed = (time.perf_counter() - start_time) * 1000
|
||||
num_batches = len(image_batches)
|
||||
pass_info = f", {num_passes} passes" if num_passes > 1 else ""
|
||||
logger.info(f"GLSL shader executed in {elapsed:.1f}ms ({num_batches} batch{'es' if num_batches != 1 else ''}, {width}x{height}{pass_info})")
|
||||
|
||||
return all_batch_outputs
|
||||
|
||||
finally:
|
||||
# Unbind before deleting
|
||||
gl.glBindFramebuffer(gl.GL_FRAMEBUFFER, 0)
|
||||
gl.glUseProgram(0)
|
||||
|
||||
if input_textures:
|
||||
gl.glDeleteTextures(len(input_textures), input_textures)
|
||||
if output_textures:
|
||||
gl.glDeleteTextures(len(output_textures), output_textures)
|
||||
if ping_pong_textures:
|
||||
gl.glDeleteTextures(len(ping_pong_textures), ping_pong_textures)
|
||||
if fbo is not None:
|
||||
gl.glDeleteFramebuffers(1, [fbo])
|
||||
for pp_fbo in ping_pong_fbos:
|
||||
gl.glDeleteFramebuffers(1, [pp_fbo])
|
||||
if program is not None:
|
||||
gl.glDeleteProgram(program)
|
||||
|
||||
class GLSLShader(io.ComfyNode):
|
||||
|
||||
@classmethod
|
||||
def define_schema(cls) -> io.Schema:
|
||||
image_template = io.Autogrow.TemplatePrefix(
|
||||
io.Image.Input("image"),
|
||||
prefix="image",
|
||||
min=1,
|
||||
max=MAX_IMAGES,
|
||||
)
|
||||
|
||||
float_template = io.Autogrow.TemplatePrefix(
|
||||
io.Float.Input("float", default=0.0),
|
||||
prefix="u_float",
|
||||
min=0,
|
||||
max=MAX_UNIFORMS,
|
||||
)
|
||||
|
||||
int_template = io.Autogrow.TemplatePrefix(
|
||||
io.Int.Input("int", default=0),
|
||||
prefix="u_int",
|
||||
min=0,
|
||||
max=MAX_UNIFORMS,
|
||||
)
|
||||
|
||||
return io.Schema(
|
||||
node_id="GLSLShader",
|
||||
display_name="GLSL Shader",
|
||||
category="image/shader",
|
||||
description=(
|
||||
f"Apply GLSL fragment shaders to images. "
|
||||
f"Inputs: u_image0-{MAX_IMAGES-1} (sampler2D), u_resolution (vec2), "
|
||||
f"u_float0-{MAX_UNIFORMS-1}, u_int0-{MAX_UNIFORMS-1}. "
|
||||
f"Outputs: layout(location = 0-{MAX_OUTPUTS-1}) out vec4 fragColor0-{MAX_OUTPUTS-1}."
|
||||
),
|
||||
inputs=[
|
||||
io.String.Input(
|
||||
"fragment_shader",
|
||||
default=DEFAULT_FRAGMENT_SHADER,
|
||||
multiline=True,
|
||||
tooltip="GLSL fragment shader source code (GLSL ES 3.00 / WebGL 2.0 compatible)",
|
||||
),
|
||||
io.DynamicCombo.Input(
|
||||
"size_mode",
|
||||
options=[
|
||||
io.DynamicCombo.Option("from_input", []),
|
||||
io.DynamicCombo.Option(
|
||||
"custom",
|
||||
[
|
||||
io.Int.Input(
|
||||
"width",
|
||||
default=512,
|
||||
min=1,
|
||||
max=nodes.MAX_RESOLUTION,
|
||||
),
|
||||
io.Int.Input(
|
||||
"height",
|
||||
default=512,
|
||||
min=1,
|
||||
max=nodes.MAX_RESOLUTION,
|
||||
),
|
||||
],
|
||||
),
|
||||
],
|
||||
tooltip="Output size: 'from_input' uses first input image dimensions, 'custom' allows manual size",
|
||||
),
|
||||
io.Autogrow.Input("images", template=image_template),
|
||||
io.Autogrow.Input("floats", template=float_template),
|
||||
io.Autogrow.Input("ints", template=int_template),
|
||||
],
|
||||
outputs=[
|
||||
io.Image.Output(display_name="IMAGE0"),
|
||||
io.Image.Output(display_name="IMAGE1"),
|
||||
io.Image.Output(display_name="IMAGE2"),
|
||||
io.Image.Output(display_name="IMAGE3"),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(
|
||||
cls,
|
||||
fragment_shader: str,
|
||||
size_mode: SizeModeInput,
|
||||
images: io.Autogrow.Type,
|
||||
floats: io.Autogrow.Type = None,
|
||||
ints: io.Autogrow.Type = None,
|
||||
**kwargs,
|
||||
) -> io.NodeOutput:
|
||||
image_list = [v for v in images.values() if v is not None]
|
||||
float_list = (
|
||||
[v if v is not None else 0.0 for v in floats.values()] if floats else []
|
||||
)
|
||||
int_list = [v if v is not None else 0 for v in ints.values()] if ints else []
|
||||
|
||||
if not image_list:
|
||||
