Compare commits

..

165 Commits

Author SHA1 Message Date
Hunter Senft-Grupp
5332ca60e4 fix: move _initialized flag to end of GLContext.__init__
Prevents '_vao' attribute error when init fails partway through
and subsequent calls skip initialization due to early _initialized flag.
2026-02-14 22:27:30 -08:00
Hunter Senft-Grupp
40b247f046 Merge remote-tracking branch 'comfy-org/master' into test-glsl-nodes 2026-02-14 20:20:56 -08:00
comfyanonymous
e1ede29d82 Remove unsafe pickle loading code that was used on pytorch older than 2.4 (#12473)
ComfyUI hasn't started on pytorch 2.4 since last month.
2026-02-14 22:53:52 -05:00
Christian Byrne
df1e5e8514 Update frontend package to 1.38.14 (#12469) 2026-02-14 11:01:10 -08:00
krigeta
dc9822b7df Add working Qwen 2512 ControlNet (Fun ControlNet) support (#12359) 2026-02-13 22:23:52 -05:00
comfyanonymous
712efb466b Add left padding to LTXAV text encoder. (#12456) 2026-02-13 21:56:54 -05:00
comfyanonymous
726af73867 Fix some custom nodes. (#12455) 2026-02-13 20:21:10 -05:00
comfyanonymous
831351a29e Support generating attention masks for left padded text encoders. (#12454) 2026-02-13 20:15:23 -05:00
comfyanonymous
e1add563f9 Use torch RMSNorm for flux models and refactor hunyuan video code. (#12432) 2026-02-13 15:35:13 -05:00
rattus
8902907d7a dynamic_vram: Training fixes (#12442) 2026-02-13 15:29:37 -05:00
comfyanonymous
e03fe8b591 Update command to install AMD stable linux pytorch. (#12437) 2026-02-12 23:29:12 -05:00
rattus
ae79e33345 llama: use a more efficient rope implementation (#12434)
Get rid of the cat and unary negation and inplace add-cmul the two
halves of the rope. Precompute -sin once at the start of the model
rather than every transformer block.

This is slightly faster on both GPU and CPU bound setups.
2026-02-12 19:56:42 -05:00
rattus
117e214354 ModelPatcherDynamic: force load non leaf weights (#12433)
The current behaviour of the default ModelPatcher is to .to a model
only if its fully loaded, which is how random non-leaf weights get
loaded in non-LowVRAM conditions.

The however means they never get loaded in dynamic_vram. In the
dynamic_vram case, force load them to the GPU.
2026-02-12 19:51:50 -05:00
Alexander Piskun
4a93a62371 fix(api-nodes): add separate retry budget for 429 rate limit responses (#12421) 2026-02-12 01:38:51 -08:00
comfyanonymous
66c18522fb Add a tip for common error. (#12414) 2026-02-11 22:12:16 -05:00
askmyteapot
e5ae670a40 Update ace15.py to allow min_p sampling (#12373) 2026-02-11 20:28:48 -05:00
rattus
3fe61cedda model_patcher: guard against none model_dtype (#12410)
Handle the case where the _model_dtype exists but is none with the
intended fallback.
2026-02-11 14:54:02 -05:00
rattus
2a4328d639 ace15: Use dynamic_vram friendly trange (#12409)
Factor out the ksampler trange and use it in ACE LLM to prevent the
silent stall at 0 and rate distortion due to first-step model load.
2026-02-11 14:53:42 -05:00
rattus
d297a749a2 dynamic_vram: Fix windows Aimdo crash + Fix LLM performance (#12408)
* model_management: lazy-cache aimdo_tensor

These tensors cosntructed from aimdo-allocations are CPU expensive to
make on the pytorch side. Add a cache version that will be valid with
signature match to fast path past whatever torch is doing.

* dynamic_vram: Minimize fast path CPU work

Move as much as possible inside the not resident if block and cache
the formed weight and bias rather than the flat intermediates. In
extreme layer weight rates this adds up.
2026-02-11 14:50:16 -05:00
Alexander Piskun
2b7cc7e3b6 [API Nodes] enable Magnific Upscalers (#12179)
* feat(api-nodes): enable Magnific Upscalers

* update price badges

---------

Co-authored-by: Jedrzej Kosinski <kosinkadink1@gmail.com>
2026-02-11 11:30:19 -08:00
Benjamin Lu
4993411fd9 Dispatch desktop auto-bump when a ComfyUI release is published (#12398)
* Dispatch desktop auto-bump on ComfyUI release publish

* Fix release webhook secret checks in step conditions

* Require desktop dispatch token in release webhook

* Apply suggestion from @Copilot

Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>

---------

Co-authored-by: Luke Mino-Altherr <lminoaltherr@gmail.com>
Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com>
Co-authored-by: Jedrzej Kosinski <kosinkadink1@gmail.com>
2026-02-11 11:15:13 -08:00
Alexander Piskun
2c7cef4a23 fix(api-nodes): retry on connection errors during polling instead of aborting (#12393) 2026-02-11 10:51:49 -08:00
comfyanonymous
76a7fa96db Make built in lora training work on anima. (#12402) 2026-02-10 22:04:32 -05:00
Kohaku-Blueleaf
cdcf4119b3 [Trainer] training with proper offloading (#12189)
* Fix bypass dtype/device moving

* Force offloading mode for training

* training context var

* offloading implementation in training node

* fix wrong input type

* Support bypass load lora model, correct adapter/offloading handling
2026-02-10 21:45:19 -05:00
AustinMroz
dbe70b6821 Add a VideoSlice node (#12107)
* Base TrimVideo implementation

* Raise error if as_trimmed call fails

* Bigger max start_time, tooltips, and formatting

* Count packets unless codec has subframes

* Remove incorrect nested decode

* Add null check for audio streams

* Support non-strict duration

* Added strict_duration bool to node definition

* Empty commit for approval

* Fix duration

* Support 5.1 audio layout on save

---------

Co-authored-by: Jedrzej Kosinski <kosinkadink1@gmail.com>
2026-02-10 14:42:21 -08:00
guill
00fff6019e feat(jobs): add 3d to PREVIEWABLE_MEDIA_TYPES for first-class 3D output support (#12381)
Co-authored-by: Jedrzej Kosinski <kosinkadink1@gmail.com>
2026-02-10 14:37:14 -08:00
rattus
123a7874a9 ops: Fix vanilla-fp8 loaded lora quality (#12390)
This was missing the stochastic rounding required for fp8 downcast
to be consistent with model_patcher.patch_weight_to_device.

Missed in testing as I spend too much time with quantized tensors
and overlooked the simpler ones.
2026-02-10 13:38:28 -05:00
rattus
f719f9c062 sd: delay VAE dtype archive until after override (#12388)
VAEs have host specific dtype logic that should override the dynamic
_model_dtype. Defer the archiving of model dtypes until after.
2026-02-10 13:37:46 -05:00
rattus
fe053ba5eb mp: dont deep-clone objects from model_options (#12382)
If there are non-trivial python objects nested in the model_options, this
causes all sorts of issues. Traverse lists and dicts so clones can safely
overide settings and BYO objects but stop there on the deepclone.
2026-02-10 13:37:17 -05:00
comfyanonymous
6648ab68bc ComfyUI v0.13.0 2026-02-10 13:26:29 -05:00
ComfyUI Wiki
6615db925c chore: update workflow templates to v0.8.38 (#12394) 2026-02-10 13:24:56 -05:00
Alexander Piskun
8ca842a8ed feat(api-nodes-Kling): add new models (V3, O3) (#12389)
* feat(api-nodes-Kling): add new models (V3, O3)

* remove storyboard from VideoToVideo node

* added check for total duration of storyboards

* fixed other small things

* updated display name for nodes

* added "fake" seed
2026-02-10 09:34:54 -08:00
Alexander Piskun
c1b63a7e78 fix(Moonvalley-API-Nodes): adjust "steps" parameter to not raise exception (#12370) 2026-02-09 21:58:27 -05:00
ComfyUI Wiki
349a636a2b chore: update workflow templates to v0.8.37 (#12377) 2026-02-09 21:25:34 -05:00
comfyanonymous
a4be04c5d7 Ace step prompts match now. (#12376) 2026-02-09 19:45:56 -05:00
blepping
baf8c87455 Iimprovements to ACE-Steps 1.5 text encoding (part 2) (#12350) 2026-02-09 19:41:49 -05:00
rattus
62315fbb15 Dynamic VRAM fixes - Ace 1.5 performance + a VRAM leak (#12368)
* revert threaded model loader change

This change was only needed to get around the pytorch 2.7 mempool bugs,
and should have been reverted along with #12260. This fixes a different
memory leak where pytorch gets confused about cache emptying.

* load non comfy weights

* MPDynamic: Pre-generate the tensors for vbars

Apparently this is an expensive operation that slows down things.

* bump to aimdo 1.8

New features:
watermark limit feature
logging enhancements
-O2 build on linux
2026-02-09 16:16:08 -05:00
comfyanonymous
a0302cc6a8 Make tonemap latent work on any dim latents. (#12363) 2026-02-08 21:16:40 -05:00
comfyanonymous
f350a84261 Disable prompt weights for ltxv2. (#12354) 2026-02-07 19:16:28 -05:00
ComfyUI Wiki
3760d74005 chore: update embedded docs to v0.4.1 (#12346) 2026-02-07 18:34:52 -05:00
chaObserv
9bf5aa54db Add search_aliases to sa-solver and seeds-2 node (#12327) 2026-02-07 17:38:51 -05:00
Jukka Seppänen
5ff4fdedba Fix LazyCache (#12344) 2026-02-07 11:25:30 -08:00
comfyanonymous
17e7df43d1 Pad ace step 1.5 ref audio if not long enough. (#12341) 2026-02-07 00:02:11 -05:00
comfyanonymous
039955c527 Some fixes to previous pr. (#12339) 2026-02-06 20:14:52 -05:00
tdrussell
6a26328842 Support fp16 for Cosmos-Predict2 and Anima (#12249) 2026-02-06 20:12:15 -05:00
comfyanonymous
204e65b8dc Fix bug with last pr (#12338) 2026-02-06 19:48:20 -05:00
asagi4
a831c19b70 Fix return_word_ids=True with Anima tokenizer (#12328) 2026-02-06 19:38:04 -05:00
comfyanonymous
eba6c940fd Make ace step 1.5 base model work properly with default workflow. (#12337) 2026-02-06 19:14:56 -05:00
Jukka Seppänen
a1c101f861 EasyCache: Support LTX2 (#12231) 2026-02-06 00:43:09 -05:00
comfyanonymous
c2d7f07dbf Fix issue when using disable_unet_model_creation (#12315) 2026-02-05 19:24:09 -05:00
comfyanonymous
458292fef0 Fix some lowvram stuff with ace step 1.5 (#12312) 2026-02-05 19:15:04 -05:00
comfyanonymous
6555dc65b8 Make ace step 1.5 work without the llm. (#12311) 2026-02-05 16:43:45 -05:00
AustinMroz
2b70ab9ad0 Add a Create List node (#12173) 2026-02-05 01:18:21 -05:00
Comfy Org PR Bot
00efcc6cd0 Bump comfyui-frontend-package to 1.38.13 (#12238) 2026-02-05 01:17:37 -05:00
comfyanonymous
cb459573c8 ComfyUI v0.12.3 2026-02-05 01:13:35 -05:00
comfyanonymous
35183543e0 Add VAE tiled decode node for audio. (#12299) 2026-02-05 01:12:04 -05:00
blepping
a246cc02b2 Improvements to ACE-Steps 1.5 text encoding (#12283) 2026-02-05 00:17:37 -05:00
comfyanonymous
a50c32d63f Disable sage attention on ace step 1.5 (#12297) 2026-02-04 22:15:30 -05:00
comfyanonymous
6125b80979 Add llm sampling options and make reference audio work on ace step 1.5 (#12295) 2026-02-04 21:29:22 -05:00
comfyanonymous
c8fcbd66ee Try to fix ace text encoder slowness on some configs. (#12290) 2026-02-04 19:37:05 -05:00
comfyanonymous
26dd7eb421 Fix ace step nan issue on some hardware/pytorch configs. (#12289) 2026-02-04 18:25:06 -05:00
Alexander Piskun
e77b34dfea add File3DAny output to Load3D node; extend SaveGLB to accept File3DAny as input (#12276)
* add File3DAny output to Load3D node; extend SaveGLB node to accept File3DAny as input

* fix(grammar): capitalize letter
2026-02-04 11:35:38 -08:00
pythongosssss
c2d229a786 Add edge preserving blur 2026-02-04 10:20:24 -08:00
rattus
ef73070ea4 mp: Fix checkpoint saving (#12268)
Fix regression in the recent model saving refactor. Pass the non unet
pieces down the layers so that checkpoints are complete.
2026-02-04 02:08:45 -05:00
rattus
d30c609f5a utils: safetensors: dont slice data on torch level (#12266)
Torch has alignment enforcement when viewing with data type changes
but only relative to itself. Do all tensor constructions straight
off the memory-view individually so pytorch doesnt see an alignment
problem.

The is needed for handling misaligned safetensors weights, which are
reasonably common in third party models.

This limits usage of this safetensors loader to GPU compute only
as CPUs kernnel are very likely to bus error. But it works for
dynamic_vram, where we really dont want to take a deep copy and we
always use GPU copy_ which disentangles the misalignment.
2026-02-04 01:48:47 -05:00
comfyanonymous
5087f1d497 ComfyUI v0.12.2 2026-02-04 00:08:59 -05:00
comfyanonymous
a31681564d Fix crash with ace step 1.5 (#12264) 2026-02-04 00:03:21 -05:00
rattus
855849c658 mm: Remove Aimdo exemption for empty_cache (#12260)
Its more important to get the torch caching allocator GC up and running
than supporting the pyt2.7 bug. Switch it on.

Defeature dynamic_vram + pyt2.7.
2026-02-03 21:39:19 -05:00
comfyanonymous
fe2511468d Support the 4B ace step 1.5 lm model. (#12257)
Can be used as an alternative to the 1.7B
2026-02-03 19:01:38 -05:00
comfyanonymous
3be0175166 ComfyUI v0.12.1 2026-02-03 15:01:46 -05:00
comfyanonymous
b8315e66cb Fix tiled vae for ace step 1.5 (#12253) 2026-02-03 14:40:45 -05:00
comfyanonymous
ab1050bec3 Support ace step 1.5 base model loras. (#12252) 2026-02-03 13:54:23 -05:00
Alexander Piskun
fb23935c11 feat(comfy_api): add basic 3D Model file types (#12129)
* feat(comfy_api): add basic 3D Model file types

* update Tripo nodes to use File3DGLB

* update Rodin3D nodes to use File3DGLB

* address PR review feedback:

- Rename File3D parameter 'path' to 'source'
- Convert File3D.data property to get_data()
- Make .glb extension check case-insensitive in nodes_rodin.py
- Restrict SaveGLB node to only accept File3DGLB

* Fixed a bug in the Meshy Rig and Animation nodes

* Fix backward compatability
2026-02-03 10:31:46 -08:00
comfyanonymous
85fc35e8fa Fix mac issue. (#12250) 2026-02-03 12:19:39 -05:00
comfyanonymous
223364743c llama: cast logits as a comfy-weight (#12248)
This is using a different layers weight with .to(). Change it to use
the ops caster if the original layer is a comfy weight so that it picks
up dynamic_vram and async_offload functionality in full.

Co-authored-by: Rattus <rattus128@gmail.com>
2026-02-03 11:31:36 -05:00
comfyanonymous
affe881354 Fix some issues with mac. (#12247) 2026-02-03 11:07:04 -05:00
comfyanonymous
f5030e26fd Add progress bar to ace step. (#12242) 2026-02-03 04:09:30 -05:00
comfyanonymous
66e1b07402 ComfyUI v0.12.0 2026-02-03 02:20:59 -05:00
ComfyUI Wiki
be4345d1c9 chore: update workflow templates to v0.8.31 (#12239) 2026-02-02 23:08:43 -08:00
comfyanonymous
3c1a1a2df8 Basic support for the ace step 1.5 model. (#12237) 2026-02-03 00:06:18 -05:00
Alexander Piskun
ba5bf3f1a8 [API Nodes] HitPaw API nodes (#12117)
* feat(api-nodes): add HitPaw API nodes

* remove face_soft_2x model as not working

---------

Co-authored-by: Robin Huang <robin.j.huang@gmail.com>
2026-02-02 19:17:59 -08:00
comfyanonymous
c05a08ae66 Add back function. (#12234) 2026-02-02 19:52:07 -05:00
rattus
de9ada6a41 Dynamic VRAM unloading fix (#12227)
* mp: fix full dynamic unloading

This was not unloading dynamic models when requesting a full unload via
the unpatch() code path.

This was ok, i your workflow was all dynamic models but fails with big
VRAM leaks if you need to fully unload something for a regular ModelPatcher

It also fices the "unload models" button.

* mm: load models outside of Aimdo Mempool

In dynamic_vram mode, escape the Aimdo mempool and load into the regular
mempool. Use a dummy thread to do it.
2026-02-02 17:35:20 -05:00
rattus
37f711d4a1 mm: Fix cast buffers with intel offloading (#12229)
Intel has offloading support but there were some nvidia calls in the
new cast buffer stuff.
2026-02-02 17:34:46 -05:00
comfyanonymous
dd86b15521 Enable embeddings for some qwen 3 models. (#12218) 2026-02-02 03:51:09 -05:00
comfyanonymous
021ba20719 Fix issue with parameters on root model object. (#12216) 2026-02-01 20:12:52 -05:00
rattus
b60be02aaf requirements: bump comfy-aimdo to 0.1.7 (#12211) 2026-02-01 20:10:15 -05:00
rattus
2b5da3b72e dynamic_vram: silence pytorch buffer warning (#12210)
This is log clutter and concerning to users. Its a false alarm.
2026-02-01 20:09:55 -05:00
rattus
794d05bdb1 dynamic_vram: respect argument cast dtypes in non-comfy weights (#12209)
This function has a dtype argument that allows the caller to set the
dtype in the cast. TIL Some models override this on weight casts, which
means its the highest priority.

Priority scheme is: argument > model dtype > state dict dtype
2026-02-01 20:09:21 -05:00
rattus
361b9a82a3 fix pinning with model defined dtype (#12208)
pinned memory was converted back to pinning the CPU side weight without
any changes. Fix the pinner to use the CPU weight and not the model defined
geometry. This will either save RAM or stop buffer overruns when the types
mismatch.

Fix the model defined weight caster to use the [ s.weight, s.bias ]
interpretation, as xfer_dest might be the flattened pin now. Fix the detection
of needing to cast to not be conditional on !pin.
2026-02-01 08:42:32 -08:00
comfyanonymous
667a1b8878 Fix some custom nodes breaking. (#12203) 2026-02-01 01:55:18 -05:00
Christian Byrne
32621c6a11 fix: improve error message when node type is missing (#12194)
- Change error type from 'invalid_prompt' to 'missing_node_type' for frontend detection
- Add extra_info with node_id, class_type, and node_title (from _meta.title)
- Improve user-facing message: 'Node X not found. The custom node may not be installed.'
2026-02-01 01:13:48 -05:00
rattus
f8acd9c402 Reduce RAM usage, fix VRAM OOMs, and fix Windows shared memory spilling with adaptive model loading (#11845) 2026-02-01 01:01:11 -05:00
comfyanonymous
873de5f37a KV cache implementation for using llama models for text generation. (#12195) 2026-01-31 21:11:11 -05:00
Jedrzej Kosinski
aa6f7a83bb Send is_input_list on v1 and v3 schema to frontend (#12188) 2026-01-31 20:05:11 -05:00
pythongosssss
3c40ee0f02 print -> logger 2026-01-31 16:43:57 -08:00
pythongosssss
43034b6881 rebuild blueprints 2026-01-31 16:32:00 -08:00
pythongosssss
bb048d4aaa more fixes 2026-01-31 16:30:10 -08:00
pythongosssss
7c1f02d1fa add multipass for faster blur 2026-01-31 16:30:00 -08:00
pythongosssss
292a5918f4 shader nit iteration 2026-01-31 16:03:47 -08:00
pythongosssss
0050b66a0b add glsl shader update system 2026-01-31 13:48:59 -08:00
pythongosssss
0c313f5293 hsb 2026-01-31 12:25:38 -08:00
pythongosssss
1fcf9dca18 brightness/contrast 2026-01-31 12:25:34 -08:00
pythongosssss
3b790d24d6 Add glow 2026-01-31 10:16:51 -08:00
Jedrzej Kosinski
6ea8c128a3 Assets Part 2 - add more endpoints (#12125) 2026-01-31 02:22:05 -05:00
Alexander Piskun
6e469a3f35 feat(api-nodes): add Q3 models and support for Extend and MultiFrame Vidu endpoints (#12175)
Co-authored-by: Jedrzej Kosinski <kosinkadink1@gmail.com>
2026-01-30 22:44:08 -08:00
comfyanonymous
b8f848bfe3 Fix model not working with any res. (#12186) 2026-01-31 00:12:48 -05:00
comfyanonymous
4064062e7d Update python patch version in dep workflow. (#12184) 2026-01-30 20:20:06 -05:00
pythongosssss
92b2b7198a Merge remote-tracking branch 'origin/master' into pysssss/glsl-blueprints 2026-01-30 16:27:23 -08:00
pythongosssss
8aabe2403e Add color type and Color to RGB Int node (#12145)
* add color type and color to rgb int node

* review fix for allowing output

---------

Co-authored-by: Jedrzej Kosinski <kosinkadink1@gmail.com>
2026-01-30 15:01:33 -08:00
pythongosssss
309c3e4ec0 Add channels 2026-01-30 14:57:44 -08:00
pythongosssss
23591d4388 Add image operation blueprints 2026-01-30 14:53:39 -08:00
Alexander Piskun
0167653781 feat(api-nodes): add RecraftCreateStyleNode node (#12055)
Co-authored-by: Jedrzej Kosinski <kosinkadink1@gmail.com>
2026-01-30 14:04:43 -08:00
pythongosssss
c3d07bec6d add diagnostics, update mac initialization 2026-01-30 12:26:04 -08:00
Jedrzej Kosinski
0a7993729c Remove NodeInfoV3-related code; we are almost 100% guaranteed to stick with NodeInfoV1 for the foreseable future (#12147)
Co-authored-by: guill <jacob.e.segal@gmail.com>
2026-01-30 10:21:48 -08:00
comfyanonymous
bbe2c13a70 Make empty hunyuan latent 1.0 work with the 1.5 model. (#12171) 2026-01-29 23:52:22 -05:00
pythongosssss
59b955ff54 fix ci
perf: only read required outputs
2026-01-29 20:14:26 -08:00
pythongosssss
1263d6fe88 add additional support for egl & osmesa backends 2026-01-29 20:07:40 -08:00
Christian Byrne
3aace5c8dc fix: count non-dict items in outputs_count (#12166)
Move count increment before isinstance(item, dict) check so that
non-dict output items (like text strings from PreviewAny node)
are included in outputs_count.

This aligns OSS Python with Cloud's Go implementation which uses
len(itemsArray) to count ALL items regardless of type.

Amp-Thread-ID: https://ampcode.com/threads/T-019c0bb5-14e0-744f-8808-1e57653f3ae3

Co-authored-by: Amp <amp@ampcode.com>
2026-01-29 17:10:08 -08:00
comfyanonymous
b0d9708974 ComfyUI v0.11.1 2026-01-29 00:27:23 -05:00
pythongosssss
23572c6314 tidy 2026-01-28 20:59:01 -08:00
pythongosssss
d809ef8fb1 remove cpu support 2026-01-28 20:58:04 -08:00
pythongosssss
a4317314d2 convert to using PyOpenGL and glfw 2026-01-28 20:48:20 -08:00
comfyanonymous
c9b633d84f Add missing spacial downscale ratios. (#12146) 2026-01-28 20:52:51 -05:00
pythongosssss
aaea976f36 fix line endings 2026-01-28 11:02:17 -08:00
pythongosssss
cee092213e Merge remote-tracking branch 'origin/master' into pysssss/basic-glsl-shader-node 2026-01-28 10:50:12 -08:00
pythongosssss
3da0e9c367 fix casing 2026-01-28 10:47:36 -08:00
pythongosssss
9fa8202620 Try fix build 2026-01-28 10:47:36 -08:00
pythongosssss
b4438c9baf Support multiple outputs 2026-01-28 10:47:36 -08:00
ComfyUI Wiki
1711020904 chore: update workflow templates to v0.8.27 (#12141) 2026-01-28 12:48:02 -05:00
Dr.Lt.Data
d9b8567547 bump manager version to 4.1b1 (#12140) 2026-01-28 12:47:37 -05:00
Alexander Piskun
6c5f906bf2 feat(api-nodes): add Grok Imagine nodes (#12136) 2026-01-28 12:46:57 -05:00
comfyanonymous
4f5bd39b1c Update Python 3.14 compatibility notes in README (#12127) 2026-01-27 19:58:48 -05:00
guill
dcff27fe3f Add support for dev-only nodes. (#12106)
When a node is declared as dev-only, it doesn't show in the default UI
unless the dev mode is enabled in the settings. The intention is to
allow nodes related to unit testing to be included in ComfyUI
distributions without confusing the average user.
2026-01-27 13:03:29 -08:00
comfyanonymous
09725967cf ComfyUI version v0.11.0 2026-01-26 23:08:01 -05:00
ComfyUI Wiki
5f62440fbb chore: update workflow templates to v0.8.24 (#12103) 2026-01-26 22:47:33 -05:00
ComfyUI Wiki
ac91c340f4 Update workflow templates to v0.8.23 (#12102) 2026-01-26 21:39:39 -05:00
comfyanonymous
2db3b0ff90 Update amd portable for rocm 7.2 (#12101)
* Update amd portable for rocm 7.2

* Update Python patch version in release workflow
2026-01-26 19:49:31 -05:00
rattus
6516ab335d wan-vae: Switch off feature cache for single frame (#12090)
The code throughout is None safe to just skip the feature cache saving
step if none. Set it none in single frame use so qwen doesn't burn VRAM
on the unused cache.
2026-01-26 19:40:19 -05:00
Jukka Seppänen
ad53e78f11 Fix Noise_EmptyNoise when using nested latents (#12089) 2026-01-26 19:25:00 -05:00
Alexander Piskun
29011ba87e [API Nodes] add Magnific nodes (#11986)
* feat(api-nodes): add Magnific nodes

* aggressive downscaling should not be performed

* disable upscaler nodes

---------

Co-authored-by: Jedrzej Kosinski <kosinkadink1@gmail.com>
2026-01-26 14:10:09 -08:00
Alexander Piskun
cd4985e2f3 chore(api-nodes): remove ByteDanceImageEditNode node (seededit) (#12069)
Co-authored-by: Jedrzej Kosinski <kosinkadink1@gmail.com>
2026-01-26 13:58:33 -08:00
Tavi Halperin
bfe31d0b9d IC-LoRA: support small grid (#12074) 2026-01-26 15:33:19 -05:00
comfyanonymous
2129e7d278 Fix mistral 3 tokenizer code failing on latest transformers version and other breakage. (#12095)
* Fix mistral 3 tokenizer code failing on latest transformers version.

* Add requests to the requirements
2026-01-26 11:39:00 -05:00
comfyanonymous
7ee77ff038 Add name to LoraLoaderModelOnly. (#12078) 2026-01-25 21:01:55 -05:00
comfyanonymous
26c5bbb875 Move nodes from previous PR into their own file. (#12066) 2026-01-24 23:02:32 -05:00
Kohaku-Blueleaf
a97c98068f [Weight-adapter/Trainer] Bypass forward mode in Weight adapter system (#11958)
* Add API of bypass forward module

* bypass implementation

* add bypass fwd into nodes list/trainer
2026-01-24 22:56:22 -05:00
comfyanonymous
635406e283 Only enable fp16 on z image models that actually support it. (#12065) 2026-01-24 22:32:28 -05:00
pythongosssss
ed6002cb60 add support for kwargs inputs to allow arbitrary inputs from frontend (#12063)
used to output selected combo index

Co-authored-by: Jedrzej Kosinski <kosinkadink1@gmail.com>
2026-01-24 17:30:40 -08:00
Alexander Piskun
bc72d7f8d1 [API Nodes] add TencentHunyuan3D nodes (#12026)
* feat(api-nodes): add TencentHunyuan3D nodes

* add "(Pro)" to display name

---------

Co-authored-by: Jedrzej Kosinski <kosinkadink1@gmail.com>
2026-01-24 17:10:09 -08:00
comfyanonymous
aef4e13588 Make empty latent node work with other models. (#12062) 2026-01-24 19:23:20 -05:00
rattus
4e6a1b66a9 speed up and reduce VRAM of QWEN VAE and WAN (less so) (#12036)
* ops: introduce autopad for conv3d

This works around pytorch missing ability to causal pad as part of the
kernel and avoids massive weight duplications for padding.

* wan-vae: rework causal padding

This currently uses F.pad which takes a full deep copy and is liable to
be the VRAM peak. Instead, kick spatial padding back to the op and
consolidate the temporal padding with the cat for the cache.

* wan-vae: implement zero pad fast path

The WAN VAE is also QWEN where it is used single-image. These
convolutions are however zero padded 3d convolutions, which means the
VAE is actually just 2D down the last element of the conv weight in
the temporal dimension. Fast path this, to avoid adding zeros that
then just evaporate in convoluton math but cost computation.
2026-01-23 19:56:14 -05:00
comfyanonymous
9cf299a9f9 Make regular empty latent node work properly on flux 2 variants. (#12050) 2026-01-23 19:50:48 -05:00
ComfyUI Wiki
e89b22993a Support ModelScope-Trainer/DiffSynth LoRA format for Flux.2 Klein models (#12042) 2026-01-23 15:27:49 -05:00
Jukka Seppänen
55bd606e92 LTX2: Refactor forward function for better VRAM efficiency and fix spatial inpainting (#12046)
* Disable timestep embed compression when inpainting

Spatial inpainting not compatible with the compression

* Reduce crossattn peak VRAM

* LTX2: Refactor forward function for better VRAM efficiency
2026-01-23 15:26:38 -05:00
pythongosssss
cc30293d65 tidy 2026-01-23 10:38:26 -08:00
pythongosssss
866d863128 adds support for executing simple glsl shaders
using moderngl package
2026-01-23 10:37:52 -08:00
Christian Byrne
79cdbc81cb feat: Improve ResizeImageMaskNode UX with tooltips and search aliases (#12040)
- Add search_aliases for discoverability: resize, scale, dimensions, etc.
- Add node description for hover tooltip
- Add tooltips to all inputs explaining their behavior
- Reorder options: most common (scale dimensions) first, most technical (scale to multiple) last

Addresses user feedback that 'resize' search returned nothing useful and
options like 'match size' and 'scale to multiple' were not self-explanatory.
2026-01-22 22:04:27 -08:00
comfyanonymous
f443b9f2ca Revert "feat: Improve ResizeImageMaskNode UX with tooltips and search aliases…" (#12038)
This reverts commit 4e3038114a.
2026-01-22 23:02:37 -05:00
Christian Byrne
4e3038114a feat: Improve ResizeImageMaskNode UX with tooltips and search aliases (#12013)
- Add search_aliases for discoverability: resize, scale, dimensions, etc.
- Add node description for hover tooltip
- Add tooltips to all inputs explaining their behavior
- Reorder options: most common (scale dimensions) first, most technical (scale to multiple) last

Addresses user feedback that 'resize' search returned nothing useful and
options like 'match size' and 'scale to multiple' were not self-explanatory.
2026-01-22 18:46:55 -08:00
Christian Byrne
bbb8864778 add search aliases to all nodes (#12035)
* feat: Add search_aliases field to node schema

Adds `search_aliases` field to improve node discoverability. Users can define alternative search terms for nodes (e.g., "text concat" → StringConcatenate).

Changes:
- Add `search_aliases: list[str]` to V3 Schema
- Add `SEARCH_ALIASES` support for V1 nodes
- Include field in `/object_info` response
- Add aliases to high-priority core nodes

V1 usage:
```python
class MyNode:
    SEARCH_ALIASES = ["alt name", "synonym"]
```

V3 usage:
```python
io.Schema(
    node_id="MyNode",
    search_aliases=["alt name", "synonym"],
    ...
)
```

## Related PRs
- Frontend: Comfy-Org/ComfyUI_frontend#XXXX (draft - merge after this)
- Docs: Comfy-Org/docs#XXXX (draft - merge after stable)

* Propagate search_aliases through V3 Schema.get_v1_info to NodeInfoV1

* feat: add SEARCH_ALIASES for core nodes (#12016)

Add search aliases to 22 core nodes in nodes.py to improve node discoverability:
- Checkpoint/model loaders: CheckpointLoader, DiffusersLoader
- Conditioning nodes: ConditioningAverage, ConditioningSetArea, ConditioningSetMask, ConditioningZeroOut
- Style nodes: StyleModelApply
- Image nodes: LoadImageMask, LoadImageOutput, ImageBatch, ImageInvert, ImagePadForOutpaint
- Latent nodes: LoadLatent, SaveLatent, LatentBlend, LatentComposite, LatentCrop, LatentFlip, LatentFromBatch, LatentUpscale, LatentUpscaleBy, RepeatLatentBatch

* feat: add SEARCH_ALIASES for image, mask, and string nodes (#12017)

Add search aliases to nodes in comfy_extras for better discoverability:
- nodes_mask.py: mask manipulation nodes
- nodes_images.py: image processing nodes
- nodes_post_processing.py: post-processing effect nodes
- nodes_string.py: string manipulation nodes
- nodes_compositing.py: compositing nodes
- nodes_morphology.py: morphological operation nodes
- nodes_latent.py: latent space nodes

Uses search_aliases parameter in io.Schema() for v3 nodes.

* feat: add SEARCH_ALIASES for audio and video nodes (#12018)

Add search aliases to audio and video nodes for better discoverability:
- nodes_audio.py: audio loading, saving, and processing nodes
- nodes_video.py: video loading and processing nodes
- nodes_wan.py: WAN model nodes

Uses search_aliases parameter in io.Schema() for v3 nodes.

* feat: add SEARCH_ALIASES for model and misc nodes (#12019)

Add search aliases to model-related and miscellaneous nodes:
- Model nodes: nodes_model_merging.py, nodes_model_advanced.py, nodes_lora_extract.py
- Sampler nodes: nodes_custom_sampler.py, nodes_align_your_steps.py
- Control nodes: nodes_controlnet.py, nodes_attention_multiply.py, nodes_hooks.py
- Training nodes: nodes_train.py, nodes_dataset.py
- Utility nodes: nodes_logic.py, nodes_canny.py, nodes_differential_diffusion.py
- Architecture-specific: nodes_sd3.py, nodes_pixart.py, nodes_lumina2.py, nodes_kandinsky5.py, nodes_hidream.py, nodes_fresca.py, nodes_hunyuan3d.py
- Media nodes: nodes_load_3d.py, nodes_webcam.py, nodes_preview_any.py, nodes_wanmove.py

Uses search_aliases parameter in io.Schema() for v3 nodes, SEARCH_ALIASES class attribute for legacy nodes.
2026-01-22 18:36:58 -08:00
Omri Marom
d7f3241bf6 qwen_image: propagate attention mask. (#11966) 2026-01-22 20:02:31 -05:00
comfyanonymous
09a2e67151 Support loading flux 2 klein checkpoints saved with SaveCheckpoint. (#12033) 2026-01-22 18:20:48 -05:00
rattus
0fd1b78736 Reduce LTX2 VAE VRAM consumption (#12028)
* causal_video_ae: Remove attention ResNet

This attention_head_dim argument does not exist on this constructor so
this is dead code. Remove as generic attention mid VAE conflicts with
temporal roll.

* ltx-vae: consoldate causal/non-causal code paths

* ltx-vae: add cache rolling adder

* ltx-vae: use cached adder for resnet

* ltx-vae: Implement rolling VAE

Implement a temporal rolling VAE for the LTX2 VAE.

Usually when doing temporal rolling VAEs you can just chunk on time relying
on causality and cache behind you as you go. The LTX VAE is however
non-causal.

So go whole hog and implement per layer run ahead and backpressure between
the decoder layers using recursive state beween the layers.

Operations are ammended with temporal_cache_state{} which they can use to
hold any state then need for partial execution. Convolutions cache their
inputs behind the up to N-1 frames, and skip connections need to cache the
mismatch between convolution input and output that happens due to missing
future (non-causal) input.

Each call to run_up() processes a layer accross a range on input that
may or may not be complete. It goes depth first to process as much as
possible to try and digest frames to the final output ASAP. If layers run
out of input due to convolution losses, they simply return without action
effectively applying back-pressure to the earlier layers. As the earlier
layers do more work and caller deeper, the partial states are reconciled
and output continues to digest depth first as much as possible.

Chunking is done using a size quota rather than a fixed frame length and
any layer can initiate chunking, and multiple layers can chunk at different
granulatiries. This remove the old limitation of always having to process
1 latent frame to entirety and having to hold 8 full decoded frames as
the VRAM peak.
2026-01-22 16:54:18 -05:00
Terry Jia
8490eedadf add ply & 3dgs format in 3d node (#11474) 2026-01-22 09:46:56 -08:00
201 changed files with 17948 additions and 1699 deletions

View File

@@ -20,7 +20,7 @@ jobs:
git_tag: ${{ inputs.git_tag }}
cache_tag: "cu130"
python_minor: "13"
python_patch: "9"
python_patch: "11"
rel_name: "nvidia"
rel_extra_name: ""
test_release: true
@@ -65,11 +65,11 @@ jobs:
contents: "write"
packages: "write"
pull-requests: "read"
name: "Release AMD ROCm 7.1.1"
name: "Release AMD ROCm 7.2"
uses: ./.github/workflows/stable-release.yml
with:
git_tag: ${{ inputs.git_tag }}
cache_tag: "rocm711"
cache_tag: "rocm72"
python_minor: "12"
python_patch: "10"
rel_name: "amd"

View File

@@ -7,6 +7,8 @@ on:
jobs:
send-webhook:
runs-on: ubuntu-latest
env:
DESKTOP_REPO_DISPATCH_TOKEN: ${{ secrets.DESKTOP_REPO_DISPATCH_TOKEN }}
steps:
- name: Send release webhook
env:
@@ -106,3 +108,37 @@ jobs:
--fail --silent --show-error
echo "✅ Release webhook sent successfully"
- name: Send repository dispatch to desktop
env:
DISPATCH_TOKEN: ${{ env.DESKTOP_REPO_DISPATCH_TOKEN }}
RELEASE_TAG: ${{ github.event.release.tag_name }}
RELEASE_URL: ${{ github.event.release.html_url }}
run: |
set -euo pipefail
if [ -z "${DISPATCH_TOKEN:-}" ]; then
echo "::error::DESKTOP_REPO_DISPATCH_TOKEN is required but not set."
exit 1
fi
PAYLOAD="$(jq -n \
--arg release_tag "$RELEASE_TAG" \
--arg release_url "$RELEASE_URL" \
'{
event_type: "comfyui_release_published",
client_payload: {
release_tag: $release_tag,
release_url: $release_url
}
}')"
curl -fsSL \
-X POST \
-H "Accept: application/vnd.github+json" \
-H "Content-Type: application/json" \
-H "Authorization: Bearer ${DISPATCH_TOKEN}" \
https://api.github.com/repos/Comfy-Org/desktop/dispatches \
-d "$PAYLOAD"
echo "✅ Dispatched ComfyUI release ${RELEASE_TAG} to Comfy-Org/desktop"

View File

@@ -29,7 +29,7 @@ on:
description: 'python patch version'
required: true
type: string
default: "9"
default: "11"
# push:
# branches:
# - master

View File

@@ -208,7 +208,7 @@ comfy install
## Manual Install (Windows, Linux)
Python 3.14 works but you may encounter issues with the torch compile node. The free threaded variant is still missing some dependencies.
Python 3.14 works but some custom nodes may have issues. The free threaded variant works but some dependencies will enable the GIL so it's not fully supported.
Python 3.13 is very well supported. If you have trouble with some custom node dependencies on 3.13 you can try 3.12
@@ -227,7 +227,7 @@ Put your VAE in: models/vae
AMD users can install rocm and pytorch with pip if you don't have it already installed, this is the command to install the stable version:
```pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm6.4```
```pip install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/rocm7.1```
This is the command to install the nightly with ROCm 7.1 which might have some performance improvements:

View File

@@ -1,5 +1,8 @@
import logging
import uuid
import urllib.parse
import os
import contextlib
from aiohttp import web
from pydantic import ValidationError
@@ -8,6 +11,9 @@ import app.assets.manager as manager
from app import user_manager
from app.assets.api import schemas_in
from app.assets.helpers import get_query_dict
from app.assets.scanner import seed_assets
import folder_paths
ROUTES = web.RouteTableDef()
USER_MANAGER: user_manager.UserManager | None = None
@@ -15,6 +21,9 @@ USER_MANAGER: user_manager.UserManager | None = None
# UUID regex (canonical hyphenated form, case-insensitive)
UUID_RE = r"[0-9a-fA-F]{8}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{4}-[0-9a-fA-F]{12}"
# Note to any custom node developers reading this code:
# The assets system is not yet fully implemented, do not rely on the code in /app/assets remaining the same.
def register_assets_system(app: web.Application, user_manager_instance: user_manager.UserManager) -> None:
global USER_MANAGER
USER_MANAGER = user_manager_instance
@@ -28,6 +37,18 @@ def _validation_error_response(code: str, ve: ValidationError) -> web.Response:
return _error_response(400, code, "Validation failed.", {"errors": ve.json()})
@ROUTES.head("/api/assets/hash/{hash}")
async def head_asset_by_hash(request: web.Request) -> web.Response:
hash_str = request.match_info.get("hash", "").strip().lower()
if not hash_str or ":" not in hash_str:
return _error_response(400, "INVALID_HASH", "hash must be like 'blake3:<hex>'")
algo, digest = hash_str.split(":", 1)
if algo != "blake3" or not digest or any(c for c in digest if c not in "0123456789abcdef"):
return _error_response(400, "INVALID_HASH", "hash must be like 'blake3:<hex>'")
exists = manager.asset_exists(asset_hash=hash_str)
return web.Response(status=200 if exists else 404)
@ROUTES.get("/api/assets")
async def list_assets(request: web.Request) -> web.Response:
"""
@@ -50,7 +71,7 @@ async def list_assets(request: web.Request) -> web.Response:
order=q.order,
owner_id=USER_MANAGER.get_request_user_id(request),
)
return web.json_response(payload.model_dump(mode="json"))
return web.json_response(payload.model_dump(mode="json", exclude_none=True))
@ROUTES.get(f"/api/assets/{{id:{UUID_RE}}}")
@@ -76,6 +97,314 @@ async def get_asset(request: web.Request) -> web.Response:
return web.json_response(result.model_dump(mode="json"), status=200)
@ROUTES.get(f"/api/assets/{{id:{UUID_RE}}}/content")
async def download_asset_content(request: web.Request) -> web.Response:
# question: do we need disposition? could we just stick with one of these?
disposition = request.query.get("disposition", "attachment").lower().strip()
if disposition not in {"inline", "attachment"}:
disposition = "attachment"
try:
abs_path, content_type, filename = manager.resolve_asset_content_for_download(
asset_info_id=str(uuid.UUID(request.match_info["id"])),
owner_id=USER_MANAGER.get_request_user_id(request),
)
except ValueError as ve:
return _error_response(404, "ASSET_NOT_FOUND", str(ve))
except NotImplementedError as nie:
return _error_response(501, "BACKEND_UNSUPPORTED", str(nie))
except FileNotFoundError:
return _error_response(404, "FILE_NOT_FOUND", "Underlying file not found on disk.")
quoted = (filename or "").replace("\r", "").replace("\n", "").replace('"', "'")
cd = f'{disposition}; filename="{quoted}"; filename*=UTF-8\'\'{urllib.parse.quote(filename)}'
file_size = os.path.getsize(abs_path)
logging.info(
"download_asset_content: path=%s, size=%d bytes (%.2f MB), content_type=%s, filename=%s",
abs_path,
file_size,
file_size / (1024 * 1024),
content_type,
filename,
)
async def file_sender():
chunk_size = 64 * 1024
with open(abs_path, "rb") as f:
while True:
chunk = f.read(chunk_size)
if not chunk:
break
yield chunk
return web.Response(
body=file_sender(),
content_type=content_type,
headers={
"Content-Disposition": cd,
"Content-Length": str(file_size),
},
)
@ROUTES.post("/api/assets/from-hash")
async def create_asset_from_hash(request: web.Request) -> web.Response:
try:
payload = await request.json()
body = schemas_in.CreateFromHashBody.model_validate(payload)
except ValidationError as ve:
return _validation_error_response("INVALID_BODY", ve)
except Exception:
return _error_response(400, "INVALID_JSON", "Request body must be valid JSON.")
result = manager.create_asset_from_hash(
hash_str=body.hash,
name=body.name,
tags=body.tags,
user_metadata=body.user_metadata,
owner_id=USER_MANAGER.get_request_user_id(request),
)
if result is None:
return _error_response(404, "ASSET_NOT_FOUND", f"Asset content {body.hash} does not exist")
return web.json_response(result.model_dump(mode="json"), status=201)
@ROUTES.post("/api/assets")
async def upload_asset(request: web.Request) -> web.Response:
"""Multipart/form-data endpoint for Asset uploads."""
if not (request.content_type or "").lower().startswith("multipart/"):
return _error_response(415, "UNSUPPORTED_MEDIA_TYPE", "Use multipart/form-data for uploads.")
reader = await request.multipart()
file_present = False
file_client_name: str | None = None
tags_raw: list[str] = []
provided_name: str | None = None
user_metadata_raw: str | None = None
provided_hash: str | None = None
provided_hash_exists: bool | None = None
file_written = 0
tmp_path: str | None = None
while True:
field = await reader.next()
if field is None:
break
fname = getattr(field, "name", "") or ""
if fname == "hash":
try:
s = ((await field.text()) or "").strip().lower()
except Exception:
return _error_response(400, "INVALID_HASH", "hash must be like 'blake3:<hex>'")
if s:
if ":" not in s:
return _error_response(400, "INVALID_HASH", "hash must be like 'blake3:<hex>'")
algo, digest = s.split(":", 1)
if algo != "blake3" or not digest or any(c for c in digest if c not in "0123456789abcdef"):
return _error_response(400, "INVALID_HASH", "hash must be like 'blake3:<hex>'")
provided_hash = f"{algo}:{digest}"
try:
provided_hash_exists = manager.asset_exists(asset_hash=provided_hash)
except Exception:
provided_hash_exists = None # do not fail the whole request here
elif fname == "file":
file_present = True
file_client_name = (field.filename or "").strip()
if provided_hash and provided_hash_exists is True:
# If client supplied a hash that we know exists, drain but do not write to disk
try:
while True:
chunk = await field.read_chunk(8 * 1024 * 1024)
if not chunk:
break
file_written += len(chunk)
except Exception:
return _error_response(500, "UPLOAD_IO_ERROR", "Failed to receive uploaded file.")
continue # Do not create temp file; we will create AssetInfo from the existing content
# Otherwise, store to temp for hashing/ingest
uploads_root = os.path.join(folder_paths.get_temp_directory(), "uploads")
unique_dir = os.path.join(uploads_root, uuid.uuid4().hex)
os.makedirs(unique_dir, exist_ok=True)
tmp_path = os.path.join(unique_dir, ".upload.part")
try:
with open(tmp_path, "wb") as f:
while True:
chunk = await field.read_chunk(8 * 1024 * 1024)
if not chunk:
break
f.write(chunk)
file_written += len(chunk)
except Exception:
try:
if os.path.exists(tmp_path or ""):
os.remove(tmp_path)
finally:
return _error_response(500, "UPLOAD_IO_ERROR", "Failed to receive and store uploaded file.")
elif fname == "tags":
tags_raw.append((await field.text()) or "")
elif fname == "name":
provided_name = (await field.text()) or None
elif fname == "user_metadata":
user_metadata_raw = (await field.text()) or None
# If client did not send file, and we are not doing a from-hash fast path -> error
if not file_present and not (provided_hash and provided_hash_exists):
return _error_response(400, "MISSING_FILE", "Form must include a 'file' part or a known 'hash'.")
if file_present and file_written == 0 and not (provided_hash and provided_hash_exists):
# Empty upload is only acceptable if we are fast-pathing from existing hash
try:
if tmp_path and os.path.exists(tmp_path):
os.remove(tmp_path)
finally:
return _error_response(400, "EMPTY_UPLOAD", "Uploaded file is empty.")
try:
spec = schemas_in.UploadAssetSpec.model_validate({
"tags": tags_raw,
"name": provided_name,
"user_metadata": user_metadata_raw,
"hash": provided_hash,
})
except ValidationError as ve:
try:
if tmp_path and os.path.exists(tmp_path):
os.remove(tmp_path)
finally:
return _validation_error_response("INVALID_BODY", ve)
# Validate models category against configured folders (consistent with previous behavior)
if spec.tags and spec.tags[0] == "models":
if len(spec.tags) < 2 or spec.tags[1] not in folder_paths.folder_names_and_paths:
if tmp_path and os.path.exists(tmp_path):
os.remove(tmp_path)
return _error_response(
400, "INVALID_BODY", f"unknown models category '{spec.tags[1] if len(spec.tags) >= 2 else ''}'"
)
owner_id = USER_MANAGER.get_request_user_id(request)
# Fast path: if a valid provided hash exists, create AssetInfo without writing anything
if spec.hash and provided_hash_exists is True:
try:
result = manager.create_asset_from_hash(
hash_str=spec.hash,
name=spec.name or (spec.hash.split(":", 1)[1]),
tags=spec.tags,
user_metadata=spec.user_metadata or {},
owner_id=owner_id,
)
except Exception:
logging.exception("create_asset_from_hash failed for hash=%s, owner_id=%s", spec.hash, owner_id)
return _error_response(500, "INTERNAL", "Unexpected server error.")
if result is None:
return _error_response(404, "ASSET_NOT_FOUND", f"Asset content {spec.hash} does not exist")
# Drain temp if we accidentally saved (e.g., hash field came after file)
if tmp_path and os.path.exists(tmp_path):
with contextlib.suppress(Exception):
os.remove(tmp_path)
status = 200 if (not result.created_new) else 201
return web.json_response(result.model_dump(mode="json"), status=status)
# Otherwise, we must have a temp file path to ingest
if not tmp_path or not os.path.exists(tmp_path):
# The only case we reach here without a temp file is: client sent a hash that does not exist and no file
return _error_response(404, "ASSET_NOT_FOUND", "Provided hash not found and no file uploaded.")
try:
created = manager.upload_asset_from_temp_path(
spec,
temp_path=tmp_path,
client_filename=file_client_name,
owner_id=owner_id,
expected_asset_hash=spec.hash,
)
status = 201 if created.created_new else 200
return web.json_response(created.model_dump(mode="json"), status=status)
except ValueError as e:
if tmp_path and os.path.exists(tmp_path):
os.remove(tmp_path)
msg = str(e)
if "HASH_MISMATCH" in msg or msg.strip().upper() == "HASH_MISMATCH":
return _error_response(
400,
"HASH_MISMATCH",
"Uploaded file hash does not match provided hash.",
)
return _error_response(400, "BAD_REQUEST", "Invalid inputs.")
except Exception:
if tmp_path and os.path.exists(tmp_path):
os.remove(tmp_path)
logging.exception("upload_asset_from_temp_path failed for tmp_path=%s, owner_id=%s", tmp_path, owner_id)
return _error_response(500, "INTERNAL", "Unexpected server error.")
@ROUTES.put(f"/api/assets/{{id:{UUID_RE}}}")
async def update_asset(request: web.Request) -> web.Response:
asset_info_id = str(uuid.UUID(request.match_info["id"]))
try:
body = schemas_in.UpdateAssetBody.model_validate(await request.json())
except ValidationError as ve:
return _validation_error_response("INVALID_BODY", ve)
except Exception:
return _error_response(400, "INVALID_JSON", "Request body must be valid JSON.")
try:
result = manager.update_asset(
asset_info_id=asset_info_id,
name=body.name,
user_metadata=body.user_metadata,
owner_id=USER_MANAGER.get_request_user_id(request),
)
except (ValueError, PermissionError) as ve:
return _error_response(404, "ASSET_NOT_FOUND", str(ve), {"id": asset_info_id})
except Exception:
logging.exception(
"update_asset failed for asset_info_id=%s, owner_id=%s",
asset_info_id,
USER_MANAGER.get_request_user_id(request),
)
return _error_response(500, "INTERNAL", "Unexpected server error.")
return web.json_response(result.model_dump(mode="json"), status=200)
@ROUTES.delete(f"/api/assets/{{id:{UUID_RE}}}")
async def delete_asset(request: web.Request) -> web.Response:
asset_info_id = str(uuid.UUID(request.match_info["id"]))
delete_content = request.query.get("delete_content")
delete_content = True if delete_content is None else delete_content.lower() not in {"0", "false", "no"}
try:
deleted = manager.delete_asset_reference(
asset_info_id=asset_info_id,
owner_id=USER_MANAGER.get_request_user_id(request),
delete_content_if_orphan=delete_content,
)
except Exception:
logging.exception(
"delete_asset_reference failed for asset_info_id=%s, owner_id=%s",
asset_info_id,
USER_MANAGER.get_request_user_id(request),
)
return _error_response(500, "INTERNAL", "Unexpected server error.")
if not deleted:
return _error_response(404, "ASSET_NOT_FOUND", f"AssetInfo {asset_info_id} not found.")
return web.Response(status=204)
@ROUTES.get("/api/tags")
async def get_tags(request: web.Request) -> web.Response:
"""
@@ -100,3 +429,86 @@ async def get_tags(request: web.Request) -> web.Response:
owner_id=USER_MANAGER.get_request_user_id(request),
)
return web.json_response(result.model_dump(mode="json"))
@ROUTES.post(f"/api/assets/{{id:{UUID_RE}}}/tags")
async def add_asset_tags(request: web.Request) -> web.Response:
asset_info_id = str(uuid.UUID(request.match_info["id"]))
try:
payload = await request.json()
data = schemas_in.TagsAdd.model_validate(payload)
except ValidationError as ve:
return _error_response(400, "INVALID_BODY", "Invalid JSON body for tags add.", {"errors": ve.errors()})
except Exception:
return _error_response(400, "INVALID_JSON", "Request body must be valid JSON.")
try:
result = manager.add_tags_to_asset(
asset_info_id=asset_info_id,
tags=data.tags,
origin="manual",
owner_id=USER_MANAGER.get_request_user_id(request),
)
except (ValueError, PermissionError) as ve:
return _error_response(404, "ASSET_NOT_FOUND", str(ve), {"id": asset_info_id})
except Exception:
logging.exception(
"add_tags_to_asset failed for asset_info_id=%s, owner_id=%s",
asset_info_id,
USER_MANAGER.get_request_user_id(request),
)
return _error_response(500, "INTERNAL", "Unexpected server error.")
return web.json_response(result.model_dump(mode="json"), status=200)
@ROUTES.delete(f"/api/assets/{{id:{UUID_RE}}}/tags")
async def delete_asset_tags(request: web.Request) -> web.Response:
asset_info_id = str(uuid.UUID(request.match_info["id"]))
try:
payload = await request.json()
data = schemas_in.TagsRemove.model_validate(payload)
except ValidationError as ve:
return _error_response(400, "INVALID_BODY", "Invalid JSON body for tags remove.", {"errors": ve.errors()})
except Exception:
return _error_response(400, "INVALID_JSON", "Request body must be valid JSON.")
try:
result = manager.remove_tags_from_asset(
asset_info_id=asset_info_id,
tags=data.tags,
owner_id=USER_MANAGER.get_request_user_id(request),
)
except ValueError as ve:
return _error_response(404, "ASSET_NOT_FOUND", str(ve), {"id": asset_info_id})
except Exception:
logging.exception(
"remove_tags_from_asset failed for asset_info_id=%s, owner_id=%s",
asset_info_id,
USER_MANAGER.get_request_user_id(request),
)
return _error_response(500, "INTERNAL", "Unexpected server error.")
return web.json_response(result.model_dump(mode="json"), status=200)
@ROUTES.post("/api/assets/seed")
async def seed_assets_endpoint(request: web.Request) -> web.Response:
"""Trigger asset seeding for specified roots (models, input, output)."""
try:
payload = await request.json()
roots = payload.get("roots", ["models", "input", "output"])
except Exception:
roots = ["models", "input", "output"]
valid_roots = [r for r in roots if r in ("models", "input", "output")]
if not valid_roots:
return _error_response(400, "INVALID_BODY", "No valid roots specified")
try:
seed_assets(tuple(valid_roots))
except Exception:
logging.exception("seed_assets failed for roots=%s", valid_roots)
return _error_response(500, "INTERNAL", "Seed operation failed")
return web.json_response({"seeded": valid_roots}, status=200)

