* Add ability to merge up+gate exps to more models
* We need to of course pass the merged tensor to build_ffn
* All the others
* Also Qwen3VL-MoE
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* WIP - not working
* WIP - not working
* WIP - GPT-OSS working
However, extremely stupid. The only way I could correctly repack the
up/gate experts is to copy up and gate into host buffers, repack
into another host buffer, copy back into the ffn_up_gate_exps tensor.
This is going to be very slow for giant 500 GB models.
My attempts to do this via a compute graph on the backend holding
the tensors was unsuccessful.
For GPT-OSS-20B I see ~6-7% better PP when using the original
ik_llama.cpp fused_up_gate CUDA implementation, and ~10% when
using the small batch size implementation.
Other models are not working yet on CUDA as I need to fix the
fused mul-unary implementation.
* WIP
* WIP - Qwen3-MoE (and hopefully all others) working
But when I say here and in the previous commit "working",
I mean PP is working. TG is still broken.
* WIP: TG seems to be working
* Minor
* Add command line option to merge experts up/gate
* Add merge up/gate command line parameter to llama-bench
* Turn off merge_up_gate_exps if split mode graph
It is not yet implemented
* When no bias, allow merging up/gate with tensor overrides
* Arghh, we need to increase the context size again
* Cleanup
* server: improve speed of speculative decoding
change logs
rpc: add recompute
spec dec fix
* Fix n_batch_size not set to context size for draft model
---------
Co-authored-by: firecoperana <firecoperana>
* Better VRAM utilization strategy for split mode graph
* Fix assert when --max-gpu is less than available GPUs
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* Mimo-2 support
* Fix bug for head sizes not being the same
It still does not solve the Mimo-2 quantized cache issue.
* Fix quantized cache
* Minor
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* WIP: absorb adding input into std_attn and std_ffn
* WIP: NCCL infra
* WIP: add reduce and fake_cpy ops
* WIP
* WIP: graph appears to work, layer is broken
* WIP: Qwen3-MoE works with graph, layer still broken
* WIP: GLM-4.5 graph works
* WIP: fix sm layer (dense)
* WIP: fix sm layer (MoE)
* WIP: fast PP with bespoke 4-GPU NCCL
I guess, I'm not using NCCL the right way as PP is very
low with a single communicator group for 3 or more GPUs.
But if I create 4 communicator groups for pairs of GPUs
(0,1, 2,3, 0,2, 1,3) and use that, PP is fast: I'm hitting
1500 t/s for L3-70B on the 4x3090 system, which is
~20% better than the previous sm graph without NCCL.
But that cannot be the solution (I cannot be creating pairwise
communicators and associated logic for every possible number of GPUs).
* WIP: Cohere2
* Explicitely set device
* Bespoke 3-GPU case
* WIP
* Do not repeat get_rows multiple times
* Fix 3 GPUs
* OK, let's leave it in
* Simple async
* This sync seems enough
* Only do async for 4 or more backends
With 2 GPUs (so, 3 backends) not using async is slightly faster
* Scheduler changes
* Use OpenMP if available
Surprisingly (at least to me), this is quite a bit faster than
std::thread and std::barrier. GLM-4.5-AIR with 4 GPUs is now
at 105 t/s at zero context!
* Do not use OpenMP if there are tensor overrides
* Set omp max active levels
* Be more careful with having set the device before using a stream
* Command line option to turn on async. Set to false by defualt for now
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* Adding fused_norm - same idea as fused_rms_norm
* Avoid computing the attention reduce op for cohere2
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* WIP: absorb adding input into std_attn and std_ffn
* WIP: NCCL infra
* WIP: add reduce and fake_cpy ops
* WIP
* WIP: graph appears to work, layer is broken
* WIP: Qwen3-MoE works with graph, layer still broken
* WIP: GLM-4.5 graph works
* WIP: fix sm layer (dense)
* WIP: fix sm layer (MoE)
* WIP: fast PP with bespoke 4-GPU NCCL
I guess, I'm not using NCCL the right way as PP is very
low with a single communicator group for 3 or more GPUs.
But if I create 4 communicator groups for pairs of GPUs
(0,1, 2,3, 0,2, 1,3) and use that, PP is fast: I'm hitting
1500 t/s for L3-70B on the 4x3090 system, which is
~20% better than the previous sm graph without NCCL.
But that cannot be the solution (I cannot be creating pairwise
communicators and associated logic for every possible number of GPUs).
* WIP: Cohere2
* Explicitely set device
* Bespoke 3-GPU case
* WIP
* Do not repeat get_rows multiple times
* Fix 3 GPUs
* OK, let's leave it in
* Implement the reduce op without NCCL available
* Be able to build without NCCL
cmake -DGGML_NCCL=OFF disables it
* Make --max-gpu work again
* Slightly better for 4 GPUs without NCCL
* Cleanup
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>