raise ValueError("At least one input image is required")
|
||||
|
||||
# Determine output dimensions
|
||||
if size_mode["size_mode"] == "custom":
|
||||
out_width = size_mode["width"]
|
||||
out_height = size_mode["height"]
|
||||
else:
|
||||
out_height, out_width = image_list[0].shape[1:3]
|
||||
|
||||
batch_size = image_list[0].shape[0]
|
||||
|
||||
# Prepare batches
|
||||
image_batches = []
|
||||
for batch_idx in range(batch_size):
|
||||
batch_images = [img_tensor[batch_idx].cpu().numpy().astype(np.float32) for img_tensor in image_list]
|
||||
image_batches.append(batch_images)
|
||||
|
||||
all_batch_outputs = _render_shader_batch(
|
||||
fragment_shader,
|
||||
out_width,
|
||||
out_height,
|
||||
image_batches,
|
||||
float_list,
|
||||
int_list,
|
||||
)
|
||||
|
||||
# Collect outputs into tensors
|
||||
all_outputs = [[] for _ in range(MAX_OUTPUTS)]
|
||||
for batch_outputs in all_batch_outputs:
|
||||
for i, out_img in enumerate(batch_outputs):
|
||||
all_outputs[i].append(torch.from_numpy(out_img))
|
||||
|
||||
output_tensors = [torch.stack(all_outputs[i], dim=0) for i in range(MAX_OUTPUTS)]
|
||||
return io.NodeOutput(
|
||||
*output_tensors,
|
||||
ui=cls._build_ui_output(image_list, output_tensors[0]),
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def _build_ui_output(
|
||||
cls, image_list: list[torch.Tensor], output_batch: torch.Tensor
|
||||
) -> dict[str, list]:
|
||||
"""Build UI output with input and output images for client-side shader execution."""
|
||||
combined_inputs = torch.cat(image_list, dim=0)
|
||||
input_images_ui = ui.ImageSaveHelper.save_images(
|
||||
combined_inputs,
|
||||
filename_prefix="GLSLShader_input",
|
||||
folder_type=io.FolderType.temp,
|
||||
cls=None,
|
||||
compress_level=1,
|
||||
)
|
||||
|
||||
output_images_ui = ui.ImageSaveHelper.save_images(
|
||||
output_batch,
|
||||
filename_prefix="GLSLShader_output",
|
||||
folder_type=io.FolderType.temp,
|
||||
cls=None,
|
||||
compress_level=1,
|
||||
)
|
||||
|
||||
return {"input_images": input_images_ui, "images": output_images_ui}
|
||||
|
||||
|
||||
class GLSLExtension(ComfyExtension):
|
||||
@override
|
||||
async def get_node_list(self) -> list[type[io.ComfyNode]]:
|
||||
return [GLSLShader]
|
||||
|
||||
|
||||
async def comfy_entrypoint() -> GLSLExtension:
|
||||
return GLSLExtension()
|
||||
@@ -4,6 +4,7 @@ import os
|
||||
import numpy as np
|
||||
import safetensors
|
||||
import torch
|
||||
import torch.nn as nn
|
||||
import torch.utils.checkpoint
|
||||
from tqdm.auto import trange
|
||||
from PIL import Image, ImageDraw, ImageFont
|
||||
@@ -27,6 +28,11 @@ class TrainGuider(comfy_extras.nodes_custom_sampler.Guider_Basic):
|
||||
"""
|
||||
CFGGuider with modifications for training specific logic
|
||||
"""
|
||||
|
||||
def __init__(self, *args, offloading=False, **kwargs):
|
||||
super().__init__(*args, **kwargs)
|
||||
self.offloading = offloading
|
||||
|
||||
def outer_sample(
|
||||
self,
|
||||
noise,
|
||||
@@ -45,9 +51,11 @@ class TrainGuider(comfy_extras.nodes_custom_sampler.Guider_Basic):
|
||||
noise.shape,
|
||||
self.conds,
|
||||
self.model_options,
|
||||
force_full_load=True, # mirror behavior in TrainLoraNode.execute() to keep model loaded
|
||||
force_full_load=not self.offloading,
|
||||
force_offload=self.offloading,
|
||||
)
|
||||
)
|
||||
torch.cuda.empty_cache()
|
||||
device = self.model_patcher.load_device
|
||||
|
||||
if denoise_mask is not None:
|
||||
@@ -404,16 +412,97 @@ def find_all_highest_child_module_with_forward(
|
||||
return result
|
||||
|
||||
|
||||
def patch(m):
|
||||
def find_modules_at_depth(
|
||||
model: nn.Module, depth: int = 1, result=None, current_depth=0, name=None
|
||||
) -> list[nn.Module]:
|
||||
"""
|
||||
Find modules at a specific depth level for gradient checkpointing.