View File

@@ -1,5 +1,4 @@
import json
import uuid
from typing import Any, Literal
from pydantic import (
@@ -8,9 +7,9 @@ from pydantic import (
Field,
conint,
field_validator,
model_validator,
)
class ListAssetsQuery(BaseModel):
include_tags: list[str] = Field(default_factory=list)
exclude_tags: list[str] = Field(default_factory=list)
@@ -57,6 +56,57 @@ class ListAssetsQuery(BaseModel):
return None
class UpdateAssetBody(BaseModel):
name: str | None = None
user_metadata: dict[str, Any] | None = None
@model_validator(mode="after")
def _at_least_one(self):
if self.name is None and self.user_metadata is None:
raise ValueError("Provide at least one of: name, user_metadata.")
return self
class CreateFromHashBody(BaseModel):
model_config = ConfigDict(extra="ignore", str_strip_whitespace=True)
hash: str
name: str
tags: list[str] = Field(default_factory=list)
user_metadata: dict[str, Any] = Field(default_factory=dict)
@field_validator("hash")
@classmethod
def _require_blake3(cls, v):
s = (v or "").strip().lower()
if ":" not in s:
raise ValueError("hash must be 'blake3:<hex>'")
algo, digest = s.split(":", 1)
if algo != "blake3":
raise ValueError("only canonical 'blake3:<hex>' is accepted here")
if not digest or any(c for c in digest if c not in "0123456789abcdef"):
raise ValueError("hash digest must be lowercase hex")
return s
@field_validator("tags", mode="before")
@classmethod
def _tags_norm(cls, v):
if v is None:
return []
if isinstance(v, list):
out = [str(t).strip().lower() for t in v if str(t).strip()]
seen = set()
dedup = []
for t in out:
if t not in seen:
seen.add(t)
dedup.append(t)
return dedup
if isinstance(v, str):
return [t.strip().lower() for t in v.split(",") if t.strip()]
return []
class TagsListQuery(BaseModel):
model_config = ConfigDict(extra="ignore", str_strip_whitespace=True)
@@ -75,20 +125,140 @@ class TagsListQuery(BaseModel):
return v.lower() or None
class SetPreviewBody(BaseModel):
"""Set or clear the preview for an AssetInfo. Provide an Asset.id or null."""
preview_id: str | None = None
class TagsAdd(BaseModel):
model_config = ConfigDict(extra="ignore")
tags: list[str] = Field(..., min_length=1)
@field_validator("preview_id", mode="before")
@field_validator("tags")
@classmethod
def _norm_uuid(cls, v):
def normalize_tags(cls, v: list[str]) -> list[str]:
out = []
for t in v:
if not isinstance(t, str):
raise TypeError("tags must be strings")
tnorm = t.strip().lower()
if tnorm:
out.append(tnorm)
seen = set()
deduplicated = []
for x in out:
if x not in seen:
seen.add(x)
deduplicated.append(x)
return deduplicated
class TagsRemove(TagsAdd):
pass
class UploadAssetSpec(BaseModel):
"""Upload Asset operation.
- tags: ordered; first is root ('models'|'input'|'output');
if root == 'models', second must be a valid category from folder_paths.folder_names_and_paths
- name: display name
- user_metadata: arbitrary JSON object (optional)
- hash: optional canonical 'blake3:<hex>' provided by the client for validation / fast-path
Files created via this endpoint are stored on disk using the **content hash** as the filename stem
and the original extension is preserved when available.
"""
model_config = ConfigDict(extra="ignore", str_strip_whitespace=True)
tags: list[str] = Field(..., min_length=1)
name: str | None = Field(default=None, max_length=512, description="Display Name")
user_metadata: dict[str, Any] = Field(default_factory=dict)
hash: str | None = Field(default=None)
@field_validator("hash", mode="before")
@classmethod
def _parse_hash(cls, v):
if v is None:
return None
s = str(v).strip()
s = str(v).strip().lower()
if not s:
return None
try:
uuid.UUID(s)
except Exception:
raise ValueError("preview_id must be a UUID")
return s
if ":" not in s:
raise ValueError("hash must be 'blake3:<hex>'")
algo, digest = s.split(":", 1)
if algo != "blake3":
raise ValueError("only canonical 'blake3:<hex>' is accepted here")
if not digest or any(c for c in digest if c not in "0123456789abcdef"):
raise ValueError("hash digest must be lowercase hex")
return f"{algo}:{digest}"
@field_validator("tags", mode="before")
@classmethod
def _parse_tags(cls, v):
"""
Accepts a list of strings (possibly multiple form fields),
where each string can be:
- JSON array (e.g., '["models","loras","foo"]')
- comma-separated ('models, loras, foo')
- single token ('models')
Returns a normalized, deduplicated, ordered list.
"""
items: list[str] = []
if v is None:
return []
if isinstance(v, str):
v = [v]
if isinstance(v, list):
for item in v:
if item is None:
continue
s = str(item).strip()
if not s:
continue
if s.startswith("["):
try:
arr = json.loads(s)
if isinstance(arr, list):
items.extend(str(x) for x in arr)
continue
except Exception:
pass # fallback to CSV parse below
items.extend([p for p in s.split(",") if p.strip()])
else:
return []
# normalize + dedupe
norm = []
seen = set()
for t in items:
tnorm = str(t).strip().lower()
if tnorm and tnorm not in seen:
seen.add(tnorm)
norm.append(tnorm)
return norm
@field_validator("user_metadata", mode="before")
@classmethod
def _parse_metadata_json(cls, v):
if v is None or isinstance(v, dict):
return v or {}
if isinstance(v, str):
s = v.strip()
if not s:
return {}
try:
parsed = json.loads(s)
except Exception as e:
raise ValueError(f"user_metadata must be JSON: {e}") from e
if not isinstance(parsed, dict):
raise ValueError("user_metadata must be a JSON object")
return parsed
return {}
@model_validator(mode="after")
def _validate_order(self):
if not self.tags:
raise ValueError("tags must be provided and non-empty")
root = self.tags[0]
if root not in {"models", "input", "output"}:
raise ValueError("first tag must be one of: models, input, output")
if root == "models":
if len(self.tags) < 2:
raise ValueError("models uploads require a category tag as the second tag")
return self

View File

@@ -29,6 +29,21 @@ class AssetsList(BaseModel):
has_more: bool
class AssetUpdated(BaseModel):
id: str
name: str
asset_hash: str | None = None
tags: list[str] = Field(default_factory=list)
user_metadata: dict[str, Any] = Field(default_factory=dict)
updated_at: datetime | None = None
model_config = ConfigDict(from_attributes=True)
@field_serializer("updated_at")
def _ser_updated(self, v: datetime | None, _info):
return v.isoformat() if v else None
class AssetDetail(BaseModel):
id: str
name: str
@@ -48,6 +63,10 @@ class AssetDetail(BaseModel):
return v.isoformat() if v else None
class AssetCreated(AssetDetail):
created_new: bool
class TagUsage(BaseModel):
name: str
count: int
@@ -58,3 +77,17 @@ class TagsList(BaseModel):
tags: list[TagUsage] = Field(default_factory=list)
total: int
has_more: bool
class TagsAdd(BaseModel):
model_config = ConfigDict(str_strip_whitespace=True)
added: list[str] = Field(default_factory=list)
already_present: list[str] = Field(default_factory=list)
total_tags: list[str] = Field(default_factory=list)
class TagsRemove(BaseModel):
model_config = ConfigDict(str_strip_whitespace=True)
removed: list[str] = Field(default_factory=list)
not_present: list[str] = Field(default_factory=list)
total_tags: list[str] = Field(default_factory=list)

View File

@@ -1,9 +1,17 @@
import os
import logging
import sqlalchemy as sa
from collections import defaultdict
from sqlalchemy import select, exists, func
from datetime import datetime
from typing import Iterable, Any
from sqlalchemy import select, delete, exists, func
from sqlalchemy.dialects import sqlite
from sqlalchemy.exc import IntegrityError
from sqlalchemy.orm import Session, contains_eager, noload
from app.assets.database.models import Asset, AssetInfo, AssetInfoMeta, AssetInfoTag, Tag
from app.assets.helpers import escape_like_prefix, normalize_tags
from app.assets.database.models import Asset, AssetInfo, AssetCacheState, AssetInfoMeta, AssetInfoTag, Tag
from app.assets.helpers import (
compute_relative_filename, escape_like_prefix, normalize_tags, project_kv, utcnow
)
from typing import Sequence
@@ -15,6 +23,22 @@ def visible_owner_clause(owner_id: str) -> sa.sql.ClauseElement:
return AssetInfo.owner_id.in_(["", owner_id])
def pick_best_live_path(states: Sequence[AssetCacheState]) -> str:
"""
Return the best on-disk path among cache states:
1) Prefer a path that exists with needs_verify == False (already verified).
2) Otherwise, pick the first path that exists.
3) Otherwise return empty string.
"""
alive = [s for s in states if getattr(s, "file_path", None) and os.path.isfile(s.file_path)]
if not alive:
return ""
for s in alive:
if not getattr(s, "needs_verify", False):
return s.file_path
return alive[0].file_path
def apply_tag_filters(
stmt: sa.sql.Select,
include_tags: Sequence[str] | None = None,
@@ -42,6 +66,7 @@ def apply_tag_filters(
)
return stmt
def apply_metadata_filter(
stmt: sa.sql.Select,
metadata_filter: dict | None = None,
@@ -94,7 +119,11 @@ def apply_metadata_filter(
return stmt
def asset_exists_by_hash(session: Session, asset_hash: str) -> bool:
def asset_exists_by_hash(
session: Session,
*,
asset_hash: str,
) -> bool:
"""
Check if an asset with a given hash exists in database.
"""
@@ -105,9 +134,39 @@ def asset_exists_by_hash(session: Session, asset_hash: str) -> bool:
).first()
return row is not None
def get_asset_info_by_id(session: Session, asset_info_id: str) -> AssetInfo | None:
def asset_info_exists_for_asset_id(
session: Session,
*,
asset_id: str,
) -> bool:
q = (
select(sa.literal(True))
.select_from(AssetInfo)
.where(AssetInfo.asset_id == asset_id)
.limit(1)
)
return (session.execute(q)).first() is not None
def get_asset_by_hash(
session: Session,
*,
asset_hash: str,
) -> Asset | None:
return (
session.execute(select(Asset).where(Asset.hash == asset_hash).limit(1))
).scalars().first()
def get_asset_info_by_id(
session: Session,
*,
asset_info_id: str,
) -> AssetInfo | None:
return session.get(AssetInfo, asset_info_id)
def list_asset_infos_page(
session: Session,
owner_id: str = "",
@@ -171,12 +230,14 @@ def list_asset_infos_page(
select(AssetInfoTag.asset_info_id, Tag.name)
.join(Tag, Tag.name == AssetInfoTag.tag_name)
.where(AssetInfoTag.asset_info_id.in_(id_list))
.order_by(AssetInfoTag.added_at)
)
for aid, tag_name in rows.all():
tag_map[aid].append(tag_name)
return infos, tag_map, total
def fetch_asset_info_asset_and_tags(
session: Session,
asset_info_id: str,
@@ -208,6 +269,494 @@ def fetch_asset_info_asset_and_tags(
tags.append(tag_name)
return first_info, first_asset, tags
def fetch_asset_info_and_asset(
session: Session,
*,
asset_info_id: str,
owner_id: str = "",
) -> tuple[AssetInfo, Asset] | None:
stmt = (
select(AssetInfo, Asset)
.join(Asset, Asset.id == AssetInfo.asset_id)
.where(
AssetInfo.id == asset_info_id,
visible_owner_clause(owner_id),
)
.limit(1)
.options(noload(AssetInfo.tags))
)
row = session.execute(stmt)
pair = row.first()
if not pair:
return None
return pair[0], pair[1]
def list_cache_states_by_asset_id(
session: Session, *, asset_id: str
) -> Sequence[AssetCacheState]:
return (
session.execute(
select(AssetCacheState)
.where(AssetCacheState.asset_id == asset_id)
.order_by(AssetCacheState.id.asc())
)
).scalars().all()
def touch_asset_info_by_id(
session: Session,
*,
asset_info_id: str,
ts: datetime | None = None,
only_if_newer: bool = True,
) -> None:
ts = ts or utcnow()
stmt = sa.update(AssetInfo).where(AssetInfo.id == asset_info_id)
if only_if_newer:
stmt = stmt.where(
sa.or_(AssetInfo.last_access_time.is_(None), AssetInfo.last_access_time < ts)
)
session.execute(stmt.values(last_access_time=ts))
def create_asset_info_for_existing_asset(
session: Session,
*,
asset_hash: str,
name: str,
user_metadata: dict | None = None,
tags: Sequence[str] | None = None,
tag_origin: str = "manual",
owner_id: str = "",
) -> AssetInfo:
"""Create or return an existing AssetInfo for an Asset identified by asset_hash."""
now = utcnow()
asset = get_asset_by_hash(session, asset_hash=asset_hash)
if not asset:
raise ValueError(f"Unknown asset hash {asset_hash}")
info = AssetInfo(
owner_id=owner_id,
name=name,
asset_id=asset.id,
preview_id=None,
created_at=now,
updated_at=now,
last_access_time=now,
)
try:
with session.begin_nested():
session.add(info)
session.flush()
except IntegrityError:
existing = (
session.execute(
select(AssetInfo)
.options(noload(AssetInfo.tags))
.where(
AssetInfo.asset_id == asset.id,
AssetInfo.name == name,
AssetInfo.owner_id == owner_id,
)
.limit(1)
)
).unique().scalars().first()
if not existing:
raise RuntimeError("AssetInfo upsert failed to find existing row after conflict.")
return existing
# metadata["filename"] hack
new_meta = dict(user_metadata or {})
computed_filename = None
try:
p = pick_best_live_path(list_cache_states_by_asset_id(session, asset_id=asset.id))
if p:
computed_filename = compute_relative_filename(p)
except Exception:
computed_filename = None
if computed_filename:
new_meta["filename"] = computed_filename
if new_meta:
replace_asset_info_metadata_projection(
session,
asset_info_id=info.id,
user_metadata=new_meta,
)
if tags is not None:
set_asset_info_tags(
session,
asset_info_id=info.id,
tags=tags,
origin=tag_origin,
)
return info
def set_asset_info_tags(
session: Session,
*,
asset_info_id: str,
tags: Sequence[str],
origin: str = "manual",
) -> dict:
desired = normalize_tags(tags)
current = set(
tag_name for (tag_name,) in (
session.execute(select(AssetInfoTag.tag_name).where(AssetInfoTag.asset_info_id == asset_info_id))
).all()
)
to_add = [t for t in desired if t not in current]
to_remove = [t for t in current if t not in desired]
if to_add:
ensure_tags_exist(session, to_add, tag_type="user")
session.add_all([
AssetInfoTag(asset_info_id=asset_info_id, tag_name=t, origin=origin, added_at=utcnow())
for t in to_add
])
session.flush()
if to_remove:
session.execute(
delete(AssetInfoTag)
.where(AssetInfoTag.asset_info_id == asset_info_id, AssetInfoTag.tag_name.in_(to_remove))
)
session.flush()
return {"added": to_add, "removed": to_remove, "total": desired}
def replace_asset_info_metadata_projection(
session: Session,
*,
asset_info_id: str,
user_metadata: dict | None = None,
) -> None:
info = session.get(AssetInfo, asset_info_id)
if not info:
raise ValueError(f"AssetInfo {asset_info_id} not found")
info.user_metadata = user_metadata or {}
info.updated_at = utcnow()
session.flush()
session.execute(delete(AssetInfoMeta).where(AssetInfoMeta.asset_info_id == asset_info_id))
session.flush()
if not user_metadata:
return
rows: list[AssetInfoMeta] = []
for k, v in user_metadata.items():
for r in project_kv(k, v):
rows.append(
AssetInfoMeta(
asset_info_id=asset_info_id,
key=r["key"],
ordinal=int(r["ordinal"]),
val_str=r.get("val_str"),
val_num=r.get("val_num"),
val_bool=r.get("val_bool"),
val_json=r.get("val_json"),
)
)
if rows:
session.add_all(rows)
session.flush()
def ingest_fs_asset(
session: Session,
*,
asset_hash: str,
abs_path: str,
size_bytes: int,
mtime_ns: int,
mime_type: str | None = None,
info_name: str | None = None,
owner_id: str = "",
preview_id: str | None = None,
user_metadata: dict | None = None,
tags: Sequence[str] = (),
tag_origin: str = "manual",
require_existing_tags: bool = False,
) -> dict:
"""
Idempotently upsert:
- Asset by content hash (create if missing)
- AssetCacheState(file_path) pointing to asset_id
- Optionally AssetInfo + tag links and metadata projection
Returns flags and ids.
"""
locator = os.path.abspath(abs_path)
now = utcnow()
if preview_id:
if not session.get(Asset, preview_id):
preview_id = None
out: dict[str, Any] = {
"asset_created": False,
"asset_updated": False,
"state_created": False,
"state_updated": False,
"asset_info_id": None,
}
# 1) Asset by hash
asset = (
session.execute(select(Asset).where(Asset.hash == asset_hash).limit(1))
).scalars().first()
if not asset:
vals = {
"hash": asset_hash,
"size_bytes": int(size_bytes),
"mime_type": mime_type,
"created_at": now,
}
res = session.execute(
sqlite.insert(Asset)
.values(**vals)
.on_conflict_do_nothing(index_elements=[Asset.hash])
)
if int(res.rowcount or 0) > 0:
out["asset_created"] = True
asset = (
session.execute(
select(Asset).where(Asset.hash == asset_hash).limit(1)
)
).scalars().first()
if not asset:
raise RuntimeError("Asset row not found after upsert.")
else:
changed = False
if asset.size_bytes != int(size_bytes) and int(size_bytes) > 0:
asset.size_bytes = int(size_bytes)
changed = True
if mime_type and asset.mime_type != mime_type:
asset.mime_type = mime_type
changed = True
if changed:
out["asset_updated"] = True
# 2) AssetCacheState upsert by file_path (unique)
vals = {
"asset_id": asset.id,
"file_path": locator,
"mtime_ns": int(mtime_ns),
}
ins = (
sqlite.insert(AssetCacheState)
.values(**vals)
.on_conflict_do_nothing(index_elements=[AssetCacheState.file_path])
)
res = session.execute(ins)
if int(res.rowcount or 0) > 0:
out["state_created"] = True
else:
upd = (
sa.update(AssetCacheState)
.where(AssetCacheState.file_path == locator)
.where(
sa.or_(
AssetCacheState.asset_id != asset.id,
AssetCacheState.mtime_ns.is_(None),
AssetCacheState.mtime_ns != int(mtime_ns),
)
)
.values(asset_id=asset.id, mtime_ns=int(mtime_ns))
)
res2 = session.execute(upd)
if int(res2.rowcount or 0) > 0:
out["state_updated"] = True
# 3) Optional AssetInfo + tags + metadata
if info_name:
try:
with session.begin_nested():
info = AssetInfo(
owner_id=owner_id,
name=info_name,
asset_id=asset.id,
preview_id=preview_id,
created_at=now,
updated_at=now,
last_access_time=now,
)
session.add(info)
session.flush()
out["asset_info_id"] = info.id
except IntegrityError:
pass
existing_info = (
session.execute(
select(AssetInfo)
.where(
AssetInfo.asset_id == asset.id,
AssetInfo.name == info_name,
(AssetInfo.owner_id == owner_id),
)
.limit(1)
)
).unique().scalar_one_or_none()
if not existing_info:
raise RuntimeError("Failed to update or insert AssetInfo.")
if preview_id and existing_info.preview_id != preview_id:
existing_info.preview_id = preview_id
existing_info.updated_at = now
if existing_info.last_access_time < now:
existing_info.last_access_time = now
session.flush()
out["asset_info_id"] = existing_info.id
norm = [t.strip().lower() for t in (tags or []) if (t or "").strip()]
if norm and out["asset_info_id"] is not None:
if not require_existing_tags:
ensure_tags_exist(session, norm, tag_type="user")
existing_tag_names = set(
name for (name,) in (session.execute(select(Tag.name).where(Tag.name.in_(norm)))).all()
)
missing = [t for t in norm if t not in existing_tag_names]
if missing and require_existing_tags:
raise ValueError(f"Unknown tags: {missing}")
existing_links = set(
tag_name
for (tag_name,) in (
session.execute(
select(AssetInfoTag.tag_name).where(AssetInfoTag.asset_info_id == out["asset_info_id"])
)
).all()
)
to_add = [t for t in norm if t in existing_tag_names and t not in existing_links]
if to_add:
session.add_all(
[
AssetInfoTag(
asset_info_id=out["asset_info_id"],
tag_name=t,
origin=tag_origin,
added_at=now,
)
for t in to_add
]
)
session.flush()
# metadata["filename"] hack
if out["asset_info_id"] is not None:
primary_path = pick_best_live_path(list_cache_states_by_asset_id(session, asset_id=asset.id))
computed_filename = compute_relative_filename(primary_path) if primary_path else None
current_meta = existing_info.user_metadata or {}
new_meta = dict(current_meta)
if user_metadata is not None:
for k, v in user_metadata.items():
new_meta[k] = v
if computed_filename:
new_meta["filename"] = computed_filename
if new_meta != current_meta:
replace_asset_info_metadata_projection(
session,
asset_info_id=out["asset_info_id"],
user_metadata=new_meta,
)
try:
remove_missing_tag_for_asset_id(session, asset_id=asset.id)
except Exception:
logging.exception("Failed to clear 'missing' tag for asset %s", asset.id)
return out
def update_asset_info_full(
session: Session,
*,
asset_info_id: str,
name: str | None = None,
tags: Sequence[str] | None = None,
user_metadata: dict | None = None,
tag_origin: str = "manual",
asset_info_row: Any = None,
) -> AssetInfo:
if not asset_info_row:
info = session.get(AssetInfo, asset_info_id)
if not info:
raise ValueError(f"AssetInfo {asset_info_id} not found")
else:
info = asset_info_row
touched = False
if name is not None and name != info.name:
info.name = name
touched = True
computed_filename = None
try:
p = pick_best_live_path(list_cache_states_by_asset_id(session, asset_id=info.asset_id))
if p:
computed_filename = compute_relative_filename(p)
except Exception:
computed_filename = None
if user_metadata is not None:
new_meta = dict(user_metadata)
if computed_filename:
new_meta["filename"] = computed_filename
replace_asset_info_metadata_projection(
session, asset_info_id=asset_info_id, user_metadata=new_meta
)
touched = True
else:
if computed_filename:
current_meta = info.user_metadata or {}
if current_meta.get("filename") != computed_filename:
new_meta = dict(current_meta)
new_meta["filename"] = computed_filename
replace_asset_info_metadata_projection(
session, asset_info_id=asset_info_id, user_metadata=new_meta
)
touched = True
if tags is not None:
set_asset_info_tags(
session,
asset_info_id=asset_info_id,
tags=tags,
origin=tag_origin,
)
touched = True
if touched and user_metadata is None:
info.updated_at = utcnow()
session.flush()
return info
def delete_asset_info_by_id(
session: Session,
*,
asset_info_id: str,
owner_id: str,
) -> bool:
stmt = sa.delete(AssetInfo).where(
AssetInfo.id == asset_info_id,
visible_owner_clause(owner_id),
)
return int((session.execute(stmt)).rowcount or 0) > 0
def list_tags_with_usage(
session: Session,
prefix: str | None = None,
@@ -265,3 +814,163 @@ def list_tags_with_usage(
rows_norm = [(name, ttype, int(count or 0)) for (name, ttype, count) in rows]
return rows_norm, int(total or 0)
def ensure_tags_exist(session: Session, names: Iterable[str], tag_type: str = "user") -> None:
wanted = normalize_tags(list(names))
if not wanted:
return
rows = [{"name": n, "tag_type": tag_type} for n in list(dict.fromkeys(wanted))]
ins = (
sqlite.insert(Tag)
.values(rows)
.on_conflict_do_nothing(index_elements=[Tag.name])
)
session.execute(ins)
def get_asset_tags(session: Session, *, asset_info_id: str) -> list[str]:
return [
tag_name for (tag_name,) in (
session.execute(
select(AssetInfoTag.tag_name).where(AssetInfoTag.asset_info_id == asset_info_id)
)
).all()
]
def add_tags_to_asset_info(
session: Session,
*,
asset_info_id: str,
tags: Sequence[str],
origin: str = "manual",
create_if_missing: bool = True,
asset_info_row: Any = None,
) -> dict:
if not asset_info_row:
info = session.get(AssetInfo, asset_info_id)
if not info:
raise ValueError(f"AssetInfo {asset_info_id} not found")
norm = normalize_tags(tags)
if not norm:
total = get_asset_tags(session, asset_info_id=asset_info_id)
return {"added": [], "already_present": [], "total_tags": total}
if create_if_missing:
ensure_tags_exist(session, norm, tag_type="user")
current = {
tag_name
for (tag_name,) in (
session.execute(
sa.select(AssetInfoTag.tag_name).where(AssetInfoTag.asset_info_id == asset_info_id)
)
).all()
}
want = set(norm)
to_add = sorted(want - current)
if to_add:
with session.begin_nested() as nested:
try:
session.add_all(
[
AssetInfoTag(
asset_info_id=asset_info_id,
tag_name=t,
origin=origin,
added_at=utcnow(),
)
for t in to_add
]
)
session.flush()
except IntegrityError:
nested.rollback()
after = set(get_asset_tags(session, asset_info_id=asset_info_id))
return {
"added": sorted(((after - current) & want)),
"already_present": sorted(want & current),
"total_tags": sorted(after),
}
def remove_tags_from_asset_info(
session: Session,
*,
asset_info_id: str,
tags: Sequence[str],
) -> dict:
info = session.get(AssetInfo, asset_info_id)
if not info:
raise ValueError(f"AssetInfo {asset_info_id} not found")
norm = normalize_tags(tags)
if not norm:
total = get_asset_tags(session, asset_info_id=asset_info_id)
return {"removed": [], "not_present": [], "total_tags": total}
existing = {
tag_name
for (tag_name,) in (
session.execute(
sa.select(AssetInfoTag.tag_name).where(AssetInfoTag.asset_info_id == asset_info_id)
)
).all()
}
to_remove = sorted(set(t for t in norm if t in existing))
not_present = sorted(set(t for t in norm if t not in existing))
if to_remove:
session.execute(
delete(AssetInfoTag)
.where(
AssetInfoTag.asset_info_id == asset_info_id,
AssetInfoTag.tag_name.in_(to_remove),
)
)
session.flush()
total = get_asset_tags(session, asset_info_id=asset_info_id)
return {"removed": to_remove, "not_present": not_present, "total_tags": total}
def remove_missing_tag_for_asset_id(
session: Session,
*,
asset_id: str,
) -> None:
session.execute(
sa.delete(AssetInfoTag).where(
AssetInfoTag.asset_info_id.in_(sa.select(AssetInfo.id).where(AssetInfo.asset_id == asset_id)),
AssetInfoTag.tag_name == "missing",
)
)
def set_asset_info_preview(
session: Session,
*,
asset_info_id: str,
preview_asset_id: str | None = None,
) -> None:
"""Set or clear preview_id and bump updated_at. Raises on unknown IDs."""
info = session.get(AssetInfo, asset_info_id)
if not info:
raise ValueError(f"AssetInfo {asset_info_id} not found")
if preview_asset_id is None:
info.preview_id = None
else:
# validate preview asset exists
if not session.get(Asset, preview_asset_id):
raise ValueError(f"Preview Asset {preview_asset_id} not found")
info.preview_id = preview_asset_id
info.updated_at = utcnow()
session.flush()

View File

@@ -1,5 +1,6 @@
import contextlib
import os
from decimal import Decimal
from aiohttp import web
from datetime import datetime, timezone
from pathlib import Path
@@ -87,6 +88,40 @@ def get_comfy_models_folders() -> list[tuple[str, list[str]]]:
targets.append((name, paths))
return targets
def resolve_destination_from_tags(tags: list[str]) -> tuple[str, list[str]]:
"""Validates and maps tags -> (base_dir, subdirs_for_fs)"""
root = tags[0]
if root == "models":
if len(tags) < 2:
raise ValueError("at least two tags required for model asset")
try:
bases = folder_paths.folder_names_and_paths[tags[1]][0]
except KeyError:
raise ValueError(f"unknown model category '{tags[1]}'")
if not bases:
raise ValueError(f"no base path configured for category '{tags[1]}'")
base_dir = os.path.abspath(bases[0])
raw_subdirs = tags[2:]
else:
base_dir = os.path.abspath(
folder_paths.get_input_directory() if root == "input" else folder_paths.get_output_directory()
)
raw_subdirs = tags[1:]
for i in raw_subdirs:
if i in (".", ".."):
raise ValueError("invalid path component in tags")
return base_dir, raw_subdirs if raw_subdirs else []
def ensure_within_base(candidate: str, base: str) -> None:
cand_abs = os.path.abspath(candidate)
base_abs = os.path.abspath(base)
try:
if os.path.commonpath([cand_abs, base_abs]) != base_abs:
raise ValueError("destination escapes base directory")
except Exception:
raise ValueError("invalid destination path")
def compute_relative_filename(file_path: str) -> str | None:
"""
Return the model's path relative to the last well-known folder (the model category),
@@ -113,7 +148,6 @@ def compute_relative_filename(file_path: str) -> str | None:
return "/".join(inside)
return "/".join(parts) # input/output: keep all parts
def get_relative_to_root_category_path_of_asset(file_path: str) -> tuple[Literal["input", "output", "models"], str]:
"""Given an absolute or relative file path, determine which root category the path belongs to:
- 'input' if the file resides under `folder_paths.get_input_directory()`
@@ -215,3 +249,64 @@ def collect_models_files() -> list[str]:
if allowed:
out.append(abs_path)
return out
def is_scalar(v):
if v is None:
return True
if isinstance(v, bool):
return True
if isinstance(v, (int, float, Decimal, str)):
return True
return False
def project_kv(key: str, value):
"""
Turn a metadata key/value into typed projection rows.
Returns list[dict] with keys:
key, ordinal, and one of val_str / val_num / val_bool / val_json (others None)
"""
rows: list[dict] = []
def _null_row(ordinal: int) -> dict:
return {
"key": key, "ordinal": ordinal,
"val_str": None, "val_num": None, "val_bool": None, "val_json": None
}
if value is None:
rows.append(_null_row(0))
return rows
if is_scalar(value):
if isinstance(value, bool):
rows.append({"key": key, "ordinal": 0, "val_bool": bool(value)})
elif isinstance(value, (int, float, Decimal)):
num = value if isinstance(value, Decimal) else Decimal(str(value))
rows.append({"key": key, "ordinal": 0, "val_num": num})
elif isinstance(value, str):
rows.append({"key": key, "ordinal": 0, "val_str": value})
else:
rows.append({"key": key, "ordinal": 0, "val_json": value})
return rows
if isinstance(value, list):
if all(is_scalar(x) for x in value):
for i, x in enumerate(value):
if x is None:
rows.append(_null_row(i))
elif isinstance(x, bool):
rows.append({"key": key, "ordinal": i, "val_bool": bool(x)})
elif isinstance(x, (int, float, Decimal)):
num = x if isinstance(x, Decimal) else Decimal(str(x))
rows.append({"key": key, "ordinal": i, "val_num": num})
elif isinstance(x, str):
rows.append({"key": key, "ordinal": i, "val_str": x})
else:
rows.append({"key": key, "ordinal": i, "val_json": x})
return rows
for i, x in enumerate(value):
rows.append({"key": key, "ordinal": i, "val_json": x})
return rows
rows.append({"key": key, "ordinal": 0, "val_json": value})
return rows

View File

@@ -1,13 +1,33 @@
import os
import mimetypes
import contextlib
from typing import Sequence
from app.database.db import create_session
from app.assets.api import schemas_out
from app.assets.api import schemas_out, schemas_in
from app.assets.database.queries import (
asset_exists_by_hash,
asset_info_exists_for_asset_id,
get_asset_by_hash,
get_asset_info_by_id,
fetch_asset_info_asset_and_tags,
fetch_asset_info_and_asset,
create_asset_info_for_existing_asset,
touch_asset_info_by_id,
update_asset_info_full,
delete_asset_info_by_id,
list_cache_states_by_asset_id,
list_asset_infos_page,
list_tags_with_usage,
get_asset_tags,
add_tags_to_asset_info,
remove_tags_from_asset_info,
pick_best_live_path,
ingest_fs_asset,
set_asset_info_preview,
)
from app.assets.helpers import resolve_destination_from_tags, ensure_within_base
from app.assets.database.models import Asset
def _safe_sort_field(requested: str | None) -> str:
@@ -19,11 +39,28 @@ def _safe_sort_field(requested: str | None) -> str:
return "created_at"
def asset_exists(asset_hash: str) -> bool:
def _get_size_mtime_ns(path: str) -> tuple[int, int]:
st = os.stat(path, follow_symlinks=True)
return st.st_size, getattr(st, "st_mtime_ns", int(st.st_mtime * 1_000_000_000))
def _safe_filename(name: str | None, fallback: str) -> str:
n = os.path.basename((name or "").strip() or fallback)
if n:
return n
return fallback
def asset_exists(*, asset_hash: str) -> bool:
"""
Check if an asset with a given hash exists in database.
"""
with create_session() as session:
return asset_exists_by_hash(session, asset_hash=asset_hash)
def list_assets(
*,
include_tags: Sequence[str] | None = None,
exclude_tags: Sequence[str] | None = None,
name_contains: str | None = None,
@@ -63,7 +100,6 @@ def list_assets(
size=int(asset.size_bytes) if asset else None,
mime_type=asset.mime_type if asset else None,
tags=tags,
preview_url=f"/api/assets/{info.id}/content",
created_at=info.created_at,
updated_at=info.updated_at,
last_access_time=info.last_access_time,
@@ -76,7 +112,12 @@ def list_assets(
has_more=(offset + len(summaries)) < total,
)
def get_asset(asset_info_id: str, owner_id: str = "") -> schemas_out.AssetDetail:
def get_asset(
*,
asset_info_id: str,
owner_id: str = "",
) -> schemas_out.AssetDetail:
with create_session() as session:
res = fetch_asset_info_asset_and_tags(session, asset_info_id=asset_info_id, owner_id=owner_id)
if not res:
@@ -97,6 +138,358 @@ def get_asset(asset_info_id: str, owner_id: str = "") -> schemas_out.AssetDetail
last_access_time=info.last_access_time,
)
def resolve_asset_content_for_download(
*,
asset_info_id: str,
owner_id: str = "",
) -> tuple[str, str, str]:
with create_session() as session:
pair = fetch_asset_info_and_asset(session, asset_info_id=asset_info_id, owner_id=owner_id)
if not pair:
raise ValueError(f"AssetInfo {asset_info_id} not found")
info, asset = pair
states = list_cache_states_by_asset_id(session, asset_id=asset.id)
abs_path = pick_best_live_path(states)
if not abs_path:
raise FileNotFoundError
touch_asset_info_by_id(session, asset_info_id=asset_info_id)
session.commit()
ctype = asset.mime_type or mimetypes.guess_type(info.name or abs_path)[0] or "application/octet-stream"
download_name = info.name or os.path.basename(abs_path)
return abs_path, ctype, download_name
def upload_asset_from_temp_path(
spec: schemas_in.UploadAssetSpec,
*,
temp_path: str,
client_filename: str | None = None,
owner_id: str = "",
expected_asset_hash: str | None = None,
) -> schemas_out.AssetCreated:
"""
Create new asset or update existing asset from a temporary file path.
"""
try:
# NOTE: blake3 is not required right now, so this will fail if blake3 is not installed in local environment
import app.assets.hashing as hashing
digest = hashing.blake3_hash(temp_path)
except Exception as e:
raise RuntimeError(f"failed to hash uploaded file: {e}")
asset_hash = "blake3:" + digest
if expected_asset_hash and asset_hash != expected_asset_hash.strip().lower():
raise ValueError("HASH_MISMATCH")
with create_session() as session:
existing = get_asset_by_hash(session, asset_hash=asset_hash)
if existing is not None:
with contextlib.suppress(Exception):
if temp_path and os.path.exists(temp_path):
os.remove(temp_path)
display_name = _safe_filename(spec.name or (client_filename or ""), fallback=digest)
info = create_asset_info_for_existing_asset(
session,
asset_hash=asset_hash,
name=display_name,
user_metadata=spec.user_metadata or {},
tags=spec.tags or [],
tag_origin="manual",
owner_id=owner_id,
)
tag_names = get_asset_tags(session, asset_info_id=info.id)
session.commit()
return schemas_out.AssetCreated(
id=info.id,
name=info.name,
asset_hash=existing.hash,
size=int(existing.size_bytes) if existing.size_bytes is not None else None,
mime_type=existing.mime_type,
tags=tag_names,
user_metadata=info.user_metadata or {},
preview_id=info.preview_id,
created_at=info.created_at,
last_access_time=info.last_access_time,
created_new=False,
)
base_dir, subdirs = resolve_destination_from_tags(spec.tags)
dest_dir = os.path.join(base_dir, *subdirs) if subdirs else base_dir
os.makedirs(dest_dir, exist_ok=True)
src_for_ext = (client_filename or spec.name or "").strip()
_ext = os.path.splitext(os.path.basename(src_for_ext))[1] if src_for_ext else ""
ext = _ext if 0 < len(_ext) <= 16 else ""
hashed_basename = f"{digest}{ext}"
dest_abs = os.path.abspath(os.path.join(dest_dir, hashed_basename))
ensure_within_base(dest_abs, base_dir)
content_type = (
mimetypes.guess_type(os.path.basename(src_for_ext), strict=False)[0]
or mimetypes.guess_type(hashed_basename, strict=False)[0]
or "application/octet-stream"
)
try:
os.replace(temp_path, dest_abs)
except Exception as e:
raise RuntimeError(f"failed to move uploaded file into place: {e}")
try:
size_bytes, mtime_ns = _get_size_mtime_ns(dest_abs)
except OSError as e:
raise RuntimeError(f"failed to stat destination file: {e}")
with create_session() as session:
result = ingest_fs_asset(
session,
asset_hash=asset_hash,
abs_path=dest_abs,
size_bytes=size_bytes,
mtime_ns=mtime_ns,
mime_type=content_type,
info_name=_safe_filename(spec.name or (client_filename or ""), fallback=digest),
owner_id=owner_id,
preview_id=None,
user_metadata=spec.user_metadata or {},
tags=spec.tags,
tag_origin="manual",
require_existing_tags=False,
)
info_id = result["asset_info_id"]
if not info_id:
raise RuntimeError("failed to create asset metadata")
pair = fetch_asset_info_and_asset(session, asset_info_id=info_id, owner_id=owner_id)
if not pair:
raise RuntimeError("inconsistent DB state after ingest")
info, asset = pair
tag_names = get_asset_tags(session, asset_info_id=info.id)
created_result = schemas_out.AssetCreated(
id=info.id,
name=info.name,
asset_hash=asset.hash,
size=int(asset.size_bytes),
mime_type=asset.mime_type,
tags=tag_names,
user_metadata=info.user_metadata or {},
preview_id=info.preview_id,
created_at=info.created_at,
last_access_time=info.last_access_time,
created_new=result["asset_created"],
)
session.commit()
return created_result
def update_asset(
*,
asset_info_id: str,
name: str | None = None,
tags: list[str] | None = None,
user_metadata: dict | None = None,
owner_id: str = "",
) -> schemas_out.AssetUpdated:
with create_session() as session:
info_row = get_asset_info_by_id(session, asset_info_id=asset_info_id)
if not info_row:
raise ValueError(f"AssetInfo {asset_info_id} not found")
if info_row.owner_id and info_row.owner_id != owner_id:
raise PermissionError("not owner")
info = update_asset_info_full(
session,
asset_info_id=asset_info_id,
name=name,
tags=tags,
user_metadata=user_metadata,
tag_origin="manual",
asset_info_row=info_row,
)
tag_names = get_asset_tags(session, asset_info_id=asset_info_id)
result = schemas_out.AssetUpdated(
id=info.id,
name=info.name,
asset_hash=info.asset.hash if info.asset else None,
tags=tag_names,
user_metadata=info.user_metadata or {},
updated_at=info.updated_at,
)
session.commit()
return result
def set_asset_preview(
*,
asset_info_id: str,
preview_asset_id: str | None = None,
owner_id: str = "",
) -> schemas_out.AssetDetail:
with create_session() as session:
info_row = get_asset_info_by_id(session, asset_info_id=asset_info_id)
if not info_row:
raise ValueError(f"AssetInfo {asset_info_id} not found")
if info_row.owner_id and info_row.owner_id != owner_id:
raise PermissionError("not owner")
set_asset_info_preview(
session,
asset_info_id=asset_info_id,
preview_asset_id=preview_asset_id,
)
res = fetch_asset_info_asset_and_tags(session, asset_info_id=asset_info_id, owner_id=owner_id)
if not res:
raise RuntimeError("State changed during preview update")
info, asset, tags = res
result = schemas_out.AssetDetail(
id=info.id,
name=info.name,
asset_hash=asset.hash if asset else None,
size=int(asset.size_bytes) if asset and asset.size_bytes is not None else None,
mime_type=asset.mime_type if asset else None,
tags=tags,
user_metadata=info.user_metadata or {},
preview_id=info.preview_id,
created_at=info.created_at,
last_access_time=info.last_access_time,
)
session.commit()
return result
def delete_asset_reference(*, asset_info_id: str, owner_id: str, delete_content_if_orphan: bool = True) -> bool:
with create_session() as session:
info_row = get_asset_info_by_id(session, asset_info_id=asset_info_id)
asset_id = info_row.asset_id if info_row else None
deleted = delete_asset_info_by_id(session, asset_info_id=asset_info_id, owner_id=owner_id)
if not deleted:
session.commit()
return False
if not delete_content_if_orphan or not asset_id:
session.commit()
return True
still_exists = asset_info_exists_for_asset_id(session, asset_id=asset_id)
if still_exists:
session.commit()
return True
states = list_cache_states_by_asset_id(session, asset_id=asset_id)
file_paths = [s.file_path for s in (states or []) if getattr(s, "file_path", None)]
asset_row = session.get(Asset, asset_id)
if asset_row is not None:
session.delete(asset_row)
session.commit()
for p in file_paths:
with contextlib.suppress(Exception):
if p and os.path.isfile(p):
os.remove(p)
return True
def create_asset_from_hash(
*,
hash_str: str,
name: str,
tags: list[str] | None = None,
user_metadata: dict | None = None,
owner_id: str = "",
) -> schemas_out.AssetCreated | None:
canonical = hash_str.strip().lower()
with create_session() as session:
asset = get_asset_by_hash(session, asset_hash=canonical)
if not asset:
return None
info = create_asset_info_for_existing_asset(
session,
asset_hash=canonical,
name=_safe_filename(name, fallback=canonical.split(":", 1)[1]),
user_metadata=user_metadata or {},
tags=tags or [],
tag_origin="manual",
owner_id=owner_id,
)
tag_names = get_asset_tags(session, asset_info_id=info.id)
result = schemas_out.AssetCreated(
id=info.id,
name=info.name,
asset_hash=asset.hash,
size=int(asset.size_bytes),
mime_type=asset.mime_type,
tags=tag_names,
user_metadata=info.user_metadata or {},
preview_id=info.preview_id,
created_at=info.created_at,
last_access_time=info.last_access_time,
created_new=False,
)
session.commit()
return result
def add_tags_to_asset(
*,
asset_info_id: str,
tags: list[str],
origin: str = "manual",
owner_id: str = "",
) -> schemas_out.TagsAdd:
with create_session() as session:
info_row = get_asset_info_by_id(session, asset_info_id=asset_info_id)
if not info_row:
raise ValueError(f"AssetInfo {asset_info_id} not found")
if info_row.owner_id and info_row.owner_id != owner_id:
raise PermissionError("not owner")
data = add_tags_to_asset_info(
session,
asset_info_id=asset_info_id,
tags=tags,
origin=origin,
create_if_missing=True,
asset_info_row=info_row,
)
session.commit()
return schemas_out.TagsAdd(**data)
def remove_tags_from_asset(
*,
asset_info_id: str,
tags: list[str],
owner_id: str = "",
) -> schemas_out.TagsRemove:
with create_session() as session:
info_row = get_asset_info_by_id(session, asset_info_id=asset_info_id)
if not info_row:
raise ValueError(f"AssetInfo {asset_info_id} not found")
if info_row.owner_id and info_row.owner_id != owner_id:
raise PermissionError("not owner")
data = remove_tags_from_asset_info(
session,
asset_info_id=asset_info_id,
tags=tags,
)
session.commit()
return schemas_out.TagsRemove(**data)
def list_tags(
prefix: str | None = None,
limit: int = 100,

View File

@@ -27,6 +27,7 @@ def seed_assets(roots: tuple[RootType, ...], enable_logging: bool = False) -> No
t_start = time.perf_counter()
created = 0
skipped_existing = 0
orphans_pruned = 0
paths: list[str] = []
try:
existing_paths: set[str] = set()
@@ -38,6 +39,11 @@ def seed_assets(roots: tuple[RootType, ...], enable_logging: bool = False) -> No
except Exception as e:
logging.exception("fast DB scan failed for %s: %s", r, e)
try:
orphans_pruned = _prune_orphaned_assets(roots)
except Exception as e:
logging.exception("orphan pruning failed: %s", e)
if "models" in roots:
paths.extend(collect_models_files())
if "input" in roots:
@@ -85,15 +91,43 @@ def seed_assets(roots: tuple[RootType, ...], enable_logging: bool = False) -> No
finally:
if enable_logging:
logging.info(
"Assets scan(roots=%s) completed in %.3fs (created=%d, skipped_existing=%d, total_seen=%d)",
"Assets scan(roots=%s) completed in %.3fs (created=%d, skipped_existing=%d, orphans_pruned=%d, total_seen=%d)",
roots,
time.perf_counter() - t_start,
created,
skipped_existing,
orphans_pruned,
len(paths),
)
def _prune_orphaned_assets(roots: tuple[RootType, ...]) -> int:
"""Prune cache states outside configured prefixes, then delete orphaned seed assets."""
all_prefixes = [os.path.abspath(p) for r in roots for p in prefixes_for_root(r)]
if not all_prefixes:
return 0
def make_prefix_condition(prefix: str):
base = prefix if prefix.endswith(os.sep) else prefix + os.sep
escaped, esc = escape_like_prefix(base)
return AssetCacheState.file_path.like(escaped + "%", escape=esc)
matches_valid_prefix = sqlalchemy.or_(*[make_prefix_condition(p) for p in all_prefixes])
orphan_subq = (
sqlalchemy.select(Asset.id)
.outerjoin(AssetCacheState, AssetCacheState.asset_id == Asset.id)
.where(Asset.hash.is_(None), AssetCacheState.id.is_(None))
).scalar_subquery()
with create_session() as sess:
sess.execute(sqlalchemy.delete(AssetCacheState).where(~matches_valid_prefix))
sess.execute(sqlalchemy.delete(AssetInfo).where(AssetInfo.asset_id.in_(orphan_subq)))
result = sess.execute(sqlalchemy.delete(Asset).where(Asset.id.in_(orphan_subq)))
sess.commit()
return result.rowcount
def _fast_db_consistency_pass(
root: RootType,
*,

View File

@@ -1,23 +0,0 @@
from __future__ import annotations
from aiohttp import web
from typing import TYPE_CHECKING
if TYPE_CHECKING:
from comfy_api.latest._node_replace import NodeReplace
REGISTERED_NODE_REPLACEMENTS: dict[str, list[NodeReplace]] = {}
def register_node_replacement(node_replace: NodeReplace):
REGISTERED_NODE_REPLACEMENTS.setdefault(node_replace.old_node_id, []).append(node_replace)
def registered_as_dict():
return {
k: [v.as_dict() for v in v_list] for k, v_list in REGISTERED_NODE_REPLACEMENTS.items()
}
class NodeReplaceManager:
def add_routes(self, routes):
@routes.get("/node_replacements")
async def get_node_replacements(request):
return web.json_response(registered_as_dict())

View File

@@ -0,0 +1,44 @@
#version 300 es
precision highp float;
uniform sampler2D u_image0;
uniform float u_float0; // Brightness slider -100..100
uniform float u_float1; // Contrast slider -100..100
in vec2 v_texCoord;
out vec4 fragColor;
const float MID_GRAY = 0.18; // 18% reflectance
// sRGB gamma 2.2 approximation
vec3 srgbToLinear(vec3 c) {
return pow(max(c, 0.0), vec3(2.2));
}
vec3 linearToSrgb(vec3 c) {
return pow(max(c, 0.0), vec3(1.0/2.2));
}
float mapBrightness(float b) {
return clamp(b / 100.0, -1.0, 1.0);
}
float mapContrast(float c) {
return clamp(c / 100.0 + 1.0, 0.0, 2.0);
}
void main() {
vec4 orig = texture(u_image0, v_texCoord);
float brightness = mapBrightness(u_float0);
float contrast = mapContrast(u_float1);
vec3 lin = srgbToLinear(orig.rgb);
lin = (lin - MID_GRAY) * contrast + brightness + MID_GRAY;
// Convert back to sRGB
vec3 result = linearToSrgb(clamp(lin, 0.0, 1.0));
fragColor = vec4(result, orig.a);
}

View File

@@ -0,0 +1,72 @@
#version 300 es
precision highp float;
uniform sampler2D u_image0;
uniform vec2 u_resolution;
uniform int u_int0; // Mode
uniform float u_float0; // Amount (0 to 100)
in vec2 v_texCoord;
out vec4 fragColor;
const int MODE_LINEAR = 0;
const int MODE_RADIAL = 1;
const int MODE_BARREL = 2;
const int MODE_SWIRL = 3;
const int MODE_DIAGONAL = 4;
const float AMOUNT_SCALE = 0.0005;
const float RADIAL_MULT = 4.0;
const float BARREL_MULT = 8.0;
const float INV_SQRT2 = 0.70710678118;
void main() {
vec2 uv = v_texCoord;
vec4 original = texture(u_image0, uv);
float amount = u_float0 * AMOUNT_SCALE;
if (amount < 0.000001) {
fragColor = original;
return;
}
// Aspect-corrected coordinates for circular effects
float aspect = u_resolution.x / u_resolution.y;
vec2 centered = uv - 0.5;
vec2 corrected = vec2(centered.x * aspect, centered.y);
float r = length(corrected);
vec2 dir = r > 0.0001 ? corrected / r : vec2(0.0);
vec2 offset = vec2(0.0);
if (u_int0 == MODE_LINEAR) {
// Horizontal shift (no aspect correction needed)
offset = vec2(amount, 0.0);
}
else if (u_int0 == MODE_RADIAL) {
// Outward from center, stronger at edges
offset = dir * r * amount * RADIAL_MULT;
offset.x /= aspect; // Convert back to UV space
}
else if (u_int0 == MODE_BARREL) {
// Lens distortion simulation (r² falloff)
offset = dir * r * r * amount * BARREL_MULT;
offset.x /= aspect; // Convert back to UV space
}
else if (u_int0 == MODE_SWIRL) {
// Perpendicular to radial (rotational aberration)
vec2 perp = vec2(-dir.y, dir.x);
offset = perp * r * amount * RADIAL_MULT;
offset.x /= aspect; // Convert back to UV space
}
else if (u_int0 == MODE_DIAGONAL) {
// 45° offset (no aspect correction needed)
offset = vec2(amount, amount) * INV_SQRT2;
}
float red = texture(u_image0, uv + offset).r;
float green = original.g;
float blue = texture(u_image0, uv - offset).b;
fragColor = vec4(red, green, blue, original.a);
}

View File

@@ -0,0 +1,78 @@
#version 300 es
precision highp float;
uniform sampler2D u_image0;
uniform float u_float0; // temperature (-100 to 100)
uniform float u_float1; // tint (-100 to 100)
uniform float u_float2; // vibrance (-100 to 100)
uniform float u_float3; // saturation (-100 to 100)
in vec2 v_texCoord;
out vec4 fragColor;
const float INPUT_SCALE = 0.01;
const float TEMP_TINT_PRIMARY = 0.3;
const float TEMP_TINT_SECONDARY = 0.15;
const float VIBRANCE_BOOST = 2.0;
const float SATURATION_BOOST = 2.0;
const float SKIN_PROTECTION = 0.5;
const float EPSILON = 0.001;
const vec3 LUMA_WEIGHTS = vec3(0.299, 0.587, 0.114);
void main() {
vec4 tex = texture(u_image0, v_texCoord);
vec3 color = tex.rgb;
// Scale inputs: -100/100 → -1/1
float temperature = u_float0 * INPUT_SCALE;
float tint = u_float1 * INPUT_SCALE;
float vibrance = u_float2 * INPUT_SCALE;
float saturation = u_float3 * INPUT_SCALE;
// Temperature (warm/cool): positive = warm, negative = cool
color.r += temperature * TEMP_TINT_PRIMARY;
color.b -= temperature * TEMP_TINT_PRIMARY;
// Tint (green/magenta): positive = green, negative = magenta
color.g += tint * TEMP_TINT_PRIMARY;
color.r -= tint * TEMP_TINT_SECONDARY;
color.b -= tint * TEMP_TINT_SECONDARY;
// Single clamp after temperature/tint
color = clamp(color, 0.0, 1.0);
// Vibrance with skin protection
if (vibrance != 0.0) {
float maxC = max(color.r, max(color.g, color.b));
float minC = min(color.r, min(color.g, color.b));
float sat = maxC - minC;
float gray = dot(color, LUMA_WEIGHTS);
if (vibrance < 0.0) {
// Desaturate: -100 → gray
color = mix(vec3(gray), color, 1.0 + vibrance);
} else {
// Boost less saturated colors more
float vibranceAmt = vibrance * (1.0 - sat);
// Branchless skin tone protection
float isWarmTone = step(color.b, color.g) * step(color.g, color.r);
float warmth = (color.r - color.b) / max(maxC, EPSILON);
float skinTone = isWarmTone * warmth * sat * (1.0 - sat);
vibranceAmt *= (1.0 - skinTone * SKIN_PROTECTION);
color = mix(vec3(gray), color, 1.0 + vibranceAmt * VIBRANCE_BOOST);
}
}
// Saturation
if (saturation != 0.0) {
float gray = dot(color, LUMA_WEIGHTS);
float satMix = saturation < 0.0
? 1.0 + saturation // -100 → gray
: 1.0 + saturation * SATURATION_BOOST; // +100 → 3x boost
color = mix(vec3(gray), color, satMix);
}
fragColor = vec4(clamp(color, 0.0, 1.0), tex.a);
}