|
||||
|
||||
Args:
|
||||
model: The model to search
|
||||
depth: Target depth level (1 = top-level blocks, 2 = their children, etc.)
|
||||
result: Accumulator for results
|
||||
current_depth: Current recursion depth
|
||||
name: Current module name for logging
|
||||
|
||||
Returns:
|
||||
List of modules at the target depth
|
||||
"""
|
||||
if result is None:
|
||||
result = []
|
||||
name = name or "root"
|
||||
|
||||
# Skip container modules (they don't have meaningful forward)
|
||||
is_container = isinstance(model, (nn.ModuleList, nn.Sequential, nn.ModuleDict))
|
||||
has_forward = hasattr(model, "forward") and not is_container
|
||||
|
||||
if has_forward:
|
||||
current_depth += 1
|
||||
if current_depth == depth:
|
||||
result.append(model)
|
||||
logging.debug(f"Found module at depth {depth}: {name} ({model.__class__.__name__})")
|
||||
return result
|
||||
|
||||
# Recurse into children
|
||||
for next_name, child in model.named_children():
|
||||
find_modules_at_depth(child, depth, result, current_depth, f"{name}.{next_name}")
|
||||
|
||||
return result
|
||||
|
||||
|
||||
class OffloadCheckpointFunction(torch.autograd.Function):
|
||||
"""
|
||||
Gradient checkpointing that works with weight offloading.
|
||||
|
||||
Forward: no_grad -> compute -> weights can be freed
|
||||
Backward: enable_grad -> recompute -> backward -> weights can be freed
|
||||
|
||||
For single input, single output modules (Linear, Conv*).
|
||||
"""
|
||||
|
||||
@staticmethod
|
||||
def forward(ctx, x: torch.Tensor, forward_fn):
|
||||
ctx.save_for_backward(x)
|
||||
ctx.forward_fn = forward_fn
|
||||
with torch.no_grad():
|
||||
return forward_fn(x)
|
||||
|
||||
@staticmethod
|
||||
def backward(ctx, grad_out: torch.Tensor):
|
||||
x, = ctx.saved_tensors
|
||||
forward_fn = ctx.forward_fn
|
||||
|
||||
# Clear context early
|
||||
ctx.forward_fn = None
|
||||
|
||||
with torch.enable_grad():
|
||||
x_detached = x.detach().requires_grad_(True)
|
||||
y = forward_fn(x_detached)
|
||||
y.backward(grad_out)
|
||||
grad_x = x_detached.grad
|
||||
|
||||
# Explicit cleanup
|
||||
del y, x_detached, forward_fn
|
||||
|
||||
return grad_x, None
|
||||
|
||||
|
||||
def patch(m, offloading=False):
|
||||
if not hasattr(m, "forward"):
|
||||
return
|
||||
org_forward = m.forward
|
||||
|
||||
def fwd(args, kwargs):
|
||||
return org_forward(*args, **kwargs)
|
||||
# Branch 1: Linear/Conv* -> offload-compatible checkpoint (single input/output)
|
||||
if offloading and isinstance(m, (nn.Linear, nn.Conv1d, nn.Conv2d, nn.Conv3d)):
|
||||
def checkpointing_fwd(x):
|
||||
return OffloadCheckpointFunction.apply(x, org_forward)
|
||||
# Branch 2: Others -> standard checkpoint
|
||||
else:
|
||||
def fwd(args, kwargs):
|
||||
return org_forward(*args, **kwargs)
|
||||
|
||||
def checkpointing_fwd(*args, **kwargs):
|
||||
return torch.utils.checkpoint.checkpoint(fwd, args, kwargs, use_reentrant=False)
|
||||
def checkpointing_fwd(*args, **kwargs):
|
||||
return torch.utils.checkpoint.checkpoint(fwd, args, kwargs, use_reentrant=False)
|
||||
|
||||
m.org_forward = org_forward
|
||||
m.forward = checkpointing_fwd
|
||||
@@ -936,6 +1025,18 @@ class TrainLoraNode(io.ComfyNode):
|
||||
default=True,
|
||||
tooltip="Use gradient checkpointing for training.",
|
||||
),
|
||||
io.Int.Input(
|
||||
"checkpoint_depth",
|
||||