View File

@@ -0,0 +1,94 @@
#version 300 es
precision highp float;
uniform sampler2D u_image0;
uniform float u_float0; // Blur radius (020, default ~5)
uniform float u_float1; // Edge threshold (0100, default ~30)
uniform int u_int0; // Step size (0/1 = every pixel, 2+ = skip pixels)
in vec2 v_texCoord;
out vec4 fragColor;
const int MAX_RADIUS = 20;
const float EPSILON = 0.0001;
// Perceptual luminance
float getLuminance(vec3 rgb) {
return dot(rgb, vec3(0.299, 0.587, 0.114));
}
vec4 bilateralFilter(vec2 uv, vec2 texelSize, int radius,
float sigmaSpatial, float sigmaColor)
{
vec4 center = texture(u_image0, uv);
vec3 centerRGB = center.rgb;
float invSpatial2 = -0.5 / (sigmaSpatial * sigmaSpatial);
float invColor2 = -0.5 / (sigmaColor * sigmaColor + EPSILON);
vec3 sumRGB = vec3(0.0);
float sumWeight = 0.0;
int step = max(u_int0, 1);
float radius2 = float(radius * radius);
for (int dy = -MAX_RADIUS; dy <= MAX_RADIUS; dy++) {
if (dy < -radius || dy > radius) continue;
if (abs(dy) % step != 0) continue;
for (int dx = -MAX_RADIUS; dx <= MAX_RADIUS; dx++) {
if (dx < -radius || dx > radius) continue;
if (abs(dx) % step != 0) continue;
vec2 offset = vec2(float(dx), float(dy));
float dist2 = dot(offset, offset);
if (dist2 > radius2) continue;
vec3 sampleRGB = texture(u_image0, uv + offset * texelSize).rgb;
// Spatial Gaussian
float spatialWeight = exp(dist2 * invSpatial2);
// Perceptual color distance (weighted RGB)
vec3 diff = sampleRGB - centerRGB;
float colorDist = dot(diff * diff, vec3(0.299, 0.587, 0.114));
float colorWeight = exp(colorDist * invColor2);
float w = spatialWeight * colorWeight;
sumRGB += sampleRGB * w;
sumWeight += w;
}
}
vec3 resultRGB = sumRGB / max(sumWeight, EPSILON);
return vec4(resultRGB, center.a); // preserve center alpha
}
void main() {
vec2 texelSize = 1.0 / vec2(textureSize(u_image0, 0));
float radiusF = clamp(u_float0, 0.0, float(MAX_RADIUS));
int radius = int(radiusF + 0.5);
if (radius == 0) {
fragColor = texture(u_image0, v_texCoord);
return;
}
// Edge threshold → color sigma
// Squared curve for better low-end control
float t = clamp(u_float1, 0.0, 100.0) / 100.0;
t *= t;
float sigmaColor = mix(0.01, 0.5, t);
// Spatial sigma tied to radius
float sigmaSpatial = max(radiusF * 0.75, 0.5);
fragColor = bilateralFilter(
v_texCoord,
texelSize,
radius,
sigmaSpatial,
sigmaColor
);
}

View File

@@ -0,0 +1,124 @@
#version 300 es
precision highp float;
uniform sampler2D u_image0;
uniform vec2 u_resolution;
uniform float u_float0; // grain amount [0.0 1.0] typical: 0.20.8
uniform float u_float1; // grain size [0.3 3.0] lower = finer grain
uniform float u_float2; // color amount [0.0 1.0] 0 = monochrome, 1 = RGB grain
uniform float u_float3; // luminance bias [0.0 1.0] 0 = uniform, 1 = shadows only
uniform int u_int0; // noise mode [0 or 1] 0 = smooth, 1 = grainy
in vec2 v_texCoord;
layout(location = 0) out vec4 fragColor0;
// High-quality integer hash (pcg-like)
uint pcg(uint v) {
uint state = v * 747796405u + 2891336453u;
uint word = ((state >> ((state >> 28u) + 4u)) ^ state) * 277803737u;
return (word >> 22u) ^ word;
}
// 2D -> 1D hash input
uint hash2d(uvec2 p) {
return pcg(p.x + pcg(p.y));
}
// Hash to float [0, 1]
float hashf(uvec2 p) {
return float(hash2d(p)) / float(0xffffffffu);
}
// Hash to float with offset (for RGB channels)
float hashf(uvec2 p, uint offset) {
return float(pcg(hash2d(p) + offset)) / float(0xffffffffu);
}
// Convert uniform [0,1] to roughly Gaussian distribution
// Using simple approximation: average of multiple samples
float toGaussian(uvec2 p) {
float sum = hashf(p, 0u) + hashf(p, 1u) + hashf(p, 2u) + hashf(p, 3u);
return (sum - 2.0) * 0.7; // Centered, scaled
}
float toGaussian(uvec2 p, uint offset) {
float sum = hashf(p, offset) + hashf(p, offset + 1u)
+ hashf(p, offset + 2u) + hashf(p, offset + 3u);
return (sum - 2.0) * 0.7;
}
// Smooth noise with better interpolation
float smoothNoise(vec2 p) {
vec2 i = floor(p);
vec2 f = fract(p);
// Quintic interpolation (less banding than cubic)
f = f * f * f * (f * (f * 6.0 - 15.0) + 10.0);
uvec2 ui = uvec2(i);
float a = toGaussian(ui);
float b = toGaussian(ui + uvec2(1u, 0u));
float c = toGaussian(ui + uvec2(0u, 1u));
float d = toGaussian(ui + uvec2(1u, 1u));
return mix(mix(a, b, f.x), mix(c, d, f.x), f.y);
}
float smoothNoise(vec2 p, uint offset) {
vec2 i = floor(p);
vec2 f = fract(p);
f = f * f * f * (f * (f * 6.0 - 15.0) + 10.0);
uvec2 ui = uvec2(i);
float a = toGaussian(ui, offset);
float b = toGaussian(ui + uvec2(1u, 0u), offset);
float c = toGaussian(ui + uvec2(0u, 1u), offset);
float d = toGaussian(ui + uvec2(1u, 1u), offset);
return mix(mix(a, b, f.x), mix(c, d, f.x), f.y);
}
void main() {
vec4 color = texture(u_image0, v_texCoord);
// Luminance (Rec.709)
float luma = dot(color.rgb, vec3(0.2126, 0.7152, 0.0722));
// Grain UV (resolution-independent)
vec2 grainUV = v_texCoord * u_resolution / max(u_float1, 0.01);
uvec2 grainPixel = uvec2(grainUV);
float g;
vec3 grainRGB;
if (u_int0 == 1) {
// Grainy mode: pure hash noise (no interpolation = no banding)
g = toGaussian(grainPixel);
grainRGB = vec3(
toGaussian(grainPixel, 100u),
toGaussian(grainPixel, 200u),
toGaussian(grainPixel, 300u)
);
} else {
// Smooth mode: interpolated with quintic curve
g = smoothNoise(grainUV);
grainRGB = vec3(
smoothNoise(grainUV, 100u),
smoothNoise(grainUV, 200u),
smoothNoise(grainUV, 300u)
);
}
// Luminance weighting (less grain in highlights)
float lumWeight = mix(1.0, 1.0 - luma, clamp(u_float3, 0.0, 1.0));
// Strength
float strength = u_float0 * 0.15;
// Color vs monochrome grain
vec3 grainColor = mix(vec3(g), grainRGB, clamp(u_float2, 0.0, 1.0));
color.rgb += grainColor * strength * lumWeight;
fragColor0 = vec4(clamp(color.rgb, 0.0, 1.0), color.a);
}

View File

@@ -0,0 +1,133 @@
#version 300 es
precision mediump float;
uniform sampler2D u_image0;
uniform vec2 u_resolution;
uniform int u_int0; // Blend mode
uniform int u_int1; // Color tint
uniform float u_float0; // Intensity
uniform float u_float1; // Radius
uniform float u_float2; // Threshold
in vec2 v_texCoord;
out vec4 fragColor;
const int BLEND_ADD = 0;
const int BLEND_SCREEN = 1;
const int BLEND_SOFT = 2;
const int BLEND_OVERLAY = 3;
const int BLEND_LIGHTEN = 4;
const float GOLDEN_ANGLE = 2.39996323;
const int MAX_SAMPLES = 48;
const vec3 LUMA = vec3(0.299, 0.587, 0.114);
float hash(vec2 p) {
p = fract(p * vec2(123.34, 456.21));
p += dot(p, p + 45.32);
return fract(p.x * p.y);
}
vec3 hexToRgb(int h) {
return vec3(
float((h >> 16) & 255),
float((h >> 8) & 255),
float(h & 255)
) * (1.0 / 255.0);
}
vec3 blend(vec3 base, vec3 glow, int mode) {
if (mode == BLEND_SCREEN) {
return 1.0 - (1.0 - base) * (1.0 - glow);
}
if (mode == BLEND_SOFT) {
return mix(
base - (1.0 - 2.0 * glow) * base * (1.0 - base),
base + (2.0 * glow - 1.0) * (sqrt(base) - base),
step(0.5, glow)
);
}
if (mode == BLEND_OVERLAY) {
return mix(
2.0 * base * glow,
1.0 - 2.0 * (1.0 - base) * (1.0 - glow),
step(0.5, base)
);
}
if (mode == BLEND_LIGHTEN) {
return max(base, glow);
}
return base + glow;
}
void main() {
vec4 original = texture(u_image0, v_texCoord);
float intensity = u_float0 * 0.05;
float radius = u_float1 * u_float1 * 0.012;
if (intensity < 0.001 || radius < 0.1) {
fragColor = original;
return;
}
float threshold = 1.0 - u_float2 * 0.01;
float t0 = threshold - 0.15;
float t1 = threshold + 0.15;
vec2 texelSize = 1.0 / u_resolution;
float radius2 = radius * radius;
float sampleScale = clamp(radius * 0.75, 0.35, 1.0);
int samples = int(float(MAX_SAMPLES) * sampleScale);
float noise = hash(gl_FragCoord.xy);
float angleOffset = noise * GOLDEN_ANGLE;
float radiusJitter = 0.85 + noise * 0.3;
float ca = cos(GOLDEN_ANGLE);
float sa = sin(GOLDEN_ANGLE);
vec2 dir = vec2(cos(angleOffset), sin(angleOffset));
vec3 glow = vec3(0.0);
float totalWeight = 0.0;
// Center tap
float centerMask = smoothstep(t0, t1, dot(original.rgb, LUMA));
glow += original.rgb * centerMask * 2.0;
totalWeight += 2.0;
for (int i = 1; i < MAX_SAMPLES; i++) {
if (i >= samples) break;
float fi = float(i);
float dist = sqrt(fi / float(samples)) * radius * radiusJitter;
vec2 offset = dir * dist * texelSize;
vec3 c = texture(u_image0, v_texCoord + offset).rgb;
float mask = smoothstep(t0, t1, dot(c, LUMA));
float w = 1.0 - (dist * dist) / (radius2 * 1.5);
w = max(w, 0.0);
w *= w;
glow += c * mask * w;
totalWeight += w;
dir = vec2(
dir.x * ca - dir.y * sa,
dir.x * sa + dir.y * ca
);
}
glow *= intensity / max(totalWeight, 0.001);
if (u_int1 > 0) {
glow *= hexToRgb(u_int1);
}
vec3 result = blend(original.rgb, glow, u_int0);
result += (noise - 0.5) * (1.0 / 255.0);
fragColor = vec4(clamp(result, 0.0, 1.0), original.a);
}

View File

@@ -0,0 +1,222 @@
#version 300 es
precision highp float;
uniform sampler2D u_image0;
uniform int u_int0; // Mode: 0=Master, 1=Reds, 2=Yellows, 3=Greens, 4=Cyans, 5=Blues, 6=Magentas, 7=Colorize
uniform int u_int1; // Color Space: 0=HSL, 1=HSB/HSV
uniform float u_float0; // Hue (-180 to 180)
uniform float u_float1; // Saturation (-100 to 100)
uniform float u_float2; // Lightness/Brightness (-100 to 100)
uniform float u_float3; // Overlap (0 to 100) - feathering between adjacent color ranges
in vec2 v_texCoord;
out vec4 fragColor;
// Color range modes
const int MODE_MASTER = 0;
const int MODE_RED = 1;
const int MODE_YELLOW = 2;
const int MODE_GREEN = 3;
const int MODE_CYAN = 4;
const int MODE_BLUE = 5;
const int MODE_MAGENTA = 6;
const int MODE_COLORIZE = 7;
// Color space modes
const int COLORSPACE_HSL = 0;
const int COLORSPACE_HSB = 1;
const float EPSILON = 0.0001;
//=============================================================================
// RGB <-> HSL Conversions
//=============================================================================
vec3 rgb2hsl(vec3 c) {
float maxC = max(max(c.r, c.g), c.b);
float minC = min(min(c.r, c.g), c.b);
float delta = maxC - minC;
float h = 0.0;
float s = 0.0;
float l = (maxC + minC) * 0.5;
if (delta > EPSILON) {
s = l < 0.5
? delta / (maxC + minC)
: delta / (2.0 - maxC - minC);
if (maxC == c.r) {
h = (c.g - c.b) / delta + (c.g < c.b ? 6.0 : 0.0);
} else if (maxC == c.g) {
h = (c.b - c.r) / delta + 2.0;
} else {
h = (c.r - c.g) / delta + 4.0;
}
h /= 6.0;
}
return vec3(h, s, l);
}
float hue2rgb(float p, float q, float t) {
t = fract(t);
if (t < 1.0/6.0) return p + (q - p) * 6.0 * t;
if (t < 0.5) return q;
if (t < 2.0/3.0) return p + (q - p) * (2.0/3.0 - t) * 6.0;
return p;
}
vec3 hsl2rgb(vec3 hsl) {
if (hsl.y < EPSILON) return vec3(hsl.z);
float q = hsl.z < 0.5
? hsl.z * (1.0 + hsl.y)
: hsl.z + hsl.y - hsl.z * hsl.y;
float p = 2.0 * hsl.z - q;
return vec3(
hue2rgb(p, q, hsl.x + 1.0/3.0),
hue2rgb(p, q, hsl.x),
hue2rgb(p, q, hsl.x - 1.0/3.0)
);
}
vec3 rgb2hsb(vec3 c) {
float maxC = max(max(c.r, c.g), c.b);
float minC = min(min(c.r, c.g), c.b);
float delta = maxC - minC;
float h = 0.0;
float s = (maxC > EPSILON) ? delta / maxC : 0.0;
float b = maxC;
if (delta > EPSILON) {
if (maxC == c.r) {
h = (c.g - c.b) / delta + (c.g < c.b ? 6.0 : 0.0);
} else if (maxC == c.g) {
h = (c.b - c.r) / delta + 2.0;
} else {
h = (c.r - c.g) / delta + 4.0;
}
h /= 6.0;
}
return vec3(h, s, b);
}
vec3 hsb2rgb(vec3 hsb) {
vec3 rgb = clamp(abs(mod(hsb.x * 6.0 + vec3(0.0, 4.0, 2.0), 6.0) - 3.0) - 1.0, 0.0, 1.0);
return hsb.z * mix(vec3(1.0), rgb, hsb.y);
}
//=============================================================================
// Color Range Weight Calculation
//=============================================================================
float hueDistance(float a, float b) {
float d = abs(a - b);
return min(d, 1.0 - d);
}
float getHueWeight(float hue, float center, float overlap) {
float baseWidth = 1.0 / 6.0;
float feather = baseWidth * overlap;
float d = hueDistance(hue, center);
float inner = baseWidth * 0.5;
float outer = inner + feather;
return 1.0 - smoothstep(inner, outer, d);
}
float getModeWeight(float hue, int mode, float overlap) {
if (mode == MODE_MASTER || mode == MODE_COLORIZE) return 1.0;
if (mode == MODE_RED) {
return max(
getHueWeight(hue, 0.0, overlap),
getHueWeight(hue, 1.0, overlap)
);
}
float center = float(mode - 1) / 6.0;
return getHueWeight(hue, center, overlap);
}
//=============================================================================
// Adjustment Functions
//=============================================================================
float adjustLightness(float l, float amount) {
return amount > 0.0
? l + (1.0 - l) * amount
: l + l * amount;
}
float adjustBrightness(float b, float amount) {
return clamp(b + amount, 0.0, 1.0);
}
float adjustSaturation(float s, float amount) {
return amount > 0.0
? s + (1.0 - s) * amount
: s + s * amount;
}
vec3 colorize(vec3 rgb, float hue, float sat, float light) {
float lum = dot(rgb, vec3(0.299, 0.587, 0.114));
float l = adjustLightness(lum, light);
vec3 hsl = vec3(fract(hue), clamp(abs(sat), 0.0, 1.0), clamp(l, 0.0, 1.0));
return hsl2rgb(hsl);
}
//=============================================================================
// Main
//=============================================================================
void main() {
vec4 original = texture(u_image0, v_texCoord);
float hueShift = u_float0 / 360.0; // -180..180 -> -0.5..0.5
float satAmount = u_float1 / 100.0; // -100..100 -> -1..1
float lightAmount= u_float2 / 100.0; // -100..100 -> -1..1
float overlap = u_float3 / 100.0; // 0..100 -> 0..1
vec3 result;
if (u_int0 == MODE_COLORIZE) {
result = colorize(original.rgb, hueShift, satAmount, lightAmount);
fragColor = vec4(result, original.a);
return;
}
vec3 hsx = (u_int1 == COLORSPACE_HSL)
? rgb2hsl(original.rgb)
: rgb2hsb(original.rgb);
float weight = getModeWeight(hsx.x, u_int0, overlap);
if (u_int0 != MODE_MASTER && hsx.y < EPSILON) {
weight = 0.0;
}
if (weight > EPSILON) {
float h = fract(hsx.x + hueShift * weight);
float s = clamp(adjustSaturation(hsx.y, satAmount * weight), 0.0, 1.0);
float v = (u_int1 == COLORSPACE_HSL)
? clamp(adjustLightness(hsx.z, lightAmount * weight), 0.0, 1.0)
: clamp(adjustBrightness(hsx.z, lightAmount * weight), 0.0, 1.0);
vec3 adjusted = vec3(h, s, v);
result = (u_int1 == COLORSPACE_HSL)
? hsl2rgb(adjusted)
: hsb2rgb(adjusted);
} else {
result = original.rgb;
}
fragColor = vec4(result, original.a);
}

View File

@@ -0,0 +1,111 @@
#version 300 es
#pragma passes 2
precision highp float;
// Blur type constants
const int BLUR_GAUSSIAN = 0;
const int BLUR_BOX = 1;
const int BLUR_RADIAL = 2;
// Radial blur config
const int RADIAL_SAMPLES = 12;
const float RADIAL_STRENGTH = 0.0003;
uniform sampler2D u_image0;
uniform vec2 u_resolution;
uniform int u_int0; // Blur type (BLUR_GAUSSIAN, BLUR_BOX, BLUR_RADIAL)
uniform float u_float0; // Blur radius/amount
uniform int u_pass; // Pass index (0 = horizontal, 1 = vertical)
in vec2 v_texCoord;
layout(location = 0) out vec4 fragColor0;
float gaussian(float x, float sigma) {
return exp(-(x * x) / (2.0 * sigma * sigma));
}
void main() {
vec2 texelSize = 1.0 / u_resolution;
float radius = max(u_float0, 0.0);
// Radial (angular) blur - single pass, doesn't use separable
if (u_int0 == BLUR_RADIAL) {
// Only execute on first pass
if (u_pass > 0) {
fragColor0 = texture(u_image0, v_texCoord);
return;
}
vec2 center = vec2(0.5);
vec2 dir = v_texCoord - center;
float dist = length(dir);
if (dist < 1e-4) {
fragColor0 = texture(u_image0, v_texCoord);
return;
}
vec4 sum = vec4(0.0);
float totalWeight = 0.0;
float angleStep = radius * RADIAL_STRENGTH;
dir /= dist;
float cosStep = cos(angleStep);
float sinStep = sin(angleStep);
float negAngle = -float(RADIAL_SAMPLES) * angleStep;
vec2 rotDir = vec2(
dir.x * cos(negAngle) - dir.y * sin(negAngle),
dir.x * sin(negAngle) + dir.y * cos(negAngle)
);
for (int i = -RADIAL_SAMPLES; i <= RADIAL_SAMPLES; i++) {
vec2 uv = center + rotDir * dist;
float w = 1.0 - abs(float(i)) / float(RADIAL_SAMPLES);
sum += texture(u_image0, uv) * w;
totalWeight += w;
rotDir = vec2(
rotDir.x * cosStep - rotDir.y * sinStep,
rotDir.x * sinStep + rotDir.y * cosStep
);
}
fragColor0 = sum / max(totalWeight, 0.001);
return;
}
// Separable Gaussian / Box blur
int samples = int(ceil(radius));
if (samples == 0) {
fragColor0 = texture(u_image0, v_texCoord);
return;
}
// Direction: pass 0 = horizontal, pass 1 = vertical
vec2 dir = (u_pass == 0) ? vec2(1.0, 0.0) : vec2(0.0, 1.0);
vec4 color = vec4(0.0);
float totalWeight = 0.0;
float sigma = radius / 2.0;
for (int i = -samples; i <= samples; i++) {
vec2 offset = dir * float(i) * texelSize;
vec4 sample_color = texture(u_image0, v_texCoord + offset);
float weight;
if (u_int0 == BLUR_GAUSSIAN) {
weight = gaussian(float(i), sigma);
} else {
// BLUR_BOX
weight = 1.0;
}
color += sample_color * weight;
totalWeight += weight;
}
fragColor0 = color / totalWeight;
}

View File

@@ -0,0 +1,19 @@
#version 300 es
precision highp float;
uniform sampler2D u_image0;
in vec2 v_texCoord;
layout(location = 0) out vec4 fragColor0;
layout(location = 1) out vec4 fragColor1;
layout(location = 2) out vec4 fragColor2;
layout(location = 3) out vec4 fragColor3;
void main() {
vec4 color = texture(u_image0, v_texCoord);
// Output each channel as grayscale to separate render targets
fragColor0 = vec4(vec3(color.r), 1.0); // Red channel
fragColor1 = vec4(vec3(color.g), 1.0); // Green channel
fragColor2 = vec4(vec3(color.b), 1.0); // Blue channel
fragColor3 = vec4(vec3(color.a), 1.0); // Alpha channel
}

View File

@@ -0,0 +1,71 @@
#version 300 es
precision highp float;
// Levels Adjustment
// u_int0: channel (0=RGB, 1=R, 2=G, 3=B) default: 0
// u_float0: input black (0-255) default: 0
// u_float1: input white (0-255) default: 255
// u_float2: gamma (0.01-9.99) default: 1.0
// u_float3: output black (0-255) default: 0
// u_float4: output white (0-255) default: 255
uniform sampler2D u_image0;
uniform int u_int0;
uniform float u_float0;
uniform float u_float1;
uniform float u_float2;
uniform float u_float3;
uniform float u_float4;
in vec2 v_texCoord;
out vec4 fragColor;
vec3 applyLevels(vec3 color, float inBlack, float inWhite, float gamma, float outBlack, float outWhite) {
float inRange = max(inWhite - inBlack, 0.0001);
vec3 result = clamp((color - inBlack) / inRange, 0.0, 1.0);
result = pow(result, vec3(1.0 / gamma));
result = mix(vec3(outBlack), vec3(outWhite), result);
return result;
}
float applySingleChannel(float value, float inBlack, float inWhite, float gamma, float outBlack, float outWhite) {
float inRange = max(inWhite - inBlack, 0.0001);
float result = clamp((value - inBlack) / inRange, 0.0, 1.0);
result = pow(result, 1.0 / gamma);
result = mix(outBlack, outWhite, result);
return result;
}
void main() {
vec4 texColor = texture(u_image0, v_texCoord);
vec3 color = texColor.rgb;
float inBlack = u_float0 / 255.0;
float inWhite = u_float1 / 255.0;
float gamma = u_float2;
float outBlack = u_float3 / 255.0;
float outWhite = u_float4 / 255.0;
vec3 result;
if (u_int0 == 0) {
result = applyLevels(color, inBlack, inWhite, gamma, outBlack, outWhite);
}
else if (u_int0 == 1) {
result = color;
result.r = applySingleChannel(color.r, inBlack, inWhite, gamma, outBlack, outWhite);
}
else if (u_int0 == 2) {
result = color;
result.g = applySingleChannel(color.g, inBlack, inWhite, gamma, outBlack, outWhite);
}
else if (u_int0 == 3) {
result = color;
result.b = applySingleChannel(color.b, inBlack, inWhite, gamma, outBlack, outWhite);
}
else {
result = color;
}
fragColor = vec4(result, texColor.a);
}

View File

@@ -0,0 +1,28 @@
# GLSL Shader Sources
This folder contains the GLSL fragment shaders extracted from blueprint JSON files for easier editing and version control.
## File Naming Convention
`{Blueprint_Name}_{node_id}.frag`
- **Blueprint_Name**: The JSON filename with spaces/special chars replaced by underscores
- **node_id**: The GLSLShader node ID within the subgraph
## Usage
```bash
# Extract shaders from blueprint JSONs to this folder
python update_blueprints.py extract
# Patch edited shaders back into blueprint JSONs
python update_blueprints.py patch
```
## Workflow
1. Run `extract` to pull current shaders from JSONs
2. Edit `.frag` files
3. Run `patch` to update the blueprint JSONs
4. Test
5. Commit both `.frag` files and updated JSONs

View File

@@ -0,0 +1,28 @@
#version 300 es
precision highp float;
uniform sampler2D u_image0;
uniform vec2 u_resolution;
uniform float u_float0; // strength [0.0 2.0] typical: 0.31.0
in vec2 v_texCoord;
layout(location = 0) out vec4 fragColor0;
void main() {
vec2 texel = 1.0 / u_resolution;
// Sample center and neighbors
vec4 center = texture(u_image0, v_texCoord);
vec4 top = texture(u_image0, v_texCoord + vec2( 0.0, -texel.y));
vec4 bottom = texture(u_image0, v_texCoord + vec2( 0.0, texel.y));
vec4 left = texture(u_image0, v_texCoord + vec2(-texel.x, 0.0));
vec4 right = texture(u_image0, v_texCoord + vec2( texel.x, 0.0));
// Edge enhancement (Laplacian)
vec4 edges = center * 4.0 - top - bottom - left - right;
// Add edges back scaled by strength
vec4 sharpened = center + edges * u_float0;
fragColor0 = vec4(clamp(sharpened.rgb, 0.0, 1.0), center.a);
}

View File

@@ -0,0 +1,61 @@
#version 300 es
precision highp float;
uniform sampler2D u_image0;
uniform vec2 u_resolution;
uniform float u_float0; // amount [0.0 - 3.0] typical: 0.5-1.5
uniform float u_float1; // radius [0.5 - 10.0] blur radius in pixels
uniform float u_float2; // threshold [0.0 - 0.1] min difference to sharpen
in vec2 v_texCoord;
layout(location = 0) out vec4 fragColor0;
float gaussian(float x, float sigma) {
return exp(-(x * x) / (2.0 * sigma * sigma));
}
float getLuminance(vec3 color) {
return dot(color, vec3(0.2126, 0.7152, 0.0722));
}
void main() {
vec2 texel = 1.0 / u_resolution;
float radius = max(u_float1, 0.5);
float amount = u_float0;
float threshold = u_float2;
vec4 original = texture(u_image0, v_texCoord);
// Gaussian blur for the "unsharp" mask
int samples = int(ceil(radius));
float sigma = radius / 2.0;
vec4 blurred = vec4(0.0);
float totalWeight = 0.0;
for (int x = -samples; x <= samples; x++) {
for (int y = -samples; y <= samples; y++) {
vec2 offset = vec2(float(x), float(y)) * texel;
vec4 sample_color = texture(u_image0, v_texCoord + offset);
float dist = length(vec2(float(x), float(y)));
float weight = gaussian(dist, sigma);
blurred += sample_color * weight;
totalWeight += weight;
}
}
blurred /= totalWeight;
// Unsharp mask = original - blurred
vec3 mask = original.rgb - blurred.rgb;
// Luminance-based threshold with smooth falloff
float lumaDelta = abs(getLuminance(original.rgb) - getLuminance(blurred.rgb));
float thresholdScale = smoothstep(0.0, threshold, lumaDelta);
mask *= thresholdScale;
// Sharpen: original + mask * amount
vec3 sharpened = original.rgb + mask * amount;
fragColor0 = vec4(clamp(sharpened, 0.0, 1.0), original.a);
}

View File

@@ -0,0 +1,159 @@
#!/usr/bin/env python3
"""
Shader Blueprint Updater
Syncs GLSL shader files between this folder and blueprint JSON files.
File naming convention:
{Blueprint Name}_{node_id}.frag
Usage:
python update_blueprints.py extract # Extract shaders from JSONs to here
python update_blueprints.py patch # Patch shaders back into JSONs
python update_blueprints.py # Same as patch (default)
"""
import json
import logging
import sys
import re
from pathlib import Path
logging.basicConfig(level=logging.INFO, format='%(message)s')
logger = logging.getLogger(__name__)
GLSL_DIR = Path(__file__).parent
BLUEPRINTS_DIR = GLSL_DIR.parent
def get_blueprint_files():
"""Get all blueprint JSON files."""
return sorted(BLUEPRINTS_DIR.glob("*.json"))
def sanitize_filename(name):
"""Convert blueprint name to safe filename."""
return re.sub(r'[^\w\-]', '_', name)
def extract_shaders():
"""Extract all shaders from blueprint JSONs to this folder."""
extracted = 0
for json_path in get_blueprint_files():
blueprint_name = json_path.stem
try:
with open(json_path, 'r') as f:
data = json.load(f)
except (json.JSONDecodeError, IOError) as e:
logger.warning("Skipping %s: %s", json_path.name, e)
continue
# Find GLSLShader nodes in subgraphs
for subgraph in data.get('definitions', {}).get('subgraphs', []):
for node in subgraph.get('nodes', []):
if node.get('type') == 'GLSLShader':
node_id = node.get('id')
widgets = node.get('widgets_values', [])
# Find shader code (first string that looks like GLSL)
for widget in widgets:
if isinstance(widget, str) and widget.startswith('#version'):
safe_name = sanitize_filename(blueprint_name)
frag_name = f"{safe_name}_{node_id}.frag"
frag_path = GLSL_DIR / frag_name
with open(frag_path, 'w') as f:
f.write(widget)
logger.info(" Extracted: %s", frag_name)
extracted += 1
break
logger.info("\nExtracted %d shader(s)", extracted)
def patch_shaders():
"""Patch shaders from this folder back into blueprint JSONs."""
# Build lookup: blueprint_name -> [(node_id, shader_code), ...]
shader_updates = {}
for frag_path in sorted(GLSL_DIR.glob("*.frag")):
# Parse filename: {blueprint_name}_{node_id}.frag
parts = frag_path.stem.rsplit('_', 1)
if len(parts) != 2:
logger.warning("Skipping %s: invalid filename format", frag_path.name)
continue
blueprint_name, node_id_str = parts
try:
node_id = int(node_id_str)
except ValueError:
logger.warning("Skipping %s: invalid node_id", frag_path.name)
continue
with open(frag_path, 'r') as f:
shader_code = f.read()
if blueprint_name not in shader_updates:
shader_updates[blueprint_name] = []
shader_updates[blueprint_name].append((node_id, shader_code))
# Apply updates to JSON files
patched = 0
for json_path in get_blueprint_files():
blueprint_name = sanitize_filename(json_path.stem)
if blueprint_name not in shader_updates:
continue
try:
with open(json_path, 'r') as f:
data = json.load(f)
except (json.JSONDecodeError, IOError) as e:
logger.error("Error reading %s: %s", json_path.name, e)
continue
modified = False
for node_id, shader_code in shader_updates[blueprint_name]:
# Find the node and update
for subgraph in data.get('definitions', {}).get('subgraphs', []):
for node in subgraph.get('nodes', []):
if node.get('id') == node_id and node.get('type') == 'GLSLShader':
widgets = node.get('widgets_values', [])
if len(widgets) > 0 and widgets[0] != shader_code:
widgets[0] = shader_code
modified = True
logger.info(" Patched: %s (node %d)", json_path.name, node_id)
patched += 1
if modified:
with open(json_path, 'w') as f:
json.dump(data, f)
if patched == 0:
logger.info("No changes to apply.")
else:
logger.info("\nPatched %d shader(s)", patched)
def main():
if len(sys.argv) < 2:
command = "patch"
else:
command = sys.argv[1].lower()
if command == "extract":
logger.info("Extracting shaders from blueprints...")
extract_shaders()
elif command in ("patch", "update", "apply"):
logger.info("Patching shaders into blueprints...")
patch_shaders()
else:
logger.info(__doc__)
sys.exit(1)
if __name__ == "__main__":
main()

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

1
blueprints/Glow.json Normal file

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@@ -0,0 +1 @@
{"revision": 0, "last_node_id": 29, "last_link_id": 0, "nodes": [{"id": 29, "type": "4c9d6ea4-b912-40e5-8766-6793a9758c53", "pos": [1970, -230], "size": [180, 86], "flags": {}, "order": 5, "mode": 0, "inputs": [{"label": "image", "localized_name": "images.image0", "name": "images.image0", "type": "IMAGE", "link": null}], "outputs": [{"label": "R", "localized_name": "IMAGE0", "name": "IMAGE0", "type": "IMAGE", "links": []}, {"label": "G", "localized_name": "IMAGE1", "name": "IMAGE1", "type": "IMAGE", "links": []}, {"label": "B", "localized_name": "IMAGE2", "name": "IMAGE2", "type": "IMAGE", "links": []}, {"label": "A", "localized_name": "IMAGE3", "name": "IMAGE3", "type": "IMAGE", "links": []}], "title": "Image Channels", "properties": {"proxyWidgets": []}, "widgets_values": []}], "links": [], "version": 0.4, "definitions": {"subgraphs": [{"id": "4c9d6ea4-b912-40e5-8766-6793a9758c53", "version": 1, "state": {"lastGroupId": 0, "lastNodeId": 28, "lastLinkId": 39, "lastRerouteId": 0}, "revision": 0, "config": {}, "name": "Image Channels", "inputNode": {"id": -10, "bounding": [1820, -185, 120, 60]}, "outputNode": {"id": -20, "bounding": [2460, -215, 120, 120]}, "inputs": [{"id": "3522932b-2d86-4a1f-a02a-cb29f3a9d7fe", "name": "images.image0", "type": "IMAGE", "linkIds": [39], "localized_name": "images.image0", "label": "image", "pos": [1920, -165]}], "outputs": [{"id": "605cb9c3-b065-4d9b-81d2-3ec331889b2b", "name": "IMAGE0", "type": "IMAGE", "linkIds": [26], "localized_name": "IMAGE0", "label": "R", "pos": [2480, -195]}, {"id": "fb44a77e-0522-43e9-9527-82e7465b3596", "name": "IMAGE1", "type": "IMAGE", "linkIds": [27], "localized_name": "IMAGE1", "label": "G", "pos": [2480, -175]}, {"id": "81460ee6-0131-402a-874f-6bf3001fc4ff", "name": "IMAGE2", "type": "IMAGE", "linkIds": [28], "localized_name": "IMAGE2", "label": "B", "pos": [2480, -155]}, {"id": "ae690246-80d4-4951-b1d9-9306d8a77417", "name": "IMAGE3", "type": "IMAGE", "linkIds": [29], "localized_name": "IMAGE3", "label": "A", "pos": [2480, -135]}], "widgets": [], "nodes": [{"id": 23, "type": "GLSLShader", "pos": [2000, -330], "size": [400, 172], "flags": {}, "order": 0, "mode": 0, "inputs": [{"label": "image", "localized_name": "images.image0", "name": "images.image0", "type": "IMAGE", "link": 39}, {"localized_name": "fragment_shader", "name": "fragment_shader", "type": "STRING", "widget": {"name": "fragment_shader"}, "link": null}, {"localized_name": "size_mode", "name": "size_mode", "type": "COMFY_DYNAMICCOMBO_V3", "widget": {"name": "size_mode"}, "link": null}, {"label": "image1", "localized_name": "images.image1", "name": "images.image1", "shape": 7, "type": "IMAGE", "link": null}], "outputs": [{"label": "R", "localized_name": "IMAGE0", "name": "IMAGE0", "type": "IMAGE", "links": [26]}, {"label": "G", "localized_name": "IMAGE1", "name": "IMAGE1", "type": "IMAGE", "links": [27]}, {"label": "B", "localized_name": "IMAGE2", "name": "IMAGE2", "type": "IMAGE", "links": [28]}, {"label": "A", "localized_name": "IMAGE3", "name": "IMAGE3", "type": "IMAGE", "links": [29]}], "properties": {"Node name for S&R": "GLSLShader"}, "widgets_values": ["#version 300 es\nprecision highp float;\n\nuniform sampler2D u_image0;\n\nin vec2 v_texCoord;\nlayout(location = 0) out vec4 fragColor0;\nlayout(location = 1) out vec4 fragColor1;\nlayout(location = 2) out vec4 fragColor2;\nlayout(location = 3) out vec4 fragColor3;\n\nvoid main() {\n vec4 color = texture(u_image0, v_texCoord);\n // Output each channel as grayscale to separate render targets\n fragColor0 = vec4(vec3(color.r), 1.0); // Red channel\n fragColor1 = vec4(vec3(color.g), 1.0); // Green channel\n fragColor2 = vec4(vec3(color.b), 1.0); // Blue channel\n fragColor3 = vec4(vec3(color.a), 1.0); // Alpha channel\n}\n", "from_input"]}], "groups": [], "links": [{"id": 39, "origin_id": -10, "origin_slot": 0, "target_id": 23, "target_slot": 0, "type": "IMAGE"}, {"id": 26, "origin_id": 23, "origin_slot": 0, "target_id": -20, "target_slot": 0, "type": "IMAGE"}, {"id": 27, "origin_id": 23, "origin_slot": 1, "target_id": -20, "target_slot": 1, "type": "IMAGE"}, {"id": 28, "origin_id": 23, "origin_slot": 2, "target_id": -20, "target_slot": 2, "type": "IMAGE"}, {"id": 29, "origin_id": 23, "origin_slot": 3, "target_id": -20, "target_slot": 3, "type": "IMAGE"}], "extra": {"workflowRendererVersion": "LG"}}]}}

File diff suppressed because one or more lines are too long

1
blueprints/Sharpen.json Normal file
View File

@@ -0,0 +1 @@
{"revision":0,"last_node_id":25,"last_link_id":0,"nodes":[{"id":25,"type":"621ba4e2-22a8-482d-a369-023753198b7b","pos":[4610,-790],"size":[230,58],"flags":{},"order":4,"mode":0,"inputs":[{"label":"image","localized_name":"images.image0","name":"images.image0","type":"IMAGE","link":null}],"outputs":[{"label":"IMAGE","localized_name":"IMAGE0","name":"IMAGE0","type":"IMAGE","links":[]}],"title":"Sharpen","properties":{"proxyWidgets":[["24","value"]]},"widgets_values":[]}],"links":[],"version":0.4,"definitions":{"subgraphs":[{"id":"621ba4e2-22a8-482d-a369-023753198b7b","version":1,"state":{"lastGroupId":0,"lastNodeId":24,"lastLinkId":36,"lastRerouteId":0},"revision":0,"config":{},"name":"Sharpen","inputNode":{"id":-10,"bounding":[4090,-825,120,60]},"outputNode":{"id":-20,"bounding":[5150,-825,120,60]},"inputs":[{"id":"37011fb7-14b7-4e0e-b1a0-6a02e8da1fd7","name":"images.image0","type":"IMAGE","linkIds":[34],"localized_name":"images.image0","label":"image","pos":[4190,-805]}],"outputs":[{"id":"e9182b3f-635c-4cd4-a152-4b4be17ae4b9","name":"IMAGE0","type":"IMAGE","linkIds":[35],"localized_name":"IMAGE0","label":"IMAGE","pos":[5170,-805]}],"widgets":[],"nodes":[{"id":24,"type":"PrimitiveFloat","pos":[4280,-1240],"size":[270,58],"flags":{},"order":0,"mode":0,"inputs":[{"label":"strength","localized_name":"value","name":"value","type":"FLOAT","widget":{"name":"value"},"link":null}],"outputs":[{"localized_name":"FLOAT","name":"FLOAT","type":"FLOAT","links":[36]}],"properties":{"Node name for S&R":"PrimitiveFloat","min":0,"max":3,"precision":2,"step":0.05},"widgets_values":[0.5]},{"id":23,"type":"GLSLShader","pos":[4570,-1240],"size":[370,192],"flags":{},"order":1,"mode":0,"inputs":[{"label":"image0","localized_name":"images.image0","name":"images.image0","type":"IMAGE","link":34},{"label":"image1","localized_name":"images.image1","name":"images.image1","shape":7,"type":"IMAGE","link":null},{"label":"u_float0","localized_name":"floats.u_float0","name":"floats.u_float0","shape":7,"type":"FLOAT","link":36},{"label":"u_float1","localized_name":"floats.u_float1","name":"floats.u_float1","shape":7,"type":"FLOAT","link":null},{"label":"u_int0","localized_name":"ints.u_int0","name":"ints.u_int0","shape":7,"type":"INT","link":null},{"localized_name":"fragment_shader","name":"fragment_shader","type":"STRING","widget":{"name":"fragment_shader"},"link":null},{"localized_name":"size_mode","name":"size_mode","type":"COMFY_DYNAMICCOMBO_V3","widget":{"name":"size_mode"},"link":null}],"outputs":[{"localized_name":"IMAGE0","name":"IMAGE0","type":"IMAGE","links":[35]},{"localized_name":"IMAGE1","name":"IMAGE1","type":"IMAGE","links":null},{"localized_name":"IMAGE2","name":"IMAGE2","type":"IMAGE","links":null},{"localized_name":"IMAGE3","name":"IMAGE3","type":"IMAGE","links":null}],"properties":{"Node name for S&R":"GLSLShader"},"widgets_values":["#version 300 es\nprecision highp float;\n\nuniform sampler2D u_image0;\nuniform vec2 u_resolution;\nuniform float u_float0; // strength [0.0 2.0] typical: 0.31.0\n\nin vec2 v_texCoord;\nlayout(location = 0) out vec4 fragColor0;\n\nvoid main() {\n vec2 texel = 1.0 / u_resolution;\n \n // Sample center and neighbors\n vec4 center = texture(u_image0, v_texCoord);\n vec4 top = texture(u_image0, v_texCoord + vec2( 0.0, -texel.y));\n vec4 bottom = texture(u_image0, v_texCoord + vec2( 0.0, texel.y));\n vec4 left = texture(u_image0, v_texCoord + vec2(-texel.x, 0.0));\n vec4 right = texture(u_image0, v_texCoord + vec2( texel.x, 0.0));\n \n // Edge enhancement (Laplacian)\n vec4 edges = center * 4.0 - top - bottom - left - right;\n \n // Add edges back scaled by strength\n vec4 sharpened = center + edges * u_float0;\n \n fragColor0 = vec4(clamp(sharpened.rgb, 0.0, 1.0), center.a);\n}","from_input"]}],"groups":[],"links":[{"id":36,"origin_id":24,"origin_slot":0,"target_id":23,"target_slot":2,"type":"FLOAT"},{"id":34,"origin_id":-10,"origin_slot":0,"target_id":23,"target_slot":0,"type":"IMAGE"},{"id":35,"origin_id":23,"origin_slot":0,"target_id":-20,"target_slot":0,"type":"IMAGE"}],"extra":{"workflowRendererVersion":"LG"}}]}}

File diff suppressed because one or more lines are too long

View File

@@ -25,11 +25,11 @@ class AudioEncoderModel():
elif model_type == "whisper3":
self.model = WhisperLargeV3(**model_config)
self.model.eval()
self.patcher = comfy.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
self.patcher = comfy.model_patcher.CoreModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
self.model_sample_rate = 16000
def load_sd(self, sd):
return self.model.load_state_dict(sd, strict=False)
return self.model.load_state_dict(sd, strict=False, assign=self.patcher.is_dynamic())
def get_sd(self):
return self.model.state_dict()

View File

@@ -1,13 +0,0 @@
import pickle
load = pickle.load
class Empty:
pass
class Unpickler(pickle.Unpickler):
def find_class(self, module, name):
#TODO: safe unpickle
if module.startswith("pytorch_lightning"):
return Empty
return super().find_class(module, name)

View File

@@ -159,6 +159,7 @@ class PerformanceFeature(enum.Enum):
Fp8MatrixMultiplication = "fp8_matrix_mult"
CublasOps = "cublas_ops"
AutoTune = "autotune"
DynamicVRAM = "dynamic_vram"
parser.add_argument("--fast", nargs="*", type=PerformanceFeature, help="Enable some untested and potentially quality deteriorating optimizations. This is used to test new features so using it might crash your comfyui. --fast with no arguments enables everything. You can pass a list specific optimizations if you only want to enable specific ones. Current valid optimizations: {}".format(" ".join(map(lambda c: c.value, PerformanceFeature))))
@@ -257,3 +258,6 @@ elif args.fast == []:
# '--fast' is provided with a list of performance features, use that list
else:
args.fast = set(args.fast)
def enables_dynamic_vram():
return PerformanceFeature.DynamicVRAM in args.fast and not args.highvram and not args.gpu_only

View File

@@ -47,10 +47,10 @@ class ClipVisionModel():
self.model = model_class(config, self.dtype, offload_device, comfy.ops.manual_cast)
self.model.eval()
self.patcher = comfy.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
self.patcher = comfy.model_patcher.CoreModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
def load_sd(self, sd):
return self.model.load_state_dict(sd, strict=False)
return self.model.load_state_dict(sd, strict=False, assign=self.patcher.is_dynamic())
def get_sd(self):
return self.model.state_dict()

View File

@@ -236,6 +236,8 @@ class ComfyNodeABC(ABC):
"""Flags a node as experimental, informing users that it may change or not work as expected."""
DEPRECATED: bool
"""Flags a node as deprecated, indicating to users that they should find alternatives to this node."""
DEV_ONLY: bool
"""Flags a node as dev-only, hiding it from search/menus unless dev mode is enabled."""
API_NODE: Optional[bool]
"""Flags a node as an API node. See: https://docs.comfy.org/tutorials/api-nodes/overview."""

View File

@@ -203,7 +203,7 @@ class ControlNet(ControlBase):
self.control_model = control_model
self.load_device = load_device
if control_model is not None:
self.control_model_wrapped = comfy.model_patcher.ModelPatcher(self.control_model, load_device=load_device, offload_device=comfy.model_management.unet_offload_device())
self.control_model_wrapped = comfy.model_patcher.CoreModelPatcher(self.control_model, load_device=load_device, offload_device=comfy.model_management.unet_offload_device())
self.compression_ratio = compression_ratio
self.global_average_pooling = global_average_pooling
@@ -297,6 +297,30 @@ class ControlNet(ControlBase):
self.model_sampling_current = None
super().cleanup()
class QwenFunControlNet(ControlNet):
def get_control(self, x_noisy, t, cond, batched_number, transformer_options):
# Fun checkpoints are more sensitive to high strengths in the generic
# ControlNet merge path. Use a soft response curve so strength=1.0 stays
# unchanged while >1 grows more gently.
original_strength = self.strength
self.strength = math.sqrt(max(self.strength, 0.0))
try:
return super().get_control(x_noisy, t, cond, batched_number, transformer_options)
finally:
self.strength = original_strength
def pre_run(self, model, percent_to_timestep_function):
super().pre_run(model, percent_to_timestep_function)
self.set_extra_arg("base_model", model.diffusion_model)
def copy(self):
c = QwenFunControlNet(None, global_average_pooling=self.global_average_pooling, load_device=self.load_device, manual_cast_dtype=self.manual_cast_dtype)
c.control_model = self.control_model
c.control_model_wrapped = self.control_model_wrapped
self.copy_to(c)
return c
class ControlLoraOps:
class Linear(torch.nn.Module, comfy.ops.CastWeightBiasOp):
def __init__(self, in_features: int, out_features: int, bias: bool = True,
@@ -560,6 +584,7 @@ def load_controlnet_hunyuandit(controlnet_data, model_options={}):
def load_controlnet_flux_xlabs_mistoline(sd, mistoline=False, model_options={}):
model_config, operations, load_device, unet_dtype, manual_cast_dtype, offload_device = controlnet_config(sd, model_options=model_options)
control_model = comfy.ldm.flux.controlnet.ControlNetFlux(mistoline=mistoline, operations=operations, device=offload_device, dtype=unet_dtype, **model_config.unet_config)
sd = model_config.process_unet_state_dict(sd)
control_model = controlnet_load_state_dict(control_model, sd)
extra_conds = ['y', 'guidance']
control = ControlNet(control_model, load_device=load_device, manual_cast_dtype=manual_cast_dtype, extra_conds=extra_conds)
@@ -605,6 +630,53 @@ def load_controlnet_qwen_instantx(sd, model_options={}):
control = ControlNet(control_model, compression_ratio=1, latent_format=latent_format, concat_mask=concat_mask, load_device=load_device, manual_cast_dtype=manual_cast_dtype, extra_conds=extra_conds)
return control
def load_controlnet_qwen_fun(sd, model_options={}):
load_device = comfy.model_management.get_torch_device()
weight_dtype = comfy.utils.weight_dtype(sd)
unet_dtype = model_options.get("dtype", weight_dtype)
manual_cast_dtype = comfy.model_management.unet_manual_cast(unet_dtype, load_device)
operations = model_options.get("custom_operations", None)
if operations is None:
operations = comfy.ops.pick_operations(unet_dtype, manual_cast_dtype, disable_fast_fp8=True)
in_features = sd["control_img_in.weight"].shape[1]
inner_dim = sd["control_img_in.weight"].shape[0]
block_weight = sd["control_blocks.0.attn.to_q.weight"]
attention_head_dim = sd["control_blocks.0.attn.norm_q.weight"].shape[0]
num_attention_heads = max(1, block_weight.shape[0] // max(1, attention_head_dim))
model = comfy.ldm.qwen_image.controlnet.QwenImageFunControlNetModel(
control_in_features=in_features,
inner_dim=inner_dim,
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
num_control_blocks=5,
main_model_double=60,
injection_layers=(0, 12, 24, 36, 48),
operations=operations,
device=comfy.model_management.unet_offload_device(),
dtype=unet_dtype,
)
model = controlnet_load_state_dict(model, sd)
latent_format = comfy.latent_formats.Wan21()
control = QwenFunControlNet(
model,
compression_ratio=1,
latent_format=latent_format,
# Fun checkpoints already expect their own 33-channel context handling.
# Enabling generic concat_mask injects an extra mask channel at apply-time
# and breaks the intended fallback packing path.
concat_mask=False,
load_device=load_device,
manual_cast_dtype=manual_cast_dtype,
extra_conds=[],
)
return control
def convert_mistoline(sd):
return comfy.utils.state_dict_prefix_replace(sd, {"single_controlnet_blocks.": "controlnet_single_blocks."})
@@ -682,6 +754,8 @@ def load_controlnet_state_dict(state_dict, model=None, model_options={}):
return load_controlnet_qwen_instantx(controlnet_data, model_options=model_options)
elif "controlnet_x_embedder.weight" in controlnet_data:
return load_controlnet_flux_instantx(controlnet_data, model_options=model_options)
elif "control_blocks.0.after_proj.weight" in controlnet_data and "control_img_in.weight" in controlnet_data:
return load_controlnet_qwen_fun(controlnet_data, model_options=model_options)
elif "controlnet_blocks.0.linear.weight" in controlnet_data: #mistoline flux
return load_controlnet_flux_xlabs_mistoline(convert_mistoline(controlnet_data), mistoline=True, model_options=model_options)

View File

@@ -5,7 +5,7 @@ from scipy import integrate
import torch
from torch import nn
import torchsde
from tqdm.auto import trange, tqdm
from tqdm.auto import tqdm
from . import utils
from . import deis
@@ -13,6 +13,9 @@ from . import sa_solver
import comfy.model_patcher
import comfy.model_sampling
import comfy.memory_management
from comfy.utils import model_trange as trange
def append_zero(x):
return torch.cat([x, x.new_zeros([1])])

View File

@@ -8,6 +8,7 @@ class LatentFormat:
latent_rgb_factors_bias = None
latent_rgb_factors_reshape = None
taesd_decoder_name = None
spacial_downscale_ratio = 8
def process_in(self, latent):
return latent * self.scale_factor
@@ -80,6 +81,7 @@ class SD_X4(LatentFormat):
class SC_Prior(LatentFormat):
latent_channels = 16
spacial_downscale_ratio = 42
def __init__(self):
self.scale_factor = 1.0
self.latent_rgb_factors = [
@@ -102,6 +104,7 @@ class SC_Prior(LatentFormat):
]
class SC_B(LatentFormat):
spacial_downscale_ratio = 4
def __init__(self):
self.scale_factor = 1.0 / 0.43
self.latent_rgb_factors = [
@@ -181,6 +184,7 @@ class Flux(SD3):
class Flux2(LatentFormat):
latent_channels = 128
spacial_downscale_ratio = 16
def __init__(self):
self.latent_rgb_factors =[
@@ -272,6 +276,7 @@ class Mochi(LatentFormat):
class LTXV(LatentFormat):
latent_channels = 128
latent_dimensions = 3
spacial_downscale_ratio = 32
def __init__(self):
self.latent_rgb_factors = [
@@ -515,6 +520,7 @@ class Wan21(LatentFormat):
class Wan22(Wan21):
latent_channels = 48
latent_dimensions = 3
spacial_downscale_ratio = 16
latent_rgb_factors = [
[ 0.0119, 0.0103, 0.0046],
@@ -592,6 +598,7 @@ class Wan22(Wan21):
class HunyuanImage21(LatentFormat):
latent_channels = 64
latent_dimensions = 2
spacial_downscale_ratio = 32
scale_factor = 0.75289
latent_rgb_factors = [
@@ -725,6 +732,7 @@ class HunyuanVideo15(LatentFormat):
latent_rgb_factors_bias = [ 0.0456, -0.0202, -0.0644]
latent_channels = 32
latent_dimensions = 3
spacial_downscale_ratio = 16
scale_factor = 1.03682
taesd_decoder_name = "lighttaehy1_5"
@@ -747,8 +755,13 @@ class ACEAudio(LatentFormat):
latent_channels = 8
latent_dimensions = 2
class ACEAudio15(LatentFormat):
latent_channels = 64
latent_dimensions = 1
class ChromaRadiance(LatentFormat):
latent_channels = 3
spacial_downscale_ratio = 1
def __init__(self):
self.latent_rgb_factors = [

1155
comfy/ldm/ace/ace_step15.py Normal file

File diff suppressed because it is too large Load Diff

View File

@@ -195,8 +195,20 @@ class Anima(MiniTrainDIT):
super().__init__(*args, **kwargs)
self.llm_adapter = LLMAdapter(device=kwargs.get("device"), dtype=kwargs.get("dtype"), operations=kwargs.get("operations"))
def preprocess_text_embeds(self, text_embeds, text_ids):
def preprocess_text_embeds(self, text_embeds, text_ids, t5xxl_weights=None):
if text_ids is not None:
return self.llm_adapter(text_embeds, text_ids)
out = self.llm_adapter(text_embeds, text_ids)
if t5xxl_weights is not None:
out = out * t5xxl_weights
if out.shape[1] < 512:
out = torch.nn.functional.pad(out, (0, 0, 0, 512 - out.shape[1]))
return out
else:
return text_embeds
def forward(self, x, timesteps, context, **kwargs):
t5xxl_ids = kwargs.pop("t5xxl_ids", None)
if t5xxl_ids is not None:
context = self.preprocess_text_embeds(context, t5xxl_ids, t5xxl_weights=kwargs.pop("t5xxl_weights", None))
return super().forward(x, timesteps, context, **kwargs)

View File

@@ -3,7 +3,6 @@ from torch import Tensor, nn
from comfy.ldm.flux.layers import (
MLPEmbedder,
RMSNorm,
ModulationOut,
)
@@ -29,7 +28,7 @@ class Approximator(nn.Module):
super().__init__()
self.in_proj = operations.Linear(in_dim, hidden_dim, bias=True, dtype=dtype, device=device)
self.layers = nn.ModuleList([MLPEmbedder(hidden_dim, hidden_dim, dtype=dtype, device=device, operations=operations) for x in range( n_layers)])
self.norms = nn.ModuleList([RMSNorm(hidden_dim, dtype=dtype, device=device, operations=operations) for x in range( n_layers)])
self.norms = nn.ModuleList([operations.RMSNorm(hidden_dim, dtype=dtype, device=device) for x in range( n_layers)])
self.out_proj = operations.Linear(hidden_dim, out_dim, dtype=dtype, device=device)
@property

View File

@@ -4,8 +4,6 @@ from functools import lru_cache
import torch
from torch import nn
from comfy.ldm.flux.layers import RMSNorm
class NerfEmbedder(nn.Module):
"""
@@ -145,7 +143,7 @@ class NerfGLUBlock(nn.Module):
# We now need to generate parameters for 3 matrices.
total_params = 3 * hidden_size_x**2 * mlp_ratio
self.param_generator = operations.Linear(hidden_size_s, total_params, dtype=dtype, device=device)
self.norm = RMSNorm(hidden_size_x, dtype=dtype, device=device, operations=operations)
self.norm = operations.RMSNorm(hidden_size_x, dtype=dtype, device=device)
self.mlp_ratio = mlp_ratio
@@ -178,7 +176,7 @@ class NerfGLUBlock(nn.Module):
class NerfFinalLayer(nn.Module):
def __init__(self, hidden_size, out_channels, dtype=None, device=None, operations=None):
super().__init__()
self.norm = RMSNorm(hidden_size, dtype=dtype, device=device, operations=operations)
self.norm = operations.RMSNorm(hidden_size, dtype=dtype, device=device)
self.linear = operations.Linear(hidden_size, out_channels, dtype=dtype, device=device)
def forward(self, x: torch.Tensor) -> torch.Tensor:
@@ -190,7 +188,7 @@ class NerfFinalLayer(nn.Module):
class NerfFinalLayerConv(nn.Module):
def __init__(self, hidden_size: int, out_channels: int, dtype=None, device=None, operations=None):
super().__init__()
self.norm = RMSNorm(hidden_size, dtype=dtype, device=device, operations=operations)
self.norm = operations.RMSNorm(hidden_size, dtype=dtype, device=device)
self.conv = operations.Conv2d(
in_channels=hidden_size,
out_channels=out_channels,

View File

@@ -13,6 +13,7 @@ from torchvision import transforms
import comfy.patcher_extension
from comfy.ldm.modules.attention import optimized_attention
import comfy.ldm.common_dit
def apply_rotary_pos_emb(
t: torch.Tensor,
@@ -334,7 +335,7 @@ class FinalLayer(nn.Module):
device=None, dtype=None, operations=None
):
super().__init__()
self.layer_norm = nn.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.layer_norm = operations.LayerNorm(hidden_size, elementwise_affine=False, eps=1e-6)
self.linear = operations.Linear(
hidden_size, spatial_patch_size * spatial_patch_size * temporal_patch_size * out_channels, bias=False, device=device, dtype=dtype
)
@@ -462,6 +463,8 @@ class Block(nn.Module):
extra_per_block_pos_emb: Optional[torch.Tensor] = None,
transformer_options: Optional[dict] = {},
) -> torch.Tensor:
residual_dtype = x_B_T_H_W_D.dtype
compute_dtype = emb_B_T_D.dtype
if extra_per_block_pos_emb is not None:
x_B_T_H_W_D = x_B_T_H_W_D + extra_per_block_pos_emb
@@ -511,7 +514,7 @@ class Block(nn.Module):
result_B_T_H_W_D = rearrange(
self.self_attn(
# normalized_x_B_T_HW_D,
rearrange(normalized_x_B_T_H_W_D, "b t h w d -> b (t h w) d"),
rearrange(normalized_x_B_T_H_W_D.to(compute_dtype), "b t h w d -> b (t h w) d"),
None,
rope_emb=rope_emb_L_1_1_D,
transformer_options=transformer_options,
@@ -521,7 +524,7 @@ class Block(nn.Module):
h=H,
w=W,
)
x_B_T_H_W_D = x_B_T_H_W_D + gate_self_attn_B_T_1_1_D * result_B_T_H_W_D
x_B_T_H_W_D = x_B_T_H_W_D + gate_self_attn_B_T_1_1_D.to(residual_dtype) * result_B_T_H_W_D.to(residual_dtype)
def _x_fn(
_x_B_T_H_W_D: torch.Tensor,
@@ -535,7 +538,7 @@ class Block(nn.Module):
)
_result_B_T_H_W_D = rearrange(
self.cross_attn(
rearrange(_normalized_x_B_T_H_W_D, "b t h w d -> b (t h w) d"),
rearrange(_normalized_x_B_T_H_W_D.to(compute_dtype), "b t h w d -> b (t h w) d"),
crossattn_emb,
rope_emb=rope_emb_L_1_1_D,
transformer_options=transformer_options,
@@ -554,7 +557,7 @@ class Block(nn.Module):
shift_cross_attn_B_T_1_1_D,
transformer_options=transformer_options,
)
x_B_T_H_W_D = result_B_T_H_W_D * gate_cross_attn_B_T_1_1_D + x_B_T_H_W_D
x_B_T_H_W_D = result_B_T_H_W_D.to(residual_dtype) * gate_cross_attn_B_T_1_1_D.to(residual_dtype) + x_B_T_H_W_D
normalized_x_B_T_H_W_D = _fn(
x_B_T_H_W_D,
@@ -562,8 +565,8 @@ class Block(nn.Module):
scale_mlp_B_T_1_1_D,
shift_mlp_B_T_1_1_D,
)
result_B_T_H_W_D = self.mlp(normalized_x_B_T_H_W_D)
x_B_T_H_W_D = x_B_T_H_W_D + gate_mlp_B_T_1_1_D * result_B_T_H_W_D
result_B_T_H_W_D = self.mlp(normalized_x_B_T_H_W_D.to(compute_dtype))
x_B_T_H_W_D = x_B_T_H_W_D + gate_mlp_B_T_1_1_D.to(residual_dtype) * result_B_T_H_W_D.to(residual_dtype)
return x_B_T_H_W_D
@@ -835,6 +838,8 @@ class MiniTrainDIT(nn.Module):
padding_mask: Optional[torch.Tensor] = None,
**kwargs,
):
orig_shape = list(x.shape)
x = comfy.ldm.common_dit.pad_to_patch_size(x, (self.patch_temporal, self.patch_spatial, self.patch_spatial))
x_B_C_T_H_W = x
timesteps_B_T = timesteps
crossattn_emb = context
@@ -873,6 +878,14 @@ class MiniTrainDIT(nn.Module):
"extra_per_block_pos_emb": extra_pos_emb_B_T_H_W_D_or_T_H_W_B_D,
"transformer_options": kwargs.get("transformer_options", {}),
}
# The residual stream for this model has large values. To make fp16 compute_dtype work, we keep the residual stream
# in fp32, but run attention and MLP modules in fp16.
# An alternate method that clamps fp16 values "works" in the sense that it makes coherent images, but there is noticeable
# quality degradation and visual artifacts.
if x_B_T_H_W_D.dtype == torch.float16:
x_B_T_H_W_D = x_B_T_H_W_D.float()
for block in self.blocks:
x_B_T_H_W_D = block(
x_B_T_H_W_D,
@@ -881,6 +894,6 @@ class MiniTrainDIT(nn.Module):
**block_kwargs,
)
x_B_T_H_W_O = self.final_layer(x_B_T_H_W_D, t_embedding_B_T_D, adaln_lora_B_T_3D=adaln_lora_B_T_3D)
x_B_C_Tt_Hp_Wp = self.unpatchify(x_B_T_H_W_O)
x_B_T_H_W_O = self.final_layer(x_B_T_H_W_D.to(crossattn_emb.dtype), t_embedding_B_T_D, adaln_lora_B_T_3D=adaln_lora_B_T_3D)
x_B_C_Tt_Hp_Wp = self.unpatchify(x_B_T_H_W_O)[:, :, :orig_shape[-3], :orig_shape[-2], :orig_shape[-1]]
return x_B_C_Tt_Hp_Wp

View File

@@ -5,9 +5,9 @@ import torch
from torch import Tensor, nn
from .math import attention, rope
import comfy.ops
import comfy.ldm.common_dit
# Fix import for some custom nodes, TODO: delete eventually.
RMSNorm = None
class EmbedND(nn.Module):
def __init__(self, dim: int, theta: int, axes_dim: list):
@@ -87,20 +87,12 @@ def build_mlp(hidden_size, mlp_hidden_dim, mlp_silu_act=False, yak_mlp=False, dt
operations.Linear(mlp_hidden_dim, hidden_size, bias=True, dtype=dtype, device=device),
)
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int, dtype=None, device=None, operations=None):
super().__init__()
self.scale = nn.Parameter(torch.empty((dim), dtype=dtype, device=device))
def forward(self, x: Tensor):
return comfy.ldm.common_dit.rms_norm(x, self.scale, 1e-6)
class QKNorm(torch.nn.Module):
def __init__(self, dim: int, dtype=None, device=None, operations=None):
super().__init__()
self.query_norm = RMSNorm(dim, dtype=dtype, device=device, operations=operations)
self.key_norm = RMSNorm(dim, dtype=dtype, device=device, operations=operations)
self.query_norm = operations.RMSNorm(dim, dtype=dtype, device=device)
self.key_norm = operations.RMSNorm(dim, dtype=dtype, device=device)
def forward(self, q: Tensor, k: Tensor, v: Tensor) -> tuple:
q = self.query_norm(q)
@@ -169,7 +161,7 @@ class SiLUActivation(nn.Module):
class DoubleStreamBlock(nn.Module):
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, flipped_img_txt=False, modulation=True, mlp_silu_act=False, proj_bias=True, yak_mlp=False, dtype=None, device=None, operations=None):
def __init__(self, hidden_size: int, num_heads: int, mlp_ratio: float, qkv_bias: bool = False, modulation=True, mlp_silu_act=False, proj_bias=True, yak_mlp=False, dtype=None, device=None, operations=None):
super().__init__()
mlp_hidden_dim = int(hidden_size * mlp_ratio)
@@ -197,8 +189,6 @@ class DoubleStreamBlock(nn.Module):
self.txt_mlp = build_mlp(hidden_size, mlp_hidden_dim, mlp_silu_act=mlp_silu_act, yak_mlp=yak_mlp, dtype=dtype, device=device, operations=operations)
self.flipped_img_txt = flipped_img_txt
def forward(self, img: Tensor, txt: Tensor, vec: Tensor, pe: Tensor, attn_mask=None, modulation_dims_img=None, modulation_dims_txt=None, transformer_options={}):
if self.modulation:
img_mod1, img_mod2 = self.img_mod(vec)
@@ -224,32 +214,17 @@ class DoubleStreamBlock(nn.Module):
del txt_qkv
txt_q, txt_k = self.txt_attn.norm(txt_q, txt_k, txt_v)
if self.flipped_img_txt:
q = torch.cat((img_q, txt_q), dim=2)
del img_q, txt_q
k = torch.cat((img_k, txt_k), dim=2)
del img_k, txt_k
v = torch.cat((img_v, txt_v), dim=2)
del img_v, txt_v
# run actual attention
attn = attention(q, k, v,
pe=pe, mask=attn_mask, transformer_options=transformer_options)
del q, k, v
q = torch.cat((txt_q, img_q), dim=2)
del txt_q, img_q
k = torch.cat((txt_k, img_k), dim=2)
del txt_k, img_k
v = torch.cat((txt_v, img_v), dim=2)
del txt_v, img_v
# run actual attention
attn = attention(q, k, v, pe=pe, mask=attn_mask, transformer_options=transformer_options)
del q, k, v
img_attn, txt_attn = attn[:, : img.shape[1]], attn[:, img.shape[1]:]
else:
q = torch.cat((txt_q, img_q), dim=2)
del txt_q, img_q
k = torch.cat((txt_k, img_k), dim=2)
del txt_k, img_k
v = torch.cat((txt_v, img_v), dim=2)
del txt_v, img_v
# run actual attention
attn = attention(q, k, v,
pe=pe, mask=attn_mask, transformer_options=transformer_options)
del q, k, v
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1]:]
txt_attn, img_attn = attn[:, : txt.shape[1]], attn[:, txt.shape[1]:]
# calculate the img bloks
img += apply_mod(self.img_attn.proj(img_attn), img_mod1.gate, None, modulation_dims_img)

View File

@@ -29,19 +29,34 @@ def rope(pos: Tensor, dim: int, theta: int) -> Tensor:
return out.to(dtype=torch.float32, device=pos.device)
def _apply_rope1(x: Tensor, freqs_cis: Tensor):
x_ = x.to(dtype=freqs_cis.dtype).reshape(*x.shape[:-1], -1, 1, 2)
x_out = freqs_cis[..., 0] * x_[..., 0]
x_out.addcmul_(freqs_cis[..., 1], x_[..., 1])
return x_out.reshape(*x.shape).type_as(x)
def _apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor):
return apply_rope1(xq, freqs_cis), apply_rope1(xk, freqs_cis)
try:
import comfy.quant_ops
apply_rope = comfy.quant_ops.ck.apply_rope
apply_rope1 = comfy.quant_ops.ck.apply_rope1
q_apply_rope = comfy.quant_ops.ck.apply_rope
q_apply_rope1 = comfy.quant_ops.ck.apply_rope1
def apply_rope(xq, xk, freqs_cis):
if comfy.model_management.in_training:
return _apply_rope(xq, xk, freqs_cis)
else:
return apply_rope1(xq, freqs_cis), apply_rope1(xk, freqs_cis)
def apply_rope1(x, freqs_cis):
if comfy.model_management.in_training:
return _apply_rope1(x, freqs_cis)
else:
return q_apply_rope1(x, freqs_cis)
except:
logging.warning("No comfy kitchen, using old apply_rope functions.")
def apply_rope1(x: Tensor, freqs_cis: Tensor):
x_ = x.to(dtype=freqs_cis.dtype).reshape(*x.shape[:-1], -1, 1, 2)
x_out = freqs_cis[..., 0] * x_[..., 0]
x_out.addcmul_(freqs_cis[..., 1], x_[..., 1])
return x_out.reshape(*x.shape).type_as(x)
def apply_rope(xq: Tensor, xk: Tensor, freqs_cis: Tensor):
return apply_rope1(xq, freqs_cis), apply_rope1(xk, freqs_cis)
apply_rope = _apply_rope
apply_rope1 = _apply_rope1

View File

@@ -16,7 +16,6 @@ from .layers import (
SingleStreamBlock,
timestep_embedding,
Modulation,
RMSNorm
)
@dataclass
@@ -81,7 +80,7 @@ class Flux(nn.Module):
self.txt_in = operations.Linear(params.context_in_dim, self.hidden_size, bias=params.ops_bias, dtype=dtype, device=device)
if params.txt_norm:
self.txt_norm = RMSNorm(params.context_in_dim, dtype=dtype, device=device, operations=operations)
self.txt_norm = operations.RMSNorm(params.context_in_dim, dtype=dtype, device=device)
else:
self.txt_norm = None

View File

@@ -241,7 +241,6 @@ class HunyuanVideo(nn.Module):
self.num_heads,
mlp_ratio=params.mlp_ratio,
qkv_bias=params.qkv_bias,
flipped_img_txt=True,
dtype=dtype, device=device, operations=operations
)
for _ in range(params.depth)
@@ -378,14 +377,14 @@ class HunyuanVideo(nn.Module):
extra_txt_ids = torch.zeros((txt_ids.shape[0], txt_vision_states.shape[1], txt_ids.shape[-1]), device=txt_ids.device, dtype=txt_ids.dtype)
txt_ids = torch.cat((txt_ids, extra_txt_ids), dim=1)
ids = torch.cat((img_ids, txt_ids), dim=1)
ids = torch.cat((txt_ids, img_ids), dim=1)
pe = self.pe_embedder(ids)
img_len = img.shape[1]
if txt_mask is not None:
attn_mask_len = img_len + txt.shape[1]
attn_mask = torch.zeros((1, 1, attn_mask_len), dtype=img.dtype, device=img.device)
attn_mask[:, 0, img_len:] = txt_mask
attn_mask[:, 0, :txt.shape[1]] = txt_mask
else:
attn_mask = None
@@ -413,7 +412,7 @@ class HunyuanVideo(nn.Module):
if add is not None:
img += add
img = torch.cat((img, txt), 1)
img = torch.cat((txt, img), 1)
transformer_options["total_blocks"] = len(self.single_blocks)
transformer_options["block_type"] = "single"
@@ -435,9 +434,9 @@ class HunyuanVideo(nn.Module):
if i < len(control_o):
add = control_o[i]
if add is not None:
img[:, : img_len] += add
img[:, txt.shape[1]: img_len + txt.shape[1]] += add
img = img[:, : img_len]
img = img[:, txt.shape[1]: img_len + txt.shape[1]]
if ref_latent is not None:
img = img[:, ref_latent.shape[1]:]

View File

@@ -109,10 +109,10 @@ class HunyuanVideo15SRModel():
self.model_class = UPSAMPLERS.get(model_type)
self.model = self.model_class(**config).eval()
self.patcher = comfy.model_patcher.ModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
self.patcher = comfy.model_patcher.CoreModelPatcher(self.model, load_device=self.load_device, offload_device=offload_device)
def load_sd(self, sd):
return self.model.load_state_dict(sd, strict=True)
return self.model.load_state_dict(sd, strict=True, assign=self.patcher.is_dynamic())
def get_sd(self):
return self.model.state_dict()

View File

@@ -18,12 +18,12 @@ class CompressedTimestep:
def __init__(self, tensor: torch.Tensor, patches_per_frame: int):
"""
tensor: [batch_size, num_tokens, feature_dim] tensor where num_tokens = num_frames * patches_per_frame
patches_per_frame: Number of spatial patches per frame (height * width in latent space)
patches_per_frame: Number of spatial patches per frame (height * width in latent space), or None to disable compression
"""
self.batch_size, num_tokens, self.feature_dim = tensor.shape
# Check if compression is valid (num_tokens must be divisible by patches_per_frame)
if num_tokens % patches_per_frame == 0 and num_tokens >= patches_per_frame:
if patches_per_frame is not None and num_tokens % patches_per_frame == 0 and num_tokens >= patches_per_frame:
self.patches_per_frame = patches_per_frame
self.num_frames = num_tokens // patches_per_frame
@@ -215,22 +215,9 @@ class BasicAVTransformerBlock(nn.Module):
return (*scale_shift_ada_values, *gate_ada_values)
def forward(
self,
x: Tuple[torch.Tensor, torch.Tensor],
v_context=None,
a_context=None,
attention_mask=None,
v_timestep=None,
a_timestep=None,
v_pe=None,
a_pe=None,
v_cross_pe=None,
a_cross_pe=None,
v_cross_scale_shift_timestep=None,
a_cross_scale_shift_timestep=None,
v_cross_gate_timestep=None,
a_cross_gate_timestep=None,
transformer_options=None,
self, x: Tuple[torch.Tensor, torch.Tensor], v_context=None, a_context=None, attention_mask=None, v_timestep=None, a_timestep=None,
v_pe=None, a_pe=None, v_cross_pe=None, a_cross_pe=None, v_cross_scale_shift_timestep=None, a_cross_scale_shift_timestep=None,
v_cross_gate_timestep=None, a_cross_gate_timestep=None, transformer_options=None,
) -> Tuple[torch.Tensor, torch.Tensor]:
run_vx = transformer_options.get("run_vx", True)
run_ax = transformer_options.get("run_ax", True)
@@ -240,144 +227,102 @@ class BasicAVTransformerBlock(nn.Module):
run_a2v = run_vx and transformer_options.get("a2v_cross_attn", True) and ax.numel() > 0
run_v2a = run_ax and transformer_options.get("v2a_cross_attn", True)
# video
if run_vx:
vshift_msa, vscale_msa, vgate_msa = (
self.get_ada_values(self.scale_shift_table, vx.shape[0], v_timestep, slice(0, 3))
)
# video self-attention
vshift_msa, vscale_msa = (self.get_ada_values(self.scale_shift_table, vx.shape[0], v_timestep, slice(0, 2)))
norm_vx = comfy.ldm.common_dit.rms_norm(vx) * (1 + vscale_msa) + vshift_msa
vx += self.attn1(norm_vx, pe=v_pe, transformer_options=transformer_options) * vgate_msa
vx += self.attn2(
comfy.ldm.common_dit.rms_norm(vx),
context=v_context,
mask=attention_mask,
transformer_options=transformer_options,
)
del vshift_msa, vscale_msa, vgate_msa
del vshift_msa, vscale_msa
attn1_out = self.attn1(norm_vx, pe=v_pe, transformer_options=transformer_options)
del norm_vx
# video cross-attention
vgate_msa = self.get_ada_values(self.scale_shift_table, vx.shape[0], v_timestep, slice(2, 3))[0]
vx.addcmul_(attn1_out, vgate_msa)
del vgate_msa, attn1_out
vx.add_(self.attn2(comfy.ldm.common_dit.rms_norm(vx), context=v_context, mask=attention_mask, transformer_options=transformer_options))
# audio
if run_ax:
ashift_msa, ascale_msa, agate_msa = (
self.get_ada_values(self.audio_scale_shift_table, ax.shape[0], a_timestep, slice(0, 3))
)
# audio self-attention
ashift_msa, ascale_msa = (self.get_ada_values(self.audio_scale_shift_table, ax.shape[0], a_timestep, slice(0, 2)))
norm_ax = comfy.ldm.common_dit.rms_norm(ax) * (1 + ascale_msa) + ashift_msa
ax += (
self.audio_attn1(norm_ax, pe=a_pe, transformer_options=transformer_options)
* agate_msa
)
ax += self.audio_attn2(
comfy.ldm.common_dit.rms_norm(ax),
context=a_context,
mask=attention_mask,
transformer_options=transformer_options,
)
del ashift_msa, ascale_msa
attn1_out = self.audio_attn1(norm_ax, pe=a_pe, transformer_options=transformer_options)
del norm_ax
# audio cross-attention
agate_msa = self.get_ada_values(self.audio_scale_shift_table, ax.shape[0], a_timestep, slice(2, 3))[0]
ax.addcmul_(attn1_out, agate_msa)
del agate_msa, attn1_out
ax.add_(self.audio_attn2(comfy.ldm.common_dit.rms_norm(ax), context=a_context, mask=attention_mask, transformer_options=transformer_options))
del ashift_msa, ascale_msa, agate_msa
# Audio - Video cross attention.
# video - audio cross attention.
if run_a2v or run_v2a:
# norm3
vx_norm3 = comfy.ldm.common_dit.rms_norm(vx)
ax_norm3 = comfy.ldm.common_dit.rms_norm(ax)
(
scale_ca_audio_hidden_states_a2v,
shift_ca_audio_hidden_states_a2v,
scale_ca_audio_hidden_states_v2a,
shift_ca_audio_hidden_states_v2a,
gate_out_v2a,
) = self.get_av_ca_ada_values(
self.scale_shift_table_a2v_ca_audio,
ax.shape[0],
a_cross_scale_shift_timestep,
a_cross_gate_timestep,
)
(
scale_ca_video_hidden_states_a2v,
shift_ca_video_hidden_states_a2v,
scale_ca_video_hidden_states_v2a,
shift_ca_video_hidden_states_v2a,
gate_out_a2v,
) = self.get_av_ca_ada_values(
self.scale_shift_table_a2v_ca_video,
vx.shape[0],
v_cross_scale_shift_timestep,
v_cross_gate_timestep,
)
# audio to video cross attention
if run_a2v:
vx_scaled = (
vx_norm3 * (1 + scale_ca_video_hidden_states_a2v)
+ shift_ca_video_hidden_states_a2v
)
ax_scaled = (
ax_norm3 * (1 + scale_ca_audio_hidden_states_a2v)
+ shift_ca_audio_hidden_states_a2v
)
vx += (
self.audio_to_video_attn(
vx_scaled,
context=ax_scaled,
pe=v_cross_pe,
k_pe=a_cross_pe,
transformer_options=transformer_options,
)
* gate_out_a2v
)
scale_ca_audio_hidden_states_a2v, shift_ca_audio_hidden_states_a2v = self.get_ada_values(
self.scale_shift_table_a2v_ca_audio[:4, :], ax.shape[0], a_cross_scale_shift_timestep)[:2]
scale_ca_video_hidden_states_a2v_v, shift_ca_video_hidden_states_a2v_v = self.get_ada_values(
self.scale_shift_table_a2v_ca_video[:4, :], vx.shape[0], v_cross_scale_shift_timestep)[:2]
del gate_out_a2v
del scale_ca_video_hidden_states_a2v,\
shift_ca_video_hidden_states_a2v,\
scale_ca_audio_hidden_states_a2v,\
shift_ca_audio_hidden_states_a2v,\
vx_scaled = vx_norm3 * (1 + scale_ca_video_hidden_states_a2v_v) + shift_ca_video_hidden_states_a2v_v
ax_scaled = ax_norm3 * (1 + scale_ca_audio_hidden_states_a2v) + shift_ca_audio_hidden_states_a2v
del scale_ca_video_hidden_states_a2v_v, shift_ca_video_hidden_states_a2v_v, scale_ca_audio_hidden_states_a2v, shift_ca_audio_hidden_states_a2v
a2v_out = self.audio_to_video_attn(vx_scaled, context=ax_scaled, pe=v_cross_pe, k_pe=a_cross_pe, transformer_options=transformer_options)
del vx_scaled, ax_scaled
gate_out_a2v = self.get_ada_values(self.scale_shift_table_a2v_ca_video[4:, :], vx.shape[0], v_cross_gate_timestep)[0]
vx.addcmul_(a2v_out, gate_out_a2v)
del gate_out_a2v, a2v_out
# video to audio cross attention
if run_v2a:
ax_scaled = (
ax_norm3 * (1 + scale_ca_audio_hidden_states_v2a)
+ shift_ca_audio_hidden_states_v2a
)
vx_scaled = (
vx_norm3 * (1 + scale_ca_video_hidden_states_v2a)
+ shift_ca_video_hidden_states_v2a
)
ax += (
self.video_to_audio_attn(
ax_scaled,
context=vx_scaled,
pe=a_cross_pe,
k_pe=v_cross_pe,
transformer_options=transformer_options,
)
* gate_out_v2a
)
scale_ca_audio_hidden_states_v2a, shift_ca_audio_hidden_states_v2a = self.get_ada_values(
self.scale_shift_table_a2v_ca_audio[:4, :], ax.shape[0], a_cross_scale_shift_timestep)[2:4]
scale_ca_video_hidden_states_v2a, shift_ca_video_hidden_states_v2a = self.get_ada_values(
self.scale_shift_table_a2v_ca_video[:4, :], vx.shape[0], v_cross_scale_shift_timestep)[2:4]
del gate_out_v2a
del scale_ca_video_hidden_states_v2a,\
shift_ca_video_hidden_states_v2a,\
scale_ca_audio_hidden_states_v2a,\
shift_ca_audio_hidden_states_v2a
ax_scaled = ax_norm3 * (1 + scale_ca_audio_hidden_states_v2a) + shift_ca_audio_hidden_states_v2a
vx_scaled = vx_norm3 * (1 + scale_ca_video_hidden_states_v2a) + shift_ca_video_hidden_states_v2a
del scale_ca_video_hidden_states_v2a, shift_ca_video_hidden_states_v2a, scale_ca_audio_hidden_states_v2a, shift_ca_audio_hidden_states_v2a
v2a_out = self.video_to_audio_attn(ax_scaled, context=vx_scaled, pe=a_cross_pe, k_pe=v_cross_pe, transformer_options=transformer_options)
del ax_scaled, vx_scaled
gate_out_v2a = self.get_ada_values(self.scale_shift_table_a2v_ca_audio[4:, :], ax.shape[0], a_cross_gate_timestep)[0]
ax.addcmul_(v2a_out, gate_out_v2a)
del gate_out_v2a, v2a_out
del vx_norm3, ax_norm3
# video feedforward
if run_vx:
vshift_mlp, vscale_mlp, vgate_mlp = (
self.get_ada_values(self.scale_shift_table, vx.shape[0], v_timestep, slice(3, None))
)
vshift_mlp, vscale_mlp = self.get_ada_values(self.scale_shift_table, vx.shape[0], v_timestep, slice(3, 5))
vx_scaled = comfy.ldm.common_dit.rms_norm(vx) * (1 + vscale_mlp) + vshift_mlp
vx += self.ff(vx_scaled) * vgate_mlp
del vshift_mlp, vscale_mlp, vgate_mlp
del vshift_mlp, vscale_mlp
ff_out = self.ff(vx_scaled)
del vx_scaled
vgate_mlp = self.get_ada_values(self.scale_shift_table, vx.shape[0], v_timestep, slice(5, 6))[0]
vx.addcmul_(ff_out, vgate_mlp)
del vgate_mlp, ff_out
# audio feedforward
if run_ax:
ashift_mlp, ascale_mlp, agate_mlp = (
self.get_ada_values(self.audio_scale_shift_table, ax.shape[0], a_timestep, slice(3, None))
)
ashift_mlp, ascale_mlp = self.get_ada_values(self.audio_scale_shift_table, ax.shape[0], a_timestep, slice(3, 5))
ax_scaled = comfy.ldm.common_dit.rms_norm(ax) * (1 + ascale_mlp) + ashift_mlp
ax += self.audio_ff(ax_scaled) * agate_mlp
del ashift_mlp, ascale_mlp
del ashift_mlp, ascale_mlp, agate_mlp
ff_out = self.audio_ff(ax_scaled)
del ax_scaled
agate_mlp = self.get_ada_values(self.audio_scale_shift_table, ax.shape[0], a_timestep, slice(5, 6))[0]
ax.addcmul_(ff_out, agate_mlp)
del agate_mlp, ff_out
return vx, ax
@@ -589,9 +534,20 @@ class LTXAVModel(LTXVModel):
audio_length = kwargs.get("audio_length", 0)
# Separate audio and video latents
vx, ax = self.separate_audio_and_video_latents(x, audio_length)
has_spatial_mask = False
if denoise_mask is not None:
# check if any frame has spatial variation (inpainting)
for frame_idx in range(denoise_mask.shape[2]):
frame_mask = denoise_mask[0, 0, frame_idx]
if frame_mask.numel() > 0 and frame_mask.min() != frame_mask.max():
has_spatial_mask = True
break
[vx, v_pixel_coords, additional_args] = super()._process_input(
vx, keyframe_idxs, denoise_mask, **kwargs
)
additional_args["has_spatial_mask"] = has_spatial_mask
ax, a_latent_coords = self.a_patchifier.patchify(ax)
ax = self.audio_patchify_proj(ax)
@@ -618,8 +574,9 @@ class LTXAVModel(LTXVModel):
# Calculate patches_per_frame from orig_shape: [batch, channels, frames, height, width]
# Video tokens are arranged as (frames * height * width), so patches_per_frame = height * width
orig_shape = kwargs.get("orig_shape")
has_spatial_mask = kwargs.get("has_spatial_mask", None)
v_patches_per_frame = None
if orig_shape is not None and len(orig_shape) == 5:
if not has_spatial_mask and orig_shape is not None and len(orig_shape) == 5:
# orig_shape[3] = height, orig_shape[4] = width (in latent space)
v_patches_per_frame = orig_shape[3] * orig_shape[4]
@@ -662,10 +619,11 @@ class LTXAVModel(LTXVModel):
)
# Compress cross-attention timesteps (only video side, audio is too small to benefit)
# v_patches_per_frame is None for spatial masks, set for temporal masks or no mask
cross_av_timestep_ss = [
av_ca_audio_scale_shift_timestep.view(batch_size, -1, av_ca_audio_scale_shift_timestep.shape[-1]),
CompressedTimestep(av_ca_video_scale_shift_timestep.view(batch_size, -1, av_ca_video_scale_shift_timestep.shape[-1]), v_patches_per_frame), # video - compressed
CompressedTimestep(av_ca_a2v_gate_noise_timestep.view(batch_size, -1, av_ca_a2v_gate_noise_timestep.shape[-1]), v_patches_per_frame), # video - compressed
CompressedTimestep(av_ca_video_scale_shift_timestep.view(batch_size, -1, av_ca_video_scale_shift_timestep.shape[-1]), v_patches_per_frame), # video - compressed if possible
CompressedTimestep(av_ca_a2v_gate_noise_timestep.view(batch_size, -1, av_ca_a2v_gate_noise_timestep.shape[-1]), v_patches_per_frame), # video - compressed if possible
av_ca_v2a_gate_noise_timestep.view(batch_size, -1, av_ca_v2a_gate_noise_timestep.shape[-1]),
]

View File

@@ -1,11 +1,11 @@
from typing import Tuple, Union
import threading
import torch
import torch.nn as nn
import comfy.ops
ops = comfy.ops.disable_weight_init
class CausalConv3d(nn.Module):
def __init__(
self,
@@ -42,23 +42,34 @@ class CausalConv3d(nn.Module):
padding_mode=spatial_padding_mode,
groups=groups,
)
self.temporal_cache_state={}
def forward(self, x, causal: bool = True):
if causal:
first_frame_pad = x[:, :, :1, :, :].repeat(
(1, 1, self.time_kernel_size - 1, 1, 1)
)
x = torch.concatenate((first_frame_pad, x), dim=2)
else:
first_frame_pad = x[:, :, :1, :, :].repeat(
(1, 1, (self.time_kernel_size - 1) // 2, 1, 1)
)
last_frame_pad = x[:, :, -1:, :, :].repeat(
(1, 1, (self.time_kernel_size - 1) // 2, 1, 1)
)
x = torch.concatenate((first_frame_pad, x, last_frame_pad), dim=2)
x = self.conv(x)
return x
tid = threading.get_ident()
cached, is_end = self.temporal_cache_state.get(tid, (None, False))
if cached is None:
padding_length = self.time_kernel_size - 1
if not causal:
padding_length = padding_length // 2
if x.shape[2] == 0:
return x
cached = x[:, :, :1, :, :].repeat((1, 1, padding_length, 1, 1))
pieces = [ cached, x ]
if is_end and not causal:
pieces.append(x[:, :, -1:, :, :].repeat((1, 1, (self.time_kernel_size - 1) // 2, 1, 1)))
needs_caching = not is_end
if needs_caching and x.shape[2] >= self.time_kernel_size - 1:
needs_caching = False
self.temporal_cache_state[tid] = (x[:, :, -(self.time_kernel_size - 1):, :, :], False)
x = torch.cat(pieces, dim=2)
if needs_caching:
self.temporal_cache_state[tid] = (x[:, :, -(self.time_kernel_size - 1):, :, :], False)
return self.conv(x) if x.shape[2] >= self.time_kernel_size else x[:, :, :0, :, :]
@property
def weight(self):

View File

@@ -1,4 +1,5 @@
from __future__ import annotations
import threading
import torch
from torch import nn
from functools import partial
@@ -6,12 +7,35 @@ import math
from einops import rearrange
from typing import List, Optional, Tuple, Union
from .conv_nd_factory import make_conv_nd, make_linear_nd
from .causal_conv3d import CausalConv3d
from .pixel_norm import PixelNorm
from ..model import PixArtAlphaCombinedTimestepSizeEmbeddings
import comfy.ops
from comfy.ldm.modules.diffusionmodules.model import torch_cat_if_needed
ops = comfy.ops.disable_weight_init
def mark_conv3d_ended(module):
tid = threading.get_ident()
for _, m in module.named_modules():
if isinstance(m, CausalConv3d):
current = m.temporal_cache_state.get(tid, (None, False))
m.temporal_cache_state[tid] = (current[0], True)
def split2(tensor, split_point, dim=2):
return torch.split(tensor, [split_point, tensor.shape[dim] - split_point], dim=dim)
def add_exchange_cache(dest, cache_in, new_input, dim=2):
if dest is not None:
if cache_in is not None:
cache_to_dest = min(dest.shape[dim], cache_in.shape[dim])
lead_in_dest, dest = split2(dest, cache_to_dest, dim=dim)
lead_in_source, cache_in = split2(cache_in, cache_to_dest, dim=dim)
lead_in_dest.add_(lead_in_source)
body, new_input = split2(new_input, dest.shape[dim], dim)
dest.add_(body)
return torch_cat_if_needed([cache_in, new_input], dim=dim)
class Encoder(nn.Module):
r"""
The `Encoder` layer of a variational autoencoder that encodes its input into a latent representation.
@@ -205,7 +229,7 @@ class Encoder(nn.Module):
self.gradient_checkpointing = False
def forward(self, sample: torch.FloatTensor) -> torch.FloatTensor:
def forward_orig(self, sample: torch.FloatTensor) -> torch.FloatTensor:
r"""The forward method of the `Encoder` class."""
sample = patchify(sample, patch_size_hw=self.patch_size, patch_size_t=1)
@@ -254,6 +278,22 @@ class Encoder(nn.Module):
return sample
def forward(self, *args, **kwargs):
#No encoder support so just flag the end so it doesnt use the cache.
mark_conv3d_ended(self)
try:
return self.forward_orig(*args, **kwargs)
finally:
tid = threading.get_ident()
for _, module in self.named_modules():
# ComfyUI doesn't thread this kind of stuff today, but just in case
# we key on the thread to make it thread safe.
tid = threading.get_ident()
if hasattr(module, "temporal_cache_state"):
module.temporal_cache_state.pop(tid, None)
MAX_CHUNK_SIZE=(128 * 1024 ** 2)
class Decoder(nn.Module):
r"""
@@ -341,18 +381,6 @@ class Decoder(nn.Module):
timestep_conditioning=timestep_conditioning,
spatial_padding_mode=spatial_padding_mode,
)
elif block_name == "attn_res_x":
block = UNetMidBlock3D(
dims=dims,
in_channels=input_channel,
num_layers=block_params["num_layers"],
resnet_groups=norm_num_groups,
norm_layer=norm_layer,
inject_noise=block_params.get("inject_noise", False),
timestep_conditioning=timestep_conditioning,
attention_head_dim=block_params["attention_head_dim"],
spatial_padding_mode=spatial_padding_mode,
)
elif block_name == "res_x_y":
output_channel = output_channel // block_params.get("multiplier", 2)
block = ResnetBlock3D(
@@ -428,8 +456,9 @@ class Decoder(nn.Module):
)
self.last_scale_shift_table = nn.Parameter(torch.empty(2, output_channel))
# def forward(self, sample: torch.FloatTensor, target_shape) -> torch.FloatTensor:
def forward(
def forward_orig(
self,
sample: torch.FloatTensor,
timestep: Optional[torch.Tensor] = None,
@@ -437,6 +466,7 @@ class Decoder(nn.Module):
r"""The forward method of the `Decoder` class."""
batch_size = sample.shape[0]
mark_conv3d_ended(self.conv_in)
sample = self.conv_in(sample, causal=self.causal)
checkpoint_fn = (
@@ -445,24 +475,12 @@ class Decoder(nn.Module):
else lambda x: x
)
scaled_timestep = None
timestep_shift_scale = None
if self.timestep_conditioning:
assert (
timestep is not None
), "should pass timestep with timestep_conditioning=True"
scaled_timestep = timestep * self.timestep_scale_multiplier.to(dtype=sample.dtype, device=sample.device)
for up_block in self.up_blocks:
if self.timestep_conditioning and isinstance(up_block, UNetMidBlock3D):
sample = checkpoint_fn(up_block)(
sample, causal=self.causal, timestep=scaled_timestep
)
else:
sample = checkpoint_fn(up_block)(sample, causal=self.causal)
sample = self.conv_norm_out(sample)
if self.timestep_conditioning:
embedded_timestep = self.last_time_embedder(
timestep=scaled_timestep.flatten(),
resolution=None,
@@ -483,16 +501,62 @@ class Decoder(nn.Module):
embedded_timestep.shape[-2],
embedded_timestep.shape[-1],
)
shift, scale = ada_values.unbind(dim=1)
sample = sample * (1 + scale) + shift
timestep_shift_scale = ada_values.unbind(dim=1)
sample = self.conv_act(sample)
sample = self.conv_out(sample, causal=self.causal)
output = []
def run_up(idx, sample, ended):
if idx >= len(self.up_blocks):
sample = self.conv_norm_out(sample)
if timestep_shift_scale is not None:
shift, scale = timestep_shift_scale
sample = sample * (1 + scale) + shift
sample = self.conv_act(sample)
if ended:
mark_conv3d_ended(self.conv_out)
sample = self.conv_out(sample, causal=self.causal)
if sample is not None and sample.shape[2] > 0:
output.append(sample)
return
up_block = self.up_blocks[idx]
if (ended):
mark_conv3d_ended(up_block)
if self.timestep_conditioning and isinstance(up_block, UNetMidBlock3D):
sample = checkpoint_fn(up_block)(
sample, causal=self.causal, timestep=scaled_timestep
)
else:
sample = checkpoint_fn(up_block)(sample, causal=self.causal)
if sample is None or sample.shape[2] == 0:
return
total_bytes = sample.numel() * sample.element_size()
num_chunks = (total_bytes + MAX_CHUNK_SIZE - 1) // MAX_CHUNK_SIZE
samples = torch.chunk(sample, chunks=num_chunks, dim=2)
for chunk_idx, sample1 in enumerate(samples):
run_up(idx + 1, sample1, ended and chunk_idx == len(samples) - 1)
run_up(0, sample, True)
sample = torch.cat(output, dim=2)
sample = unpatchify(sample, patch_size_hw=self.patch_size, patch_size_t=1)
return sample
def forward(self, *args, **kwargs):
try:
return self.forward_orig(*args, **kwargs)
finally:
for _, module in self.named_modules():
#ComfyUI doesn't thread this kind of stuff today, but just incase
#we key on the thread to make it thread safe.
tid = threading.get_ident()
if hasattr(module, "temporal_cache_state"):
module.temporal_cache_state.pop(tid, None)
class UNetMidBlock3D(nn.Module):
"""
@@ -663,8 +727,22 @@ class DepthToSpaceUpsample(nn.Module):
)
self.residual = residual
self.out_channels_reduction_factor = out_channels_reduction_factor
self.temporal_cache_state = {}
def forward(self, x, causal: bool = True, timestep: Optional[torch.Tensor] = None):
tid = threading.get_ident()
cached, drop_first_conv, drop_first_res = self.temporal_cache_state.get(tid, (None, True, True))
y = self.conv(x, causal=causal)
y = rearrange(
y,
"b (c p1 p2 p3) d h w -> b c (d p1) (h p2) (w p3)",
p1=self.stride[0],
p2=self.stride[1],
p3=self.stride[2],
)
if self.stride[0] == 2 and y.shape[2] > 0 and drop_first_conv:
y = y[:, :, 1:, :, :]
drop_first_conv = False
if self.residual:
# Reshape and duplicate the input to match the output shape
x_in = rearrange(
@@ -676,21 +754,20 @@ class DepthToSpaceUpsample(nn.Module):
)
num_repeat = math.prod(self.stride) // self.out_channels_reduction_factor
x_in = x_in.repeat(1, num_repeat, 1, 1, 1)
if self.stride[0] == 2:
if self.stride[0] == 2 and x_in.shape[2] > 0 and drop_first_res:
x_in = x_in[:, :, 1:, :, :]
x = self.conv(x, causal=causal)
x = rearrange(
x,
"b (c p1 p2 p3) d h w -> b c (d p1) (h p2) (w p3)",
p1=self.stride[0],
p2=self.stride[1],
p3=self.stride[2],
)
if self.stride[0] == 2:
x = x[:, :, 1:, :, :]
if self.residual:
x = x + x_in
return x
drop_first_res = False
if y.shape[2] == 0:
y = None
cached = add_exchange_cache(y, cached, x_in, dim=2)
self.temporal_cache_state[tid] = (cached, drop_first_conv, drop_first_res)
else:
self.temporal_cache_state[tid] = (None, drop_first_conv, False)
return y
class LayerNorm(nn.Module):
def __init__(self, dim, eps, elementwise_affine=True) -> None:
@@ -807,6 +884,8 @@ class ResnetBlock3D(nn.Module):
torch.randn(4, in_channels) / in_channels**0.5
)
self.temporal_cache_state={}
def _feed_spatial_noise(
self, hidden_states: torch.FloatTensor, per_channel_scale: torch.FloatTensor
) -> torch.FloatTensor:
@@ -880,9 +959,12 @@ class ResnetBlock3D(nn.Module):
input_tensor = self.conv_shortcut(input_tensor)
output_tensor = input_tensor + hidden_states
tid = threading.get_ident()
cached = self.temporal_cache_state.get(tid, None)
cached = add_exchange_cache(hidden_states, cached, input_tensor, dim=2)
self.temporal_cache_state[tid] = cached
return output_tensor
return hidden_states
def patchify(x, patch_size_hw, patch_size_t=1):

View File

@@ -451,6 +451,7 @@ class NextDiT(nn.Module):
device=None,
dtype=None,
operations=None,
**kwargs,
) -> None:
super().__init__()
self.dtype = dtype

View File

@@ -524,6 +524,9 @@ def attention_pytorch(q, k, v, heads, mask=None, attn_precision=None, skip_resha
@wrap_attn
def attention_sage(q, k, v, heads, mask=None, attn_precision=None, skip_reshape=False, skip_output_reshape=False, **kwargs):
if kwargs.get("low_precision_attention", True) is False:
return attention_pytorch(q, k, v, heads, mask=mask, skip_reshape=skip_reshape, skip_output_reshape=skip_output_reshape, **kwargs)
exception_fallback = False
if skip_reshape:
b, _, _, dim_head = q.shape

View File

@@ -14,10 +14,13 @@ if model_management.xformers_enabled_vae():
import xformers.ops
def torch_cat_if_needed(xl, dim):
xl = [x for x in xl if x is not None and x.shape[dim] > 0]
if len(xl) > 1:
return torch.cat(xl, dim)
else:
elif len(xl) == 1:
return xl[0]
else:
return None
def get_timestep_embedding(timesteps, embedding_dim):
"""

View File

@@ -2,6 +2,196 @@ import torch
import math
from .model import QwenImageTransformer2DModel
from .model import QwenImageTransformerBlock
class QwenImageFunControlBlock(QwenImageTransformerBlock):
def __init__(self, dim, num_attention_heads, attention_head_dim, has_before_proj=False, dtype=None, device=None, operations=None):
super().__init__(
dim=dim,
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
dtype=dtype,
device=device,
operations=operations,
)
self.has_before_proj = has_before_proj
if has_before_proj:
self.before_proj = operations.Linear(dim, dim, device=device, dtype=dtype)
self.after_proj = operations.Linear(dim, dim, device=device, dtype=dtype)
class QwenImageFunControlNetModel(torch.nn.Module):
def __init__(
self,
control_in_features=132,
inner_dim=3072,
num_attention_heads=24,
attention_head_dim=128,
num_control_blocks=5,
main_model_double=60,
injection_layers=(0, 12, 24, 36, 48),
dtype=None,
device=None,
operations=None,
):
super().__init__()
self.dtype = dtype
self.main_model_double = main_model_double
self.injection_layers = tuple(injection_layers)
# Keep base hint scaling at 1.0 so user-facing strength behaves similarly
# to the reference Gen2/VideoX implementation around strength=1.
self.hint_scale = 1.0
self.control_img_in = operations.Linear(control_in_features, inner_dim, device=device, dtype=dtype)
self.control_blocks = torch.nn.ModuleList([])
for i in range(num_control_blocks):
self.control_blocks.append(
QwenImageFunControlBlock(
dim=inner_dim,
num_attention_heads=num_attention_heads,
attention_head_dim=attention_head_dim,
has_before_proj=(i == 0),
dtype=dtype,
device=device,
operations=operations,
)
)
def _process_hint_tokens(self, hint):
if hint is None:
return None
if hint.ndim == 4:
hint = hint.unsqueeze(2)
# Fun checkpoints are trained with 33 latent channels before 2x2 packing:
# [control_latent(16), mask(1), inpaint_latent(16)] -> 132 features.
# Default behavior (no inpaint input in stock Apply ControlNet) should use
# zeros for mask/inpaint branches, matching VideoX fallback semantics.
expected_c = self.control_img_in.weight.shape[1] // 4
if hint.shape[1] == 16 and expected_c == 33:
zeros_mask = torch.zeros_like(hint[:, :1])
zeros_inpaint = torch.zeros_like(hint)
hint = torch.cat([hint, zeros_mask, zeros_inpaint], dim=1)
bs, c, t, h, w = hint.shape
hidden_states = torch.nn.functional.pad(hint, (0, w % 2, 0, h % 2))
orig_shape = hidden_states.shape
hidden_states = hidden_states.view(
orig_shape[0],
orig_shape[1],
orig_shape[-3],
orig_shape[-2] // 2,
2,
orig_shape[-1] // 2,
2,
)
hidden_states = hidden_states.permute(0, 2, 3, 5, 1, 4, 6)
hidden_states = hidden_states.reshape(
bs,
t * ((h + 1) // 2) * ((w + 1) // 2),
c * 4,
)
expected_in = self.control_img_in.weight.shape[1]
cur_in = hidden_states.shape[-1]
if cur_in < expected_in:
pad = torch.zeros(
(hidden_states.shape[0], hidden_states.shape[1], expected_in - cur_in),
device=hidden_states.device,
dtype=hidden_states.dtype,
)
hidden_states = torch.cat([hidden_states, pad], dim=-1)
elif cur_in > expected_in:
hidden_states = hidden_states[:, :, :expected_in]
return hidden_states
def forward(
self,
x,
timesteps,
context,
attention_mask=None,
guidance: torch.Tensor = None,
hint=None,
transformer_options={},
base_model=None,
**kwargs,
):
if base_model is None:
raise RuntimeError("Qwen Fun ControlNet requires a QwenImage base model at runtime.")
encoder_hidden_states_mask = attention_mask
# Keep attention mask disabled inside Fun control blocks to mirror
# VideoX behavior (they rely on seq lengths for RoPE, not masked attention).
encoder_hidden_states_mask = None
hidden_states, img_ids, _ = base_model.process_img(x)
hint_tokens = self._process_hint_tokens(hint)
if hint_tokens is None:
raise RuntimeError("Qwen Fun ControlNet requires a control hint image.")
if hint_tokens.shape[1] != hidden_states.shape[1]:
max_tokens = min(hint_tokens.shape[1], hidden_states.shape[1])
hint_tokens = hint_tokens[:, :max_tokens]
hidden_states = hidden_states[:, :max_tokens]
img_ids = img_ids[:, :max_tokens]
txt_start = round(
max(
((x.shape[-1] + (base_model.patch_size // 2)) // base_model.patch_size) // 2,
((x.shape[-2] + (base_model.patch_size // 2)) // base_model.patch_size) // 2,
)
)
txt_ids = torch.arange(txt_start, txt_start + context.shape[1], device=x.device).reshape(1, -1, 1).repeat(x.shape[0], 1, 3)
ids = torch.cat((txt_ids, img_ids), dim=1)
image_rotary_emb = base_model.pe_embedder(ids).to(x.dtype).contiguous()
hidden_states = base_model.img_in(hidden_states)
encoder_hidden_states = base_model.txt_norm(context)
encoder_hidden_states = base_model.txt_in(encoder_hidden_states)
if guidance is not None:
guidance = guidance * 1000
temb = (
base_model.time_text_embed(timesteps, hidden_states)
if guidance is None
else base_model.time_text_embed(timesteps, guidance, hidden_states)
)
c = self.control_img_in(hint_tokens)
for i, block in enumerate(self.control_blocks):
if i == 0:
c_in = block.before_proj(c) + hidden_states
all_c = []
else:
all_c = list(torch.unbind(c, dim=0))
c_in = all_c.pop(-1)
encoder_hidden_states, c_out = block(
hidden_states=c_in,
encoder_hidden_states=encoder_hidden_states,
encoder_hidden_states_mask=encoder_hidden_states_mask,
temb=temb,
image_rotary_emb=image_rotary_emb,
transformer_options=transformer_options,
)
c_skip = block.after_proj(c_out) * self.hint_scale
all_c += [c_skip, c_out]
c = torch.stack(all_c, dim=0)
hints = torch.unbind(c, dim=0)[:-1]
controlnet_block_samples = [None] * self.main_model_double
for local_idx, base_idx in enumerate(self.injection_layers):
if local_idx < len(hints) and base_idx < len(controlnet_block_samples):
controlnet_block_samples[base_idx] = hints[local_idx]
return {"input": controlnet_block_samples}
class QwenImageControlNetModel(QwenImageTransformer2DModel):

View File

@@ -170,8 +170,14 @@ class Attention(nn.Module):
joint_query = apply_rope1(joint_query, image_rotary_emb)
joint_key = apply_rope1(joint_key, image_rotary_emb)
if encoder_hidden_states_mask is not None:
attn_mask = torch.zeros((batch_size, 1, seq_txt + seq_img), dtype=hidden_states.dtype, device=hidden_states.device)
attn_mask[:, 0, :seq_txt] = encoder_hidden_states_mask
else:
attn_mask = None
joint_hidden_states = optimized_attention_masked(joint_query, joint_key, joint_value, self.heads,
attention_mask, transformer_options=transformer_options,
attn_mask, transformer_options=transformer_options,
skip_reshape=True)
txt_attn_output = joint_hidden_states[:, :seq_txt, :]
@@ -430,6 +436,9 @@ class QwenImageTransformer2DModel(nn.Module):
encoder_hidden_states = context
encoder_hidden_states_mask = attention_mask
if encoder_hidden_states_mask is not None and not torch.is_floating_point(encoder_hidden_states_mask):
encoder_hidden_states_mask = (encoder_hidden_states_mask - 1).to(x.dtype) * torch.finfo(x.dtype).max
hidden_states, img_ids, orig_shape = self.process_img(x)
num_embeds = hidden_states.shape[1]