default=1,
|
||||
min=1,
|
||||
max=5,
|
||||
tooltip="Depth level for gradient checkpointing.",
|
||||
),
|
||||
io.Boolean.Input(
|
||||
"offloading",
|
||||
default=False,
|
||||
tooltip="Offload the Model to RAM. Requires Bypass Mode.",
|
||||
),
|
||||
io.Combo.Input(
|
||||
"existing_lora",
|
||||
options=folder_paths.get_filename_list("loras") + ["[None]"],
|
||||
@@ -982,6 +1083,8 @@ class TrainLoraNode(io.ComfyNode):
|
||||
lora_dtype,
|
||||
algorithm,
|
||||
gradient_checkpointing,
|
||||
checkpoint_depth,
|
||||
offloading,
|
||||
existing_lora,
|
||||
bucket_mode,
|
||||
bypass_mode,
|
||||
@@ -1000,6 +1103,8 @@ class TrainLoraNode(io.ComfyNode):
|
||||
lora_dtype = lora_dtype[0]
|
||||
algorithm = algorithm[0]
|
||||
gradient_checkpointing = gradient_checkpointing[0]
|
||||
offloading = offloading[0]
|
||||
checkpoint_depth = checkpoint_depth[0]
|
||||
existing_lora = existing_lora[0]
|
||||
bucket_mode = bucket_mode[0]
|
||||
bypass_mode = bypass_mode[0]
|
||||
@@ -1019,6 +1124,15 @@ class TrainLoraNode(io.ComfyNode):
|
||||
lora_dtype = node_helpers.string_to_torch_dtype(lora_dtype)
|
||||
mp.set_model_compute_dtype(dtype)
|
||||
|
||||
if mp.is_dynamic():
|
||||
if not bypass_mode:
|
||||
logging.info("Training MP is Dynamic - forcing bypass mode. Start comfy with --highvram to force weight diff mode")
|
||||
bypass_mode = True
|
||||
offloading = True
|
||||
elif offloading:
|
||||
if not bypass_mode:
|
||||
logging.info("Training Offload selected - forcing bypass mode. Set bypass = True to remove this message")
|
||||
|
||||
# Prepare latents and compute counts
|
||||
latents, num_images, multi_res = _prepare_latents_and_count(
|
||||
latents, dtype, bucket_mode
|
||||
@@ -1054,16 +1168,18 @@ class TrainLoraNode(io.ComfyNode):
|
||||
|
||||
# Setup gradient checkpointing
|
||||
if gradient_checkpointing:
|
||||
for m in find_all_highest_child_module_with_forward(
|
||||
mp.model.diffusion_model
|
||||
):
|
||||
patch(m)
|
||||
modules_to_patch = find_modules_at_depth(
|
||||
mp.model.diffusion_model, depth=checkpoint_depth
|
||||
)
|
||||
logging.info(f"Gradient checkpointing: patching {len(modules_to_patch)} modules at depth {checkpoint_depth}")
|
||||
for m in modules_to_patch:
|
||||
patch(m, offloading=offloading)
|
||||
|
||||
torch.cuda.empty_cache()
|
||||
# With force_full_load=False we should be able to have offloading
|
||||
# But for offloading in training we need custom AutoGrad hooks for fwd/bwd
|
||||
comfy.model_management.load_models_gpu(
|
||||
[mp], memory_required=1e20, force_full_load=True
|
||||
[mp], memory_required=1e20, force_full_load=not offloading
|
||||
)
|
||||
torch.cuda.empty_cache()
|
||||
|
||||
@@ -1100,7 +1216,7 @@ class TrainLoraNode(io.ComfyNode):
|
||||
)
|
||||
|
||||
# Setup guider
|
||||
guider = TrainGuider(mp)
|
||||
guider = TrainGuider(mp, offloading=offloading)
|
||||
guider.set_conds(positive)
|
||||
|
||||
# Inject bypass hooks if bypass mode is enabled
|
||||
@@ -1113,6 +1229,7 @@ class TrainLoraNode(io.ComfyNode):
|
||||
|
||||
# Run training loop
|
||||
try:
|
||||
comfy.model_management.in_training = True
|
||||
_run_training_loop(
|
||||
guider,
|
||||
train_sampler,
|
||||
@@ -1123,6 +1240,7 @@ class TrainLoraNode(io.ComfyNode):
|
||||
multi_res,
|
||||
)
|
||||
finally:
|
||||
comfy.model_management.in_training = False
|
||||