View File

@@ -5,7 +5,7 @@ import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
from comfy.ldm.modules.diffusionmodules.model import vae_attention
from comfy.ldm.modules.diffusionmodules.model import vae_attention, torch_cat_if_needed
import comfy.ops
ops = comfy.ops.disable_weight_init
@@ -20,22 +20,29 @@ class CausalConv3d(ops.Conv3d):
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._padding = (self.padding[2], self.padding[2], self.padding[1],
self.padding[1], 2 * self.padding[0], 0)
self.padding = (0, 0, 0)
self._padding = 2 * self.padding[0]
self.padding = (0, self.padding[1], self.padding[2])
def forward(self, x, cache_x=None, cache_list=None, cache_idx=None):
if cache_list is not None:
cache_x = cache_list[cache_idx]
cache_list[cache_idx] = None
padding = list(self._padding)
if cache_x is not None and self._padding[4] > 0:
cache_x = cache_x.to(x.device)
x = torch.cat([cache_x, x], dim=2)
padding[4] -= cache_x.shape[2]
if cache_x is None and x.shape[2] == 1:
#Fast path - the op will pad for use by truncating the weight
#and save math on a pile of zeros.
return super().forward(x, autopad="causal_zero")
if self._padding > 0:
padding_needed = self._padding
if cache_x is not None:
cache_x = cache_x.to(x.device)
padding_needed = max(0, padding_needed - cache_x.shape[2])
padding_shape = list(x.shape)
padding_shape[2] = padding_needed
padding = torch.zeros(padding_shape, device=x.device, dtype=x.dtype)
x = torch_cat_if_needed([padding, cache_x, x], dim=2)
del cache_x
x = F.pad(x, padding)
return super().forward(x)
@@ -472,10 +479,12 @@ class WanVAE(nn.Module):
def encode(self, x):
conv_idx = [0]
feat_map = [None] * count_conv3d(self.decoder)
## cache
t = x.shape[2]
iter_ = 1 + (t - 1) // 4
feat_map = None
if iter_ > 1:
feat_map = [None] * count_conv3d(self.decoder)
## 对encode输入的x按时间拆分为1、4、4、4....
for i in range(iter_):
conv_idx = [0]
@@ -495,10 +504,11 @@ class WanVAE(nn.Module):
def decode(self, z):
conv_idx = [0]
feat_map = [None] * count_conv3d(self.decoder)
# z: [b,c,t,h,w]
iter_ = z.shape[2]
feat_map = None
if iter_ > 1:
feat_map = [None] * count_conv3d(self.decoder)
x = self.conv2(z)
for i in range(iter_):
conv_idx = [0]

View File

@@ -260,6 +260,7 @@ def model_lora_keys_unet(model, key_map={}):
key_map["transformer.{}".format(k[:-len(".weight")])] = to #simpletrainer and probably regular diffusers flux lora format
key_map["lycoris_{}".format(k[:-len(".weight")].replace(".", "_"))] = to #simpletrainer lycoris
key_map["lora_transformer_{}".format(k[:-len(".weight")].replace(".", "_"))] = to #onetrainer
key_map[k[:-len(".weight")]] = to #DiffSynth lora format
for k in sdk:
hidden_size = model.model_config.unet_config.get("hidden_size", 0)
if k.endswith(".weight") and ".linear1." in k:
@@ -331,6 +332,12 @@ def model_lora_keys_unet(model, key_map={}):
key_map["{}".format(key_lora)] = k
key_map["transformer.{}".format(key_lora)] = k
if isinstance(model, comfy.model_base.ACEStep15):
for k in sdk:
if k.startswith("diffusion_model.decoder.") and k.endswith(".weight"):
key_lora = k[len("diffusion_model.decoder."):-len(".weight")]
key_map["base_model.model.{}".format(key_lora)] = k # Official base model loras
return key_map

View File

@@ -5,7 +5,7 @@ import comfy.utils
def convert_lora_bfl_control(sd): #BFL loras for Flux
sd_out = {}
for k in sd:
k_to = "diffusion_model.{}".format(k.replace(".lora_B.bias", ".diff_b").replace("_norm.scale", "_norm.scale.set_weight"))
k_to = "diffusion_model.{}".format(k.replace(".lora_B.bias", ".diff_b").replace("_norm.scale", "_norm.set_weight"))
sd_out[k_to] = sd[k]
sd_out["diffusion_model.img_in.reshape_weight"] = torch.tensor([sd["img_in.lora_B.weight"].shape[0], sd["img_in.lora_A.weight"].shape[1]])

View File

@@ -0,0 +1,81 @@
import math
import torch
from typing import NamedTuple
from comfy.quant_ops import QuantizedTensor
class TensorGeometry(NamedTuple):
shape: any
dtype: torch.dtype
def element_size(self):
info = torch.finfo(self.dtype) if self.dtype.is_floating_point else torch.iinfo(self.dtype)
return info.bits // 8
def numel(self):
return math.prod(self.shape)
def tensors_to_geometries(tensors, dtype=None):
geometries = []
for t in tensors:
if t is None or isinstance(t, QuantizedTensor):
geometries.append(t)
continue
tdtype = t.dtype
if hasattr(t, "_model_dtype"):
tdtype = t._model_dtype
if dtype is not None:
tdtype = dtype
geometries.append(TensorGeometry(shape=t.shape, dtype=tdtype))
return geometries
def vram_aligned_size(tensor):
if isinstance(tensor, list):
return sum([vram_aligned_size(t) for t in tensor])
if isinstance(tensor, QuantizedTensor):
inner_tensors, _ = tensor.__tensor_flatten__()
return vram_aligned_size([ getattr(tensor, attr) for attr in inner_tensors ])
if tensor is None:
return 0
size = tensor.numel() * tensor.element_size()
aligment_req = 1024
return (size + aligment_req - 1) // aligment_req * aligment_req
def interpret_gathered_like(tensors, gathered):
offset = 0
dest_views = []
if gathered.dim() != 1 or gathered.element_size() != 1:
raise ValueError(f"Buffer must be 1D and single-byte (got {gathered.dim()}D {gathered.dtype})")
for tensor in tensors:
if tensor is None:
dest_views.append(None)
continue
if isinstance(tensor, QuantizedTensor):
inner_tensors, qt_ctx = tensor.__tensor_flatten__()
templates = { attr: getattr(tensor, attr) for attr in inner_tensors }
else:
templates = { "data": tensor }
actuals = {}
for attr, template in templates.items():
size = template.numel() * template.element_size()
if offset + size > gathered.numel():
raise ValueError(f"Buffer too small: needs {offset + size} bytes, but only has {gathered.numel()}. ")
actuals[attr] = gathered[offset:offset+size].view(dtype=template.dtype).view(template.shape)
offset += vram_aligned_size(template)
if isinstance(tensor, QuantizedTensor):
dest_views.append(QuantizedTensor.__tensor_unflatten__(actuals, qt_ctx, 0, 0))
else:
dest_views.append(actuals["data"])
return dest_views
aimdo_allocator = None

View File

@@ -50,6 +50,7 @@ import comfy.ldm.omnigen.omnigen2
import comfy.ldm.qwen_image.model
import comfy.ldm.kandinsky5.model
import comfy.ldm.anima.model
import comfy.ldm.ace.ace_step15
import comfy.model_management
import comfy.patcher_extension
@@ -146,6 +147,8 @@ class BaseModel(torch.nn.Module):
self.diffusion_model.to(memory_format=torch.channels_last)
logging.debug("using channels last mode for diffusion model")
logging.info("model weight dtype {}, manual cast: {}".format(self.get_dtype(), self.manual_cast_dtype))
comfy.model_management.archive_model_dtypes(self.diffusion_model)
self.model_type = model_type
self.model_sampling = model_sampling(model_config, model_type)
@@ -299,7 +302,7 @@ class BaseModel(torch.nn.Module):
return out
def load_model_weights(self, sd, unet_prefix=""):
def load_model_weights(self, sd, unet_prefix="", assign=False):
to_load = {}
keys = list(sd.keys())
for k in keys:
@@ -307,7 +310,7 @@ class BaseModel(torch.nn.Module):
to_load[k[len(unet_prefix):]] = sd.pop(k)
to_load = self.model_config.process_unet_state_dict(to_load)
m, u = self.diffusion_model.load_state_dict(to_load, strict=False)
m, u = self.diffusion_model.load_state_dict(to_load, strict=False, assign=assign)
if len(m) > 0:
logging.warning("unet missing: {}".format(m))
@@ -322,7 +325,7 @@ class BaseModel(torch.nn.Module):
def process_latent_out(self, latent):
return self.latent_format.process_out(latent)
def state_dict_for_saving(self, clip_state_dict=None, vae_state_dict=None, clip_vision_state_dict=None):
def state_dict_for_saving(self, unet_state_dict, clip_state_dict=None, vae_state_dict=None, clip_vision_state_dict=None):
extra_sds = []
if clip_state_dict is not None:
extra_sds.append(self.model_config.process_clip_state_dict_for_saving(clip_state_dict))
@@ -330,10 +333,7 @@ class BaseModel(torch.nn.Module):
extra_sds.append(self.model_config.process_vae_state_dict_for_saving(vae_state_dict))
if clip_vision_state_dict is not None:
extra_sds.append(self.model_config.process_clip_vision_state_dict_for_saving(clip_vision_state_dict))
unet_state_dict = self.diffusion_model.state_dict()
unet_state_dict = self.model_config.process_unet_state_dict_for_saving(unet_state_dict)
if self.model_type == ModelType.V_PREDICTION:
unet_state_dict["v_pred"] = torch.tensor([])
@@ -776,8 +776,8 @@ class StableAudio1(BaseModel):
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
return out
def state_dict_for_saving(self, clip_state_dict=None, vae_state_dict=None, clip_vision_state_dict=None):
sd = super().state_dict_for_saving(clip_state_dict=clip_state_dict, vae_state_dict=vae_state_dict, clip_vision_state_dict=clip_vision_state_dict)
def state_dict_for_saving(self, unet_state_dict, clip_state_dict=None, vae_state_dict=None, clip_vision_state_dict=None):
sd = super().state_dict_for_saving(unet_state_dict, clip_state_dict=clip_state_dict, vae_state_dict=vae_state_dict, clip_vision_state_dict=clip_vision_state_dict)
d = {"conditioner.conditioners.seconds_start.": self.seconds_start_embedder.state_dict(), "conditioner.conditioners.seconds_total.": self.seconds_total_embedder.state_dict()}
for k in d:
s = d[k]
@@ -1160,12 +1160,16 @@ class Anima(BaseModel):
device = kwargs["device"]
if cross_attn is not None:
if t5xxl_ids is not None:
cross_attn = self.diffusion_model.preprocess_text_embeds(cross_attn.to(device=device, dtype=self.get_dtype()), t5xxl_ids.unsqueeze(0).to(device=device))
if t5xxl_weights is not None:
cross_attn *= t5xxl_weights.unsqueeze(0).unsqueeze(-1).to(cross_attn)
t5xxl_weights = t5xxl_weights.unsqueeze(0).unsqueeze(-1).to(cross_attn)
t5xxl_ids = t5xxl_ids.unsqueeze(0)
if torch.is_inference_mode_enabled(): # if not we are training
cross_attn = self.diffusion_model.preprocess_text_embeds(cross_attn.to(device=device, dtype=self.get_dtype()), t5xxl_ids.to(device=device), t5xxl_weights=t5xxl_weights.to(device=device, dtype=self.get_dtype()))
else:
out['t5xxl_ids'] = comfy.conds.CONDRegular(t5xxl_ids)
out['t5xxl_weights'] = comfy.conds.CONDRegular(t5xxl_weights)
if cross_attn.shape[1] < 512:
cross_attn = torch.nn.functional.pad(cross_attn, (0, 0, 0, 512 - cross_attn.shape[1]))
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
return out
@@ -1541,6 +1545,49 @@ class ACEStep(BaseModel):
out['lyrics_strength'] = comfy.conds.CONDConstant(kwargs.get("lyrics_strength", 1.0))
return out
class ACEStep15(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.ace.ace_step15.AceStepConditionGenerationModel)
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
device = kwargs["device"]
noise = kwargs["noise"]
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
if torch.count_nonzero(cross_attn) == 0:
out['replace_with_null_embeds'] = comfy.conds.CONDConstant(True)
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)
conditioning_lyrics = kwargs.get("conditioning_lyrics", None)
if cross_attn is not None:
out['lyric_embed'] = comfy.conds.CONDRegular(conditioning_lyrics)
refer_audio = kwargs.get("reference_audio_timbre_latents", None)
if refer_audio is None or len(refer_audio) == 0:
refer_audio = comfy.ldm.ace.ace_step15.get_silence_latent(noise.shape[2], device)
pass_audio_codes = True
else:
refer_audio = refer_audio[-1][:, :, :noise.shape[2]]
out['is_covers'] = comfy.conds.CONDConstant(True)
pass_audio_codes = False
if pass_audio_codes:
audio_codes = kwargs.get("audio_codes", None)
if audio_codes is not None:
out['audio_codes'] = comfy.conds.CONDRegular(torch.tensor(audio_codes, device=device))
refer_audio = refer_audio[:, :, :750]
else:
out['is_covers'] = comfy.conds.CONDConstant(False)
if refer_audio.shape[2] < noise.shape[2]:
pad = comfy.ldm.ace.ace_step15.get_silence_latent(noise.shape[2], device)
refer_audio = torch.cat([refer_audio.to(pad), pad[:, :, refer_audio.shape[2]:]], dim=2)
out['refer_audio'] = comfy.conds.CONDRegular(refer_audio)
return out
class Omnigen2(BaseModel):
def __init__(self, model_config, model_type=ModelType.FLOW, device=None):
super().__init__(model_config, model_type, device=device, unet_model=comfy.ldm.omnigen.omnigen2.OmniGen2Transformer2DModel)
@@ -1578,6 +1625,9 @@ class QwenImage(BaseModel):
def extra_conds(self, **kwargs):
out = super().extra_conds(**kwargs)
attention_mask = kwargs.get("attention_mask", None)
if attention_mask is not None:
out['attention_mask'] = comfy.conds.CONDRegular(attention_mask)
cross_attn = kwargs.get("cross_attn", None)
if cross_attn is not None:
out['c_crossattn'] = comfy.conds.CONDRegular(cross_attn)

View File

@@ -19,6 +19,12 @@ def count_blocks(state_dict_keys, prefix_string):
count += 1
return count
def any_suffix_in(keys, prefix, main, suffix_list=[]):
for x in suffix_list:
if "{}{}{}".format(prefix, main, x) in keys:
return True
return False
def calculate_transformer_depth(prefix, state_dict_keys, state_dict):
context_dim = None
use_linear_in_transformer = False
@@ -186,7 +192,7 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
dit_config["meanflow_sum"] = False
return dit_config
if '{}double_blocks.0.img_attn.norm.key_norm.scale'.format(key_prefix) in state_dict_keys and ('{}img_in.weight'.format(key_prefix) in state_dict_keys or f"{key_prefix}distilled_guidance_layer.norms.0.scale" in state_dict_keys): #Flux, Chroma or Chroma Radiance (has no img_in.weight)
if any_suffix_in(state_dict_keys, key_prefix, 'double_blocks.0.img_attn.norm.key_norm.', ["weight", "scale"]) and ('{}img_in.weight'.format(key_prefix) in state_dict_keys or any_suffix_in(state_dict_keys, key_prefix, 'distilled_guidance_layer.norms.0.', ["weight", "scale"])): #Flux, Chroma or Chroma Radiance (has no img_in.weight)
dit_config = {}
if '{}double_stream_modulation_img.lin.weight'.format(key_prefix) in state_dict_keys:
dit_config["image_model"] = "flux2"
@@ -241,7 +247,8 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
dit_config["depth"] = count_blocks(state_dict_keys, '{}double_blocks.'.format(key_prefix) + '{}.')
dit_config["depth_single_blocks"] = count_blocks(state_dict_keys, '{}single_blocks.'.format(key_prefix) + '{}.')
if '{}distilled_guidance_layer.0.norms.0.scale'.format(key_prefix) in state_dict_keys or '{}distilled_guidance_layer.norms.0.scale'.format(key_prefix) in state_dict_keys: #Chroma
if any_suffix_in(state_dict_keys, key_prefix, 'distilled_guidance_layer.0.norms.0.', ["weight", "scale"]) or any_suffix_in(state_dict_keys, key_prefix, 'distilled_guidance_layer.norms.0.', ["weight", "scale"]): #Chroma
dit_config["image_model"] = "chroma"
dit_config["in_channels"] = 64
dit_config["out_channels"] = 64
@@ -249,7 +256,8 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
dit_config["out_dim"] = 3072
dit_config["hidden_dim"] = 5120
dit_config["n_layers"] = 5
if f"{key_prefix}nerf_blocks.0.norm.scale" in state_dict_keys: #Chroma Radiance
if any_suffix_in(state_dict_keys, key_prefix, 'nerf_blocks.0.norm.', ["weight", "scale"]): #Chroma Radiance
dit_config["image_model"] = "chroma_radiance"
dit_config["in_channels"] = 3
dit_config["out_channels"] = 3
@@ -259,7 +267,7 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
dit_config["nerf_depth"] = 4
dit_config["nerf_max_freqs"] = 8
dit_config["nerf_tile_size"] = 512
dit_config["nerf_final_head_type"] = "conv" if f"{key_prefix}nerf_final_layer_conv.norm.scale" in state_dict_keys else "linear"
dit_config["nerf_final_head_type"] = "conv" if any_suffix_in(state_dict_keys, key_prefix, 'nerf_final_layer_conv.norm.', ["weight", "scale"]) else "linear"
dit_config["nerf_embedder_dtype"] = torch.float32
if "{}__x0__".format(key_prefix) in state_dict_keys: # x0 pred
dit_config["use_x0"] = True
@@ -268,7 +276,7 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
else:
dit_config["guidance_embed"] = "{}guidance_in.in_layer.weight".format(key_prefix) in state_dict_keys
dit_config["yak_mlp"] = '{}double_blocks.0.img_mlp.gate_proj.weight'.format(key_prefix) in state_dict_keys
dit_config["txt_norm"] = "{}txt_norm.scale".format(key_prefix) in state_dict_keys
dit_config["txt_norm"] = any_suffix_in(state_dict_keys, key_prefix, 'txt_norm.', ["weight", "scale"])
if dit_config["yak_mlp"] and dit_config["txt_norm"]: # Ovis model
dit_config["txt_ids_dims"] = [1, 2]
@@ -444,6 +452,10 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
dit_config["ffn_dim_multiplier"] = (8.0 / 3.0)
dit_config["z_image_modulation"] = True
dit_config["time_scale"] = 1000.0
try:
dit_config["allow_fp16"] = torch.std(state_dict['{}layers.{}.ffn_norm1.weight'.format(key_prefix, dit_config["n_layers"] - 2)], unbiased=False).item() < 0.42
except Exception:
pass
if '{}cap_pad_token'.format(key_prefix) in state_dict_keys:
dit_config["pad_tokens_multiple"] = 32
sig_weight = state_dict.get('{}siglip_embedder.0.weight'.format(key_prefix), None)
@@ -651,6 +663,11 @@ def detect_unet_config(state_dict, key_prefix, metadata=None):
dit_config["num_visual_blocks"] = count_blocks(state_dict_keys, '{}visual_transformer_blocks.'.format(key_prefix) + '{}.')
return dit_config
if '{}encoder.lyric_encoder.layers.0.input_layernorm.weight'.format(key_prefix) in state_dict_keys:
dit_config = {}
dit_config["audio_model"] = "ace1.5"
return dit_config
if '{}input_blocks.0.0.weight'.format(key_prefix) not in state_dict_keys:
return None

View File

@@ -20,12 +20,20 @@ import psutil
import logging
from enum import Enum
from comfy.cli_args import args, PerformanceFeature
import threading
import torch
import sys
import platform
import weakref
import gc
import os
from contextlib import nullcontext
import comfy.memory_management
import comfy.utils
import comfy.quant_ops
import comfy_aimdo.torch
import comfy_aimdo.model_vbar
class VRAMState(Enum):
DISABLED = 0 #No vram present: no need to move models to vram
@@ -47,6 +55,11 @@ cpu_state = CPUState.GPU
total_vram = 0
# Training Related State
in_training = False
def get_supported_float8_types():
float8_types = []
try:
@@ -578,9 +591,15 @@ WINDOWS = any(platform.win32_ver())
EXTRA_RESERVED_VRAM = 400 * 1024 * 1024
if WINDOWS:
import comfy.windows
EXTRA_RESERVED_VRAM = 600 * 1024 * 1024 #Windows is higher because of the shared vram issue
if total_vram > (15 * 1024): # more extra reserved vram on 16GB+ cards
EXTRA_RESERVED_VRAM += 100 * 1024 * 1024
def get_free_ram():
return comfy.windows.get_free_ram()
else:
def get_free_ram():
return psutil.virtual_memory().available
if args.reserve_vram is not None:
EXTRA_RESERVED_VRAM = args.reserve_vram * 1024 * 1024 * 1024
@@ -592,7 +611,7 @@ def extra_reserved_memory():
def minimum_inference_memory():
return (1024 * 1024 * 1024) * 0.8 + extra_reserved_memory()
def free_memory(memory_required, device, keep_loaded=[]):
def free_memory(memory_required, device, keep_loaded=[], for_dynamic=False, ram_required=0):
cleanup_models_gc()
unloaded_model = []
can_unload = []
@@ -607,15 +626,23 @@ def free_memory(memory_required, device, keep_loaded=[]):
for x in sorted(can_unload):
i = x[-1]
memory_to_free = None
memory_to_free = 1e32
ram_to_free = 1e32
if not DISABLE_SMART_MEMORY:
free_mem = get_free_memory(device)
if free_mem > memory_required:
break
memory_to_free = memory_required - free_mem
logging.debug(f"Unloading {current_loaded_models[i].model.model.__class__.__name__}")
if current_loaded_models[i].model_unload(memory_to_free):
memory_to_free = memory_required - get_free_memory(device)
ram_to_free = ram_required - get_free_ram()
if current_loaded_models[i].model.is_dynamic() and for_dynamic:
#don't actually unload dynamic models for the sake of other dynamic models
#as that works on-demand.
memory_required -= current_loaded_models[i].model.loaded_size()
memory_to_free = 0
if memory_to_free > 0 and current_loaded_models[i].model_unload(memory_to_free):
logging.debug(f"Unloading {current_loaded_models[i].model.model.__class__.__name__}")
unloaded_model.append(i)
if ram_to_free > 0:
logging.debug(f"RAM Unloading {current_loaded_models[i].model.model.__class__.__name__}")
current_loaded_models[i].model.partially_unload_ram(ram_to_free)
for i in sorted(unloaded_model, reverse=True):
unloaded_models.append(current_loaded_models.pop(i))
@@ -650,7 +677,10 @@ def load_models_gpu(models, memory_required=0, force_patch_weights=False, minimu
models_to_load = []
free_for_dynamic=True
for x in models:
if not x.is_dynamic():
free_for_dynamic = False
loaded_model = LoadedModel(x)
try:
loaded_model_index = current_loaded_models.index(loaded_model)
@@ -676,19 +706,25 @@ def load_models_gpu(models, memory_required=0, force_patch_weights=False, minimu
model_to_unload.model.detach(unpatch_all=False)
model_to_unload.model_finalizer.detach()
total_memory_required = {}
total_ram_required = {}
for loaded_model in models_to_load:
total_memory_required[loaded_model.device] = total_memory_required.get(loaded_model.device, 0) + loaded_model.model_memory_required(loaded_model.device)
#x2, one to make sure the OS can fit the model for loading in disk cache, and for us to do any pinning we
#want to do.
#FIXME: This should subtract off the to_load current pin consumption.
total_ram_required[loaded_model.device] = total_ram_required.get(loaded_model.device, 0) + loaded_model.model_memory() * 2
for device in total_memory_required:
if device != torch.device("cpu"):
free_memory(total_memory_required[device] * 1.1 + extra_mem, device)
free_memory(total_memory_required[device] * 1.1 + extra_mem, device, for_dynamic=free_for_dynamic, ram_required=total_ram_required[device])
for device in total_memory_required:
if device != torch.device("cpu"):
free_mem = get_free_memory(device)
if free_mem < minimum_memory_required:
models_l = free_memory(minimum_memory_required, device)
models_l = free_memory(minimum_memory_required, device, for_dynamic=free_for_dynamic)
logging.info("{} models unloaded.".format(len(models_l)))
for loaded_model in models_to_load:
@@ -732,6 +768,9 @@ def loaded_models(only_currently_used=False):
def cleanup_models_gc():
do_gc = False
reset_cast_buffers()
for i in range(len(current_loaded_models)):
cur = current_loaded_models[i]
if cur.is_dead():
@@ -749,6 +788,11 @@ def cleanup_models_gc():
logging.warning("WARNING, memory leak with model {}. Please make sure it is not being referenced from somewhere.".format(cur.real_model().__class__.__name__))
def archive_model_dtypes(model):
for name, module in model.named_modules():
for param_name, param in module.named_parameters(recurse=False):
setattr(module, f"{param_name}_comfy_model_dtype", param.dtype)
def cleanup_models():
to_delete = []
@@ -792,7 +836,7 @@ def unet_inital_load_device(parameters, dtype):
mem_dev = get_free_memory(torch_dev)
mem_cpu = get_free_memory(cpu_dev)
if mem_dev > mem_cpu and model_size < mem_dev:
if mem_dev > mem_cpu and model_size < mem_dev and comfy.memory_management.aimdo_allocator is None:
return torch_dev
else:
return cpu_dev
@@ -1051,6 +1095,51 @@ def current_stream(device):
return None
stream_counters = {}
STREAM_CAST_BUFFERS = {}
LARGEST_CASTED_WEIGHT = (None, 0)
def get_cast_buffer(offload_stream, device, size, ref):
global LARGEST_CASTED_WEIGHT
if offload_stream is not None:
wf_context = offload_stream
if hasattr(wf_context, "as_context"):
wf_context = wf_context.as_context(offload_stream)
else:
wf_context = nullcontext()
cast_buffer = STREAM_CAST_BUFFERS.get(offload_stream, None)
if cast_buffer is None or cast_buffer.numel() < size:
if ref is LARGEST_CASTED_WEIGHT[0]:
#If there is one giant weight we do not want both streams to
#allocate a buffer for it. It's up to the caster to get the other
#offload stream in this corner case
return None
if cast_buffer is not None and cast_buffer.numel() > 50 * (1024 ** 2):
#I want my wrongly sized 50MB+ of VRAM back from the caching allocator right now
synchronize()
del STREAM_CAST_BUFFERS[offload_stream]
del cast_buffer
#FIXME: This doesn't work in Aimdo because mempool cant clear cache
soft_empty_cache()
with wf_context:
cast_buffer = torch.empty((size), dtype=torch.int8, device=device)
STREAM_CAST_BUFFERS[offload_stream] = cast_buffer
if size > LARGEST_CASTED_WEIGHT[1]:
LARGEST_CASTED_WEIGHT = (ref, size)
return cast_buffer
def reset_cast_buffers():
global LARGEST_CASTED_WEIGHT
LARGEST_CASTED_WEIGHT = (None, 0)
for offload_stream in STREAM_CAST_BUFFERS:
offload_stream.synchronize()
STREAM_CAST_BUFFERS.clear()
soft_empty_cache()
def get_offload_stream(device):
stream_counter = stream_counters.get(device, 0)
if NUM_STREAMS == 0:
@@ -1093,7 +1182,61 @@ def sync_stream(device, stream):
return
current_stream(device).wait_stream(stream)
def cast_to(weight, dtype=None, device=None, non_blocking=False, copy=False, stream=None):
def cast_to_gathered(tensors, r, non_blocking=False, stream=None):
wf_context = nullcontext()
if stream is not None:
wf_context = stream
if hasattr(wf_context, "as_context"):
wf_context = wf_context.as_context(stream)
dest_views = comfy.memory_management.interpret_gathered_like(tensors, r)
with wf_context:
for tensor in tensors:
dest_view = dest_views.pop(0)
if tensor is None:
continue
dest_view.copy_(tensor, non_blocking=non_blocking)
def cast_to(weight, dtype=None, device=None, non_blocking=False, copy=False, stream=None, r=None):
if hasattr(weight, "_v"):
#Unexpected usage patterns. There is no reason these don't work but they
#have no testing and no callers do this.
assert r is None
assert stream is None
cast_geometry = comfy.memory_management.tensors_to_geometries([ weight ])
if dtype is None:
dtype = weight._model_dtype
signature = comfy_aimdo.model_vbar.vbar_fault(weight._v)
if signature is not None:
if comfy_aimdo.model_vbar.vbar_signature_compare(signature, weight._v_signature):
v_tensor = weight._v_tensor
else:
raw_tensor = comfy_aimdo.torch.aimdo_to_tensor(weight._v, device)
v_tensor = comfy.memory_management.interpret_gathered_like(cast_geometry, raw_tensor)[0]
weight._v_tensor = v_tensor
weight._v_signature = signature
#Send it over
v_tensor.copy_(weight, non_blocking=non_blocking)
return v_tensor.to(dtype=dtype)
r = torch.empty_like(weight, dtype=dtype, device=device)
if weight.dtype != r.dtype and weight.dtype != weight._model_dtype:
#Offloaded casting could skip this, however it would make the quantizations
#inconsistent between loaded and offloaded weights. So force the double casting
#that would happen in regular flow to make offload deterministic.
cast_buffer = torch.empty_like(weight, dtype=weight._model_dtype, device=device)
cast_buffer.copy_(weight, non_blocking=non_blocking)
weight = cast_buffer
r.copy_(weight, non_blocking=non_blocking)
return r
if device is None or weight.device == device:
if not copy:
if dtype is None or weight.dtype == dtype:
@@ -1112,10 +1255,12 @@ def cast_to(weight, dtype=None, device=None, non_blocking=False, copy=False, str
if hasattr(wf_context, "as_context"):
wf_context = wf_context.as_context(stream)
with wf_context:
r = torch.empty_like(weight, dtype=dtype, device=device)
if r is None:
r = torch.empty_like(weight, dtype=dtype, device=device)
r.copy_(weight, non_blocking=non_blocking)
else:
r = torch.empty_like(weight, dtype=dtype, device=device)
if r is None:
r = torch.empty_like(weight, dtype=dtype, device=device)
r.copy_(weight, non_blocking=non_blocking)
return r
@@ -1135,14 +1280,14 @@ if not args.disable_pinned_memory:
MAX_PINNED_MEMORY = get_total_memory(torch.device("cpu")) * 0.95
logging.info("Enabled pinned memory {}".format(MAX_PINNED_MEMORY // (1024 * 1024)))
PINNING_ALLOWED_TYPES = set(["Parameter", "QuantizedTensor"])
PINNING_ALLOWED_TYPES = set(["Tensor", "Parameter", "QuantizedTensor"])
def discard_cuda_async_error():
try:
a = torch.tensor([1], dtype=torch.uint8, device=get_torch_device())
b = torch.tensor([1], dtype=torch.uint8, device=get_torch_device())
_ = a + b
torch.cuda.synchronize()
synchronize()
except torch.AcceleratorError:
#Dump it! We already know about it from the synchronous return
pass
@@ -1546,6 +1691,12 @@ def lora_compute_dtype(device):
LORA_COMPUTE_DTYPES[device] = dtype
return dtype
def synchronize():
if is_intel_xpu():
torch.xpu.synchronize()
elif torch.cuda.is_available():
torch.cuda.synchronize()
def soft_empty_cache(force=False):
global cpu_state
if cpu_state == CPUState.MPS:
@@ -1557,6 +1708,7 @@ def soft_empty_cache(force=False):
elif is_mlu():
torch.mlu.empty_cache()
elif torch.cuda.is_available():
torch.cuda.synchronize()
torch.cuda.empty_cache()
torch.cuda.ipc_collect()
@@ -1568,9 +1720,6 @@ def debug_memory_summary():
return torch.cuda.memory.memory_summary()
return ""
#TODO: might be cleaner to put this somewhere else
import threading
class InterruptProcessingException(Exception):
pass

View File

@@ -19,7 +19,6 @@
from __future__ import annotations
import collections
import copy
import inspect
import logging
import math
@@ -38,19 +37,7 @@ from comfy.comfy_types import UnetWrapperFunction
from comfy.quant_ops import QuantizedTensor
from comfy.patcher_extension import CallbacksMP, PatcherInjection, WrappersMP
def string_to_seed(data):
crc = 0xFFFFFFFF
for byte in data:
if isinstance(byte, str):
byte = ord(byte)
crc ^= byte
for _ in range(8):
if crc & 1:
crc = (crc >> 1) ^ 0xEDB88320
else:
crc >>= 1
return crc ^ 0xFFFFFFFF
import comfy_aimdo.model_vbar
def set_model_options_patch_replace(model_options, patch, name, block_name, number, transformer_index=None):
to = model_options["transformer_options"].copy()
@@ -123,6 +110,10 @@ def move_weight_functions(m, device):
memory += f.move_to(device=device)
return memory
def string_to_seed(data):
logging.warning("WARNING: string_to_seed has moved from comfy.model_patcher to comfy.utils")
return comfy.utils.string_to_seed(data)
class LowVramPatch:
def __init__(self, key, patches, convert_func=None, set_func=None):
self.key = key
@@ -169,6 +160,11 @@ def get_key_weight(model, key):
return weight, set_func, convert_func
def key_param_name_to_key(key, param):
if len(key) == 0:
return param
return "{}.{}".format(key, param)
class AutoPatcherEjector:
def __init__(self, model: 'ModelPatcher', skip_and_inject_on_exit_only=False):
self.model = model
@@ -212,6 +208,27 @@ class MemoryCounter:
def decrement(self, used: int):
self.value -= used
CustomTorchDevice = collections.namedtuple("FakeDevice", ["type", "index"])("comfy-lazy-caster", 0)
class LazyCastingParam(torch.nn.Parameter):
def __new__(cls, model, key, tensor):
return super().__new__(cls, tensor)
def __init__(self, model, key, tensor):
self.model = model
self.key = key
@property
def device(self):
return CustomTorchDevice
#safetensors will .to() us to the cpu which we catch here to cast on demand. The returned tensor is
#then just a short lived thing in the safetensors serialization logic inside its big for loop over
#all weights getting garbage collected per-weight
def to(self, *args, **kwargs):
return self.model.patch_weight_to_device(self.key, device_to=self.model.load_device, return_weight=True).to("cpu")
class ModelPatcher:
def __init__(self, model, load_device, offload_device, size=0, weight_inplace_update=False):
self.size = size
@@ -269,6 +286,9 @@ class ModelPatcher:
if not hasattr(self.model, 'model_offload_buffer_memory'):
self.model.model_offload_buffer_memory = 0
def is_dynamic(self):
return False
def model_size(self):
if self.size > 0:
return self.size
@@ -284,6 +304,9 @@ class ModelPatcher:
def lowvram_patch_counter(self):
return self.model.lowvram_patch_counter
def get_free_memory(self, device):
return comfy.model_management.get_free_memory(device)
def clone(self):
n = self.__class__(self.model, self.load_device, self.offload_device, self.model_size(), weight_inplace_update=self.weight_inplace_update)
n.patches = {}
@@ -293,7 +316,7 @@ class ModelPatcher:
n.object_patches = self.object_patches.copy()
n.weight_wrapper_patches = self.weight_wrapper_patches.copy()
n.model_options = copy.deepcopy(self.model_options)
n.model_options = comfy.utils.deepcopy_list_dict(self.model_options)
n.backup = self.backup
n.object_patches_backup = self.object_patches_backup
n.parent = self
@@ -611,14 +634,14 @@ class ModelPatcher:
sd.pop(k)
return sd
def patch_weight_to_device(self, key, device_to=None, inplace_update=False):
if key not in self.patches:
return
def patch_weight_to_device(self, key, device_to=None, inplace_update=False, return_weight=False):
weight, set_func, convert_func = get_key_weight(self.model, key)
if key not in self.patches:
return weight
inplace_update = self.weight_inplace_update or inplace_update
if key not in self.backup:
if key not in self.backup and not return_weight:
self.backup[key] = collections.namedtuple('Dimension', ['weight', 'inplace_update'])(weight.to(device=self.offload_device, copy=inplace_update), inplace_update)
temp_dtype = comfy.model_management.lora_compute_dtype(device_to)
@@ -631,13 +654,15 @@ class ModelPatcher:
out_weight = comfy.lora.calculate_weight(self.patches[key], temp_weight, key)
if set_func is None:
out_weight = comfy.float.stochastic_rounding(out_weight, weight.dtype, seed=string_to_seed(key))
if inplace_update:
out_weight = comfy.float.stochastic_rounding(out_weight, weight.dtype, seed=comfy.utils.string_to_seed(key))
if return_weight:
return out_weight
elif inplace_update:
comfy.utils.copy_to_param(self.model, key, out_weight)
else:
comfy.utils.set_attr_param(self.model, key, out_weight)
else:
set_func(out_weight, inplace_update=inplace_update, seed=string_to_seed(key))
return set_func(out_weight, inplace_update=inplace_update, seed=comfy.utils.string_to_seed(key), return_weight=return_weight)
def pin_weight_to_device(self, key):
weight, set_func, convert_func = get_key_weight(self.model, key)
@@ -654,18 +679,19 @@ class ModelPatcher:
for key in list(self.pinned):
self.unpin_weight(key)
def _load_list(self):
def _load_list(self, prio_comfy_cast_weights=False, default_device=None):
loading = []
for n, m in self.model.named_modules():
params = []
skip = False
for name, param in m.named_parameters(recurse=False):
params.append(name)
default = False
params = { name: param for name, param in m.named_parameters(recurse=False) }
for name, param in m.named_parameters(recurse=True):
if name not in params:
skip = True # skip random weights in non leaf modules
default = True # default random weights in non leaf modules
break
if not skip and (hasattr(m, "comfy_cast_weights") or len(params) > 0):
if default and default_device is not None:
for param in params.values():
param.data = param.data.to(device=default_device)
if not default and (hasattr(m, "comfy_cast_weights") or len(params) > 0):
module_mem = comfy.model_management.module_size(m)
module_offload_mem = module_mem
if hasattr(m, "comfy_cast_weights"):
@@ -681,7 +707,8 @@ class ModelPatcher:
return 0
module_offload_mem += check_module_offload_mem("{}.weight".format(n))
module_offload_mem += check_module_offload_mem("{}.bias".format(n))
loading.append((module_offload_mem, module_mem, n, m, params))
prepend = (not hasattr(m, "comfy_cast_weights"),) if prio_comfy_cast_weights else ()
loading.append(prepend + (module_offload_mem, module_mem, n, m, params))
return loading
def load(self, device_to=None, lowvram_model_memory=0, force_patch_weights=False, full_load=False):
@@ -773,7 +800,7 @@ class ModelPatcher:
continue
for param in params:
key = "{}.{}".format(n, param)
key = key_param_name_to_key(n, param)
self.unpin_weight(key)
self.patch_weight_to_device(key, device_to=device_to)
if comfy.model_management.is_device_cuda(device_to):
@@ -789,7 +816,7 @@ class ModelPatcher:
n = x[1]
params = x[3]
for param in params:
self.pin_weight_to_device("{}.{}".format(n, param))
self.pin_weight_to_device(key_param_name_to_key(n, param))
usable_stat = "{:.2f} MB usable,".format(lowvram_model_memory / (1024 * 1024)) if lowvram_model_memory < 1e32 else ""
if lowvram_counter > 0:
@@ -895,7 +922,7 @@ class ModelPatcher:
if hasattr(m, "comfy_patched_weights") and m.comfy_patched_weights == True:
move_weight = True
for param in params:
key = "{}.{}".format(n, param)
key = key_param_name_to_key(n, param)
bk = self.backup.get(key, None)
if bk is not None:
if not lowvram_possible:
@@ -946,7 +973,7 @@ class ModelPatcher:
logging.debug("freed {}".format(n))
for param in params:
self.pin_weight_to_device("{}.{}".format(n, param))
self.pin_weight_to_device(key_param_name_to_key(n, param))
self.model.model_lowvram = True
@@ -984,6 +1011,9 @@ class ModelPatcher:
return self.model.model_loaded_weight_memory - current_used
def partially_unload_ram(self, ram_to_unload):
pass
def detach(self, unpatch_all=True):
self.eject_model()
self.model_patches_to(self.offload_device)
@@ -1317,10 +1347,10 @@ class ModelPatcher:
key, original_weights=original_weights)
del original_weights[key]
if set_func is None:
out_weight = comfy.float.stochastic_rounding(out_weight, weight.dtype, seed=string_to_seed(key))
out_weight = comfy.float.stochastic_rounding(out_weight, weight.dtype, seed=comfy.utils.string_to_seed(key))
comfy.utils.copy_to_param(self.model, key, out_weight)
else:
set_func(out_weight, inplace_update=True, seed=string_to_seed(key))
set_func(out_weight, inplace_update=True, seed=comfy.utils.string_to_seed(key))
if self.hook_mode == comfy.hooks.EnumHookMode.MaxSpeed:
# TODO: disable caching if not enough system RAM to do so
target_device = self.offload_device
@@ -1355,7 +1385,256 @@ class ModelPatcher:
self.unpatch_hooks()
self.clear_cached_hook_weights()
def state_dict_for_saving(self, clip_state_dict=None, vae_state_dict=None, clip_vision_state_dict=None):
unet_state_dict = self.model.diffusion_model.state_dict()
for k, v in unet_state_dict.items():
op_keys = k.rsplit('.', 1)
if (len(op_keys) < 2) or op_keys[1] not in ["weight", "bias"]:
continue
try:
op = comfy.utils.get_attr(self.model.diffusion_model, op_keys[0])
except:
continue
if not op or not hasattr(op, "comfy_cast_weights") or \
(hasattr(op, "comfy_patched_weights") and op.comfy_patched_weights == True):
continue
key = "diffusion_model." + k
unet_state_dict[k] = LazyCastingParam(self, key, comfy.utils.get_attr(self.model, key))
return self.model.state_dict_for_saving(unet_state_dict, clip_state_dict=clip_state_dict, vae_state_dict=vae_state_dict, clip_vision_state_dict=clip_vision_state_dict)
def __del__(self):
self.unpin_all_weights()
self.detach(unpatch_all=False)
class ModelPatcherDynamic(ModelPatcher):
def __new__(cls, model=None, load_device=None, offload_device=None, size=0, weight_inplace_update=False):
if load_device is not None and comfy.model_management.is_device_cpu(load_device):
#reroute to default MP for CPUs
return ModelPatcher(model, load_device, offload_device, size, weight_inplace_update)
return super().__new__(cls)
def __init__(self, model, load_device, offload_device, size=0, weight_inplace_update=False):
super().__init__(model, load_device, offload_device, size, weight_inplace_update)
#this is now way more dynamic and we dont support the same base model for both Dynamic
#and non-dynamic patchers.
if hasattr(self.model, "model_loaded_weight_memory"):
del self.model.model_loaded_weight_memory
if not hasattr(self.model, "dynamic_vbars"):
self.model.dynamic_vbars = {}
assert load_device is not None
def is_dynamic(self):
return True
def _vbar_get(self, create=False):
if self.load_device == torch.device("cpu"):
return None
vbar = self.model.dynamic_vbars.get(self.load_device, None)
if create and vbar is None:
# x10. We dont know what model defined type casts we have in the vbar, but virtual address
# space is pretty free. This will cover someone casting an entire model from FP4 to FP32
# with some left over.
vbar = comfy_aimdo.model_vbar.ModelVBAR(self.model_size() * 10, self.load_device.index)
self.model.dynamic_vbars[self.load_device] = vbar
return vbar
def loaded_size(self):
vbar = self._vbar_get()
if vbar is None:
return 0
return vbar.loaded_size()
def get_free_memory(self, device):
#NOTE: on high condition / batch counts, estimate should have already vacated
#all non-dynamic models so this is safe even if its not 100% true that this
#would all be avaiable for inference use.
return comfy.model_management.get_total_memory(device) - self.model_size()
#Pinning is deferred to ops time. Assert against this API to avoid pin leaks.
def pin_weight_to_device(self, key):
raise RuntimeError("pin_weight_to_device invalid for dymamic weight loading")
def unpin_weight(self, key):
raise RuntimeError("unpin_weight invalid for dymamic weight loading")
def unpin_all_weights(self):
self.partially_unload_ram(1e32)
def memory_required(self, input_shape):
#Pad this significantly. We are trying to get away from precise estimates. This
#estimate is only used when using the ModelPatcherDynamic after ModelPatcher. If you
#use all ModelPatcherDynamic this is ignored and its all done dynamically.
return super().memory_required(input_shape=input_shape) * 1.3 + (1024 ** 3)
def load(self, device_to=None, lowvram_model_memory=0, force_patch_weights=False, full_load=False, dirty=False):
#Force patching doesn't make sense in Dynamic loading, as you dont know what does and
#doesn't need to be forced at this stage. The only thing you could do would be patch
#it all on CPU which consumes huge RAM.
assert not force_patch_weights
#Full load doesn't make sense as we dont actually have any loader capability here and
#now.
assert not full_load
assert device_to == self.load_device
num_patches = 0
allocated_size = 0
with self.use_ejected():
self.unpatch_hooks()
vbar = self._vbar_get(create=True)
if vbar is not None:
vbar.prioritize()
#We force reserve VRAM for the non comfy-weight so we dont have to deal
#with pin and unpin syncrhonization which can be expensive for small weights
#with a high layer rate (e.g. autoregressive LLMs).
#prioritize the non-comfy weights (note the order reverse).
loading = self._load_list(prio_comfy_cast_weights=True, default_device=device_to)
loading.sort(reverse=True)
for x in loading:
_, _, _, n, m, params = x
def set_dirty(item, dirty):
if dirty or not hasattr(item, "_v_signature"):
item._v_signature = None
def setup_param(self, m, n, param_key):
nonlocal num_patches
key = key_param_name_to_key(n, param_key)
weight_function = []
weight, _, _ = get_key_weight(self.model, key)
if weight is None:
return 0
if key in self.patches:
setattr(m, param_key + "_lowvram_function", LowVramPatch(key, self.patches))
num_patches += 1
else:
setattr(m, param_key + "_lowvram_function", None)
if key in self.weight_wrapper_patches:
weight_function.extend(self.weight_wrapper_patches[key])
setattr(m, param_key + "_function", weight_function)
geometry = weight
if not isinstance(weight, QuantizedTensor):
model_dtype = getattr(m, param_key + "_comfy_model_dtype", None) or weight.dtype
weight._model_dtype = model_dtype
geometry = comfy.memory_management.TensorGeometry(shape=weight.shape, dtype=model_dtype)
return comfy.memory_management.vram_aligned_size(geometry)
if hasattr(m, "comfy_cast_weights"):
m.comfy_cast_weights = True
m.pin_failed = False
m.seed_key = n
set_dirty(m, dirty)
v_weight_size = 0
v_weight_size += setup_param(self, m, n, "weight")
v_weight_size += setup_param(self, m, n, "bias")
if vbar is not None and not hasattr(m, "_v"):
m._v = vbar.alloc(v_weight_size)
allocated_size += v_weight_size
else:
for param in params:
key = key_param_name_to_key(n, param)
weight, _, _ = get_key_weight(self.model, key)
weight.seed_key = key
set_dirty(weight, dirty)
geometry = weight
model_dtype = getattr(m, param + "_comfy_model_dtype", None) or weight.dtype
geometry = comfy.memory_management.TensorGeometry(shape=weight.shape, dtype=model_dtype)
weight_size = geometry.numel() * geometry.element_size()
if vbar is not None and not hasattr(weight, "_v"):
weight._v = vbar.alloc(weight_size)
weight._model_dtype = model_dtype
allocated_size += weight_size
vbar.set_watermark_limit(allocated_size)
move_weight_functions(m, device_to)
logging.info(f"Model {self.model.__class__.__name__} prepared for dynamic VRAM loading. {allocated_size // (1024 ** 2)}MB Staged. {num_patches} patches attached.")
self.model.device = device_to
self.model.current_weight_patches_uuid = self.patches_uuid
for callback in self.get_all_callbacks(CallbacksMP.ON_LOAD):
#These are all super dangerous. Who knows what the custom nodes actually do here...
callback(self, device_to, lowvram_model_memory, force_patch_weights, full_load)
self.apply_hooks(self.forced_hooks, force_apply=True)
def partially_unload(self, device_to, memory_to_free=0, force_patch_weights=False):
assert not force_patch_weights #See above
assert self.load_device != torch.device("cpu")
vbar = self._vbar_get()
return 0 if vbar is None else vbar.free_memory(memory_to_free)
def partially_unload_ram(self, ram_to_unload):
loading = self._load_list(prio_comfy_cast_weights=True, default_device=self.offload_device)
for x in loading:
_, _, _, _, m, _ = x
ram_to_unload -= comfy.pinned_memory.unpin_memory(m)
if ram_to_unload <= 0:
return
def patch_model(self, device_to=None, lowvram_model_memory=0, load_weights=True, force_patch_weights=False):
#This isn't used by the core at all and can only be to load a model out of
#the control of proper model_managment. If you are a custom node author reading
#this, the correct pattern is to call load_models_gpu() to get a proper
#managed load of your model.
assert not load_weights
return super().patch_model(load_weights=load_weights, force_patch_weights=force_patch_weights)
def unpatch_model(self, device_to=None, unpatch_weights=True):
super().unpatch_model(device_to=None, unpatch_weights=False)
if unpatch_weights:
self.partially_unload_ram(1e32)
self.partially_unload(None, 1e32)
for m in self.model.modules():
move_weight_functions(m, device_to)
def partially_load(self, device_to, extra_memory=0, force_patch_weights=False):
assert not force_patch_weights #See above
with self.use_ejected(skip_and_inject_on_exit_only=True):
dirty = self.model.current_weight_patches_uuid is not None and (self.model.current_weight_patches_uuid != self.patches_uuid)
self.unpatch_model(self.offload_device, unpatch_weights=False)
self.patch_model(load_weights=False)
try:
self.load(device_to, dirty=dirty)
except Exception as e:
self.detach()
raise e
#ModelPatcher::partially_load returns a number on what got loaded but
#nothing in core uses this and we have no data in the Dynamic world. Hit
#the custom node devs with a None rather than a 0 that would mislead any
#logic they might have.
return None
def patch_cached_hook_weights(self, cached_weights: dict, key: str, memory_counter: MemoryCounter):
assert False #Should be unreachable - we dont ever cache in the new implementation
def patch_hook_weight_to_device(self, hooks: comfy.hooks.HookGroup, combined_patches: dict, key: str, original_weights: dict, memory_counter: MemoryCounter):
if key not in combined_patches:
return
raise RuntimeError("Hooks not implemented in ModelPatcherDynamic. Please remove --fast arguments form ComfyUI startup")
def unpatch_hooks(self, whitelist_keys_set: set[str]=None) -> None:
pass
CoreModelPatcher = ModelPatcher

View File

@@ -19,10 +19,16 @@
import torch
import logging
import comfy.model_management
from comfy.cli_args import args, PerformanceFeature
from comfy.cli_args import args, PerformanceFeature, enables_dynamic_vram
import comfy.float
import comfy.rmsnorm
import json
import comfy.memory_management
import comfy.pinned_memory
import comfy.utils
import comfy_aimdo.model_vbar
import comfy_aimdo.torch
def run_every_op():
if torch.compiler.is_compiling():
@@ -48,6 +54,8 @@ try:
SDPA_BACKEND_PRIORITY.insert(0, SDPBackend.CUDNN_ATTENTION)
def scaled_dot_product_attention(q, k, v, *args, **kwargs):
if q.nelement() < 1024 * 128: # arbitrary number, for small inputs cudnn attention seems slower
return torch.nn.functional.scaled_dot_product_attention(q, k, v, *args, **kwargs)
with sdpa_kernel(SDPA_BACKEND_PRIORITY, set_priority=True):
return torch.nn.functional.scaled_dot_product_attention(q, k, v, *args, **kwargs)
else:
@@ -72,7 +80,122 @@ def cast_to_input(weight, input, non_blocking=False, copy=True):
return comfy.model_management.cast_to(weight, input.dtype, input.device, non_blocking=non_blocking, copy=copy)
def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None, offloadable=False):
def cast_bias_weight_with_vbar(s, dtype, device, bias_dtype, non_blocking, compute_dtype):
offload_stream = None
xfer_dest = None
signature = comfy_aimdo.model_vbar.vbar_fault(s._v)
resident = comfy_aimdo.model_vbar.vbar_signature_compare(signature, s._v_signature)
if signature is not None:
if resident:
weight = s._v_weight
bias = s._v_bias
else:
xfer_dest = comfy_aimdo.torch.aimdo_to_tensor(s._v, device)
if not resident:
cast_geometry = comfy.memory_management.tensors_to_geometries([ s.weight, s.bias ])
cast_dest = None
xfer_source = [ s.weight, s.bias ]
pin = comfy.pinned_memory.get_pin(s)
if pin is not None:
xfer_source = [ pin ]
for data, geometry in zip([ s.weight, s.bias ], cast_geometry):
if data is None:
continue
if data.dtype != geometry.dtype:
cast_dest = xfer_dest
if cast_dest is None:
cast_dest = torch.empty((comfy.memory_management.vram_aligned_size(cast_geometry),), dtype=torch.uint8, device=device)
xfer_dest = None
break
dest_size = comfy.memory_management.vram_aligned_size(xfer_source)
offload_stream = comfy.model_management.get_offload_stream(device)
if xfer_dest is None and offload_stream is not None:
xfer_dest = comfy.model_management.get_cast_buffer(offload_stream, device, dest_size, s)
if xfer_dest is None:
offload_stream = comfy.model_management.get_offload_stream(device)
xfer_dest = comfy.model_management.get_cast_buffer(offload_stream, device, dest_size, s)
if xfer_dest is None:
xfer_dest = torch.empty((dest_size,), dtype=torch.uint8, device=device)
offload_stream = None
if signature is None and pin is None:
comfy.pinned_memory.pin_memory(s)
pin = comfy.pinned_memory.get_pin(s)
else:
pin = None
if pin is not None:
comfy.model_management.cast_to_gathered(xfer_source, pin)
xfer_source = [ pin ]
#send it over
comfy.model_management.cast_to_gathered(xfer_source, xfer_dest, non_blocking=non_blocking, stream=offload_stream)
comfy.model_management.sync_stream(device, offload_stream)
if cast_dest is not None:
for pre_cast, post_cast in zip(comfy.memory_management.interpret_gathered_like([s.weight, s.bias ], xfer_dest),
comfy.memory_management.interpret_gathered_like(cast_geometry, cast_dest)):
if post_cast is not None:
post_cast.copy_(pre_cast)
xfer_dest = cast_dest
params = comfy.memory_management.interpret_gathered_like(cast_geometry, xfer_dest)
weight = params[0]
bias = params[1]
if signature is not None:
s._v_weight = weight
s._v_bias = bias
s._v_signature=signature
def post_cast(s, param_key, x, dtype, resident, update_weight):
lowvram_fn = getattr(s, param_key + "_lowvram_function", None)
fns = getattr(s, param_key + "_function", [])
orig = x
def to_dequant(tensor, dtype):
tensor = tensor.to(dtype=dtype)
if isinstance(tensor, QuantizedTensor):
tensor = tensor.dequantize()
return tensor
if orig.dtype != dtype or len(fns) > 0:
x = to_dequant(x, dtype)
if not resident and lowvram_fn is not None:
x = to_dequant(x, dtype if compute_dtype is None else compute_dtype)
#FIXME: this is not accurate, we need to be sensitive to the compute dtype
x = lowvram_fn(x)
if (isinstance(orig, QuantizedTensor) and
(orig.dtype == dtype and len(fns) == 0 or update_weight)):
seed = comfy.utils.string_to_seed(s.seed_key)
y = QuantizedTensor.from_float(x, s.layout_type, scale="recalculate", stochastic_rounding=seed)
if orig.dtype == dtype and len(fns) == 0:
#The layer actually wants our freshly saved QT
x = y
elif update_weight:
y = comfy.float.stochastic_rounding(x, orig.dtype, seed = comfy.utils.string_to_seed(s.seed_key))
if update_weight:
orig.copy_(y)
for f in fns:
x = f(x)
return x
update_weight = signature is not None
weight = post_cast(s, "weight", weight, dtype, resident, update_weight)
if s.bias is not None:
bias = post_cast(s, "bias", bias, bias_dtype, resident, update_weight)
#FIXME: weird offload return protocol
return weight, bias, (offload_stream, device if signature is not None else None, None)
def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None, offloadable=False, compute_dtype=None):
# NOTE: offloadable=False is a a legacy and if you are a custom node author reading this please pass
# offloadable=True and call uncast_bias_weight() after your last usage of the weight/bias. This
# will add async-offload support to your cast and improve performance.
@@ -87,22 +210,38 @@ def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None, of
if device is None:
device = input.device
non_blocking = comfy.model_management.device_supports_non_blocking(device)
if hasattr(s, "_v"):
return cast_bias_weight_with_vbar(s, dtype, device, bias_dtype, non_blocking, compute_dtype)
if offloadable and (device != s.weight.device or
(s.bias is not None and device != s.bias.device)):
offload_stream = comfy.model_management.get_offload_stream(device)
else:
offload_stream = None
non_blocking = comfy.model_management.device_supports_non_blocking(device)
bias = None
weight = None
if offload_stream is not None and not args.cuda_malloc:
cast_buffer_size = comfy.memory_management.vram_aligned_size([ s.weight, s.bias ])
cast_buffer = comfy.model_management.get_cast_buffer(offload_stream, device, cast_buffer_size, s)
#The streams can be uneven in buffer capability and reject us. Retry to get the other stream
if cast_buffer is None:
offload_stream = comfy.model_management.get_offload_stream(device)
cast_buffer = comfy.model_management.get_cast_buffer(offload_stream, device, cast_buffer_size, s)
params = comfy.memory_management.interpret_gathered_like([ s.weight, s.bias ], cast_buffer)
weight = params[0]
bias = params[1]
weight_has_function = len(s.weight_function) > 0
bias_has_function = len(s.bias_function) > 0
weight = comfy.model_management.cast_to(s.weight, None, device, non_blocking=non_blocking, copy=weight_has_function, stream=offload_stream)
weight = comfy.model_management.cast_to(s.weight, None, device, non_blocking=non_blocking, copy=weight_has_function, stream=offload_stream, r=weight)
bias = None
if s.bias is not None:
bias = comfy.model_management.cast_to(s.bias, bias_dtype, device, non_blocking=non_blocking, copy=bias_has_function, stream=offload_stream)
bias = comfy.model_management.cast_to(s.bias, None, device, non_blocking=non_blocking, copy=bias_has_function, stream=offload_stream, r=bias)
comfy.model_management.sync_stream(device, offload_stream)
@@ -110,6 +249,7 @@ def cast_bias_weight(s, input=None, dtype=None, device=None, bias_dtype=None, of
weight_a = weight
if s.bias is not None:
bias = bias.to(dtype=bias_dtype)
for f in s.bias_function:
bias = f(bias)
@@ -131,14 +271,20 @@ def uncast_bias_weight(s, weight, bias, offload_stream):
if offload_stream is None:
return
os, weight_a, bias_a = offload_stream
device=None
#FIXME: This is not good RTTI
if not isinstance(weight_a, torch.Tensor):
comfy_aimdo.model_vbar.vbar_unpin(s._v)
device = weight_a
if os is None:
return
if weight_a is not None:
device = weight_a.device
else:
if bias_a is None:
return
device = bias_a.device
if device is None:
if weight_a is not None:
device = weight_a.device
else:
if bias_a is None:
return
device = bias_a.device
os.wait_stream(comfy.model_management.current_stream(device))
@@ -149,6 +295,57 @@ class CastWeightBiasOp:
class disable_weight_init:
class Linear(torch.nn.Linear, CastWeightBiasOp):
def __init__(self, in_features, out_features, bias=True, device=None, dtype=None):
if not comfy.model_management.WINDOWS or not enables_dynamic_vram():
super().__init__(in_features, out_features, bias, device, dtype)
return
# Issue is with `torch.empty` still reserving the full memory for the layer.
# Windows doesn't over-commit memory so without this, We are momentarily commit
# charged for the weight even though we might zero-copy it when we load the
# state dict. If the commit charge exceeds the ceiling we can destabilize the
# system.
torch.nn.Module.__init__(self)
self.in_features = in_features
self.out_features = out_features
self.weight = None
self.bias = None
self.comfy_need_lazy_init_bias=bias
self.weight_comfy_model_dtype = dtype
self.bias_comfy_model_dtype = dtype
def _load_from_state_dict(self, state_dict, prefix, local_metadata,
strict, missing_keys, unexpected_keys, error_msgs):
if not comfy.model_management.WINDOWS or not enables_dynamic_vram():
return super()._load_from_state_dict(state_dict, prefix, local_metadata, strict,
missing_keys, unexpected_keys, error_msgs)
assign_to_params_buffers = local_metadata.get("assign_to_params_buffers", False)
prefix_len = len(prefix)
for k,v in state_dict.items():
if k[prefix_len:] == "weight":
if not assign_to_params_buffers:
v = v.clone()
self.weight = torch.nn.Parameter(v, requires_grad=False)
elif k[prefix_len:] == "bias" and v is not None:
if not assign_to_params_buffers:
v = v.clone()
self.bias = torch.nn.Parameter(v, requires_grad=False)
else:
unexpected_keys.append(k)
#Reconcile default construction of the weight if its missing.
if self.weight is None:
v = torch.zeros(self.in_features, self.out_features)
self.weight = torch.nn.Parameter(v, requires_grad=False)
missing_keys.append(prefix+"weight")
if self.bias is None and self.comfy_need_lazy_init_bias:
v = torch.zeros(self.out_features,)
self.bias = torch.nn.Parameter(v, requires_grad=False)
missing_keys.append(prefix+"bias")
def reset_parameters(self):
return None
@@ -203,7 +400,9 @@ class disable_weight_init:
def reset_parameters(self):
return None
def _conv_forward(self, input, weight, bias, *args, **kwargs):
def _conv_forward(self, input, weight, bias, autopad=None, *args, **kwargs):
if autopad == "causal_zero":
weight = weight[:, :, -input.shape[2]:, :, :]
if NVIDIA_MEMORY_CONV_BUG_WORKAROUND and weight.dtype in (torch.float16, torch.bfloat16):
out = torch.cudnn_convolution(input, weight, self.padding, self.stride, self.dilation, self.groups, benchmark=False, deterministic=False, allow_tf32=True)
if bias is not None:
@@ -212,15 +411,15 @@ class disable_weight_init:
else:
return super()._conv_forward(input, weight, bias, *args, **kwargs)
def forward_comfy_cast_weights(self, input):
def forward_comfy_cast_weights(self, input, autopad=None):
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
x = self._conv_forward(input, weight, bias)
x = self._conv_forward(input, weight, bias, autopad=autopad)
uncast_bias_weight(self, weight, bias, offload_stream)
return x
def forward(self, *args, **kwargs):
run_every_op()
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0:
if self.comfy_cast_weights or len(self.weight_function) > 0 or len(self.bias_function) > 0 or "autopad" in kwargs:
return self.forward_comfy_cast_weights(*args, **kwargs)
else:
return super().forward(*args, **kwargs)
@@ -653,8 +852,8 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec
def _forward(self, input, weight, bias):
return torch.nn.functional.linear(input, weight, bias)
def forward_comfy_cast_weights(self, input):
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True)
def forward_comfy_cast_weights(self, input, compute_dtype=None):
weight, bias, offload_stream = cast_bias_weight(self, input, offloadable=True, compute_dtype=compute_dtype)
x = self._forward(input, weight, bias)
uncast_bias_weight(self, weight, bias, offload_stream)
return x
@@ -664,6 +863,8 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec
input_shape = input.shape
reshaped_3d = False
#If cast needs to apply lora, it should be done in the compute dtype
compute_dtype = input.dtype
if (getattr(self, 'layout_type', None) is not None and
not isinstance(input, QuantizedTensor) and not self._full_precision_mm and
@@ -682,7 +883,8 @@ def mixed_precision_ops(quant_config={}, compute_dtype=torch.bfloat16, full_prec
scale = comfy.model_management.cast_to_device(scale, input.device, None)
input = QuantizedTensor.from_float(input_reshaped, self.layout_type, scale=scale)
output = self.forward_comfy_cast_weights(input)
output = self.forward_comfy_cast_weights(input, compute_dtype)
# Reshape output back to 3D if input was 3D
if reshaped_3d:

29
comfy/pinned_memory.py Normal file
View File

@@ -0,0 +1,29 @@
import torch
import comfy.model_management
import comfy.memory_management
from comfy.cli_args import args
def get_pin(module):
return getattr(module, "_pin", None)
def pin_memory(module):
if module.pin_failed or args.disable_pinned_memory or get_pin(module) is not None:
return
#FIXME: This is a RAM cache trigger event
size = comfy.memory_management.vram_aligned_size([ module.weight, module.bias ])
pin = torch.empty((size,), dtype=torch.uint8)
if comfy.model_management.pin_memory(pin):
module._pin = pin
else:
module.pin_failed = True
return False
return True
def unpin_memory(module):
if get_pin(module) is None:
return 0
size = module._pin.numel() * module._pin.element_size()
comfy.model_management.unpin_memory(module._pin)
del module._pin
return size

View File

@@ -37,12 +37,18 @@ def prepare_noise(latent_image, seed, noise_inds=None):
return noises
def fix_empty_latent_channels(model, latent_image):
def fix_empty_latent_channels(model, latent_image, downscale_ratio_spacial=None):
if latent_image.is_nested:
return latent_image
latent_format = model.get_model_object("latent_format") #Resize the empty latent image so it has the right number of channels
if latent_format.latent_channels != latent_image.shape[1] and torch.count_nonzero(latent_image) == 0:
latent_image = comfy.utils.repeat_to_batch_size(latent_image, latent_format.latent_channels, dim=1)
if torch.count_nonzero(latent_image) == 0:
if latent_format.latent_channels != latent_image.shape[1]:
latent_image = comfy.utils.repeat_to_batch_size(latent_image, latent_format.latent_channels, dim=1)
if downscale_ratio_spacial is not None:
if downscale_ratio_spacial != latent_format.spacial_downscale_ratio:
ratio = downscale_ratio_spacial / latent_format.spacial_downscale_ratio
latent_image = comfy.utils.common_upscale(latent_image, round(latent_image.shape[-1] * ratio), round(latent_image.shape[-2] * ratio), "nearest-exact", crop="disabled")
if latent_format.latent_dimensions == 3 and latent_image.ndim == 4:
latent_image = latent_image.unsqueeze(2)
return latent_image

View File

@@ -122,20 +122,26 @@ def estimate_memory(model, noise_shape, conds):
minimum_memory_required = model.model.memory_required([noise_shape[0]] + list(noise_shape[1:]), cond_shapes=cond_shapes_min)
return memory_required, minimum_memory_required
def prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None, force_full_load=False):
def prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None, force_full_load=False, force_offload=False):
executor = comfy.patcher_extension.WrapperExecutor.new_executor(
_prepare_sampling,
comfy.patcher_extension.get_all_wrappers(comfy.patcher_extension.WrappersMP.PREPARE_SAMPLING, model_options, is_model_options=True)
)
return executor.execute(model, noise_shape, conds, model_options=model_options, force_full_load=force_full_load)
return executor.execute(model, noise_shape, conds, model_options=model_options, force_full_load=force_full_load, force_offload=force_offload)
def _prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None, force_full_load=False):
def _prepare_sampling(model: ModelPatcher, noise_shape, conds, model_options=None, force_full_load=False, force_offload=False):
real_model: BaseModel = None
models, inference_memory = get_additional_models(conds, model.model_dtype())
models += get_additional_models_from_model_options(model_options)
models += model.get_nested_additional_models() # TODO: does this require inference_memory update?
memory_required, minimum_memory_required = estimate_memory(model, noise_shape, conds)
comfy.model_management.load_models_gpu([model] + models, memory_required=memory_required + inference_memory, minimum_memory_required=minimum_memory_required + inference_memory, force_full_load=force_full_load)
if force_offload: # In training + offload enabled, we want to force prepare sampling to trigger partial load
memory_required = 1e20
minimum_memory_required = None
else:
memory_required, minimum_memory_required = estimate_memory(model, noise_shape, conds)
memory_required += inference_memory
minimum_memory_required += inference_memory
comfy.model_management.load_models_gpu([model] + models, memory_required=memory_required, minimum_memory_required=minimum_memory_required, force_full_load=force_full_load)
real_model = model.model
return real_model, conds, models

View File

@@ -9,7 +9,6 @@ if TYPE_CHECKING:
import torch
from functools import partial
import collections
from comfy import model_management
import math
import logging
import comfy.sampler_helpers
@@ -260,7 +259,7 @@ def _calc_cond_batch(model: BaseModel, conds: list[list[dict]], x_in: torch.Tens
to_batch_temp.reverse()
to_batch = to_batch_temp[:1]
free_memory = model_management.get_free_memory(x_in.device)
free_memory = model.current_patcher.get_free_memory(x_in.device)
for i in range(1, len(to_batch_temp) + 1):
batch_amount = to_batch_temp[:len(to_batch_temp)//i]
input_shape = [len(batch_amount) * first_shape[0]] + list(first_shape)[1:]

View File

@@ -20,6 +20,7 @@ import comfy.ldm.ace.vae.music_dcae_pipeline
import comfy.ldm.hunyuan_video.vae
import comfy.ldm.mmaudio.vae.autoencoder
import comfy.pixel_space_convert
import comfy.weight_adapter
import yaml
import math
import os
@@ -58,6 +59,7 @@ import comfy.text_encoders.kandinsky5
import comfy.text_encoders.jina_clip_2
import comfy.text_encoders.newbie
import comfy.text_encoders.anima
import comfy.text_encoders.ace15
import comfy.model_patcher
import comfy.lora
@@ -101,6 +103,105 @@ def load_lora_for_models(model, clip, lora, strength_model, strength_clip):
return (new_modelpatcher, new_clip)
def load_bypass_lora_for_models(model, clip, lora, strength_model, strength_clip):
"""
Load LoRA in bypass mode without modifying base model weights.
Instead of patching weights, this injects the LoRA computation into the
forward pass: output = base_forward(x) + lora_path(x)
Non-adapter patches (bias diff, weight diff, etc.) are applied as regular patches.
This is useful for training and when model weights are offloaded.
"""
key_map = {}
if model is not None:
key_map = comfy.lora.model_lora_keys_unet(model.model, key_map)
if clip is not None:
key_map = comfy.lora.model_lora_keys_clip(clip.cond_stage_model, key_map)
logging.debug(f"[BypassLoRA] key_map has {len(key_map)} entries")
lora = comfy.lora_convert.convert_lora(lora)
loaded = comfy.lora.load_lora(lora, key_map)
logging.debug(f"[BypassLoRA] loaded has {len(loaded)} entries")
# Separate adapters (for bypass) from other patches (for regular patching)
bypass_patches = {} # WeightAdapterBase instances -> bypass mode
regular_patches = {} # diff, set, bias patches -> regular weight patching
for key, patch_data in loaded.items():
if isinstance(patch_data, comfy.weight_adapter.WeightAdapterBase):
bypass_patches[key] = patch_data
else:
regular_patches[key] = patch_data
logging.debug(f"[BypassLoRA] {len(bypass_patches)} bypass adapters, {len(regular_patches)} regular patches")
k = set()
k1 = set()
if model is not None:
new_modelpatcher = model.clone()
# Apply regular patches (bias diff, weight diff, etc.) via normal patching
if regular_patches:
patched_keys = new_modelpatcher.add_patches(regular_patches, strength_model)
k.update(patched_keys)
# Apply adapter patches via bypass injection
manager = comfy.weight_adapter.BypassInjectionManager()
model_sd_keys = set(new_modelpatcher.model.state_dict().keys())
for key, adapter in bypass_patches.items():
if key in model_sd_keys:
manager.add_adapter(key, adapter, strength=strength_model)
k.add(key)
else:
logging.warning(f"[BypassLoRA] Adapter key not in model state_dict: {key}")
injections = manager.create_injections(new_modelpatcher.model)
if manager.get_hook_count() > 0:
new_modelpatcher.set_injections("bypass_lora", injections)
else:
new_modelpatcher = None
if clip is not None:
new_clip = clip.clone()
# Apply regular patches to clip
if regular_patches:
patched_keys = new_clip.add_patches(regular_patches, strength_clip)
k1.update(patched_keys)
# Apply adapter patches via bypass injection
clip_manager = comfy.weight_adapter.BypassInjectionManager()
clip_sd_keys = set(new_clip.cond_stage_model.state_dict().keys())
for key, adapter in bypass_patches.items():
if key in clip_sd_keys:
clip_manager.add_adapter(key, adapter, strength=strength_clip)
k1.add(key)
clip_injections = clip_manager.create_injections(new_clip.cond_stage_model)
if clip_manager.get_hook_count() > 0:
new_clip.patcher.set_injections("bypass_lora", clip_injections)
else:
new_clip = None
for x in loaded:
if (x not in k) and (x not in k1):
patch_data = loaded[x]
patch_type = type(patch_data).__name__
if isinstance(patch_data, tuple):
patch_type = f"tuple({patch_data[0]})"
logging.warning(f"NOT LOADED: {x} (type={patch_type})")
return (new_modelpatcher, new_clip)
class CLIP:
def __init__(self, target=None, embedding_directory=None, no_init=False, tokenizer_data={}, parameters=0, state_dict=[], model_options={}):
if no_init:
@@ -128,8 +229,10 @@ class CLIP:
self.cond_stage_model.to(offload_device)
logging.warning("Had to shift TE back.")
model_management.archive_model_dtypes(self.cond_stage_model)
self.tokenizer = tokenizer(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data)
self.patcher = comfy.model_patcher.ModelPatcher(self.cond_stage_model, load_device=load_device, offload_device=offload_device)
self.patcher = comfy.model_patcher.CoreModelPatcher(self.cond_stage_model, load_device=load_device, offload_device=offload_device)
#Match torch.float32 hardcode upcast in TE implemention
self.patcher.set_model_compute_dtype(torch.float32)
self.patcher.hook_mode = comfy.hooks.EnumHookMode.MinVram
@@ -289,8 +392,18 @@ class CLIP:
def load_sd(self, sd, full_model=False):
if full_model:
return self.cond_stage_model.load_state_dict(sd, strict=False)
return self.cond_stage_model.load_state_dict(sd, strict=False, assign=self.patcher.is_dynamic())
else:
can_assign = self.patcher.is_dynamic()
self.cond_stage_model.can_assign_sd = can_assign
# The CLIP models are a pretty complex web of wrappers and its
# a bit of an API change to plumb this all the way through.
# So spray paint the model with this flag that the loading
# nn.Module can then inspect for itself.
for m in self.cond_stage_model.modules():
m.can_assign_sd = can_assign
return self.cond_stage_model.load_sd(sd)
def get_sd(self):
@@ -340,6 +453,8 @@ class VAE:
self.extra_1d_channel = None
self.crop_input = True
self.audio_sample_rate = 44100
if config is None:
if "decoder.mid.block_1.mix_factor" in sd:
encoder_config = {'double_z': True, 'z_channels': 4, 'resolution': 256, 'in_channels': 3, 'out_ch': 3, 'ch': 128, 'ch_mult': [1, 2, 4, 4], 'num_res_blocks': 2, 'attn_resolutions': [], 'dropout': 0.0}
@@ -437,14 +552,27 @@ class VAE:
encoder_config={'target': "comfy.ldm.modules.diffusionmodules.model.Encoder", 'params': ddconfig},
decoder_config={'target': "comfy.ldm.modules.diffusionmodules.model.Decoder", 'params': ddconfig})
elif "decoder.layers.1.layers.0.beta" in sd:
self.first_stage_model = AudioOobleckVAE()
config = {}
param_key = None
self.upscale_ratio = 2048
self.downscale_ratio = 2048
if "decoder.layers.2.layers.1.weight_v" in sd:
param_key = "decoder.layers.2.layers.1.weight_v"
if "decoder.layers.2.layers.1.parametrizations.weight.original1" in sd:
param_key = "decoder.layers.2.layers.1.parametrizations.weight.original1"
if param_key is not None:
if sd[param_key].shape[-1] == 12:
config["strides"] = [2, 4, 4, 6, 10]
self.audio_sample_rate = 48000
self.upscale_ratio = 1920
self.downscale_ratio = 1920
self.first_stage_model = AudioOobleckVAE(**config)
self.memory_used_encode = lambda shape, dtype: (1000 * shape[2]) * model_management.dtype_size(dtype)
self.memory_used_decode = lambda shape, dtype: (1000 * shape[2] * 2048) * model_management.dtype_size(dtype)
self.latent_channels = 64
self.output_channels = 2
self.pad_channel_value = "replicate"
self.upscale_ratio = 2048
self.downscale_ratio = 2048
self.latent_dim = 1
self.process_output = lambda audio: audio
self.process_input = lambda audio: audio
@@ -665,13 +793,6 @@ class VAE:
self.first_stage_model = AutoencoderKL(**(config['params']))
self.first_stage_model = self.first_stage_model.eval()
m, u = self.first_stage_model.load_state_dict(sd, strict=False)
if len(m) > 0:
logging.warning("Missing VAE keys {}".format(m))
if len(u) > 0:
logging.debug("Leftover VAE keys {}".format(u))
if device is None:
device = model_management.vae_device()
self.device = device
@@ -680,9 +801,21 @@ class VAE:
dtype = model_management.vae_dtype(self.device, self.working_dtypes)
self.vae_dtype = dtype
self.first_stage_model.to(self.vae_dtype)
model_management.archive_model_dtypes(self.first_stage_model)
self.output_device = model_management.intermediate_device()
self.patcher = comfy.model_patcher.ModelPatcher(self.first_stage_model, load_device=self.device, offload_device=offload_device)
mp = comfy.model_patcher.CoreModelPatcher
if self.disable_offload:
mp = comfy.model_patcher.ModelPatcher
self.patcher = mp(self.first_stage_model, load_device=self.device, offload_device=offload_device)
m, u = self.first_stage_model.load_state_dict(sd, strict=False, assign=self.patcher.is_dynamic())
if len(m) > 0:
logging.warning("Missing VAE keys {}".format(m))
if len(u) > 0:
logging.debug("Leftover VAE keys {}".format(u))
logging.info("VAE load device: {}, offload device: {}, dtype: {}".format(self.device, offload_device, self.vae_dtype))
self.model_size()
@@ -738,7 +871,7 @@ class VAE:
/ 3.0)
return output
def decode_tiled_1d(self, samples, tile_x=128, overlap=32):
def decode_tiled_1d(self, samples, tile_x=256, overlap=32):
if samples.ndim == 3:
decode_fn = lambda a: self.first_stage_model.decode(a.to(self.vae_dtype).to(self.device)).float()
else:
@@ -797,7 +930,7 @@ class VAE:
try:
memory_used = self.memory_used_decode(samples_in.shape, self.vae_dtype)
model_management.load_models_gpu([self.patcher], memory_required=memory_used, force_full_load=self.disable_offload)
free_memory = model_management.get_free_memory(self.device)
free_memory = self.patcher.get_free_memory(self.device)
batch_number = int(free_memory / memory_used)
batch_number = max(1, batch_number)
@@ -842,7 +975,7 @@ class VAE:
if overlap is not None:
args["overlap"] = overlap
if dims == 1:
if dims == 1 or self.extra_1d_channel is not None:
args.pop("tile_y")
output = self.decode_tiled_1d(samples, **args)
elif dims == 2:
@@ -871,7 +1004,7 @@ class VAE:
try:
memory_used = self.memory_used_encode(pixel_samples.shape, self.vae_dtype)
model_management.load_models_gpu([self.patcher], memory_required=memory_used, force_full_load=self.disable_offload)
free_memory = model_management.get_free_memory(self.device)
free_memory = self.patcher.get_free_memory(self.device)
batch_number = int(free_memory / max(1, memory_used))
batch_number = max(1, batch_number)
samples = None
@@ -1309,6 +1442,14 @@ def load_text_encoder_state_dicts(state_dicts=[], embedding_directory=None, clip
clip_data_jina = clip_data[0]
tokenizer_data["gemma_spiece_model"] = clip_data_gemma.get("spiece_model", None)
tokenizer_data["jina_spiece_model"] = clip_data_jina.get("spiece_model", None)
elif clip_type == CLIPType.ACE:
te_models = [detect_te_model(clip_data[0]), detect_te_model(clip_data[1])]
if TEModel.QWEN3_4B in te_models:
model_type = "qwen3_4b"
else:
model_type = "qwen3_2b"
clip_target.clip = comfy.text_encoders.ace15.te(lm_model=model_type, **llama_detect(clip_data))
clip_target.tokenizer = comfy.text_encoders.ace15.ACE15Tokenizer
else:
clip_target.clip = sdxl_clip.SDXLClipModel
clip_target.tokenizer = sdxl_clip.SDXLTokenizer
@@ -1332,7 +1473,7 @@ def load_gligen(ckpt_path):
model = gligen.load_gligen(data)
if model_management.should_use_fp16():
model = model.half()
return comfy.model_patcher.ModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=model_management.unet_offload_device())
return comfy.model_patcher.CoreModelPatcher(model, load_device=model_management.get_torch_device(), offload_device=model_management.unet_offload_device())
def model_detection_error_hint(path, state_dict):
filename = os.path.basename(path)
@@ -1420,7 +1561,8 @@ def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_c
if output_model:
inital_load_device = model_management.unet_inital_load_device(parameters, unet_dtype)
model = model_config.get_model(sd, diffusion_model_prefix, device=inital_load_device)
model.load_model_weights(sd, diffusion_model_prefix)
model_patcher = comfy.model_patcher.CoreModelPatcher(model, load_device=load_device, offload_device=model_management.unet_offload_device())
model.load_model_weights(sd, diffusion_model_prefix, assign=model_patcher.is_dynamic())
if output_vae:
vae_sd = comfy.utils.state_dict_prefix_replace(sd, {k: "" for k in model_config.vae_key_prefix}, filter_keys=True)
@@ -1463,7 +1605,6 @@ def load_state_dict_guess_config(sd, output_vae=True, output_clip=True, output_c
logging.debug("left over keys: {}".format(left_over))
if output_model:
model_patcher = comfy.model_patcher.ModelPatcher(model, load_device=load_device, offload_device=model_management.unet_offload_device())
if inital_load_device != torch.device("cpu"):
logging.info("loaded diffusion model directly to GPU")
model_management.load_models_gpu([model_patcher], force_full_load=True)
@@ -1555,13 +1696,14 @@ def load_diffusion_model_state_dict(sd, model_options={}, metadata=None):
model_config.optimizations["fp8"] = True
model = model_config.get_model(new_sd, "")
model = model.to(offload_device)
model.load_model_weights(new_sd, "")
model_patcher = comfy.model_patcher.CoreModelPatcher(model, load_device=load_device, offload_device=offload_device)
if not model_management.is_device_cpu(offload_device):
model.to(offload_device)
model.load_model_weights(new_sd, "", assign=model_patcher.is_dynamic())
left_over = sd.keys()
if len(left_over) > 0:
logging.info("left over keys in diffusion model: {}".format(left_over))
return comfy.model_patcher.ModelPatcher(model, load_device=load_device, offload_device=offload_device)
return model_patcher
def load_diffusion_model(unet_path, model_options={}):
sd, metadata = comfy.utils.load_torch_file(unet_path, return_metadata=True)
@@ -1592,9 +1734,9 @@ def save_checkpoint(output_path, model, clip=None, vae=None, clip_vision=None, m
if metadata is None:
metadata = {}
model_management.load_models_gpu(load_models, force_patch_weights=True)
model_management.load_models_gpu(load_models)
clip_vision_sd = clip_vision.get_sd() if clip_vision is not None else None
sd = model.model.state_dict_for_saving(clip_sd, vae_sd, clip_vision_sd)
sd = model.state_dict_for_saving(clip_sd, vae_sd, clip_vision_sd)
for k in extra_keys:
sd[k] = extra_keys[k]

View File

@@ -155,6 +155,8 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
self.execution_device = options.get("execution_device", self.execution_device)
if isinstance(self.layer, list) or self.layer == "all":
pass
elif isinstance(layer_idx, list):
self.layer = layer_idx
elif layer_idx is None or abs(layer_idx) > self.num_layers:
self.layer = "last"
else:
@@ -169,8 +171,9 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
def process_tokens(self, tokens, device):
end_token = self.special_tokens.get("end", None)
pad_token = self.special_tokens.get("pad", -1)
if end_token is None:
cmp_token = self.special_tokens.get("pad", -1)
cmp_token = pad_token
else:
cmp_token = end_token
@@ -184,15 +187,21 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
other_embeds = []
eos = False
index = 0
left_pad = False
for y in x:
if isinstance(y, numbers.Integral):
if eos:
token = int(y)
if index == 0 and token == pad_token:
left_pad = True
if eos or (left_pad and token == pad_token):
attention_mask.append(0)
else:
attention_mask.append(1)
token = int(y)
left_pad = False
tokens_temp += [token]
if not eos and token == cmp_token:
if not eos and token == cmp_token and not left_pad:
if end_token is None:
attention_mask[-1] = 0
eos = True
@@ -297,7 +306,7 @@ class SDClipModel(torch.nn.Module, ClipTokenWeightEncoder):
return self(tokens)
def load_sd(self, sd):
return self.transformer.load_state_dict(sd, strict=False)
return self.transformer.load_state_dict(sd, strict=False, assign=getattr(self, "can_assign_sd", False))
def parse_parentheses(string):
result = []
@@ -466,7 +475,7 @@ def load_embed(embedding_name, embedding_directory, embedding_size, embed_key=No
return embed_out
class SDTokenizer:
def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, has_end_token=True, pad_to_max_length=True, min_length=None, pad_token=None, end_token=None, min_padding=None, pad_left=False, disable_weights=False, tokenizer_data={}, tokenizer_args={}):
def __init__(self, tokenizer_path=None, max_length=77, pad_with_end=True, embedding_directory=None, embedding_size=768, embedding_key='clip_l', tokenizer_class=CLIPTokenizer, has_start_token=True, has_end_token=True, pad_to_max_length=True, min_length=None, pad_token=None, end_token=None, start_token=None, min_padding=None, pad_left=False, disable_weights=False, tokenizer_data={}, tokenizer_args={}):
if tokenizer_path is None:
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "sd1_tokenizer")
self.tokenizer = tokenizer_class.from_pretrained(tokenizer_path, **tokenizer_args)
@@ -479,8 +488,15 @@ class SDTokenizer:
empty = self.tokenizer('')["input_ids"]
self.tokenizer_adds_end_token = has_end_token
if has_start_token:
self.tokens_start = 1
self.start_token = empty[0]
if len(empty) > 0:
self.tokens_start = 1
self.start_token = empty[0]
else:
self.tokens_start = 0
self.start_token = start_token
if start_token is None:
logging.warning("WARNING: There's something wrong with your tokenizers.'")
if end_token is not None:
self.end_token = end_token
else:
@@ -488,7 +504,7 @@ class SDTokenizer:
self.end_token = empty[1]
else:
self.tokens_start = 0
self.start_token = None
self.start_token = start_token
if end_token is not None:
self.end_token = end_token
else:

View File

@@ -24,6 +24,7 @@ import comfy.text_encoders.hunyuan_image
import comfy.text_encoders.kandinsky5
import comfy.text_encoders.z_image
import comfy.text_encoders.anima
import comfy.text_encoders.ace15
from . import supported_models_base
from . import latent_formats
@@ -709,6 +710,15 @@ class Flux(supported_models_base.BASE):
supported_inference_dtypes = [torch.bfloat16, torch.float16, torch.float32]
def process_unet_state_dict(self, state_dict):
out_sd = {}
for k in list(state_dict.keys()):
key_out = k
if key_out.endswith("_norm.scale"):
key_out = "{}.weight".format(key_out[:-len(".scale")])
out_sd[key_out] = state_dict[k]
return out_sd
vae_key_prefix = ["vae."]
text_encoder_key_prefix = ["text_encoders."]
@@ -771,10 +781,24 @@ class Flux2(Flux):
return out
def clip_target(self, state_dict={}):
return None # TODO
pref = self.text_encoder_key_prefix[0]
t5_detect = comfy.text_encoders.sd3_clip.t5_xxl_detect(state_dict, "{}t5xxl.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.flux.FluxTokenizer, comfy.text_encoders.flux.flux_clip(**t5_detect))
detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen3_4b.transformer.".format(pref))
if len(detect) > 0:
detect["model_type"] = "qwen3_4b"
return supported_models_base.ClipTarget(comfy.text_encoders.flux.KleinTokenizer, comfy.text_encoders.flux.klein_te(**detect))
detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen3_8b.transformer.".format(pref))
if len(detect) > 0:
detect["model_type"] = "qwen3_8b"
return supported_models_base.ClipTarget(comfy.text_encoders.flux.KleinTokenizer8B, comfy.text_encoders.flux.klein_te(**detect))
detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}mistral3_24b.transformer.".format(pref))
if len(detect) > 0:
if "{}mistral3_24b.transformer.model.layers.39.post_attention_layernorm.weight".format(pref) not in state_dict:
detect["pruned"] = True
return supported_models_base.ClipTarget(comfy.text_encoders.flux.Flux2Tokenizer, comfy.text_encoders.flux.flux2_te(**detect))
return None
class GenmoMochi(supported_models_base.BASE):
unet_config = {
@@ -883,11 +907,13 @@ class HunyuanVideo(supported_models_base.BASE):
key_out = key_out.replace("txt_in.c_embedder.linear_1.", "txt_in.c_embedder.in_layer.").replace("txt_in.c_embedder.linear_2.", "txt_in.c_embedder.out_layer.")
key_out = key_out.replace("_mod.linear.", "_mod.lin.").replace("_attn_qkv.", "_attn.qkv.")
key_out = key_out.replace("mlp.fc1.", "mlp.0.").replace("mlp.fc2.", "mlp.2.")
key_out = key_out.replace("_attn_q_norm.weight", "_attn.norm.query_norm.scale").replace("_attn_k_norm.weight", "_attn.norm.key_norm.scale")
key_out = key_out.replace(".q_norm.weight", ".norm.query_norm.scale").replace(".k_norm.weight", ".norm.key_norm.scale")
key_out = key_out.replace("_attn_q_norm.weight", "_attn.norm.query_norm.weight").replace("_attn_k_norm.weight", "_attn.norm.key_norm.weight")
key_out = key_out.replace(".q_norm.weight", ".norm.query_norm.weight").replace(".k_norm.weight", ".norm.key_norm.weight")
key_out = key_out.replace("_attn_proj.", "_attn.proj.")
key_out = key_out.replace(".modulation.linear.", ".modulation.lin.")
key_out = key_out.replace("_in.mlp.2.", "_in.out_layer.").replace("_in.mlp.0.", "_in.in_layer.")
if key_out.endswith(".scale"):
key_out = "{}.weight".format(key_out[:-len(".scale")])
out_sd[key_out] = state_dict[k]
return out_sd
@@ -978,7 +1004,7 @@ class CosmosT2IPredict2(supported_models_base.BASE):
memory_usage_factor = 1.0
supported_inference_dtypes = [torch.bfloat16, torch.float32]
supported_inference_dtypes = [torch.bfloat16, torch.float16, torch.float32]
def __init__(self, unet_config):
super().__init__(unet_config)
@@ -1008,11 +1034,7 @@ class Anima(supported_models_base.BASE):
memory_usage_factor = 1.0
supported_inference_dtypes = [torch.bfloat16, torch.float32]
def __init__(self, unet_config):
super().__init__(unet_config)
self.memory_usage_factor = (unet_config.get("model_channels", 2048) / 2048) * 0.95
supported_inference_dtypes = [torch.bfloat16, torch.float16, torch.float32]
def get_model(self, state_dict, prefix="", device=None):
out = model_base.Anima(self, device=device)
@@ -1023,6 +1045,12 @@ class Anima(supported_models_base.BASE):
detect = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen3_06b.transformer.".format(pref))
return supported_models_base.ClipTarget(comfy.text_encoders.anima.AnimaTokenizer, comfy.text_encoders.anima.te(**detect))
def set_inference_dtype(self, dtype, manual_cast_dtype, **kwargs):
self.memory_usage_factor = (self.unet_config.get("model_channels", 2048) / 2048) * 0.95
if dtype is torch.float16:
self.memory_usage_factor *= 1.4
return super().set_inference_dtype(dtype, manual_cast_dtype, **kwargs)
class CosmosI2VPredict2(CosmosT2IPredict2):
unet_config = {
"image_model": "cosmos_predict2",
@@ -1079,7 +1107,7 @@ class ZImage(Lumina2):
def __init__(self, unet_config):
super().__init__(unet_config)
if comfy.model_management.extended_fp16_support():
if comfy.model_management.extended_fp16_support() and unet_config.get("allow_fp16", False):
self.supported_inference_dtypes = self.supported_inference_dtypes.copy()
self.supported_inference_dtypes.insert(1, torch.float16)
@@ -1247,6 +1275,15 @@ class Hunyuan3Dv2(supported_models_base.BASE):
latent_format = latent_formats.Hunyuan3Dv2
def process_unet_state_dict(self, state_dict):
out_sd = {}
for k in list(state_dict.keys()):
key_out = k
if key_out.endswith(".scale"):
key_out = "{}.weight".format(key_out[:-len(".scale")])
out_sd[key_out] = state_dict[k]
return out_sd
def process_unet_state_dict_for_saving(self, state_dict):
replace_prefix = {"": "model."}
return utils.state_dict_prefix_replace(state_dict, replace_prefix)
@@ -1324,6 +1361,14 @@ class Chroma(supported_models_base.BASE):
supported_inference_dtypes = [torch.bfloat16, torch.float16, torch.float32]
def process_unet_state_dict(self, state_dict):
out_sd = {}
for k in list(state_dict.keys()):
key_out = k
if key_out.endswith(".scale"):
key_out = "{}.weight".format(key_out[:-len(".scale")])
out_sd[key_out] = state_dict[k]
return out_sd
def get_model(self, state_dict, prefix="", device=None):
out = model_base.Chroma(self, device=device)
@@ -1582,6 +1627,46 @@ class Kandinsky5Image(Kandinsky5):
return supported_models_base.ClipTarget(comfy.text_encoders.kandinsky5.Kandinsky5TokenizerImage, comfy.text_encoders.kandinsky5.te(**hunyuan_detect))
models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, LTXAV, HunyuanVideo15_SR_Distilled, HunyuanVideo15, HunyuanImage21Refiner, HunyuanImage21, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, CosmosT2IPredict2, CosmosI2VPredict2, ZImage, Lumina2, WAN22_T2V, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, WAN21_Camera, WAN22_Camera, WAN22_S2V, WAN21_HuMo, WAN22_Animate, Hunyuan3Dv2mini, Hunyuan3Dv2, Hunyuan3Dv2_1, HiDream, Chroma, ChromaRadiance, ACEStep, Omnigen2, QwenImage, Flux2, Kandinsky5Image, Kandinsky5, Anima]
class ACEStep15(supported_models_base.BASE):
unet_config = {
"audio_model": "ace1.5",
}
unet_extra_config = {
}
sampling_settings = {
"multiplier": 1.0,
"shift": 3.0,
}
latent_format = comfy.latent_formats.ACEAudio15
memory_usage_factor = 4.7
supported_inference_dtypes = [torch.bfloat16, torch.float32]
vae_key_prefix = ["vae."]
text_encoder_key_prefix = ["text_encoders."]
def get_model(self, state_dict, prefix="", device=None):
out = model_base.ACEStep15(self, device=device)
return out
def clip_target(self, state_dict={}):
pref = self.text_encoder_key_prefix[0]
detect_2b = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen3_2b.transformer.".format(pref))
detect_4b = comfy.text_encoders.hunyuan_video.llama_detect(state_dict, "{}qwen3_4b.transformer.".format(pref))
if "dtype_llama" in detect_2b:
detect = detect_2b
detect["lm_model"] = "qwen3_2b"
elif "dtype_llama" in detect_4b:
detect = detect_4b
detect["lm_model"] = "qwen3_4b"
return supported_models_base.ClipTarget(comfy.text_encoders.ace15.ACE15Tokenizer, comfy.text_encoders.ace15.te(**detect))
models = [LotusD, Stable_Zero123, SD15_instructpix2pix, SD15, SD20, SD21UnclipL, SD21UnclipH, SDXL_instructpix2pix, SDXLRefiner, SDXL, SSD1B, KOALA_700M, KOALA_1B, Segmind_Vega, SD_X4Upscaler, Stable_Cascade_C, Stable_Cascade_B, SV3D_u, SV3D_p, SD3, StableAudio, AuraFlow, PixArtAlpha, PixArtSigma, HunyuanDiT, HunyuanDiT1, FluxInpaint, Flux, FluxSchnell, GenmoMochi, LTXV, LTXAV, HunyuanVideo15_SR_Distilled, HunyuanVideo15, HunyuanImage21Refiner, HunyuanImage21, HunyuanVideoSkyreelsI2V, HunyuanVideoI2V, HunyuanVideo, CosmosT2V, CosmosI2V, CosmosT2IPredict2, CosmosI2VPredict2, ZImage, Lumina2, WAN22_T2V, WAN21_T2V, WAN21_I2V, WAN21_FunControl2V, WAN21_Vace, WAN21_Camera, WAN22_Camera, WAN22_S2V, WAN21_HuMo, WAN22_Animate, Hunyuan3Dv2mini, Hunyuan3Dv2, Hunyuan3Dv2_1, HiDream, Chroma, ChromaRadiance, ACEStep, ACEStep15, Omnigen2, QwenImage, Flux2, Kandinsky5Image, Kandinsky5, Anima]
models += [SVD_img2vid]

View File

@@ -0,0 +1,348 @@
from .anima import Qwen3Tokenizer
import comfy.text_encoders.llama
from comfy import sd1_clip
import torch
import math
import yaml
import comfy.utils
def sample_manual_loop_no_classes(
model,
ids=None,
execution_dtype=None,
cfg_scale: float = 2.0,
temperature: float = 0.85,
top_p: float = 0.9,
top_k: int = None,
min_p: float = 0.000,
seed: int = 1,
min_tokens: int = 1,
max_new_tokens: int = 2048,
audio_start_id: int = 151669, # The cutoff ID for audio codes
audio_end_id: int = 215669,
eos_token_id: int = 151645,
):
if ids is None:
return []
device = model.execution_device
if execution_dtype is None:
if comfy.model_management.should_use_bf16(device):
execution_dtype = torch.bfloat16
else:
execution_dtype = torch.float32
embeds, attention_mask, num_tokens, embeds_info = model.process_tokens(ids, device)
embeds_batch = embeds.shape[0]
output_audio_codes = []
past_key_values = []
generator = torch.Generator(device=device)
generator.manual_seed(seed)
model_config = model.transformer.model.config
past_kv_shape = [embeds_batch, model_config.num_key_value_heads, embeds.shape[1] + min_tokens, model_config.head_dim]
for x in range(model_config.num_hidden_layers):
past_key_values.append((torch.empty(past_kv_shape, device=device, dtype=execution_dtype), torch.empty(past_kv_shape, device=device, dtype=execution_dtype), 0))
progress_bar = comfy.utils.ProgressBar(max_new_tokens)
for step in comfy.utils.model_trange(max_new_tokens, desc="LM sampling"):
outputs = model.transformer(None, attention_mask, embeds=embeds.to(execution_dtype), num_tokens=num_tokens, intermediate_output=None, dtype=execution_dtype, embeds_info=embeds_info, past_key_values=past_key_values)
next_token_logits = model.transformer.logits(outputs[0])[:, -1]
past_key_values = outputs[2]
if cfg_scale != 1.0:
cond_logits = next_token_logits[0:1]
uncond_logits = next_token_logits[1:2]
cfg_logits = uncond_logits + cfg_scale * (cond_logits - uncond_logits)
else:
cfg_logits = next_token_logits[0:1]
use_eos_score = eos_token_id is not None and eos_token_id < audio_start_id and min_tokens < step
if use_eos_score:
eos_score = cfg_logits[:, eos_token_id].clone()
remove_logit_value = torch.finfo(cfg_logits.dtype).min
# Only generate audio tokens
cfg_logits[:, :audio_start_id] = remove_logit_value
cfg_logits[:, audio_end_id:] = remove_logit_value
if use_eos_score:
cfg_logits[:, eos_token_id] = eos_score
if top_k is not None and top_k > 0:
top_k_vals, _ = torch.topk(cfg_logits, top_k)
min_val = top_k_vals[..., -1, None]
cfg_logits[cfg_logits < min_val] = remove_logit_value
if min_p is not None and min_p > 0:
probs = torch.softmax(cfg_logits, dim=-1)
p_max = probs.max(dim=-1, keepdim=True).values
indices_to_remove = probs < (min_p * p_max)
cfg_logits[indices_to_remove] = remove_logit_value
if top_p is not None and top_p < 1.0:
sorted_logits, sorted_indices = torch.sort(cfg_logits, descending=True)
cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
sorted_indices_to_remove = cumulative_probs > top_p
sorted_indices_to_remove[..., 1:] = sorted_indices_to_remove[..., :-1].clone()
sorted_indices_to_remove[..., 0] = 0
indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
cfg_logits[indices_to_remove] = remove_logit_value
if temperature > 0:
cfg_logits = cfg_logits / temperature
next_token = torch.multinomial(torch.softmax(cfg_logits, dim=-1), num_samples=1, generator=generator).squeeze(1)
else:
next_token = torch.argmax(cfg_logits, dim=-1)
token = next_token.item()
if token == eos_token_id:
break
embed, _, _, _ = model.process_tokens([[token]], device)
embeds = embed.repeat(embeds_batch, 1, 1)
attention_mask = torch.cat([attention_mask, torch.ones((embeds_batch, 1), device=device, dtype=attention_mask.dtype)], dim=1)
output_audio_codes.append(token - audio_start_id)
progress_bar.update_absolute(step)
return output_audio_codes
def generate_audio_codes(model, positive, negative, min_tokens=1, max_tokens=1024, seed=0, cfg_scale=2.0, temperature=0.85, top_p=0.9, top_k=0, min_p=0.000):
positive = [[token for token, _ in inner_list] for inner_list in positive]
positive = positive[0]
if cfg_scale != 1.0:
negative = [[token for token, _ in inner_list] for inner_list in negative]
negative = negative[0]
neg_pad = 0
if len(negative) < len(positive):
neg_pad = (len(positive) - len(negative))
negative = [model.special_tokens["pad"]] * neg_pad + negative
pos_pad = 0
if len(negative) > len(positive):
pos_pad = (len(negative) - len(positive))
positive = [model.special_tokens["pad"]] * pos_pad + positive
ids = [positive, negative]
else:
ids = [positive]
return sample_manual_loop_no_classes(model, ids, cfg_scale=cfg_scale, temperature=temperature, top_p=top_p, top_k=top_k, min_p=min_p, seed=seed, min_tokens=min_tokens, max_new_tokens=max_tokens)
class ACE15Tokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
super().__init__(embedding_directory=embedding_directory, tokenizer_data=tokenizer_data, name="qwen3_06b", tokenizer=Qwen3Tokenizer)
def _metas_to_cot(self, *, return_yaml: bool = False, **kwargs) -> str:
user_metas = {
k: kwargs.pop(k)
for k in ("bpm", "duration", "keyscale", "timesignature")
if k in kwargs
}
timesignature = user_metas.get("timesignature")
if isinstance(timesignature, str) and timesignature.endswith("/4"):
user_metas["timesignature"] = timesignature[:-2]
user_metas = {
k: v if not isinstance(v, str) or not v.isdigit() else int(v)
for k, v in user_metas.items()
if v not in {"unspecified", None}
}
if len(user_metas):
meta_yaml = yaml.dump(user_metas, allow_unicode=True, sort_keys=True).strip()
else:
meta_yaml = ""
return f"<think>\n{meta_yaml}\n</think>" if not return_yaml else meta_yaml
def _metas_to_cap(self, **kwargs) -> str:
use_keys = ("bpm", "timesignature", "keyscale", "duration")
user_metas = { k: kwargs.pop(k, "N/A") for k in use_keys }
timesignature = user_metas.get("timesignature")
if isinstance(timesignature, str) and timesignature.endswith("/4"):
user_metas["timesignature"] = timesignature[:-2]
duration = user_metas["duration"]
if duration == "N/A":
user_metas["duration"] = "30 seconds"
elif isinstance(duration, (str, int, float)):
user_metas["duration"] = f"{math.ceil(float(duration))} seconds"
else:
raise TypeError("Unexpected type for duration key, must be str, int or float")
return "\n".join(f"- {k}: {user_metas[k]}" for k in use_keys)
def tokenize_with_weights(self, text, return_word_ids=False, **kwargs):
text = text.strip()
text_negative = kwargs.get("caption_negative", text).strip()
lyrics = kwargs.get("lyrics", "")
lyrics_negative = kwargs.get("lyrics_negative", lyrics)
duration = kwargs.get("duration", 120)
if isinstance(duration, str):
duration = float(duration.split(None, 1)[0])
language = kwargs.get("language")
seed = kwargs.get("seed", 0)
generate_audio_codes = kwargs.get("generate_audio_codes", True)
cfg_scale = kwargs.get("cfg_scale", 2.0)
temperature = kwargs.get("temperature", 0.85)
top_p = kwargs.get("top_p", 0.9)
top_k = kwargs.get("top_k", 0.0)
min_p = kwargs.get("min_p", 0.000)
duration = math.ceil(duration)
kwargs["duration"] = duration
tokens_duration = duration * 5
min_tokens = int(kwargs.get("min_tokens", tokens_duration))
max_tokens = int(kwargs.get("max_tokens", tokens_duration))
metas_negative = {
k.rsplit("_", 1)[0]: kwargs.pop(k)
for k in ("bpm_negative", "duration_negative", "keyscale_negative", "timesignature_negative", "language_negative", "caption_negative")
if k in kwargs
}
if not kwargs.get("use_negative_caption"):
_ = metas_negative.pop("caption", None)
cot_text = self._metas_to_cot(caption=text, **kwargs)
cot_text_negative = "<think>\n\n</think>" if not metas_negative else self._metas_to_cot(**metas_negative)
meta_cap = self._metas_to_cap(**kwargs)
lm_template = "<|im_start|>system\n# Instruction\nGenerate audio semantic tokens based on the given conditions:\n\n<|im_end|>\n<|im_start|>user\n# Caption\n{}\n\n# Lyric\n{}\n<|im_end|>\n<|im_start|>assistant\n{}\n\n<|im_end|>\n"
lyrics_template = "# Languages\n{}\n\n# Lyric\n{}<|endoftext|><|endoftext|>"
qwen3_06b_template = "# Instruction\nGenerate audio semantic tokens based on the given conditions:\n\n# Caption\n{}\n\n# Metas\n{}\n<|endoftext|>\n<|endoftext|>"
llm_prompts = {
"lm_prompt": lm_template.format(text, lyrics.strip(), cot_text),
"lm_prompt_negative": lm_template.format(text_negative, lyrics_negative.strip(), cot_text_negative),
"lyrics": lyrics_template.format(language if language is not None else "", lyrics),
"qwen3_06b": qwen3_06b_template.format(text, meta_cap),
}
out = {
prompt_key: self.qwen3_06b.tokenize_with_weights(
prompt,
prompt_key == "qwen3_06b" and return_word_ids,
disable_weights = True,
**kwargs,
)
for prompt_key, prompt in llm_prompts.items()
}
out["lm_metadata"] = {"min_tokens": min_tokens,
"max_tokens": max_tokens,
"seed": seed,
"generate_audio_codes": generate_audio_codes,
"cfg_scale": cfg_scale,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"min_p": min_p,
}
return out
class Qwen3_06BModel(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, attention_mask=True, model_options={}):
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"pad": 151643}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Qwen3_06B_ACE15, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
class Qwen3_2B_ACE15(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, attention_mask=True, model_options={}):
llama_quantization_metadata = model_options.get("llama_quantization_metadata", None)
if llama_quantization_metadata is not None:
model_options = model_options.copy()
model_options["quantization_metadata"] = llama_quantization_metadata
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"pad": 151643}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Qwen3_2B_ACE15_lm, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
class Qwen3_4B_ACE15(sd1_clip.SDClipModel):
def __init__(self, device="cpu", layer="last", layer_idx=None, dtype=None, attention_mask=True, model_options={}):
llama_quantization_metadata = model_options.get("llama_quantization_metadata", None)
if llama_quantization_metadata is not None:
model_options = model_options.copy()
model_options["quantization_metadata"] = llama_quantization_metadata
super().__init__(device=device, layer=layer, layer_idx=layer_idx, textmodel_json_config={}, dtype=dtype, special_tokens={"pad": 151643}, layer_norm_hidden_state=False, model_class=comfy.text_encoders.llama.Qwen3_4B_ACE15_lm, enable_attention_masks=attention_mask, return_attention_masks=attention_mask, model_options=model_options)
class ACE15TEModel(torch.nn.Module):
def __init__(self, device="cpu", dtype=None, dtype_llama=None, lm_model=None, model_options={}):
super().__init__()
if dtype_llama is None:
dtype_llama = dtype
model = None
self.constant = 0.4375
if lm_model == "qwen3_4b":
model = Qwen3_4B_ACE15
self.constant = 0.5625
elif lm_model == "qwen3_2b":
model = Qwen3_2B_ACE15
self.lm_model = lm_model
self.qwen3_06b = Qwen3_06BModel(device=device, dtype=dtype, model_options=model_options)
if model is not None:
setattr(self, self.lm_model, model(device=device, dtype=dtype_llama, model_options=model_options))
self.dtypes = set([dtype, dtype_llama])
def encode_token_weights(self, token_weight_pairs):
token_weight_pairs_base = token_weight_pairs["qwen3_06b"]
token_weight_pairs_lyrics = token_weight_pairs["lyrics"]
self.qwen3_06b.set_clip_options({"layer": None})
base_out, _, extra = self.qwen3_06b.encode_token_weights(token_weight_pairs_base)
self.qwen3_06b.set_clip_options({"layer": [0]})
lyrics_embeds, _, extra_l = self.qwen3_06b.encode_token_weights(token_weight_pairs_lyrics)
out = {"conditioning_lyrics": lyrics_embeds[:, 0]}
lm_metadata = token_weight_pairs["lm_metadata"]
if lm_metadata["generate_audio_codes"]:
audio_codes = generate_audio_codes(getattr(self, self.lm_model, self.qwen3_06b), token_weight_pairs["lm_prompt"], token_weight_pairs["lm_prompt_negative"], min_tokens=lm_metadata["min_tokens"], max_tokens=lm_metadata["min_tokens"], seed=lm_metadata["seed"], cfg_scale=lm_metadata["cfg_scale"], temperature=lm_metadata["temperature"], top_p=lm_metadata["top_p"], top_k=lm_metadata["top_k"], min_p=lm_metadata["min_p"])
out["audio_codes"] = [audio_codes]
return base_out, None, out
def set_clip_options(self, options):
self.qwen3_06b.set_clip_options(options)
lm_model = getattr(self, self.lm_model, None)
if lm_model is not None:
lm_model.set_clip_options(options)
def reset_clip_options(self):
self.qwen3_06b.reset_clip_options()
lm_model = getattr(self, self.lm_model, None)
if lm_model is not None:
lm_model.reset_clip_options()
def load_sd(self, sd):
if "model.layers.0.post_attention_layernorm.weight" in sd:
shape = sd["model.layers.0.post_attention_layernorm.weight"].shape
if shape[0] == 1024:
return self.qwen3_06b.load_sd(sd)
else:
return getattr(self, self.lm_model).load_sd(sd)
def memory_estimation_function(self, token_weight_pairs, device=None):
lm_metadata = token_weight_pairs["lm_metadata"]
constant = self.constant
if comfy.model_management.should_use_bf16(device):
constant *= 0.5
token_weight_pairs = token_weight_pairs.get("lm_prompt", [])
num_tokens = sum(map(lambda a: len(a), token_weight_pairs))
num_tokens += lm_metadata['min_tokens']
return num_tokens * constant * 1024 * 1024
def te(dtype_llama=None, llama_quantization_metadata=None, lm_model="qwen3_2b"):
class ACE15TEModel_(ACE15TEModel):
def __init__(self, device="cpu", dtype=None, model_options={}):
if llama_quantization_metadata is not None:
model_options = model_options.copy()
model_options["llama_quantization_metadata"] = llama_quantization_metadata
super().__init__(device=device, dtype_llama=dtype_llama, lm_model=lm_model, dtype=dtype, model_options=model_options)
return ACE15TEModel_