# Eject bypass hooks if they were injected
|
||||
if bypass_injections is not None:
|
||||
for injection in bypass_injections:
|
||||
@@ -1132,19 +1250,20 @@ class TrainLoraNode(io.ComfyNode):
|
||||
unpatch(m)
|
||||
del train_sampler, optimizer
|
||||
|
||||
# Finalize adapters
|
||||
for param in lora_sd:
|
||||
lora_sd[param] = lora_sd[param].to(lora_dtype).detach()
|
||||
|
||||
for adapter in all_weight_adapters:
|
||||
adapter.requires_grad_(False)
|
||||
|
||||
for param in lora_sd:
|
||||
lora_sd[param] = lora_sd[param].to(lora_dtype)
|
||||
del adapter
|
||||
del all_weight_adapters
|
||||
|
||||
# mp in train node is highly specialized for training
|
||||
# use it in inference will result in bad behavior so we don't return it
|
||||
return io.NodeOutput(lora_sd, loss_map, steps + existing_steps)
|
||||
|
||||
|
||||
class LoraModelLoader(io.ComfyNode):#
|
||||
class LoraModelLoader(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
@@ -1166,6 +1285,11 @@ class LoraModelLoader(io.ComfyNode):#
|
||||
max=100.0,
|
||||
tooltip="How strongly to modify the diffusion model. This value can be negative.",
|
||||
),
|
||||
io.Boolean.Input(
|
||||
"bypass",
|
||||
default=False,
|
||||
tooltip="When enabled, applies LoRA in bypass mode without modifying base model weights. Useful for training and when model weights are offloaded.",
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
io.Model.Output(
|
||||
@@ -1175,13 +1299,18 @@ class LoraModelLoader(io.ComfyNode):#
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, model, lora, strength_model):
|
||||
def execute(cls, model, lora, strength_model, bypass=False):
|
||||
if strength_model == 0:
|
||||
return io.NodeOutput(model)
|
||||
|
||||
model_lora, _ = comfy.sd.load_lora_for_models(
|
||||
model, None, lora, strength_model, 0
|
||||
)
|
||||
if bypass:
|
||||
model_lora, _ = comfy.sd.load_bypass_lora_for_models(
|
||||
model, None, lora, strength_model, 0
|
||||
)
|
||||
else:
|
||||
model_lora, _ = comfy.sd.load_lora_for_models(
|
||||
model, None, lora, strength_model, 0
|
||||
)
|
||||
return io.NodeOutput(model_lora)
|
||||
|
||||
|
||||
|
||||
@@ -202,6 +202,56 @@ class LoadVideo(io.ComfyNode):
|
||||
|
||||
return True
|
||||
|
||||
class VideoSlice(io.ComfyNode):
|
||||
@classmethod
|
||||
def define_schema(cls):
|
||||
return io.Schema(
|
||||
node_id="Video Slice",
|
||||
display_name="Video Slice",
|
||||
search_aliases=[
|
||||
"trim video duration",
|
||||
"skip first frames",
|
||||
"frame load cap",
|
||||
"start time",
|
||||
],
|
||||
category="image/video",
|
||||
inputs=[
|
||||
io.Video.Input("video"),
|
||||
io.Float.Input(
|
||||
"start_time",
|
||||
default=0.0,
|
||||
max=1e5,
|
||||
min=-1e5,
|
||||
step=0.001,
|
||||
tooltip="Start time in seconds",
|
||||
),
|
||||
io.Float.Input(
|
||||
"duration",
|
||||
default=0.0,
|
||||
min=0.0,
|
||||
step=0.001,
|
||||
tooltip="Duration in seconds, or 0 for unlimited duration",
|
||||
),
|
||||
io.Boolean.Input(
|
||||
"strict_duration",
|
||||
default=False,
|
||||
tooltip="If True, when the specified duration is not possible, an error will be raised.",
|
||||
),
|
||||
],
|
||||
outputs=[
|
||||
io.Video.Output(),
|
||||
],
|
||||
)
|
||||
|
||||
@classmethod
|
||||
def execute(cls, video: io.Video.Type, start_time: float, duration: float, strict_duration: bool) -> io.NodeOutput:
|
||||
trimmed = video.as_trimmed(start_time, duration, strict_duration=strict_duration)
|
||||
if trimmed is not None:
|
||||
return io.NodeOutput(trimmed)
|
||||
raise ValueError(
|
||||
f"Failed to slice video:\nSource duration: {video.get_duration()}\nStart time: {start_time}\nTarget duration: {duration}"
|
||||
)
|
||||
|
||||
|
||||
class VideoExtension(ComfyExtension):
|
||||
@override
|
||||
@@ -212,6 +262,7 @@ class VideoExtension(ComfyExtension):
|
||||
CreateVideo,
|
||||
GetVideoComponents,
|
||||
LoadVideo,
|
||||
VideoSlice,
|
||||
]
|
||||
|
||||
async def comfy_entrypoint() -> VideoExtension:
|
||||
|
||||
@@ -623,6 +623,8 @@ async def execute(server, dynprompt, caches, current_item, extra_data, executed,
|
||||
logging.info("Memory summary: {}".format(comfy.model_management.debug_memory_summary()))
|
||||
logging.error("Got an OOM, unloading all loaded models.")
|
||||
comfy.model_management.unload_all_models()
|
||||
elif isinstance(ex, RuntimeError) and ("mat1 and mat2 shapes" in str(ex)) and "Sampler" in class_type:
|
||||
tips = "\n\nTIPS: If you have any \"Load CLIP\" or \"*CLIP Loader\" nodes in your workflow connected to this sampler node make sure the correct file(s) and type is selected."
|
||||
|
||||
error_details = {
|
||||
"node_id": real_node_id,
|
||||
|
||||
1
nodes.py
1
nodes.py
@@ -2432,6 +2432,7 @@ async def init_builtin_extra_nodes():
|
||||
"nodes_wanmove.py",
|
||||
"nodes_image_compare.py",
|
||||
"nodes_zimage.py",
|
||||
"nodes_glsl.py",
|
||||
"nodes_lora_debug.py",
|
||||
"nodes_color.py",
|
||||
"nodes_toolkit.py",
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
comfyui-frontend-package==1.38.13
|
||||
comfyui-frontend-package==1.38.14
|
||||
comfyui-workflow-templates==0.8.38
|
||||
comfyui-embedded-docs==0.4.1
|
||||
torch
|
||||
@@ -30,3 +30,6 @@ kornia>=0.7.1
|
||||
spandrel
|
||||
pydantic~=2.0
|
||||
pydantic-settings~=2.0
|
||||
PyOpenGL
|
||||
PyOpenGL-accelerate
|
||||
glfw
|
||||
|
||||
@@ -5,8 +5,11 @@ from comfy_execution.jobs import (
|
||||
is_previewable,
|
||||
normalize_queue_item,
|
||||
normalize_history_item,
|
||||
normalize_output_item,
|
||||
normalize_outputs,
|
||||
get_outputs_summary,
|
||||
apply_sorting,
|
||||
has_3d_extension,
|
||||
)
|
||||
|
||||
|
||||
@@ -35,8 +38,8 @@ class TestIsPreviewable:
|
||||
"""Unit tests for is_previewable()"""
|
||||
|
||||
def test_previewable_media_types(self):
|
||||
"""Images, video, audio media types should be previewable."""
|
||||
for media_type in ['images', 'video', 'audio']:
|
||||
"""Images, video, audio, 3d media types should be previewable."""
|
||||
for media_type in ['images', 'video', 'audio', '3d']:
|
||||
assert is_previewable(media_type, {}) is True
|
||||
|
||||
def test_non_previewable_media_types(self):
|
||||
@@ -46,7 +49,7 @@ class TestIsPreviewable:
|
||||
|
||||
def test_3d_extensions_previewable(self):
|
||||
"""3D file extensions should be previewable regardless of media_type."""
|
||||
for ext in ['.obj', '.fbx', '.gltf', '.glb']:
|
||||
for ext in ['.obj', '.fbx', '.gltf', '.glb', '.usdz']:
|
||||
item = {'filename': f'model{ext}'}
|
||||
assert is_previewable('files', item) is True
|
||||
|
||||
@@ -160,7 +163,7 @@ class TestGetOutputsSummary:
|
||||
|
||||
def test_3d_files_previewable(self):
|
||||
"""3D file extensions should be previewable."""
|
||||
for ext in ['.obj', '.fbx', '.gltf', '.glb']:
|
||||
for ext in ['.obj', '.fbx', '.gltf', '.glb', '.usdz']:
|
||||
outputs = {
|
||||
'node1': {
|
||||
'files': [{'filename': f'model{ext}', 'type': 'output'}]
|
||||
@@ -192,6 +195,64 @@ class TestGetOutputsSummary:
|
||||
assert preview['mediaType'] == 'images'
|
||||
assert preview['subfolder'] == 'outputs'
|
||||
|
||||
def test_string_3d_filename_creates_preview(self):
|
||||
"""String items with 3D extensions should synthesize a preview (Preview3D node output).
|
||||
Only the .glb counts — nulls and non-file strings are excluded."""
|
||||
outputs = {
|
||||
'node1': {
|
||||
'result': ['preview3d_abc123.glb', None, None]
|
||||
}
|
||||
}
|
||||
count, preview = get_outputs_summary(outputs)
|
||||
assert count == 1
|
||||
assert preview is not None
|
||||
assert preview['filename'] == 'preview3d_abc123.glb'
|
||||
assert preview['mediaType'] == '3d'
|
||||
assert preview['nodeId'] == 'node1'
|
||||
assert preview['type'] == 'output'
|
||||
|
||||
def test_string_non_3d_filename_no_preview(self):
|
||||
"""String items without 3D extensions should not create a preview."""
|
||||
outputs = {
|
||||
'node1': {
|
||||
'result': ['data.json', None]
|
||||
}
|
||||
}
|
||||
count, preview = get_outputs_summary(outputs)
|
||||
assert count == 0
|
||||
assert preview is None
|
||||
|
||||
def test_string_3d_filename_used_as_fallback(self):
|
||||
"""String 3D preview should be used when no dict items are previewable."""
|
||||
outputs = {
|
||||
'node1': {
|
||||
'latents': [{'filename': 'latent.safetensors'}],
|
||||
},
|
||||
'node2': {
|
||||
'result': ['model.glb', None]
|
||||
}
|
||||
}
|
||||
count, preview = get_outputs_summary(outputs)
|
||||
assert preview is not None
|
||||
assert preview['filename'] == 'model.glb'
|
||||
assert preview['mediaType'] == '3d'
|
||||
|
||||
|
||||
class TestHas3DExtension:
|
||||
"""Unit tests for has_3d_extension()"""
|
||||
|
||||
def test_recognized_extensions(self):
|
||||
for ext in ['.obj', '.fbx', '.gltf', '.glb', '.usdz']:
|
||||
assert has_3d_extension(f'model{ext}') is True
|
||||
|
||||
def test_case_insensitive(self):
|
||||
assert has_3d_extension('MODEL.GLB') is True
|
||||
assert has_3d_extension('Scene.GLTF') is True
|
||||
|
||||
def test_non_3d_extensions(self):
|
||||
for name in ['photo.png', 'video.mp4', 'data.json', 'model']:
|
||||
assert has_3d_extension(name) is False
|
||||
|
||||
|
||||
class TestApplySorting:
|
||||
"""Unit tests for apply_sorting()"""
|
||||
@@ -395,3 +456,142 @@ class TestNormalizeHistoryItem:
|
||||
'prompt': {'nodes': {'1': {}}},
|
||||
'extra_data': {'create_time': 1234567890, 'client_id': 'abc'},
|
||||
}
|
||||
|
||||
def test_include_outputs_normalizes_3d_strings(self):
|
||||
"""Detail view should transform string 3D filenames into file output dicts."""
|
||||
history_item = {
|
||||
'prompt': (
|
||||
5,
|
||||
'prompt-3d',
|
||||
{'nodes': {}},
|
||||
{'create_time': 1234567890},
|
||||
['node1'],
|
||||
),
|
||||
'status': {'status_str': 'success', 'completed': True, 'messages': []},
|
||||
'outputs': {
|
||||
'node1': {
|
||||
'result': ['preview3d_abc123.glb', None, None]
|
||||
}
|
||||
},
|
||||
}
|
||||
job = normalize_history_item('prompt-3d', history_item, include_outputs=True)
|
||||
|
||||
assert job['outputs_count'] == 1
|
||||
result_items = job['outputs']['node1']['result']
|
||||
assert len(result_items) == 1
|
||||
assert result_items[0] == {
|
||||
'filename': 'preview3d_abc123.glb',
|
||||
'type': 'output',
|
||||
'subfolder': '',
|
||||
'mediaType': '3d',
|
||||
}
|
||||
|
||||
def test_include_outputs_preserves_dict_items(self):
|
||||
"""Detail view normalization should pass dict items through unchanged."""