View File

@@ -8,7 +8,7 @@ import torch
class Qwen3Tokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "qwen25_tokenizer")
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=1024, embedding_key='qwen3_06b', tokenizer_class=Qwen2Tokenizer, has_start_token=False, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, pad_token=151643, tokenizer_data=tokenizer_data)
super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=1024, embedding_key='qwen3_06b', tokenizer_class=Qwen2Tokenizer, has_start_token=False, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, pad_token=151643, tokenizer_data=tokenizer_data)
class T5XXLTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
@@ -23,7 +23,7 @@ class AnimaTokenizer:
def tokenize_with_weights(self, text:str, return_word_ids=False, **kwargs):
out = {}
qwen_ids = self.qwen3_06b.tokenize_with_weights(text, return_word_ids, **kwargs)
out["qwen3_06b"] = [[(token, 1.0) for token, _ in inner_list] for inner_list in qwen_ids] # Set weights to 1.0
out["qwen3_06b"] = [[(k[0], 1.0, k[2]) if return_word_ids else (k[0], 1.0) for k in inner_list] for inner_list in qwen_ids] # Set weights to 1.0
out["t5xxl"] = self.t5xxl.tokenize_with_weights(text, return_word_ids, **kwargs)
return out

View File

@@ -118,7 +118,7 @@ class MistralTokenizerClass:
class Mistral3Tokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
self.tekken_data = tokenizer_data.get("tekken_model", None)
super().__init__("", pad_with_end=False, embedding_size=5120, embedding_key='mistral3_24b', tokenizer_class=MistralTokenizerClass, has_end_token=False, pad_to_max_length=False, pad_token=11, max_length=99999999, min_length=1, pad_left=True, tokenizer_args=load_mistral_tokenizer(self.tekken_data), tokenizer_data=tokenizer_data)
super().__init__("", pad_with_end=False, embedding_directory=embedding_directory, embedding_size=5120, embedding_key='mistral3_24b', tokenizer_class=MistralTokenizerClass, has_end_token=False, pad_to_max_length=False, pad_token=11, start_token=1, max_length=99999999, min_length=1, pad_left=True, tokenizer_args=load_mistral_tokenizer(self.tekken_data), tokenizer_data=tokenizer_data)
def state_dict(self):
return {"tekken_model": self.tekken_data}
@@ -176,12 +176,12 @@ def flux2_te(dtype_llama=None, llama_quantization_metadata=None, pruned=False):
class Qwen3Tokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "qwen25_tokenizer")
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=2560, embedding_key='qwen3_4b', tokenizer_class=Qwen2Tokenizer, has_start_token=False, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=512, pad_token=151643, tokenizer_data=tokenizer_data)
super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=2560, embedding_key='qwen3_4b', tokenizer_class=Qwen2Tokenizer, has_start_token=False, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=512, pad_token=151643, tokenizer_data=tokenizer_data)
class Qwen3Tokenizer8B(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "qwen25_tokenizer")
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=4096, embedding_key='qwen3_8b', tokenizer_class=Qwen2Tokenizer, has_start_token=False, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=512, pad_token=151643, tokenizer_data=tokenizer_data)
super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=4096, embedding_key='qwen3_8b', tokenizer_class=Qwen2Tokenizer, has_start_token=False, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=512, pad_token=151643, tokenizer_data=tokenizer_data)
class KleinTokenizer(sd1_clip.SD1Tokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}, name="qwen3_4b"):

View File

@@ -10,9 +10,11 @@ import comfy.utils
def llama_detect(state_dict, prefix=""):
out = {}
t5_key = "{}model.norm.weight".format(prefix)
if t5_key in state_dict:
out["dtype_llama"] = state_dict[t5_key].dtype
norm_keys = ["{}model.norm.weight".format(prefix), "{}model.layers.0.input_layernorm.weight".format(prefix)]
for norm_key in norm_keys:
if norm_key in state_dict:
out["dtype_llama"] = state_dict[norm_key].dtype
break
quant = comfy.utils.detect_layer_quantization(state_dict, prefix)
if quant is not None:

View File

@@ -1,11 +1,12 @@
import torch
import torch.nn as nn
from dataclasses import dataclass
from typing import Optional, Any
from typing import Optional, Any, Tuple
import math
from comfy.ldm.modules.attention import optimized_attention_for_device
import comfy.model_management
import comfy.ops
import comfy.ldm.common_dit
import comfy.clip_model
@@ -32,6 +33,7 @@ class Llama2Config:
k_norm = None
rope_scale = None
final_norm: bool = True
lm_head: bool = False
@dataclass
class Mistral3Small24BConfig:
@@ -54,6 +56,7 @@ class Mistral3Small24BConfig:
k_norm = None
rope_scale = None
final_norm: bool = True
lm_head: bool = False
@dataclass
class Qwen25_3BConfig:
@@ -76,6 +79,7 @@ class Qwen25_3BConfig:
k_norm = None
rope_scale = None
final_norm: bool = True
lm_head: bool = False
@dataclass
class Qwen3_06BConfig:
@@ -98,6 +102,76 @@ class Qwen3_06BConfig:
k_norm = "gemma3"
rope_scale = None
final_norm: bool = True
lm_head: bool = False
@dataclass
class Qwen3_06B_ACE15_Config:
vocab_size: int = 151669
hidden_size: int = 1024
intermediate_size: int = 3072
num_hidden_layers: int = 28
num_attention_heads: int = 16
num_key_value_heads: int = 8
max_position_embeddings: int = 32768
rms_norm_eps: float = 1e-6
rope_theta: float = 1000000.0
transformer_type: str = "llama"
head_dim = 128
rms_norm_add = False
mlp_activation = "silu"
qkv_bias = False
rope_dims = None
q_norm = "gemma3"
k_norm = "gemma3"
rope_scale = None
final_norm: bool = True
lm_head: bool = False
@dataclass
class Qwen3_2B_ACE15_lm_Config:
vocab_size: int = 217204
hidden_size: int = 2048
intermediate_size: int = 6144
num_hidden_layers: int = 28
num_attention_heads: int = 16
num_key_value_heads: int = 8
max_position_embeddings: int = 40960
rms_norm_eps: float = 1e-6
rope_theta: float = 1000000.0
transformer_type: str = "llama"
head_dim = 128
rms_norm_add = False
mlp_activation = "silu"
qkv_bias = False
rope_dims = None
q_norm = "gemma3"
k_norm = "gemma3"
rope_scale = None
final_norm: bool = True
lm_head: bool = False
@dataclass
class Qwen3_4B_ACE15_lm_Config:
vocab_size: int = 217204
hidden_size: int = 2560
intermediate_size: int = 9728
num_hidden_layers: int = 36
num_attention_heads: int = 32
num_key_value_heads: int = 8
max_position_embeddings: int = 40960
rms_norm_eps: float = 1e-6
rope_theta: float = 1000000.0
transformer_type: str = "llama"
head_dim = 128
rms_norm_add = False
mlp_activation = "silu"
qkv_bias = False
rope_dims = None
q_norm = "gemma3"
k_norm = "gemma3"
rope_scale = None
final_norm: bool = True
lm_head: bool = False
@dataclass
class Qwen3_4BConfig:
@@ -120,6 +194,7 @@ class Qwen3_4BConfig:
k_norm = "gemma3"
rope_scale = None
final_norm: bool = True
lm_head: bool = False
@dataclass
class Qwen3_8BConfig:
@@ -142,6 +217,7 @@ class Qwen3_8BConfig:
k_norm = "gemma3"
rope_scale = None
final_norm: bool = True
lm_head: bool = False
@dataclass
class Ovis25_2BConfig:
@@ -164,6 +240,7 @@ class Ovis25_2BConfig:
k_norm = "gemma3"
rope_scale = None
final_norm: bool = True
lm_head: bool = False
@dataclass
class Qwen25_7BVLI_Config:
@@ -186,6 +263,7 @@ class Qwen25_7BVLI_Config:
k_norm = None
rope_scale = None
final_norm: bool = True
lm_head: bool = False
@dataclass
class Gemma2_2B_Config:
@@ -209,6 +287,7 @@ class Gemma2_2B_Config:
sliding_attention = None
rope_scale = None
final_norm: bool = True
lm_head: bool = False
@dataclass
class Gemma3_4B_Config:
@@ -232,6 +311,7 @@ class Gemma3_4B_Config:
sliding_attention = [1024, 1024, 1024, 1024, 1024, False]
rope_scale = [8.0, 1.0]
final_norm: bool = True
lm_head: bool = False
@dataclass
class Gemma3_12B_Config:
@@ -255,6 +335,7 @@ class Gemma3_12B_Config:
sliding_attention = [1024, 1024, 1024, 1024, 1024, False]
rope_scale = [8.0, 1.0]
final_norm: bool = True
lm_head: bool = False
vision_config = {"num_channels": 3, "hidden_act": "gelu_pytorch_tanh", "hidden_size": 1152, "image_size": 896, "intermediate_size": 4304, "model_type": "siglip_vision_model", "num_attention_heads": 16, "num_hidden_layers": 27, "patch_size": 14}
mm_tokens_per_image = 256
@@ -274,13 +355,6 @@ class RMSNorm(nn.Module):
def rotate_half(x):
"""Rotates half the hidden dims of the input."""
x1 = x[..., : x.shape[-1] // 2]
x2 = x[..., x.shape[-1] // 2 :]
return torch.cat((-x2, x1), dim=-1)
def precompute_freqs_cis(head_dim, position_ids, theta, rope_scale=None, rope_dims=None, device=None):
if not isinstance(theta, list):
theta = [theta]
@@ -309,20 +383,30 @@ def precompute_freqs_cis(head_dim, position_ids, theta, rope_scale=None, rope_di
else:
cos = cos.unsqueeze(1)
sin = sin.unsqueeze(1)
out.append((cos, sin))
sin_split = sin.shape[-1] // 2
out.append((cos, sin[..., : sin_split], -sin[..., sin_split :]))
if len(out) == 1:
return out[0]
return out
def apply_rope(xq, xk, freqs_cis):
org_dtype = xq.dtype
cos = freqs_cis[0]
sin = freqs_cis[1]
q_embed = (xq * cos) + (rotate_half(xq) * sin)
k_embed = (xk * cos) + (rotate_half(xk) * sin)
nsin = freqs_cis[2]
q_embed = (xq * cos)
q_split = q_embed.shape[-1] // 2
q_embed[..., : q_split].addcmul_(xq[..., q_split :], nsin)
q_embed[..., q_split :].addcmul_(xq[..., : q_split], sin)
k_embed = (xk * cos)
k_split = k_embed.shape[-1] // 2
k_embed[..., : k_split].addcmul_(xk[..., k_split :], nsin)
k_embed[..., k_split :].addcmul_(xk[..., : k_split], sin)
return q_embed.to(org_dtype), k_embed.to(org_dtype)
@@ -356,6 +440,7 @@ class Attention(nn.Module):
attention_mask: Optional[torch.Tensor] = None,
freqs_cis: Optional[torch.Tensor] = None,
optimized_attention=None,
past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
):
batch_size, seq_length, _ = hidden_states.shape
xq = self.q_proj(hidden_states)
@@ -373,11 +458,30 @@ class Attention(nn.Module):
xq, xk = apply_rope(xq, xk, freqs_cis=freqs_cis)
present_key_value = None
if past_key_value is not None:
index = 0
num_tokens = xk.shape[2]
if len(past_key_value) > 0:
past_key, past_value, index = past_key_value
if past_key.shape[2] >= (index + num_tokens):
past_key[:, :, index:index + xk.shape[2]] = xk
past_value[:, :, index:index + xv.shape[2]] = xv
xk = past_key[:, :, :index + xk.shape[2]]
xv = past_value[:, :, :index + xv.shape[2]]
present_key_value = (past_key, past_value, index + num_tokens)
else:
xk = torch.cat((past_key[:, :, :index], xk), dim=2)
xv = torch.cat((past_value[:, :, :index], xv), dim=2)
present_key_value = (xk, xv, index + num_tokens)
else:
present_key_value = (xk, xv, index + num_tokens)
xk = xk.repeat_interleave(self.num_heads // self.num_kv_heads, dim=1)
xv = xv.repeat_interleave(self.num_heads // self.num_kv_heads, dim=1)
output = optimized_attention(xq, xk, xv, self.num_heads, mask=attention_mask, skip_reshape=True)
return self.o_proj(output)
return self.o_proj(output), present_key_value
class MLP(nn.Module):
def __init__(self, config: Llama2Config, device=None, dtype=None, ops: Any = None):
@@ -408,15 +512,17 @@ class TransformerBlock(nn.Module):
attention_mask: Optional[torch.Tensor] = None,
freqs_cis: Optional[torch.Tensor] = None,
optimized_attention=None,
past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
):
# Self Attention
residual = x
x = self.input_layernorm(x)
x = self.self_attn(
x, present_key_value = self.self_attn(
hidden_states=x,
attention_mask=attention_mask,
freqs_cis=freqs_cis,
optimized_attention=optimized_attention,
past_key_value=past_key_value,
)
x = residual + x
@@ -426,7 +532,7 @@ class TransformerBlock(nn.Module):
x = self.mlp(x)
x = residual + x
return x
return x, present_key_value
class TransformerBlockGemma2(nn.Module):
def __init__(self, config: Llama2Config, index, device=None, dtype=None, ops: Any = None):
@@ -451,6 +557,7 @@ class TransformerBlockGemma2(nn.Module):
attention_mask: Optional[torch.Tensor] = None,
freqs_cis: Optional[torch.Tensor] = None,
optimized_attention=None,
past_key_value: Optional[Tuple[torch.Tensor, torch.Tensor]] = None,
):
if self.transformer_type == 'gemma3':
if self.sliding_attention:
@@ -468,11 +575,12 @@ class TransformerBlockGemma2(nn.Module):
# Self Attention
residual = x
x = self.input_layernorm(x)
x = self.self_attn(
x, present_key_value = self.self_attn(
hidden_states=x,
attention_mask=attention_mask,
freqs_cis=freqs_cis,
optimized_attention=optimized_attention,
past_key_value=past_key_value,
)
x = self.post_attention_layernorm(x)
@@ -485,7 +593,7 @@ class TransformerBlockGemma2(nn.Module):
x = self.post_feedforward_layernorm(x)
x = residual + x
return x
return x, present_key_value
class Llama2_(nn.Module):
def __init__(self, config, device=None, dtype=None, ops=None):
@@ -516,9 +624,10 @@ class Llama2_(nn.Module):
else:
self.norm = None
# self.lm_head = ops.Linear(config.hidden_size, config.vocab_size, bias=False, device=device, dtype=dtype)
if config.lm_head:
self.lm_head = ops.Linear(config.hidden_size, config.vocab_size, bias=False, device=device, dtype=dtype)
def forward(self, x, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None, position_ids=None, embeds_info=[]):
def forward(self, x, attention_mask=None, embeds=None, num_tokens=None, intermediate_output=None, final_layer_norm_intermediate=True, dtype=None, position_ids=None, embeds_info=[], past_key_values=None):
if embeds is not None:
x = embeds
else:
@@ -527,8 +636,13 @@ class Llama2_(nn.Module):
if self.normalize_in:
x *= self.config.hidden_size ** 0.5
seq_len = x.shape[1]
past_len = 0
if past_key_values is not None and len(past_key_values) > 0:
past_len = past_key_values[0][2]
if position_ids is None:
position_ids = torch.arange(0, x.shape[1], device=x.device).unsqueeze(0)
position_ids = torch.arange(past_len, past_len + seq_len, device=x.device).unsqueeze(0)
freqs_cis = precompute_freqs_cis(self.config.head_dim,
position_ids,
@@ -539,14 +653,16 @@ class Llama2_(nn.Module):
mask = None
if attention_mask is not None:
mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, attention_mask.shape[-1], attention_mask.shape[-1])
mask = mask.masked_fill(mask.to(torch.bool), float("-inf"))
mask = 1.0 - attention_mask.to(x.dtype).reshape((attention_mask.shape[0], 1, -1, attention_mask.shape[-1])).expand(attention_mask.shape[0], 1, seq_len, attention_mask.shape[-1])
mask = mask.masked_fill(mask.to(torch.bool), torch.finfo(x.dtype).min / 4)
if seq_len > 1:
causal_mask = torch.empty(past_len + seq_len, past_len + seq_len, dtype=x.dtype, device=x.device).fill_(torch.finfo(x.dtype).min / 4).triu_(1)
if mask is not None:
mask += causal_mask
else:
mask = causal_mask
causal_mask = torch.empty(x.shape[1], x.shape[1], dtype=x.dtype, device=x.device).fill_(float("-inf")).triu_(1)
if mask is not None:
mask += causal_mask
else:
mask = causal_mask
optimized_attention = optimized_attention_for_device(x.device, mask=mask is not None, small_input=True)
intermediate = None
@@ -562,16 +678,27 @@ class Llama2_(nn.Module):
elif intermediate_output < 0:
intermediate_output = len(self.layers) + intermediate_output
next_key_values = []
for i, layer in enumerate(self.layers):
if all_intermediate is not None:
if only_layers is None or (i in only_layers):
all_intermediate.append(x.unsqueeze(1).clone())
x = layer(
past_kv = None
if past_key_values is not None:
past_kv = past_key_values[i] if len(past_key_values) > 0 else []
x, current_kv = layer(
x=x,
attention_mask=mask,
freqs_cis=freqs_cis,
optimized_attention=optimized_attention,
past_key_value=past_kv,
)
if current_kv is not None:
next_key_values.append(current_kv)
if i == intermediate_output:
intermediate = x.clone()
@@ -588,7 +715,10 @@ class Llama2_(nn.Module):
if intermediate is not None and final_layer_norm_intermediate and self.norm is not None:
intermediate = self.norm(intermediate)
return x, intermediate
if len(next_key_values) > 0:
return x, intermediate, next_key_values
else:
return x, intermediate
class Gemma3MultiModalProjector(torch.nn.Module):
@@ -635,6 +765,21 @@ class BaseLlama:
def forward(self, input_ids, *args, **kwargs):
return self.model(input_ids, *args, **kwargs)
class BaseQwen3:
def logits(self, x):
input = x[:, -1:]
module = self.model.embed_tokens
offload_stream = None
if module.comfy_cast_weights:
weight, _, offload_stream = comfy.ops.cast_bias_weight(module, input, offloadable=True)
else:
weight = self.model.embed_tokens.weight.to(x)
x = torch.nn.functional.linear(input, weight, None)
comfy.ops.uncast_bias_weight(module, weight, None, offload_stream)
return x
class Llama2(BaseLlama, torch.nn.Module):
def __init__(self, config_dict, dtype, device, operations):
@@ -663,7 +808,7 @@ class Qwen25_3B(BaseLlama, torch.nn.Module):
self.model = Llama2_(config, device=device, dtype=dtype, ops=operations)
self.dtype = dtype
class Qwen3_06B(BaseLlama, torch.nn.Module):
class Qwen3_06B(BaseLlama, BaseQwen3, torch.nn.Module):
def __init__(self, config_dict, dtype, device, operations):
super().__init__()
config = Qwen3_06BConfig(**config_dict)
@@ -672,7 +817,25 @@ class Qwen3_06B(BaseLlama, torch.nn.Module):
self.model = Llama2_(config, device=device, dtype=dtype, ops=operations)
self.dtype = dtype
class Qwen3_4B(BaseLlama, torch.nn.Module):
class Qwen3_06B_ACE15(BaseLlama, BaseQwen3, torch.nn.Module):
def __init__(self, config_dict, dtype, device, operations):
super().__init__()
config = Qwen3_06B_ACE15_Config(**config_dict)
self.num_layers = config.num_hidden_layers
self.model = Llama2_(config, device=device, dtype=dtype, ops=operations)
self.dtype = dtype
class Qwen3_2B_ACE15_lm(BaseLlama, BaseQwen3, torch.nn.Module):
def __init__(self, config_dict, dtype, device, operations):
super().__init__()
config = Qwen3_2B_ACE15_lm_Config(**config_dict)
self.num_layers = config.num_hidden_layers
self.model = Llama2_(config, device=device, dtype=dtype, ops=operations)
self.dtype = dtype
class Qwen3_4B(BaseLlama, BaseQwen3, torch.nn.Module):
def __init__(self, config_dict, dtype, device, operations):
super().__init__()
config = Qwen3_4BConfig(**config_dict)
@@ -681,7 +844,16 @@ class Qwen3_4B(BaseLlama, torch.nn.Module):
self.model = Llama2_(config, device=device, dtype=dtype, ops=operations)
self.dtype = dtype
class Qwen3_8B(BaseLlama, torch.nn.Module):
class Qwen3_4B_ACE15_lm(BaseLlama, BaseQwen3, torch.nn.Module):
def __init__(self, config_dict, dtype, device, operations):
super().__init__()
config = Qwen3_4B_ACE15_lm_Config(**config_dict)
self.num_layers = config.num_hidden_layers
self.model = Llama2_(config, device=device, dtype=dtype, ops=operations)
self.dtype = dtype
class Qwen3_8B(BaseLlama, BaseQwen3, torch.nn.Module):
def __init__(self, config_dict, dtype, device, operations):
super().__init__()
config = Qwen3_8BConfig(**config_dict)

View File

@@ -25,7 +25,7 @@ def ltxv_te(*args, **kwargs):
class Gemma3_12BTokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer = tokenizer_data.get("spiece_model", None)
super().__init__(tokenizer, pad_with_end=False, embedding_size=3840, embedding_key='gemma3_12b', tokenizer_class=SPieceTokenizer, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, tokenizer_args={"add_bos": True, "add_eos": False}, tokenizer_data=tokenizer_data)
super().__init__(tokenizer, pad_with_end=False, embedding_size=3840, embedding_key='gemma3_12b', tokenizer_class=SPieceTokenizer, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=512, pad_left=True, disable_weights=True, tokenizer_args={"add_bos": True, "add_eos": False}, tokenizer_data=tokenizer_data)
def state_dict(self):
return {"spiece_model": self.tokenizer.serialize_model()}
@@ -97,6 +97,7 @@ class LTXAVTEModel(torch.nn.Module):
token_weight_pairs = token_weight_pairs["gemma3_12b"]
out, pooled, extra = self.gemma3_12b.encode_token_weights(token_weight_pairs)
out = out[:, :, -torch.sum(extra["attention_mask"]).item():]
out_device = out.device
if comfy.model_management.should_use_bf16(self.execution_device):
out = out.to(device=self.execution_device, dtype=torch.bfloat16)
@@ -125,7 +126,7 @@ class LTXAVTEModel(torch.nn.Module):
for prefix, component in [("text_embedding_projection.", self.text_embedding_projection), ("video_embeddings_connector.", self.video_embeddings_connector), ("audio_embeddings_connector.", self.audio_embeddings_connector)]:
component_sd = {k.replace(prefix, ""): v for k, v in sdo.items() if k.startswith(prefix)}
if component_sd:
missing, unexpected = component.load_state_dict(component_sd, strict=False)
missing, unexpected = component.load_state_dict(component_sd, strict=False, assign=getattr(self, "can_assign_sd", False))
missing_all.extend([f"{prefix}{k}" for k in missing])
unexpected_all.extend([f"{prefix}{k}" for k in unexpected])
@@ -138,6 +139,7 @@ class LTXAVTEModel(torch.nn.Module):
token_weight_pairs = token_weight_pairs.get("gemma3_12b", [])
num_tokens = sum(map(lambda a: len(a), token_weight_pairs))
num_tokens = max(num_tokens, 64)
return num_tokens * constant * 1024 * 1024
def ltxav_te(dtype_llama=None, llama_quantization_metadata=None):

View File

@@ -6,7 +6,7 @@ import os
class Qwen3Tokenizer(sd1_clip.SDTokenizer):
def __init__(self, embedding_directory=None, tokenizer_data={}):
tokenizer_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), "qwen25_tokenizer")
super().__init__(tokenizer_path, pad_with_end=False, embedding_size=2560, embedding_key='qwen3_4b', tokenizer_class=Qwen2Tokenizer, has_start_token=False, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, pad_token=151643, tokenizer_data=tokenizer_data)
super().__init__(tokenizer_path, pad_with_end=False, embedding_directory=embedding_directory, embedding_size=2560, embedding_key='qwen3_4b', tokenizer_class=Qwen2Tokenizer, has_start_token=False, has_end_token=False, pad_to_max_length=False, max_length=99999999, min_length=1, pad_token=151643, tokenizer_data=tokenizer_data)
class ZImageTokenizer(sd1_clip.SD1Tokenizer):

View File

@@ -20,41 +20,92 @@
import torch
import math
import struct
import comfy.checkpoint_pickle
import comfy.memory_management
import safetensors.torch
import numpy as np
from PIL import Image
import logging
import itertools
from torch.nn.functional import interpolate
from tqdm.auto import trange
from einops import rearrange
from comfy.cli_args import args
from comfy.cli_args import args, enables_dynamic_vram
import json
import time
import mmap
import warnings
MMAP_TORCH_FILES = args.mmap_torch_files
DISABLE_MMAP = args.disable_mmap
ALWAYS_SAFE_LOAD = False
if hasattr(torch.serialization, "add_safe_globals"): # TODO: this was added in pytorch 2.4, the unsafe path should be removed once earlier versions are deprecated
if True: # ckpt/pt file whitelist for safe loading of old sd files
class ModelCheckpoint:
pass
ModelCheckpoint.__module__ = "pytorch_lightning.callbacks.model_checkpoint"
def scalar(*args, **kwargs):
from numpy.core.multiarray import scalar as sc
return sc(*args, **kwargs)
return None
scalar.__module__ = "numpy.core.multiarray"
from numpy import dtype
from numpy.dtypes import Float64DType
from _codecs import encode
def encode(*args, **kwargs): # no longer necessary on newer torch
return None
encode.__module__ = "_codecs"
torch.serialization.add_safe_globals([ModelCheckpoint, scalar, dtype, Float64DType, encode])
ALWAYS_SAFE_LOAD = True
logging.info("Checkpoint files will always be loaded safely.")
else:
logging.warning("Warning, you are using an old pytorch version and some ckpt/pt files might be loaded unsafely. Upgrading to 2.4 or above is recommended as older versions of pytorch are no longer supported.")
# Current as of safetensors 0.7.0
_TYPES = {
"F64": torch.float64,
"F32": torch.float32,
"F16": torch.float16,
"BF16": torch.bfloat16,
"I64": torch.int64,
"I32": torch.int32,
"I16": torch.int16,
"I8": torch.int8,
"U8": torch.uint8,
"BOOL": torch.bool,
"F8_E4M3": torch.float8_e4m3fn,
"F8_E5M2": torch.float8_e5m2,
"C64": torch.complex64,
"U64": torch.uint64,
"U32": torch.uint32,
"U16": torch.uint16,
}
def load_safetensors(ckpt):
f = open(ckpt, "rb")
mapping = mmap.mmap(f.fileno(), 0, access=mmap.ACCESS_READ)
mv = memoryview(mapping)
header_size = struct.unpack("<Q", mapping[:8])[0]
header = json.loads(mapping[8:8+header_size].decode("utf-8"))
mv = mv[8 + header_size:]
sd = {}
for name, info in header.items():
if name == "__metadata__":
continue
start, end = info["data_offsets"]
if start == end:
sd[name] = torch.empty(info["shape"], dtype =_TYPES[info["dtype"]])
else:
with warnings.catch_warnings():
#We are working with read-only RAM by design
warnings.filterwarnings("ignore", message="The given buffer is not writable")
sd[name] = torch.frombuffer(mv[start:end], dtype=_TYPES[info["dtype"]]).view(info["shape"])
return sd, header.get("__metadata__", {}),
def load_torch_file(ckpt, safe_load=False, device=None, return_metadata=False):
if device is None:
@@ -62,15 +113,20 @@ def load_torch_file(ckpt, safe_load=False, device=None, return_metadata=False):
metadata = None
if ckpt.lower().endswith(".safetensors") or ckpt.lower().endswith(".sft"):
try:
with safetensors.safe_open(ckpt, framework="pt", device=device.type) as f:
sd = {}
for k in f.keys():
tensor = f.get_tensor(k)
if DISABLE_MMAP: # TODO: Not sure if this is the best way to bypass the mmap issues
tensor = tensor.to(device=device, copy=True)
sd[k] = tensor
if return_metadata:
metadata = f.metadata()
if enables_dynamic_vram():
sd, metadata = load_safetensors(ckpt)
if not return_metadata:
metadata = None
else:
with safetensors.safe_open(ckpt, framework="pt", device=device.type) as f:
sd = {}
for k in f.keys():
tensor = f.get_tensor(k)
if DISABLE_MMAP: # TODO: Not sure if this is the best way to bypass the mmap issues
tensor = tensor.to(device=device, copy=True)
sd[k] = tensor
if return_metadata:
metadata = f.metadata()
except Exception as e:
if len(e.args) > 0:
message = e.args[0]
@@ -84,11 +140,8 @@ def load_torch_file(ckpt, safe_load=False, device=None, return_metadata=False):
if MMAP_TORCH_FILES:
torch_args["mmap"] = True
if safe_load or ALWAYS_SAFE_LOAD:
pl_sd = torch.load(ckpt, map_location=device, weights_only=True, **torch_args)
else:
logging.warning("WARNING: loading {} unsafely, upgrade your pytorch to 2.4 or newer to load this file safely.".format(ckpt))
pl_sd = torch.load(ckpt, map_location=device, pickle_module=comfy.checkpoint_pickle)
pl_sd = torch.load(ckpt, map_location=device, weights_only=True, **torch_args)
if "state_dict" in pl_sd:
sd = pl_sd["state_dict"]
else:
@@ -619,10 +672,10 @@ def flux_to_diffusers(mmdit_config, output_prefix=""):
"ff_context.linear_in.bias": "txt_mlp.0.bias",
"ff_context.linear_out.weight": "txt_mlp.2.weight",
"ff_context.linear_out.bias": "txt_mlp.2.bias",
"attn.norm_q.weight": "img_attn.norm.query_norm.scale",
"attn.norm_k.weight": "img_attn.norm.key_norm.scale",
"attn.norm_added_q.weight": "txt_attn.norm.query_norm.scale",
"attn.norm_added_k.weight": "txt_attn.norm.key_norm.scale",
"attn.norm_q.weight": "img_attn.norm.query_norm.weight",
"attn.norm_k.weight": "img_attn.norm.key_norm.weight",
"attn.norm_added_q.weight": "txt_attn.norm.query_norm.weight",
"attn.norm_added_k.weight": "txt_attn.norm.key_norm.weight",
}
for k in block_map:
@@ -645,8 +698,8 @@ def flux_to_diffusers(mmdit_config, output_prefix=""):
"norm.linear.bias": "modulation.lin.bias",
"proj_out.weight": "linear2.weight",
"proj_out.bias": "linear2.bias",
"attn.norm_q.weight": "norm.query_norm.scale",
"attn.norm_k.weight": "norm.key_norm.scale",
"attn.norm_q.weight": "norm.query_norm.weight",
"attn.norm_k.weight": "norm.key_norm.weight",
"attn.to_qkv_mlp_proj.weight": "linear1.weight", # Flux 2
"attn.to_out.weight": "linear2.weight", # Flux 2
}
@@ -1100,6 +1153,32 @@ def tiled_scale_multidim(samples, function, tile=(64, 64), overlap=8, upscale_am
def tiled_scale(samples, function, tile_x=64, tile_y=64, overlap = 8, upscale_amount = 4, out_channels = 3, output_device="cpu", pbar = None):
return tiled_scale_multidim(samples, function, (tile_y, tile_x), overlap=overlap, upscale_amount=upscale_amount, out_channels=out_channels, output_device=output_device, pbar=pbar)
def model_trange(*args, **kwargs):
if comfy.memory_management.aimdo_allocator is None:
return trange(*args, **kwargs)
pbar = trange(*args, **kwargs, smoothing=1.0)
pbar._i = 0
pbar.set_postfix_str(" Model Initializing ... ")
_update = pbar.update
def warmup_update(n=1):
pbar._i += 1
if pbar._i == 1:
pbar.i1_time = time.time()
pbar.set_postfix_str(" Model Initialization complete! ")
elif pbar._i == 2:
#bring forward the effective start time based the the diff between first and second iteration
#to attempt to remove load overhead from the final step rate estimate.
pbar.start_t = pbar.i1_time - (time.time() - pbar.i1_time)
pbar.set_postfix_str("")
_update(n)
pbar.update = warmup_update
return pbar
PROGRESS_BAR_ENABLED = True
def set_progress_bar_enabled(enabled):
global PROGRESS_BAR_ENABLED
@@ -1308,3 +1387,34 @@ def convert_old_quants(state_dict, model_prefix="", metadata={}):
state_dict["{}.comfy_quant".format(k)] = torch.tensor(list(json.dumps(v).encode('utf-8')), dtype=torch.uint8)
return state_dict, metadata
def string_to_seed(data):
crc = 0xFFFFFFFF
for byte in data:
if isinstance(byte, str):
byte = ord(byte)
crc ^= byte
for _ in range(8):
if crc & 1:
crc = (crc >> 1) ^ 0xEDB88320
else:
crc >>= 1
return crc ^ 0xFFFFFFFF
def deepcopy_list_dict(obj, memo=None):
if memo is None:
memo = {}
obj_id = id(obj)
if obj_id in memo:
return memo[obj_id]
if isinstance(obj, dict):
res = {deepcopy_list_dict(k, memo): deepcopy_list_dict(v, memo) for k, v in obj.items()}
elif isinstance(obj, list):
res = [deepcopy_list_dict(i, memo) for i in obj]
else:
res = obj
memo[obj_id] = res
return res

View File

@@ -5,6 +5,11 @@ from .lokr import LoKrAdapter
from .glora import GLoRAAdapter
from .oft import OFTAdapter
from .boft import BOFTAdapter
from .bypass import (
BypassInjectionManager,
BypassForwardHook,
create_bypass_injections_from_patches,
)
adapters: list[type[WeightAdapterBase]] = [
@@ -31,4 +36,7 @@ __all__ = [
"WeightAdapterTrainBase",
"adapters",
"adapter_maps",
"BypassInjectionManager",
"BypassForwardHook",
"create_bypass_injections_from_patches",
] + [a.__name__ for a in adapters]

View File

@@ -1,4 +1,4 @@
from typing import Optional
from typing import Callable, Optional
import torch
import torch.nn as nn
@@ -7,12 +7,35 @@ import comfy.model_management
class WeightAdapterBase:
"""
Base class for weight adapters (LoRA, LoHa, LoKr, OFT, etc.)
Bypass Mode:
All adapters follow the pattern: bypass(f)(x) = g(f(x) + h(x))
- h(x): Additive component (LoRA path). Returns delta to add to base output.
- g(y): Output transformation. Applied after base + h(x).
For LoRA/LoHa/LoKr: g = identity, h = adapter(x)
For OFT/BOFT: g = transform, h = 0
"""
name: str
loaded_keys: set[str]
weights: list[torch.Tensor]
# Attributes set by bypass system
multiplier: float = 1.0
shape: tuple = None # (out_features, in_features) or (out_ch, in_ch, *kernel)
@classmethod
def load(cls, x: str, lora: dict[str, torch.Tensor], alpha: float, dora_scale: torch.Tensor) -> Optional["WeightAdapterBase"]:
def load(
cls,
x: str,
lora: dict[str, torch.Tensor],
alpha: float,
dora_scale: torch.Tensor,
) -> Optional["WeightAdapterBase"]:
raise NotImplementedError
def to_train(self) -> "WeightAdapterTrainBase":
@@ -39,18 +62,202 @@ class WeightAdapterBase:
):
raise NotImplementedError
# ===== Bypass Mode Methods =====
#
# IMPORTANT: Bypass mode is designed for quantized models where original weights
# may not be accessible in a usable format. Therefore, h() and bypass_forward()
# do NOT take org_weight as a parameter. All necessary information (out_channels,
# in_channels, conv params, etc.) is provided via attributes set by BypassForwardHook.
def h(self, x: torch.Tensor, base_out: torch.Tensor) -> torch.Tensor:
"""
Additive bypass component: h(x, base_out)
Computes the adapter's contribution to be added to base forward output.
For adapters that only transform output (OFT/BOFT), returns zeros.
Note:
This method does NOT access original model weights. Bypass mode is
designed for quantized models where weights may not be in a usable format.
All shape info comes from module attributes set by BypassForwardHook.
Args:
x: Input tensor
base_out: Output from base forward f(x), can be used for shape reference
Returns:
Delta tensor to add to base output. Shape matches base output.
Reference: LyCORIS LoConModule.bypass_forward_diff
"""
# Default: no additive component (for OFT/BOFT)
# Simply return zeros matching base_out shape
return torch.zeros_like(base_out)
def g(self, y: torch.Tensor) -> torch.Tensor:
"""
Output transformation: g(y)
Applied after base forward + h(x). For most adapters this is identity.
OFT/BOFT override this to apply orthogonal transformation.
Args:
y: Combined output (base + h(x))
Returns:
Transformed output
Reference: LyCORIS OFTModule applies orthogonal transform here
"""
# Default: identity (for LoRA/LoHa/LoKr)
return y
def bypass_forward(
self,
org_forward: Callable,
x: torch.Tensor,
*args,
**kwargs,
) -> torch.Tensor:
"""
Full bypass forward: g(f(x) + h(x, f(x)))
Note:
This method does NOT take org_weight/org_bias parameters. Bypass mode
is designed for quantized models where weights may not be accessible.
The original forward function handles weight access internally.
Args:
org_forward: Original module forward function
x: Input tensor
*args, **kwargs: Additional arguments for org_forward
Returns:
Output with adapter applied in bypass mode
Reference: LyCORIS LoConModule.bypass_forward
"""
# Base forward: f(x)
base_out = org_forward(x, *args, **kwargs)
# Additive component: h(x, base_out) - base_out provided for shape reference
h_out = self.h(x, base_out)
# Output transformation: g(base + h)
return self.g(base_out + h_out)
class WeightAdapterTrainBase(nn.Module):
# We follow the scheme of PR #7032
"""
Base class for trainable weight adapters (LoRA, LoHa, LoKr, OFT, etc.)
Bypass Mode:
All adapters follow the pattern: bypass(f)(x) = g(f(x) + h(x))
- h(x): Additive component (LoRA path). Returns delta to add to base output.
- g(y): Output transformation. Applied after base + h(x).
For LoRA/LoHa/LoKr: g = identity, h = adapter(x)
For OFT: g = transform, h = 0
Note:
Unlike WeightAdapterBase, TrainBase classes have simplified weight formats
with fewer branches (e.g., LoKr only has w1/w2, not w1_a/w1_b decomposition).
We follow the scheme of PR #7032
"""
# Attributes set by bypass system (BypassForwardHook)
# These are set before h()/g()/bypass_forward() are called
multiplier: float = 1.0
is_conv: bool = False
conv_dim: int = 0 # 0=linear, 1=conv1d, 2=conv2d, 3=conv3d
kw_dict: dict = {} # Conv kwargs: stride, padding, dilation, groups
kernel_size: tuple = ()
in_channels: int = None
out_channels: int = None
def __init__(self):
super().__init__()
def __call__(self, w):
"""
w: The original weight tensor to be modified.
Weight modification mode: returns modified weight.
Args:
w: The original weight tensor to be modified.
Returns:
Modified weight tensor.
"""
raise NotImplementedError
# ===== Bypass Mode Methods =====
def h(self, x: torch.Tensor, base_out: torch.Tensor) -> torch.Tensor:
"""
Additive bypass component: h(x, base_out)
Computes the adapter's contribution to be added to base forward output.
For adapters that only transform output (OFT), returns zeros.
Args:
x: Input tensor
base_out: Output from base forward f(x), can be used for shape reference
Returns:
Delta tensor to add to base output. Shape matches base output.
Subclasses should override this method.
"""
raise NotImplementedError(
f"{self.__class__.__name__}.h() not implemented. "
"Subclasses must implement h() for bypass mode."
)
def g(self, y: torch.Tensor) -> torch.Tensor:
"""
Output transformation: g(y)
Applied after base forward + h(x). For most adapters this is identity.
OFT overrides this to apply orthogonal transformation.
Args:
y: Combined output (base + h(x))
Returns:
Transformed output
"""
# Default: identity (for LoRA/LoHa/LoKr)
return y
def bypass_forward(
self,
org_forward: Callable,
x: torch.Tensor,
*args,
**kwargs,
) -> torch.Tensor:
"""
Full bypass forward: g(f(x) + h(x, f(x)))
Args:
org_forward: Original module forward function
x: Input tensor
*args, **kwargs: Additional arguments for org_forward
Returns:
Output with adapter applied in bypass mode
"""
# Base forward: f(x)
base_out = org_forward(x, *args, **kwargs)
# Additive component: h(x, base_out) - base_out provided for shape reference
h_out = self.h(x, base_out)
# Output transformation: g(base + h)
return self.g(base_out + h_out)
def passive_memory_usage(self):
raise NotImplementedError("passive_memory_usage is not implemented")
@@ -59,8 +266,12 @@ class WeightAdapterTrainBase(nn.Module):
return self.passive_memory_usage()
def weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function):
dora_scale = comfy.model_management.cast_to_device(dora_scale, weight.device, intermediate_dtype)
def weight_decompose(
dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function
):
dora_scale = comfy.model_management.cast_to_device(
dora_scale, weight.device, intermediate_dtype
)
lora_diff *= alpha
weight_calc = weight + function(lora_diff).type(weight.dtype)
@@ -106,10 +317,14 @@ def pad_tensor_to_shape(tensor: torch.Tensor, new_shape: list[int]) -> torch.Ten
the original tensor will be truncated in that dimension.
"""
if any([new_shape[i] < tensor.shape[i] for i in range(len(new_shape))]):
raise ValueError("The new shape must be larger than the original tensor in all dimensions")
raise ValueError(
"The new shape must be larger than the original tensor in all dimensions"
)
if len(new_shape) != len(tensor.shape):
raise ValueError("The new shape must have the same number of dimensions as the original tensor")
raise ValueError(
"The new shape must have the same number of dimensions as the original tensor"
)
# Create a new tensor filled with zeros
padded_tensor = torch.zeros(new_shape, dtype=tensor.dtype, device=tensor.device)

View File

@@ -62,9 +62,13 @@ class BOFTAdapter(WeightAdapterBase):
alpha = v[2]
dora_scale = v[3]
blocks = comfy.model_management.cast_to_device(blocks, weight.device, intermediate_dtype)
blocks = comfy.model_management.cast_to_device(
blocks, weight.device, intermediate_dtype
)
if rescale is not None:
rescale = comfy.model_management.cast_to_device(rescale, weight.device, intermediate_dtype)
rescale = comfy.model_management.cast_to_device(
rescale, weight.device, intermediate_dtype
)
boft_m, block_num, boft_b, *_ = blocks.shape
@@ -74,7 +78,7 @@ class BOFTAdapter(WeightAdapterBase):
# for Q = -Q^T
q = blocks - blocks.transpose(-1, -2)
normed_q = q
if alpha > 0: # alpha in boft/bboft is for constraint
if alpha > 0: # alpha in boft/bboft is for constraint
q_norm = torch.norm(q) + 1e-8
if q_norm > alpha:
normed_q = q * alpha / q_norm
@@ -83,13 +87,13 @@ class BOFTAdapter(WeightAdapterBase):
r = r.to(weight)
inp = org = weight
r_b = boft_b//2
r_b = boft_b // 2
for i in range(boft_m):
bi = r[i]
g = 2
k = 2**i * r_b
if strength != 1:
bi = bi * strength + (1-strength) * I
bi = bi * strength + (1 - strength) * I
inp = (
inp.unflatten(0, (-1, g, k))
.transpose(1, 2)
@@ -98,18 +102,117 @@ class BOFTAdapter(WeightAdapterBase):
)
inp = torch.einsum("b i j, b j ...-> b i ...", bi, inp)
inp = (
inp.flatten(0, 1).unflatten(0, (-1, k, g)).transpose(1, 2).flatten(0, 2)
inp.flatten(0, 1)
.unflatten(0, (-1, k, g))
.transpose(1, 2)
.flatten(0, 2)
)
if rescale is not None:
inp = inp * rescale
lora_diff = inp - org
lora_diff = comfy.model_management.cast_to_device(lora_diff, weight.device, intermediate_dtype)
lora_diff = comfy.model_management.cast_to_device(
lora_diff, weight.device, intermediate_dtype
)
if dora_scale is not None:
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
weight = weight_decompose(
dora_scale,
weight,
lora_diff,
alpha,
strength,
intermediate_dtype,
function,
)
else:
weight += function((strength * lora_diff).type(weight.dtype))
except Exception as e:
logging.error("ERROR {} {} {}".format(self.name, key, e))
return weight
def _get_orthogonal_matrices(self, device, dtype):
"""Compute the orthogonal rotation matrices R from BOFT blocks."""
v = self.weights
blocks = v[0].to(device=device, dtype=dtype)
alpha = v[2]
if alpha is None:
alpha = 0
boft_m, block_num, boft_b, _ = blocks.shape
I = torch.eye(boft_b, device=device, dtype=dtype)
# Q = blocks - blocks^T (skew-symmetric)
q = blocks - blocks.transpose(-1, -2)
normed_q = q
# Apply constraint if alpha > 0
if alpha > 0:
q_norm = torch.norm(q) + 1e-8
if q_norm > alpha:
normed_q = q * alpha / q_norm
# Cayley transform: R = (I + Q)(I - Q)^-1
r = (I + normed_q) @ (I - normed_q).float().inverse()
return r, boft_m, boft_b
def g(self, y: torch.Tensor) -> torch.Tensor:
"""
Output transformation for BOFT: applies butterfly orthogonal transform.
BOFT uses multiple stages of butterfly-structured orthogonal transforms.
Reference: LyCORIS ButterflyOFTModule._bypass_forward
"""
v = self.weights
rescale = v[1]
r, boft_m, boft_b = self._get_orthogonal_matrices(y.device, y.dtype)
r_b = boft_b // 2
# Apply multiplier
multiplier = getattr(self, "multiplier", 1.0)
I = torch.eye(boft_b, device=y.device, dtype=y.dtype)
# Use module info from bypass injection to determine conv vs linear
is_conv = getattr(self, "is_conv", y.dim() > 2)
if is_conv:
# Conv output: (N, C, H, W, ...) -> transpose to (N, H, W, ..., C)
y = y.transpose(1, -1)
# Apply butterfly transform stages
inp = y
for i in range(boft_m):
bi = r[i] # (block_num, boft_b, boft_b)
g = 2
k = 2**i * r_b
# Interpolate with identity based on multiplier
if multiplier != 1:
bi = bi * multiplier + (1 - multiplier) * I
# Reshape for butterfly: unflatten last dim, transpose, flatten, unflatten
inp = (
inp.unflatten(-1, (-1, g, k))
.transpose(-2, -1)
.flatten(-3)
.unflatten(-1, (-1, boft_b))
)
# Apply block-diagonal orthogonal transform
inp = torch.einsum("b i j, ... b j -> ... b i", bi, inp)
# Reshape back
inp = (
inp.flatten(-2).unflatten(-1, (-1, k, g)).transpose(-2, -1).flatten(-3)
)
# Apply rescale if present
if rescale is not None:
rescale = rescale.to(device=y.device, dtype=y.dtype)
inp = inp * rescale.transpose(0, -1)
if is_conv:
# Transpose back: (N, H, W, ..., C) -> (N, C, H, W, ...)
inp = inp.transpose(1, -1)
return inp

View File

@@ -0,0 +1,441 @@
"""
Bypass mode implementation for weight adapters (LoRA, LoKr, LoHa, etc.)
Bypass mode applies adapters during forward pass without modifying base weights:
bypass(f)(x) = g(f(x) + h(x))
Where:
- f(x): Original layer forward
- h(x): Additive component from adapter (LoRA path)
- g(y): Output transformation (identity for most adapters)
This is useful for:
- Training with gradient checkpointing
- Avoiding weight modifications when weights are offloaded
- Supporting multiple adapters with different strengths dynamically
"""
import logging
from typing import Optional, Union
import torch
import torch.nn as nn
import comfy.model_management
from .base import WeightAdapterBase, WeightAdapterTrainBase
from comfy.patcher_extension import PatcherInjection
# Type alias for adapters that support bypass mode
BypassAdapter = Union[WeightAdapterBase, WeightAdapterTrainBase]
def get_module_type_info(module: nn.Module) -> dict:
"""
Determine module type and extract conv parameters from module class.
This is more reliable than checking weight.ndim, especially for quantized layers
where weight shape might be different.
Returns:
dict with keys: is_conv, conv_dim, stride, padding, dilation, groups
"""
info = {
"is_conv": False,
"conv_dim": 0,
"stride": (1,),
"padding": (0,),
"dilation": (1,),
"groups": 1,
"kernel_size": (1,),
"in_channels": None,
"out_channels": None,
}
# Determine conv type
if isinstance(module, nn.Conv1d):
info["is_conv"] = True
info["conv_dim"] = 1
elif isinstance(module, nn.Conv2d):
info["is_conv"] = True
info["conv_dim"] = 2
elif isinstance(module, nn.Conv3d):
info["is_conv"] = True
info["conv_dim"] = 3
elif isinstance(module, nn.Linear):
info["is_conv"] = False
info["conv_dim"] = 0
else:
# Try to infer from class name for custom/quantized layers
class_name = type(module).__name__.lower()
if "conv3d" in class_name:
info["is_conv"] = True
info["conv_dim"] = 3
elif "conv2d" in class_name:
info["is_conv"] = True
info["conv_dim"] = 2
elif "conv1d" in class_name:
info["is_conv"] = True
info["conv_dim"] = 1
elif "conv" in class_name:
info["is_conv"] = True
info["conv_dim"] = 2
# Extract conv parameters if it's a conv layer
if info["is_conv"]:
# Try to get stride, padding, dilation, groups, kernel_size from module
info["stride"] = getattr(module, "stride", (1,) * info["conv_dim"])
info["padding"] = getattr(module, "padding", (0,) * info["conv_dim"])
info["dilation"] = getattr(module, "dilation", (1,) * info["conv_dim"])
info["groups"] = getattr(module, "groups", 1)
info["kernel_size"] = getattr(module, "kernel_size", (1,) * info["conv_dim"])
info["in_channels"] = getattr(module, "in_channels", None)
info["out_channels"] = getattr(module, "out_channels", None)
# Ensure they're tuples
if isinstance(info["stride"], int):
info["stride"] = (info["stride"],) * info["conv_dim"]
if isinstance(info["padding"], int):
info["padding"] = (info["padding"],) * info["conv_dim"]
if isinstance(info["dilation"], int):
info["dilation"] = (info["dilation"],) * info["conv_dim"]
if isinstance(info["kernel_size"], int):
info["kernel_size"] = (info["kernel_size"],) * info["conv_dim"]
return info
class BypassForwardHook:
"""
Hook that wraps a layer's forward to apply adapter in bypass mode.
Stores the original forward and replaces it with bypass version.
Supports both:
- WeightAdapterBase: Inference adapters (uses self.weights tuple)
- WeightAdapterTrainBase: Training adapters (nn.Module with parameters)
"""
def __init__(
self,
module: nn.Module,
adapter: BypassAdapter,
multiplier: float = 1.0,
):
self.module = module
self.adapter = adapter
self.multiplier = multiplier
self.original_forward = None
# Determine layer type and conv params from module class (works for quantized layers)
module_info = get_module_type_info(module)
# Set multiplier and layer type info on adapter for use in h()
adapter.multiplier = multiplier
adapter.is_conv = module_info["is_conv"]
adapter.conv_dim = module_info["conv_dim"]
adapter.kernel_size = module_info["kernel_size"]
adapter.in_channels = module_info["in_channels"]
adapter.out_channels = module_info["out_channels"]
# Store kw_dict for conv operations (like LyCORIS extra_args)
if module_info["is_conv"]:
adapter.kw_dict = {
"stride": module_info["stride"],
"padding": module_info["padding"],
"dilation": module_info["dilation"],
"groups": module_info["groups"],
}
else:
adapter.kw_dict = {}
def _bypass_forward(self, x: torch.Tensor, *args, **kwargs) -> torch.Tensor:
"""Bypass forward: uses adapter's bypass_forward or default g(f(x) + h(x))
Note:
Bypass mode does NOT access original model weights (org_weight).
This is intentional - bypass mode is designed for quantized models
where weights may not be in a usable format. All necessary shape
information is provided via adapter attributes set during inject().
"""
# Check if adapter has custom bypass_forward (e.g., GLoRA)
adapter_bypass = getattr(self.adapter, "bypass_forward", None)
if adapter_bypass is not None:
# Check if it's overridden (not the base class default)
# Need to check both base classes since adapter could be either type
adapter_type = type(self.adapter)
is_default_bypass = (
adapter_type.bypass_forward is WeightAdapterBase.bypass_forward
or adapter_type.bypass_forward is WeightAdapterTrainBase.bypass_forward
)
if not is_default_bypass:
return adapter_bypass(self.original_forward, x, *args, **kwargs)
# Default bypass: g(f(x) + h(x, f(x)))
base_out = self.original_forward(x, *args, **kwargs)
h_out = self.adapter.h(x, base_out)
return self.adapter.g(base_out + h_out)
def inject(self):
"""Replace module forward with bypass version."""
if self.original_forward is not None:
logging.debug(
f"[BypassHook] Already injected for {type(self.module).__name__}"
)
return # Already injected
# Move adapter weights to compute device (GPU)
# Use get_torch_device() instead of module.weight.device because
# with offloading, module weights may be on CPU while compute happens on GPU
device = comfy.model_management.get_torch_device()
# Get dtype from module weight if available
dtype = None
if hasattr(self.module, "weight") and self.module.weight is not None:
dtype = self.module.weight.dtype
# Only use dtype if it's a standard float type, not quantized
if dtype is not None and dtype not in (torch.float32, torch.float16, torch.bfloat16):
dtype = None
self._move_adapter_weights_to_device(device, dtype)
self.original_forward = self.module.forward
self.module.forward = self._bypass_forward
logging.debug(
f"[BypassHook] Injected bypass forward for {type(self.module).__name__} (adapter={type(self.adapter).__name__})"
)
def _move_adapter_weights_to_device(self, device, dtype=None):
"""Move adapter weights to specified device to avoid per-forward transfers.
Handles both:
- WeightAdapterBase: has self.weights tuple of tensors
- WeightAdapterTrainBase: nn.Module with parameters, uses .to() method
"""
adapter = self.adapter
# Check if adapter is an nn.Module (WeightAdapterTrainBase)
if isinstance(adapter, nn.Module):
# In training mode we don't touch dtype as trainer will handle it
adapter.to(device=device)
logging.debug(
f"[BypassHook] Moved training adapter (nn.Module) to {device}"
)
return
# WeightAdapterBase: handle self.weights tuple
if not hasattr(adapter, "weights") or adapter.weights is None:
return
weights = adapter.weights
if isinstance(weights, (list, tuple)):
new_weights = []
for w in weights:
if isinstance(w, torch.Tensor):
if dtype is not None:
new_weights.append(w.to(device=device, dtype=dtype))
else:
new_weights.append(w.to(device=device))
else:
new_weights.append(w)
adapter.weights = (
tuple(new_weights) if isinstance(weights, tuple) else new_weights
)
elif isinstance(weights, torch.Tensor):
if dtype is not None:
adapter.weights = weights.to(device=device, dtype=dtype)
else:
adapter.weights = weights.to(device=device)
logging.debug(f"[BypassHook] Moved adapter weights to {device}")
def eject(self):
"""Restore original module forward."""
if self.original_forward is None:
logging.debug(f"[BypassHook] Not injected for {type(self.module).__name__}")
return # Not injected
self.module.forward = self.original_forward
self.original_forward = None
logging.debug(
f"[BypassHook] Ejected bypass forward for {type(self.module).__name__}"
)
class BypassInjectionManager:
"""
Manages bypass mode injection for a collection of adapters.
Creates PatcherInjection objects that can be used with ModelPatcher.
Supports both inference adapters (WeightAdapterBase) and training adapters
(WeightAdapterTrainBase).
Usage:
manager = BypassInjectionManager()
manager.add_adapter("model.layers.0.self_attn.q_proj", lora_adapter, strength=0.8)
manager.add_adapter("model.layers.0.self_attn.k_proj", lora_adapter, strength=0.8)
injections = manager.create_injections(model)
model_patcher.set_injections("bypass_lora", injections)
"""
def __init__(self):
self.adapters: dict[str, tuple[BypassAdapter, float]] = {}
self.hooks: list[BypassForwardHook] = []
def add_adapter(
self,
key: str,
adapter: BypassAdapter,
strength: float = 1.0,
):
"""
Add an adapter for a specific weight key.
Args:
key: Weight key (e.g., "model.layers.0.self_attn.q_proj.weight")
adapter: The weight adapter (LoRAAdapter, LoKrAdapter, etc.)
strength: Multiplier for adapter effect
"""
# Remove .weight suffix if present for module lookup
module_key = key
if module_key.endswith(".weight"):
module_key = module_key[:-7]
logging.debug(
f"[BypassManager] Stripped .weight suffix: {key} -> {module_key}"
)
self.adapters[module_key] = (adapter, strength)
logging.debug(
f"[BypassManager] Added adapter: {module_key} (type={type(adapter).__name__}, strength={strength})"
)
def clear_adapters(self):
"""Remove all adapters."""
self.adapters.clear()
def _get_module_by_key(self, model: nn.Module, key: str) -> Optional[nn.Module]:
"""Get a submodule by dot-separated key."""
parts = key.split(".")
module = model
try:
for i, part in enumerate(parts):
if part.isdigit():
module = module[int(part)]
else:
module = getattr(module, part)
logging.debug(
f"[BypassManager] Found module for key {key}: {type(module).__name__}"
)
return module
except (AttributeError, IndexError, KeyError) as e:
logging.error(f"[BypassManager] Failed to find module for key {key}: {e}")
logging.error(
f"[BypassManager] Failed at part index {i}, part={part}, current module type={type(module).__name__}"
)
return None
def create_injections(self, model: nn.Module) -> list[PatcherInjection]:
"""
Create PatcherInjection objects for all registered adapters.
Args:
model: The model to inject into (e.g., model_patcher.model)
Returns:
List of PatcherInjection objects to use with model_patcher.set_injections()
"""
self.hooks.clear()
logging.debug(
f"[BypassManager] create_injections called with {len(self.adapters)} adapters"
)
logging.debug(f"[BypassManager] Model type: {type(model).__name__}")
for key, (adapter, strength) in self.adapters.items():
logging.debug(f"[BypassManager] Looking for module: {key}")
module = self._get_module_by_key(model, key)
if module is None:
logging.warning(f"[BypassManager] Module not found for key {key}")
continue
if not hasattr(module, "weight"):
logging.warning(
f"[BypassManager] Module {key} has no weight attribute (type={type(module).__name__})"
)
continue
logging.debug(
f"[BypassManager] Creating hook for {key} (module type={type(module).__name__}, weight shape={module.weight.shape})"
)
hook = BypassForwardHook(module, adapter, multiplier=strength)
self.hooks.append(hook)
logging.debug(f"[BypassManager] Created {len(self.hooks)} hooks")
# Create single injection that manages all hooks
def inject_all(model_patcher):
logging.debug(
f"[BypassManager] inject_all called, injecting {len(self.hooks)} hooks"
)
for hook in self.hooks:
hook.inject()
logging.debug(
f"[BypassManager] Injected hook for {type(hook.module).__name__}"
)
def eject_all(model_patcher):
logging.debug(
f"[BypassManager] eject_all called, ejecting {len(self.hooks)} hooks"
)
for hook in self.hooks:
hook.eject()
return [PatcherInjection(inject=inject_all, eject=eject_all)]
def get_hook_count(self) -> int:
"""Return number of hooks that will be/are injected."""
return len(self.hooks)
def create_bypass_injections_from_patches(
model: nn.Module,
patches: dict,
strength: float = 1.0,
) -> list[PatcherInjection]:
"""
Convenience function to create bypass injections from a patches dict.
This is useful when you have patches in the format used by model_patcher.add_patches()
and want to apply them in bypass mode instead.
Args:
model: The model to inject into
patches: Dict mapping weight keys to adapter data
strength: Global strength multiplier
Returns:
List of PatcherInjection objects
"""
manager = BypassInjectionManager()
for key, patch_list in patches.items():
if not patch_list:
continue
# patches format: list of (strength_patch, patch_data, strength_model, offset, function)
for patch in patch_list:
patch_strength, patch_data, strength_model, offset, function = patch
# patch_data should be a WeightAdapterBase/WeightAdapterTrainBase or tuple
if isinstance(patch_data, (WeightAdapterBase, WeightAdapterTrainBase)):
adapter = patch_data
else:
# Skip non-adapter patches
continue
combined_strength = strength * patch_strength
manager.add_adapter(key, adapter, strength=combined_strength)
return manager.create_injections(model)