|
||||
history_item = {
|
||||
'prompt': (
|
||||
5,
|
||||
'prompt-img',
|
||||
{'nodes': {}},
|
||||
{'create_time': 1234567890},
|
||||
['node1'],
|
||||
),
|
||||
'status': {'status_str': 'success', 'completed': True, 'messages': []},
|
||||
'outputs': {
|
||||
'node1': {
|
||||
'images': [
|
||||
{'filename': 'photo.png', 'type': 'output', 'subfolder': ''},
|
||||
]
|
||||
}
|
||||
},
|
||||
}
|
||||
job = normalize_history_item('prompt-img', history_item, include_outputs=True)
|
||||
|
||||
assert job['outputs_count'] == 1
|
||||
assert job['outputs']['node1']['images'] == [
|
||||
{'filename': 'photo.png', 'type': 'output', 'subfolder': ''},
|
||||
]
|
||||
|
||||
|
||||
class TestNormalizeOutputItem:
|
||||
"""Unit tests for normalize_output_item()"""
|
||||
|
||||
def test_none_returns_none(self):
|
||||
assert normalize_output_item(None) is None
|
||||
|
||||
def test_string_3d_extension_synthesizes_dict(self):
|
||||
result = normalize_output_item('model.glb')
|
||||
assert result == {'filename': 'model.glb', 'type': 'output', 'subfolder': '', 'mediaType': '3d'}
|
||||
|
||||
def test_string_non_3d_extension_returns_none(self):
|
||||
assert normalize_output_item('data.json') is None
|
||||
|
||||
def test_string_no_extension_returns_none(self):
|
||||
assert normalize_output_item('camera_info_string') is None
|
||||
|
||||
def test_dict_passes_through(self):
|
||||
item = {'filename': 'test.png', 'type': 'output'}
|
||||
assert normalize_output_item(item) is item
|
||||
|
||||
def test_other_types_return_none(self):
|
||||
assert normalize_output_item(42) is None
|
||||
assert normalize_output_item(True) is None
|
||||
|
||||
|
||||
class TestNormalizeOutputs:
|
||||
"""Unit tests for normalize_outputs()"""
|
||||
|
||||
def test_empty_outputs(self):
|
||||
assert normalize_outputs({}) == {}
|
||||
|
||||
def test_dict_items_pass_through(self):
|
||||
outputs = {
|
||||
'node1': {
|
||||
'images': [{'filename': 'a.png', 'type': 'output'}],
|
||||
}
|
||||
}
|
||||
result = normalize_outputs(outputs)
|
||||
assert result == outputs
|
||||
|
||||
def test_3d_string_synthesized(self):
|
||||
outputs = {
|
||||
'node1': {
|
||||
'result': ['model.glb', None, None],
|
||||
}
|
||||
}
|
||||
result = normalize_outputs(outputs)
|
||||
assert result == {
|
||||
'node1': {
|
||||
'result': [
|
||||
{'filename': 'model.glb', 'type': 'output', 'subfolder': '', 'mediaType': '3d'},
|
||||
],
|
||||
}
|
||||
}
|
||||
|
||||
def test_animated_key_preserved(self):
|
||||
outputs = {
|
||||
'node1': {
|
||||
'images': [{'filename': 'a.png', 'type': 'output'}],
|
||||
'animated': [True],
|
||||
}
|
||||
}
|
||||
result = normalize_outputs(outputs)
|
||||
assert result['node1']['animated'] == [True]
|
||||
|
||||
def test_non_dict_node_outputs_preserved(self):
|
||||
outputs = {'node1': 'unexpected_value'}
|
||||
result = normalize_outputs(outputs)
|
||||
assert result == {'node1': 'unexpected_value'}
|
||||
|
||||
def test_none_items_filtered_but_other_types_preserved(self):
|
||||
outputs = {
|
||||
'node1': {
|
||||
'result': ['data.json', None, [1, 2, 3]],
|
||||
}
|
||||
}
|
||||
result = normalize_outputs(outputs)
|
||||
assert result == {
|
||||
'node1': {
|
||||
'result': ['data.json', [1, 2, 3]],
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user