View File

@@ -1,7 +1,8 @@
import logging
from typing import Optional
from typing import Callable, Optional
import torch
import torch.nn.functional as F
import comfy.model_management
from .base import WeightAdapterBase, weight_decompose
@@ -29,7 +30,14 @@ class GLoRAAdapter(WeightAdapterBase):
b1_name = "{}.b1.weight".format(x)
b2_name = "{}.b2.weight".format(x)
if a1_name in lora:
weights = (lora[a1_name], lora[a2_name], lora[b1_name], lora[b2_name], alpha, dora_scale)
weights = (
lora[a1_name],
lora[a2_name],
lora[b1_name],
lora[b2_name],
alpha,
dora_scale,
)
loaded_keys.add(a1_name)
loaded_keys.add(a2_name)
loaded_keys.add(b1_name)
@@ -58,16 +66,28 @@ class GLoRAAdapter(WeightAdapterBase):
old_glora = True
if v[3].shape[0] == v[2].shape[1] == v[0].shape[1] == v[1].shape[0]:
if old_glora and v[1].shape[0] == weight.shape[0] and weight.shape[0] == weight.shape[1]:
if (
old_glora
and v[1].shape[0] == weight.shape[0]
and weight.shape[0] == weight.shape[1]
):
pass
else:
old_glora = False
rank = v[1].shape[0]
a1 = comfy.model_management.cast_to_device(v[0].flatten(start_dim=1), weight.device, intermediate_dtype)
a2 = comfy.model_management.cast_to_device(v[1].flatten(start_dim=1), weight.device, intermediate_dtype)
b1 = comfy.model_management.cast_to_device(v[2].flatten(start_dim=1), weight.device, intermediate_dtype)
b2 = comfy.model_management.cast_to_device(v[3].flatten(start_dim=1), weight.device, intermediate_dtype)
a1 = comfy.model_management.cast_to_device(
v[0].flatten(start_dim=1), weight.device, intermediate_dtype
)
a2 = comfy.model_management.cast_to_device(
v[1].flatten(start_dim=1), weight.device, intermediate_dtype
)
b1 = comfy.model_management.cast_to_device(
v[2].flatten(start_dim=1), weight.device, intermediate_dtype
)
b2 = comfy.model_management.cast_to_device(
v[3].flatten(start_dim=1), weight.device, intermediate_dtype
)
if v[4] is not None:
alpha = v[4] / rank
@@ -76,18 +96,195 @@ class GLoRAAdapter(WeightAdapterBase):
try:
if old_glora:
lora_diff = (torch.mm(b2, b1) + torch.mm(torch.mm(weight.flatten(start_dim=1).to(dtype=intermediate_dtype), a2), a1)).reshape(weight.shape) #old lycoris glora
lora_diff = (
torch.mm(b2, b1)
+ torch.mm(
torch.mm(
weight.flatten(start_dim=1).to(dtype=intermediate_dtype), a2
),
a1,
)
).reshape(
weight.shape
) # old lycoris glora
else:
if weight.dim() > 2:
lora_diff = torch.einsum("o i ..., i j -> o j ...", torch.einsum("o i ..., i j -> o j ...", weight.to(dtype=intermediate_dtype), a1), a2).reshape(weight.shape)
lora_diff = torch.einsum(
"o i ..., i j -> o j ...",
torch.einsum(
"o i ..., i j -> o j ...",
weight.to(dtype=intermediate_dtype),
a1,
),
a2,
).reshape(weight.shape)
else:
lora_diff = torch.mm(torch.mm(weight.to(dtype=intermediate_dtype), a1), a2).reshape(weight.shape)
lora_diff = torch.mm(
torch.mm(weight.to(dtype=intermediate_dtype), a1), a2
).reshape(weight.shape)
lora_diff += torch.mm(b1, b2).reshape(weight.shape)
if dora_scale is not None:
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
weight = weight_decompose(
dora_scale,
weight,
lora_diff,
alpha,
strength,
intermediate_dtype,
function,
)
else:
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
except Exception as e:
logging.error("ERROR {} {} {}".format(self.name, key, e))
return weight
def _compute_paths(self, x: torch.Tensor):
"""
Compute A path and B path outputs for GLoRA bypass.
GLoRA: f(x) = Wx + WAx + Bx
- A path: a1(a2(x)) - modifies input to base forward
- B path: b1(b2(x)) - additive component
Note:
Does not access original model weights - bypass mode is designed
for quantized models where weights may not be accessible.
Returns: (a_out, b_out)
"""
v = self.weights
# v = (a1, a2, b1, b2, alpha, dora_scale)
a1 = v[0]
a2 = v[1]
b1 = v[2]
b2 = v[3]
alpha = v[4]
dtype = x.dtype
# Cast dtype (weights should already be on correct device from inject())
a1 = a1.to(dtype=dtype)
a2 = a2.to(dtype=dtype)
b1 = b1.to(dtype=dtype)
b2 = b2.to(dtype=dtype)
# Determine rank and scale
# Check for old vs new glora format
old_glora = False
if b2.shape[1] == b1.shape[0] == a1.shape[0] == a2.shape[1]:
rank = a1.shape[0]
old_glora = True
if b2.shape[0] == b1.shape[1] == a1.shape[1] == a2.shape[0]:
if old_glora and a2.shape[0] == x.shape[-1] and x.shape[-1] == x.shape[-1]:
pass
else:
old_glora = False
rank = a2.shape[0]
if alpha is not None:
scale = alpha / rank
else:
scale = 1.0
# Apply multiplier
multiplier = getattr(self, "multiplier", 1.0)
scale = scale * multiplier
# Use module info from bypass injection, not input tensor shape
is_conv = getattr(self, "is_conv", False)
conv_dim = getattr(self, "conv_dim", 0)
kw_dict = getattr(self, "kw_dict", {})
if is_conv:
# Conv case - conv_dim is 1/2/3 for conv1d/2d/3d
conv_fn = (F.conv1d, F.conv2d, F.conv3d)[conv_dim - 1]
# Get module's stride/padding for spatial dimension handling
module_stride = kw_dict.get("stride", (1,) * conv_dim)
module_padding = kw_dict.get("padding", (0,) * conv_dim)
kernel_size = getattr(self, "kernel_size", (1,) * conv_dim)
in_channels = getattr(self, "in_channels", None)
# Ensure weights are in conv shape
# a1, a2, b1 are always 1x1 kernels
if a1.ndim == 2:
a1 = a1.view(*a1.shape, *([1] * conv_dim))
if a2.ndim == 2:
a2 = a2.view(*a2.shape, *([1] * conv_dim))
if b1.ndim == 2:
b1 = b1.view(*b1.shape, *([1] * conv_dim))
# b2 has actual kernel_size (like LoRA down)
if b2.ndim == 2:
if in_channels is not None:
b2 = b2.view(b2.shape[0], in_channels, *kernel_size)
else:
b2 = b2.view(*b2.shape, *([1] * conv_dim))
# A path: a2(x) -> a1(...) - 1x1 convs, no stride/padding needed, a_out is added to x
a2_out = conv_fn(x, a2)
a_out = conv_fn(a2_out, a1) * scale
# B path: b2(x) with kernel/stride/padding -> b1(...) 1x1
b2_out = conv_fn(x, b2, stride=module_stride, padding=module_padding)
b_out = conv_fn(b2_out, b1) * scale
else:
# Linear case
if old_glora:
# Old format: a1 @ a2 @ x, b2 @ b1
a_out = F.linear(F.linear(x, a2), a1) * scale
b_out = F.linear(F.linear(x, b1), b2) * scale
else:
# New format: x @ a1 @ a2, b1 @ b2
a_out = F.linear(F.linear(x, a1), a2) * scale
b_out = F.linear(F.linear(x, b2), b1) * scale
return a_out, b_out
def bypass_forward(
self,
org_forward: Callable,
x: torch.Tensor,
*args,
**kwargs,
) -> torch.Tensor:
"""
GLoRA bypass forward: f(x + a(x)) + b(x)
Unlike standard adapters, GLoRA modifies the input to the base forward
AND adds the B path output.
Note:
Does not access original model weights - bypass mode is designed
for quantized models where weights may not be accessible.
Reference: LyCORIS GLoRAModule._bypass_forward
"""
a_out, b_out = self._compute_paths(x)
# Call base forward with modified input
base_out = org_forward(x + a_out, *args, **kwargs)
# Add B path
return base_out + b_out
def h(self, x: torch.Tensor, base_out: torch.Tensor) -> torch.Tensor:
"""
For GLoRA, h() returns the B path output.
Note:
GLoRA's full bypass requires overriding bypass_forward() since
it also modifies the input to org_forward. This h() is provided for
compatibility but bypass_forward() should be used for correct behavior.
Does not access original model weights - bypass mode is designed
for quantized models where weights may not be accessible.
Args:
x: Input tensor
base_out: Output from base forward (unused, for API consistency)
"""
_, b_out = self._compute_paths(x)
return b_out

View File

@@ -1,11 +1,22 @@
import logging
from functools import cache
from typing import Optional
import torch
import torch.nn.functional as F
import comfy.model_management
from .base import WeightAdapterBase, WeightAdapterTrainBase, weight_decompose
@cache
def _warn_loha_bypass_inefficient():
"""One-time warning about LoHa bypass inefficiency."""
logging.warning(
"LoHa bypass mode is inefficient: full weight diff is computed each forward pass. "
"Consider using LoRA or LoKr for training with bypass mode."
)
class HadaWeight(torch.autograd.Function):
@staticmethod
def forward(ctx, w1u, w1d, w2u, w2d, scale=torch.tensor(1)):
@@ -105,9 +116,19 @@ class LohaDiff(WeightAdapterTrainBase):
scale = self.alpha / self.rank
if self.use_tucker:
diff_weight = HadaWeightTucker.apply(self.hada_t1, self.hada_w1_a, self.hada_w1_b, self.hada_t2, self.hada_w2_a, self.hada_w2_b, scale)
diff_weight = HadaWeightTucker.apply(
self.hada_t1,
self.hada_w1_a,
self.hada_w1_b,
self.hada_t2,
self.hada_w2_a,
self.hada_w2_b,
scale,
)
else:
diff_weight = HadaWeight.apply(self.hada_w1_a, self.hada_w1_b, self.hada_w2_a, self.hada_w2_b, scale)
diff_weight = HadaWeight.apply(
self.hada_w1_a, self.hada_w1_b, self.hada_w2_a, self.hada_w2_b, scale
)
# Add the scaled difference to the original weight
weight = w.to(diff_weight) + diff_weight.reshape(w.shape)
@@ -138,9 +159,7 @@ class LoHaAdapter(WeightAdapterBase):
mat4 = torch.empty(rank, in_dim, device=weight.device, dtype=torch.float32)
torch.nn.init.normal_(mat3, 0.1)
torch.nn.init.normal_(mat4, 0.01)
return LohaDiff(
(mat1, mat2, alpha, mat3, mat4, None, None, None)
)
return LohaDiff((mat1, mat2, alpha, mat3, mat4, None, None, None))
def to_train(self):
return LohaDiff(self.weights)
@@ -172,7 +191,16 @@ class LoHaAdapter(WeightAdapterBase):
loaded_keys.add(hada_t1_name)
loaded_keys.add(hada_t2_name)
weights = (lora[hada_w1_a_name], lora[hada_w1_b_name], alpha, lora[hada_w2_a_name], lora[hada_w2_b_name], hada_t1, hada_t2, dora_scale)
weights = (
lora[hada_w1_a_name],
lora[hada_w1_b_name],
alpha,
lora[hada_w2_a_name],
lora[hada_w2_b_name],
hada_t1,
hada_t2,
dora_scale,
)
loaded_keys.add(hada_w1_a_name)
loaded_keys.add(hada_w1_b_name)
loaded_keys.add(hada_w2_a_name)
@@ -203,30 +231,148 @@ class LoHaAdapter(WeightAdapterBase):
w2a = v[3]
w2b = v[4]
dora_scale = v[7]
if v[5] is not None: #cp decomposition
if v[5] is not None: # cp decomposition
t1 = v[5]
t2 = v[6]
m1 = torch.einsum('i j k l, j r, i p -> p r k l',
comfy.model_management.cast_to_device(t1, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w1b, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w1a, weight.device, intermediate_dtype))
m1 = torch.einsum(
"i j k l, j r, i p -> p r k l",
comfy.model_management.cast_to_device(
t1, weight.device, intermediate_dtype
),
comfy.model_management.cast_to_device(
w1b, weight.device, intermediate_dtype
),
comfy.model_management.cast_to_device(
w1a, weight.device, intermediate_dtype
),
)
m2 = torch.einsum('i j k l, j r, i p -> p r k l',
comfy.model_management.cast_to_device(t2, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w2b, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w2a, weight.device, intermediate_dtype))
m2 = torch.einsum(
"i j k l, j r, i p -> p r k l",
comfy.model_management.cast_to_device(
t2, weight.device, intermediate_dtype
),
comfy.model_management.cast_to_device(
w2b, weight.device, intermediate_dtype
),
comfy.model_management.cast_to_device(
w2a, weight.device, intermediate_dtype
),
)
else:
m1 = torch.mm(comfy.model_management.cast_to_device(w1a, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w1b, weight.device, intermediate_dtype))
m2 = torch.mm(comfy.model_management.cast_to_device(w2a, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w2b, weight.device, intermediate_dtype))
m1 = torch.mm(
comfy.model_management.cast_to_device(
w1a, weight.device, intermediate_dtype
),
comfy.model_management.cast_to_device(
w1b, weight.device, intermediate_dtype
),
)
m2 = torch.mm(
comfy.model_management.cast_to_device(
w2a, weight.device, intermediate_dtype
),
comfy.model_management.cast_to_device(
w2b, weight.device, intermediate_dtype
),
)
try:
lora_diff = (m1 * m2).reshape(weight.shape)
if dora_scale is not None:
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
weight = weight_decompose(
dora_scale,
weight,
lora_diff,
alpha,
strength,
intermediate_dtype,
function,
)
else:
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
except Exception as e:
logging.error("ERROR {} {} {}".format(self.name, key, e))
return weight
def h(self, x: torch.Tensor, base_out: torch.Tensor) -> torch.Tensor:
"""
Additive bypass component for LoHa: h(x) = diff_weight @ x
WARNING: Inefficient - computes full Hadamard product each forward.
Note:
Does not access original model weights - bypass mode is designed
for quantized models where weights may not be accessible.
Args:
x: Input tensor
base_out: Output from base forward (unused, for API consistency)
Reference: LyCORIS functional/loha.py bypass_forward_diff
"""
_warn_loha_bypass_inefficient()
# FUNC_LIST: [None, None, F.linear, F.conv1d, F.conv2d, F.conv3d]
FUNC_LIST = [None, None, F.linear, F.conv1d, F.conv2d, F.conv3d]
v = self.weights
# v[0]=w1a, v[1]=w1b, v[2]=alpha, v[3]=w2a, v[4]=w2b, v[5]=t1, v[6]=t2, v[7]=dora
w1a = v[0]
w1b = v[1]
alpha = v[2]
w2a = v[3]
w2b = v[4]
t1 = v[5]
t2 = v[6]
# Compute scale
rank = w1b.shape[0]
scale = (alpha / rank if alpha is not None else 1.0) * getattr(
self, "multiplier", 1.0
)
# Cast dtype
w1a = w1a.to(dtype=x.dtype)
w1b = w1b.to(dtype=x.dtype)
w2a = w2a.to(dtype=x.dtype)
w2b = w2b.to(dtype=x.dtype)
# Use module info from bypass injection, not weight dimension
is_conv = getattr(self, "is_conv", False)
conv_dim = getattr(self, "conv_dim", 0)
kw_dict = getattr(self, "kw_dict", {})
# Compute diff weight using Hadamard product
if t1 is not None and t2 is not None:
t1 = t1.to(dtype=x.dtype)
t2 = t2.to(dtype=x.dtype)
m1 = torch.einsum("i j k l, j r, i p -> p r k l", t1, w1b, w1a)
m2 = torch.einsum("i j k l, j r, i p -> p r k l", t2, w2b, w2a)
diff_weight = (m1 * m2) * scale
else:
m1 = w1a @ w1b
m2 = w2a @ w2b
diff_weight = (m1 * m2) * scale
if is_conv:
op = FUNC_LIST[conv_dim + 2]
kernel_size = getattr(self, "kernel_size", (1,) * conv_dim)
in_channels = getattr(self, "in_channels", None)
# Reshape 2D diff_weight to conv format using kernel_size
# diff_weight: [out_channels, in_channels * prod(kernel_size)] -> [out_channels, in_channels, *kernel_size]
if diff_weight.dim() == 2:
if in_channels is not None:
diff_weight = diff_weight.view(
diff_weight.shape[0], in_channels, *kernel_size
)
else:
diff_weight = diff_weight.view(
*diff_weight.shape, *([1] * conv_dim)
)
else:
op = F.linear
kw_dict = {}
return op(x, diff_weight, **kw_dict)

View File

@@ -2,6 +2,7 @@ import logging
from typing import Optional
import torch
import torch.nn.functional as F
import comfy.model_management
from .base import (
WeightAdapterBase,
@@ -14,7 +15,17 @@ from .base import (
class LokrDiff(WeightAdapterTrainBase):
def __init__(self, weights):
super().__init__()
(lokr_w1, lokr_w2, alpha, lokr_w1_a, lokr_w1_b, lokr_w2_a, lokr_w2_b, lokr_t2, dora_scale) = weights
(
lokr_w1,
lokr_w2,
alpha,
lokr_w1_a,
lokr_w1_b,
lokr_w2_a,
lokr_w2_b,
lokr_t2,
dora_scale,
) = weights
self.use_tucker = False
if lokr_w1_a is not None:
_, rank_a = lokr_w1_a.shape[0], lokr_w1_a.shape[1]
@@ -57,10 +68,10 @@ class LokrDiff(WeightAdapterTrainBase):
if self.w2_rebuild:
if self.use_tucker:
w2 = torch.einsum(
'i j k l, j r, i p -> p r k l',
"i j k l, j r, i p -> p r k l",
self.lokr_t2,
self.lokr_w2_b,
self.lokr_w2_a
self.lokr_w2_a,
)
else:
w2 = self.lokr_w2_a @ self.lokr_w2_b
@@ -69,9 +80,89 @@ class LokrDiff(WeightAdapterTrainBase):
return self.lokr_w2
def __call__(self, w):
diff = torch.kron(self.w1, self.w2)
w1 = self.w1
w2 = self.w2
# Unsqueeze w1 to match w2 dims for proper kron product (like LyCORIS make_kron)
for _ in range(w2.dim() - w1.dim()):
w1 = w1.unsqueeze(-1)
diff = torch.kron(w1, w2)
return w + diff.reshape(w.shape).to(w)
def h(self, x: torch.Tensor, base_out: torch.Tensor) -> torch.Tensor:
"""
Additive bypass component for LoKr training: efficient Kronecker product.
Uses w1/w2 properties which handle both direct and decomposed cases.
For create_train (direct w1/w2), no alpha scaling in properties.
For to_train (decomposed), alpha/rank scaling is in properties.
Args:
x: Input tensor
base_out: Output from base forward (unused, for API consistency)
"""
# Get w1, w2 from properties (handles rebuild vs direct)
w1 = self.w1
w2 = self.w2
# Multiplier from bypass injection
multiplier = getattr(self, "multiplier", 1.0)
# Get module info from bypass injection
is_conv = getattr(self, "is_conv", False)
conv_dim = getattr(self, "conv_dim", 0)
kw_dict = getattr(self, "kw_dict", {})
# Efficient Kronecker application without materializing full weight
# kron(w1, w2) @ x can be computed as nested operations
# w1: [out_l, in_m], w2: [out_k, in_n, *k_size]
# Full weight would be [out_l*out_k, in_m*in_n, *k_size]
uq = w1.size(1) # in_m - inner grouping dimension
if is_conv:
conv_fn = (F.conv1d, F.conv2d, F.conv3d)[conv_dim - 1]
B, C_in, *spatial = x.shape
# Reshape input for grouped application: [B * uq, C_in // uq, *spatial]
h_in_group = x.reshape(B * uq, -1, *spatial)
# Ensure w2 has conv dims
if w2.dim() == 2:
w2 = w2.view(*w2.shape, *([1] * conv_dim))
# Apply w2 path with stride/padding
hb = conv_fn(h_in_group, w2, **kw_dict)
# Reshape for cross-group operation
hb = hb.view(B, -1, *hb.shape[1:])
h_cross = hb.transpose(1, -1)
# Apply w1 (always 2D, applied as linear on channel dim)
hc = F.linear(h_cross, w1)
hc = hc.transpose(1, -1)
# Reshape to output
out = hc.reshape(B, -1, *hc.shape[3:])
else:
# Linear case
# Reshape input: [..., in_m * in_n] -> [..., uq (in_m), in_n]
h_in_group = x.reshape(*x.shape[:-1], uq, -1)
# Apply w2: [..., uq, in_n] @ [out_k, in_n].T -> [..., uq, out_k]
hb = F.linear(h_in_group, w2)
# Transpose for w1: [..., uq, out_k] -> [..., out_k, uq]
h_cross = hb.transpose(-1, -2)
# Apply w1: [..., out_k, uq] @ [out_l, uq].T -> [..., out_k, out_l]
hc = F.linear(h_cross, w1)
# Transpose back and flatten: [..., out_k, out_l] -> [..., out_l * out_k]
hc = hc.transpose(-1, -2)
out = hc.reshape(*hc.shape[:-2], -1)
return out * multiplier
def passive_memory_usage(self):
return sum(param.numel() * param.element_size() for param in self.parameters())
@@ -86,16 +177,22 @@ class LoKrAdapter(WeightAdapterBase):
@classmethod
def create_train(cls, weight, rank=1, alpha=1.0):
out_dim = weight.shape[0]
in_dim = weight.shape[1:].numel()
out1, out2 = factorization(out_dim, rank)
in1, in2 = factorization(in_dim, rank)
mat1 = torch.empty(out1, in1, device=weight.device, dtype=torch.float32)
mat2 = torch.empty(out2, in2, device=weight.device, dtype=torch.float32)
in_dim = weight.shape[1] # Just in_channels, not flattened with kernel
k_size = weight.shape[2:] if weight.dim() > 2 else ()
out_l, out_k = factorization(out_dim, rank)
in_m, in_n = factorization(in_dim, rank)
# w1: [out_l, in_m]
mat1 = torch.empty(out_l, in_m, device=weight.device, dtype=torch.float32)
# w2: [out_k, in_n, *k_size] for conv, [out_k, in_n] for linear
mat2 = torch.empty(
out_k, in_n, *k_size, device=weight.device, dtype=torch.float32
)
torch.nn.init.kaiming_uniform_(mat2, a=5**0.5)
torch.nn.init.constant_(mat1, 0.0)
return LokrDiff(
(mat1, mat2, alpha, None, None, None, None, None, None)
)
return LokrDiff((mat1, mat2, alpha, None, None, None, None, None, None))
def to_train(self):
return LokrDiff(self.weights)
@@ -154,8 +251,23 @@ class LoKrAdapter(WeightAdapterBase):
lokr_t2 = lora[lokr_t2_name]
loaded_keys.add(lokr_t2_name)
if (lokr_w1 is not None) or (lokr_w2 is not None) or (lokr_w1_a is not None) or (lokr_w2_a is not None):
weights = (lokr_w1, lokr_w2, alpha, lokr_w1_a, lokr_w1_b, lokr_w2_a, lokr_w2_b, lokr_t2, dora_scale)
if (
(lokr_w1 is not None)
or (lokr_w2 is not None)
or (lokr_w1_a is not None)
or (lokr_w2_a is not None)
):
weights = (
lokr_w1,
lokr_w2,
alpha,
lokr_w1_a,
lokr_w1_b,
lokr_w2_a,
lokr_w2_b,
lokr_t2,
dora_scale,
)
return cls(loaded_keys, weights)
else:
return None
@@ -184,23 +296,47 @@ class LoKrAdapter(WeightAdapterBase):
if w1 is None:
dim = w1_b.shape[0]
w1 = torch.mm(comfy.model_management.cast_to_device(w1_a, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w1_b, weight.device, intermediate_dtype))
w1 = torch.mm(
comfy.model_management.cast_to_device(
w1_a, weight.device, intermediate_dtype
),
comfy.model_management.cast_to_device(
w1_b, weight.device, intermediate_dtype
),
)
else:
w1 = comfy.model_management.cast_to_device(w1, weight.device, intermediate_dtype)
w1 = comfy.model_management.cast_to_device(
w1, weight.device, intermediate_dtype
)
if w2 is None:
dim = w2_b.shape[0]
if t2 is None:
w2 = torch.mm(comfy.model_management.cast_to_device(w2_a, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w2_b, weight.device, intermediate_dtype))
w2 = torch.mm(
comfy.model_management.cast_to_device(
w2_a, weight.device, intermediate_dtype
),
comfy.model_management.cast_to_device(
w2_b, weight.device, intermediate_dtype
),
)
else:
w2 = torch.einsum('i j k l, j r, i p -> p r k l',
comfy.model_management.cast_to_device(t2, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w2_b, weight.device, intermediate_dtype),
comfy.model_management.cast_to_device(w2_a, weight.device, intermediate_dtype))
w2 = torch.einsum(
"i j k l, j r, i p -> p r k l",
comfy.model_management.cast_to_device(
t2, weight.device, intermediate_dtype
),
comfy.model_management.cast_to_device(
w2_b, weight.device, intermediate_dtype
),
comfy.model_management.cast_to_device(
w2_a, weight.device, intermediate_dtype
),
)
else:
w2 = comfy.model_management.cast_to_device(w2, weight.device, intermediate_dtype)
w2 = comfy.model_management.cast_to_device(
w2, weight.device, intermediate_dtype
)
if len(w2.shape) == 4:
w1 = w1.unsqueeze(2).unsqueeze(2)
@@ -212,9 +348,134 @@ class LoKrAdapter(WeightAdapterBase):
try:
lora_diff = torch.kron(w1, w2).reshape(weight.shape)
if dora_scale is not None:
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
weight = weight_decompose(
dora_scale,
weight,
lora_diff,
alpha,
strength,
intermediate_dtype,
function,
)
else:
weight += function(((strength * alpha) * lora_diff).type(weight.dtype))
except Exception as e:
logging.error("ERROR {} {} {}".format(self.name, key, e))
return weight
def h(self, x: torch.Tensor, base_out: torch.Tensor) -> torch.Tensor:
"""
Additive bypass component for LoKr: efficient Kronecker product application.
Note:
Does not access original model weights - bypass mode is designed
for quantized models where weights may not be accessible.
Args:
x: Input tensor
base_out: Output from base forward (unused, for API consistency)
Reference: LyCORIS functional/lokr.py bypass_forward_diff
"""
# FUNC_LIST: [None, None, F.linear, F.conv1d, F.conv2d, F.conv3d]
FUNC_LIST = [None, None, F.linear, F.conv1d, F.conv2d, F.conv3d]
v = self.weights
# v[0]=w1, v[1]=w2, v[2]=alpha, v[3]=w1_a, v[4]=w1_b, v[5]=w2_a, v[6]=w2_b, v[7]=t2, v[8]=dora
w1 = v[0]
w2 = v[1]
alpha = v[2]
w1_a = v[3]
w1_b = v[4]
w2_a = v[5]
w2_b = v[6]
t2 = v[7]
use_w1 = w1 is not None
use_w2 = w2 is not None
tucker = t2 is not None
# Use module info from bypass injection, not weight dimension
is_conv = getattr(self, "is_conv", False)
conv_dim = getattr(self, "conv_dim", 0)
kw_dict = getattr(self, "kw_dict", {}) if is_conv else {}
if is_conv:
op = FUNC_LIST[conv_dim + 2]
else:
op = F.linear
# Determine rank and scale
rank = w1_b.size(0) if not use_w1 else w2_b.size(0) if not use_w2 else alpha
scale = (alpha / rank if alpha is not None else 1.0) * getattr(
self, "multiplier", 1.0
)
# Build c (w1)
if use_w1:
c = w1.to(dtype=x.dtype)
else:
c = w1_a.to(dtype=x.dtype) @ w1_b.to(dtype=x.dtype)
uq = c.size(1)
# Build w2 components
if use_w2:
ba = w2.to(dtype=x.dtype)
else:
a = w2_b.to(dtype=x.dtype)
b = w2_a.to(dtype=x.dtype)
if is_conv:
if tucker:
# Tucker: a, b get 1s appended (kernel is in t2)
if a.dim() == 2:
a = a.view(*a.shape, *([1] * conv_dim))
if b.dim() == 2:
b = b.view(*b.shape, *([1] * conv_dim))
else:
# Non-tucker conv: b may need 1s appended
if b.dim() == 2:
b = b.view(*b.shape, *([1] * conv_dim))
# Reshape input by uq groups
if is_conv:
B, _, *rest = x.shape
h_in_group = x.reshape(B * uq, -1, *rest)
else:
h_in_group = x.reshape(*x.shape[:-1], uq, -1)
# Apply w2 path
if use_w2:
hb = op(h_in_group, ba, **kw_dict)
else:
if is_conv:
if tucker:
t = t2.to(dtype=x.dtype)
if t.dim() == 2:
t = t.view(*t.shape, *([1] * conv_dim))
ha = op(h_in_group, a)
ht = op(ha, t, **kw_dict)
hb = op(ht, b)
else:
ha = op(h_in_group, a, **kw_dict)
hb = op(ha, b)
else:
ha = op(h_in_group, a)
hb = op(ha, b)
# Reshape and apply c (w1)
if is_conv:
hb = hb.view(B, -1, *hb.shape[1:])
h_cross_group = hb.transpose(1, -1)
else:
h_cross_group = hb.transpose(-1, -2)
hc = F.linear(h_cross_group, c)
if is_conv:
hc = hc.transpose(1, -1)
out = hc.reshape(B, -1, *hc.shape[3:])
else:
hc = hc.transpose(-1, -2)
out = hc.reshape(*hc.shape[:-2], -1)
return out * scale

View File

@@ -2,6 +2,7 @@ import logging
from typing import Optional
import torch
import torch.nn.functional as F
import comfy.model_management
from .base import (
WeightAdapterBase,
@@ -20,11 +21,7 @@ class LoraDiff(WeightAdapterTrainBase):
rank, in_dim = mat2.shape[0], mat2.shape[1]
if mid is not None:
convdim = mid.ndim - 2
layer = (
torch.nn.Conv1d,
torch.nn.Conv2d,
torch.nn.Conv3d
)[convdim]
layer = (torch.nn.Conv1d, torch.nn.Conv2d, torch.nn.Conv3d)[convdim]
else:
layer = torch.nn.Linear
self.lora_up = layer(rank, out_dim, bias=False)
@@ -51,6 +48,78 @@ class LoraDiff(WeightAdapterTrainBase):
weight = w + scale * diff.reshape(w.shape)
return weight.to(org_dtype)
def h(self, x: torch.Tensor, base_out: torch.Tensor) -> torch.Tensor:
"""
Additive bypass component for LoRA training: h(x) = up(down(x)) * scale
Simple implementation using the nn.Module weights directly.
No mid/dora/reshape branches (create_train doesn't create them).
Args:
x: Input tensor
base_out: Output from base forward (unused, for API consistency)
"""
# Compute scale = alpha / rank * multiplier
scale = (self.alpha / self.rank) * getattr(self, "multiplier", 1.0)
# Get module info from bypass injection
is_conv = getattr(self, "is_conv", False)
conv_dim = getattr(self, "conv_dim", 0)
kw_dict = getattr(self, "kw_dict", {})
# Get weights (keep in original dtype for numerical stability)
down_weight = self.lora_down.weight
up_weight = self.lora_up.weight
if is_conv:
# Conv path: use functional conv
# conv_dim: 1=conv1d, 2=conv2d, 3=conv3d
conv_fn = (F.conv1d, F.conv2d, F.conv3d)[conv_dim - 1]
# Reshape 2D weights to conv format if needed
# down: [rank, in_features] -> [rank, in_channels, *kernel_size]
# up: [out_features, rank] -> [out_features, rank, 1, 1, ...]
if down_weight.dim() == 2:
kernel_size = getattr(self, "kernel_size", (1,) * conv_dim)
in_channels = getattr(self, "in_channels", None)
if in_channels is not None:
down_weight = down_weight.view(
down_weight.shape[0], in_channels, *kernel_size
)
else:
# Fallback: assume 1x1 kernel
down_weight = down_weight.view(
*down_weight.shape, *([1] * conv_dim)
)
if up_weight.dim() == 2:
# up always uses 1x1 kernel
up_weight = up_weight.view(*up_weight.shape, *([1] * conv_dim))
# down conv uses stride/padding from module, up is 1x1
hidden = conv_fn(x, down_weight, **kw_dict)
# mid layer if exists (tucker decomposition)
if self.lora_mid is not None:
mid_weight = self.lora_mid.weight
if mid_weight.dim() == 2:
mid_weight = mid_weight.view(*mid_weight.shape, *([1] * conv_dim))
hidden = conv_fn(hidden, mid_weight)
# up conv is always 1x1 (no stride/padding)
out = conv_fn(hidden, up_weight)
else:
# Linear path: simple matmul chain
hidden = F.linear(x, down_weight)
# mid layer if exists
if self.lora_mid is not None:
mid_weight = self.lora_mid.weight
hidden = F.linear(hidden, mid_weight)
out = F.linear(hidden, up_weight)
return out * scale
def passive_memory_usage(self):
return sum(param.numel() * param.element_size() for param in self.parameters())
@@ -70,9 +139,7 @@ class LoRAAdapter(WeightAdapterBase):
mat2 = torch.empty(rank, in_dim, device=weight.device, dtype=torch.float32)
torch.nn.init.kaiming_uniform_(mat1, a=5**0.5)
torch.nn.init.constant_(mat2, 0.0)
return LoraDiff(
(mat1, mat2, alpha, None, None, None)
)
return LoraDiff((mat1, mat2, alpha, None, None, None))
def to_train(self):
return LoraDiff(self.weights)
@@ -210,3 +277,85 @@ class LoRAAdapter(WeightAdapterBase):
except Exception as e:
logging.error("ERROR {} {} {}".format(self.name, key, e))
return weight
def h(self, x: torch.Tensor, base_out: torch.Tensor) -> torch.Tensor:
"""
Additive bypass component for LoRA: h(x) = up(down(x)) * scale
Note:
Does not access original model weights - bypass mode is designed
for quantized models where weights may not be accessible.
Args:
x: Input tensor
base_out: Output from base forward (unused, for API consistency)
Reference: LyCORIS functional/locon.py bypass_forward_diff
"""
# FUNC_LIST: [None, None, F.linear, F.conv1d, F.conv2d, F.conv3d]
FUNC_LIST = [None, None, F.linear, F.conv1d, F.conv2d, F.conv3d]
v = self.weights
# v[0]=up, v[1]=down, v[2]=alpha, v[3]=mid, v[4]=dora_scale, v[5]=reshape
up = v[0]
down = v[1]
alpha = v[2]
mid = v[3]
# Compute scale = alpha / rank
rank = down.shape[0]
if alpha is not None:
scale = alpha / rank
else:
scale = 1.0
scale = scale * getattr(self, "multiplier", 1.0)
# Cast dtype
up = up.to(dtype=x.dtype)
down = down.to(dtype=x.dtype)
# Use module info from bypass injection, not weight dimension
is_conv = getattr(self, "is_conv", False)
conv_dim = getattr(self, "conv_dim", 0)
kw_dict = getattr(self, "kw_dict", {})
if is_conv:
op = FUNC_LIST[
conv_dim + 2
] # conv_dim 1->conv1d(3), 2->conv2d(4), 3->conv3d(5)
kernel_size = getattr(self, "kernel_size", (1,) * conv_dim)
in_channels = getattr(self, "in_channels", None)
# Reshape 2D weights to conv format using kernel_size
# down: [rank, in_channels * prod(kernel_size)] -> [rank, in_channels, *kernel_size]
# up: [out_channels, rank] -> [out_channels, rank, 1, 1, ...] (1x1 kernel)
if down.dim() == 2:
# down.shape[1] = in_channels * prod(kernel_size)
if in_channels is not None:
down = down.view(down.shape[0], in_channels, *kernel_size)
else:
# Fallback: assume 1x1 kernel if in_channels unknown
down = down.view(*down.shape, *([1] * conv_dim))
if up.dim() == 2:
# up always uses 1x1 kernel
up = up.view(*up.shape, *([1] * conv_dim))
if mid is not None:
mid = mid.to(dtype=x.dtype)
if mid.dim() == 2:
mid = mid.view(*mid.shape, *([1] * conv_dim))
else:
op = F.linear
kw_dict = {} # linear doesn't take stride/padding
# Simple chain: down -> mid (if tucker) -> up
if mid is not None:
if not is_conv:
mid = mid.to(dtype=x.dtype)
hidden = op(x, down)
hidden = op(hidden, mid, **kw_dict)
out = op(hidden, up)
else:
hidden = op(x, down, **kw_dict)
out = op(hidden, up)
return out * scale

View File

@@ -3,13 +3,18 @@ from typing import Optional
import torch
import comfy.model_management
from .base import WeightAdapterBase, WeightAdapterTrainBase, weight_decompose, factorization
from .base import (
WeightAdapterBase,
WeightAdapterTrainBase,
weight_decompose,
factorization,
)
class OFTDiff(WeightAdapterTrainBase):
def __init__(self, weights):
super().__init__()
# Unpack weights tuple from LoHaAdapter
# Unpack weights tuple from OFTAdapter
blocks, rescale, alpha, _ = weights
# Create trainable parameters
@@ -52,6 +57,78 @@ class OFTDiff(WeightAdapterTrainBase):
weight = self.rescale * weight
return weight.to(org_dtype)
def _get_orthogonal_matrix(self, device, dtype):
"""Compute the orthogonal rotation matrix R from OFT blocks."""
blocks = self.oft_blocks.to(device=device, dtype=dtype)
I = torch.eye(self.block_size, device=device, dtype=dtype)
# Q = blocks - blocks^T (skew-symmetric)
q = blocks - blocks.transpose(1, 2)
normed_q = q
# Apply constraint if set
if self.constraint:
q_norm = torch.norm(q) + 1e-8
if q_norm > self.constraint:
normed_q = q * self.constraint / q_norm
# Cayley transform: R = (I + Q)(I - Q)^-1
r = (I + normed_q) @ (I - normed_q).float().inverse()
return r.to(dtype)
def h(self, x: torch.Tensor, base_out: torch.Tensor) -> torch.Tensor:
"""
OFT has no additive component - returns zeros matching base_out shape.
OFT only transforms the output via g(), it doesn't add to it.
"""
return torch.zeros_like(base_out)
def g(self, y: torch.Tensor) -> torch.Tensor:
"""
Output transformation for OFT: applies orthogonal rotation.
OFT transforms output channels using block-diagonal orthogonal matrices.
"""
r = self._get_orthogonal_matrix(y.device, y.dtype)
# Apply multiplier to interpolate between identity and full transform
multiplier = getattr(self, "multiplier", 1.0)
I = torch.eye(self.block_size, device=y.device, dtype=y.dtype)
r = r * multiplier + (1 - multiplier) * I
# Use module info from bypass injection
is_conv = getattr(self, "is_conv", y.dim() > 2)
if is_conv:
# Conv output: (N, C, H, W, ...) -> transpose to (N, H, W, ..., C)
y = y.transpose(1, -1)
# y now has channels in last dim
*batch_shape, out_features = y.shape
# Reshape to apply block-diagonal transform
# (*, out_features) -> (*, block_num, block_size)
y_blocked = y.reshape(*batch_shape, self.block_num, self.block_size)
# Apply orthogonal transform: R @ y for each block
# r: (block_num, block_size, block_size), y_blocked: (*, block_num, block_size)
out_blocked = torch.einsum("k n m, ... k n -> ... k m", r, y_blocked)
# Reshape back: (*, block_num, block_size) -> (*, out_features)
out = out_blocked.reshape(*batch_shape, out_features)
# Apply rescale if present
if self.rescaled:
rescale = self.rescale.to(device=y.device, dtype=y.dtype)
out = out * rescale.view(-1)
if is_conv:
# Transpose back: (N, H, W, ..., C) -> (N, C, H, W, ...)
out = out.transpose(1, -1)
return out
def passive_memory_usage(self):
"""Calculates memory usage of the trainable parameters."""
return sum(param.numel() * param.element_size() for param in self.parameters())
@@ -68,10 +145,10 @@ class OFTAdapter(WeightAdapterBase):
def create_train(cls, weight, rank=1, alpha=1.0):
out_dim = weight.shape[0]
block_size, block_num = factorization(out_dim, rank)
block = torch.zeros(block_num, block_size, block_size, device=weight.device, dtype=torch.float32)
return OFTDiff(
(block, None, alpha, None)
block = torch.zeros(
block_num, block_size, block_size, device=weight.device, dtype=torch.float32
)
return OFTDiff((block, None, alpha, None))
def to_train(self):
return OFTDiff(self.weights)
@@ -127,9 +204,13 @@ class OFTAdapter(WeightAdapterBase):
alpha = 0
dora_scale = v[3]
blocks = comfy.model_management.cast_to_device(blocks, weight.device, intermediate_dtype)
blocks = comfy.model_management.cast_to_device(
blocks, weight.device, intermediate_dtype
)
if rescale is not None:
rescale = comfy.model_management.cast_to_device(rescale, weight.device, intermediate_dtype)
rescale = comfy.model_management.cast_to_device(
rescale, weight.device, intermediate_dtype
)
block_num, block_size, *_ = blocks.shape
@@ -139,23 +220,108 @@ class OFTAdapter(WeightAdapterBase):
# for Q = -Q^T
q = blocks - blocks.transpose(1, 2)
normed_q = q
if alpha > 0: # alpha in oft/boft is for constraint
if alpha > 0: # alpha in oft/boft is for constraint
q_norm = torch.norm(q) + 1e-8
if q_norm > alpha:
normed_q = q * alpha / q_norm
# use float() to prevent unsupported type in .inverse()
r = (I + normed_q) @ (I - normed_q).float().inverse()
r = r.to(weight)
# Create I in weight's dtype for the einsum
I_w = torch.eye(block_size, device=weight.device, dtype=weight.dtype)
_, *shape = weight.shape
lora_diff = torch.einsum(
"k n m, k n ... -> k m ...",
(r * strength) - strength * I,
(r * strength) - strength * I_w,
weight.view(block_num, block_size, *shape),
).view(-1, *shape)
if dora_scale is not None:
weight = weight_decompose(dora_scale, weight, lora_diff, alpha, strength, intermediate_dtype, function)
weight = weight_decompose(
dora_scale,
weight,
lora_diff,
alpha,
strength,
intermediate_dtype,
function,
)
else:
weight += function((strength * lora_diff).type(weight.dtype))
except Exception as e:
logging.error("ERROR {} {} {}".format(self.name, key, e))
return weight
def _get_orthogonal_matrix(self, device, dtype):
"""Compute the orthogonal rotation matrix R from OFT blocks."""
v = self.weights
blocks = v[0].to(device=device, dtype=dtype)
alpha = v[2]
if alpha is None:
alpha = 0
block_num, block_size, _ = blocks.shape
I = torch.eye(block_size, device=device, dtype=dtype)
# Q = blocks - blocks^T (skew-symmetric)
q = blocks - blocks.transpose(1, 2)
normed_q = q
# Apply constraint if alpha > 0
if alpha > 0:
q_norm = torch.norm(q) + 1e-8
if q_norm > alpha:
normed_q = q * alpha / q_norm
# Cayley transform: R = (I + Q)(I - Q)^-1
r = (I + normed_q) @ (I - normed_q).float().inverse()
return r, block_num, block_size
def g(self, y: torch.Tensor) -> torch.Tensor:
"""
Output transformation for OFT: applies orthogonal rotation to output.
OFT transforms the output channels using block-diagonal orthogonal matrices.
Reference: LyCORIS DiagOFTModule._bypass_forward
"""
v = self.weights
rescale = v[1]
r, block_num, block_size = self._get_orthogonal_matrix(y.device, y.dtype)
# Apply multiplier to interpolate between identity and full transform
multiplier = getattr(self, "multiplier", 1.0)
I = torch.eye(block_size, device=y.device, dtype=y.dtype)
r = r * multiplier + (1 - multiplier) * I
# Use module info from bypass injection to determine conv vs linear
is_conv = getattr(self, "is_conv", y.dim() > 2)
if is_conv:
# Conv output: (N, C, H, W, ...) -> transpose to (N, H, W, ..., C)
y = y.transpose(1, -1)
# y now has channels in last dim
*batch_shape, out_features = y.shape
# Reshape to apply block-diagonal transform
# (*, out_features) -> (*, block_num, block_size)
y_blocked = y.view(*batch_shape, block_num, block_size)
# Apply orthogonal transform: R @ y for each block
# r: (block_num, block_size, block_size), y_blocked: (*, block_num, block_size)
out_blocked = torch.einsum("k n m, ... k n -> ... k m", r, y_blocked)
# Reshape back: (*, block_num, block_size) -> (*, out_features)
out = out_blocked.view(*batch_shape, out_features)
# Apply rescale if present
if rescale is not None:
rescale = rescale.to(device=y.device, dtype=y.dtype)
out = out * rescale.view(-1)
if is_conv:
# Transpose back: (N, H, W, ..., C) -> (N, C, H, W, ...)
out = out.transpose(1, -1)
return out

52
comfy/windows.py Normal file
View File

@@ -0,0 +1,52 @@
import ctypes
import logging
import psutil
from ctypes import wintypes
import comfy_aimdo.control
psapi = ctypes.WinDLL("psapi")
kernel32 = ctypes.WinDLL("kernel32")
class PERFORMANCE_INFORMATION(ctypes.Structure):
_fields_ = [
("cb", wintypes.DWORD),
("CommitTotal", ctypes.c_size_t),
("CommitLimit", ctypes.c_size_t),
("CommitPeak", ctypes.c_size_t),
("PhysicalTotal", ctypes.c_size_t),
("PhysicalAvailable", ctypes.c_size_t),
("SystemCache", ctypes.c_size_t),
("KernelTotal", ctypes.c_size_t),
("KernelPaged", ctypes.c_size_t),
("KernelNonpaged", ctypes.c_size_t),
("PageSize", ctypes.c_size_t),
("HandleCount", wintypes.DWORD),
("ProcessCount", wintypes.DWORD),
("ThreadCount", wintypes.DWORD),
]
def get_free_ram():
#Windows is way too conservative and chalks recently used uncommitted model RAM
#as "in-use". So, calculate free RAM for the sake of general use as the greater of:
#
#1: What psutil says
#2: Total Memory - (Committed Memory - VRAM in use)
#
#We have to subtract VRAM in use from the comitted memory as WDDM creates a naked
#commit charge for all VRAM used just incase it wants to page it all out. This just
#isn't realistic so "overcommit" on our calculations by just subtracting it off.
pi = PERFORMANCE_INFORMATION()
pi.cb = ctypes.sizeof(pi)
if not psapi.GetPerformanceInfo(ctypes.byref(pi), pi.cb):
logging.warning("WARNING: Failed to query windows performance info. RAM usage may be sub optimal")
return psutil.virtual_memory().available
committed = pi.CommitTotal * pi.PageSize
total = pi.PhysicalTotal * pi.PageSize
return max(psutil.virtual_memory().available,
total - (committed - comfy_aimdo.control.get_total_vram_usage()))

View File

@@ -7,10 +7,9 @@ from comfy_api.internal.singleton import ProxiedSingleton
from comfy_api.internal.async_to_sync import create_sync_class
from ._input import ImageInput, AudioInput, MaskInput, LatentInput, VideoInput
from ._input_impl import VideoFromFile, VideoFromComponents
from ._util import VideoCodec, VideoContainer, VideoComponents, MESH, VOXEL
from ._util import VideoCodec, VideoContainer, VideoComponents, MESH, VOXEL, File3D
from . import _io_public as io
from . import _ui_public as ui
from . import _node_replace_public as node_replace
from comfy_execution.utils import get_executing_context
from comfy_execution.progress import get_progress_state, PreviewImageTuple
from PIL import Image
@@ -106,6 +105,7 @@ class Types:
VideoComponents = VideoComponents
MESH = MESH
VOXEL = VOXEL
File3D = File3D
ComfyAPI = ComfyAPI_latest
@@ -131,5 +131,4 @@ __all__ = [
"IO",
"ui",
"UI",
"node_replace",
]

View File

@@ -34,6 +34,21 @@ class VideoInput(ABC):
"""
pass
@abstractmethod
def as_trimmed(
self,
start_time: float | None = None,
duration: float | None = None,
strict_duration: bool = False,
) -> VideoInput | None:
"""
Create a new VideoInput which is trimmed to have the corresponding start_time and duration
Returns:
A new VideoInput, or None if the result would have negative duration
"""
pass
def get_stream_source(self) -> Union[str, io.BytesIO]:
"""
Get a streamable source for the video. This allows processing without

Some files were not shown because too many files have changed in this diff Show More