* Copy reduce result to other GPUs if necessary
* Avoid ggml_get_rows for TG
* For the output ops use the result of the split that ran on the main GPU
* More models
* A hopefully more efficient adaptive_p sampling
* Once at it, lets fix the formatting too
* More formatting
* Hopefully better
* This should be better
* Correctly accumulate adaptive_p sampling time
* AVX2
* A hopefully more efficient adaptive_p sampling
* Once at it, lets fix the formatting too
* More formatting
* Correctly accumulate sampling time for adaptive_p
* adaptive-p sampler: fix zeroed orig_probs bug and refactor
- Fix bug where original probabilities were captured as zero by calculating
them from logits in llama_prep_adaptive_p (new).
- Replace vector with unordered_map to track candidate probabilities,
filtering for relevance via logit delta (16.6f).
- Standardize API naming: llama_<action/verb>_<focus/name/topic>_<extra/info>
- Update function signatures to follow most other samplers.
* resolve merge bug
* adaptive-p: revert reordering function definitions
* Attempt to fix the many GPU issue in split mode graph
* WIP: this seems more stable
Still hanging after a while if I try to use all 7 GPUs
* Reenable OpenMP in scheduler async
Seems solid up to 4 GPUs. It did hang with --max-gpu 6.
* printf cleanup
* Add ability to merge up+gate exps to more models
* We need to of course pass the merged tensor to build_ffn
* All the others
* Also Qwen3VL-MoE
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* WIP - not working
* WIP - not working
* WIP - GPT-OSS working
However, extremely stupid. The only way I could correctly repack the
up/gate experts is to copy up and gate into host buffers, repack
into another host buffer, copy back into the ffn_up_gate_exps tensor.
This is going to be very slow for giant 500 GB models.
My attempts to do this via a compute graph on the backend holding
the tensors was unsuccessful.
For GPT-OSS-20B I see ~6-7% better PP when using the original
ik_llama.cpp fused_up_gate CUDA implementation, and ~10% when
using the small batch size implementation.
Other models are not working yet on CUDA as I need to fix the
fused mul-unary implementation.
* WIP
* WIP - Qwen3-MoE (and hopefully all others) working
But when I say here and in the previous commit "working",
I mean PP is working. TG is still broken.
* WIP: TG seems to be working
* Minor
* Add command line option to merge experts up/gate
* Add merge up/gate command line parameter to llama-bench
* Turn off merge_up_gate_exps if split mode graph
It is not yet implemented
* When no bias, allow merging up/gate with tensor overrides
* Arghh, we need to increase the context size again
* Cleanup
* Better VRAM utilization strategy for split mode graph
* Fix assert when --max-gpu is less than available GPUs
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* Mimo-2 support
* Fix bug for head sizes not being the same
It still does not solve the Mimo-2 quantized cache issue.
* Fix quantized cache
* Minor
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* WIP: absorb adding input into std_attn and std_ffn
* WIP: NCCL infra
* WIP: add reduce and fake_cpy ops
* WIP
* WIP: graph appears to work, layer is broken
* WIP: Qwen3-MoE works with graph, layer still broken
* WIP: GLM-4.5 graph works
* WIP: fix sm layer (dense)
* WIP: fix sm layer (MoE)
* WIP: fast PP with bespoke 4-GPU NCCL
I guess, I'm not using NCCL the right way as PP is very
low with a single communicator group for 3 or more GPUs.
But if I create 4 communicator groups for pairs of GPUs
(0,1, 2,3, 0,2, 1,3) and use that, PP is fast: I'm hitting
1500 t/s for L3-70B on the 4x3090 system, which is
~20% better than the previous sm graph without NCCL.
But that cannot be the solution (I cannot be creating pairwise
communicators and associated logic for every possible number of GPUs).
* WIP: Cohere2
* Explicitely set device
* Bespoke 3-GPU case
* WIP
* Do not repeat get_rows multiple times
* Fix 3 GPUs
* OK, let's leave it in
* Simple async
* This sync seems enough
* Only do async for 4 or more backends
With 2 GPUs (so, 3 backends) not using async is slightly faster
* Scheduler changes
* Use OpenMP if available
Surprisingly (at least to me), this is quite a bit faster than
std::thread and std::barrier. GLM-4.5-AIR with 4 GPUs is now
at 105 t/s at zero context!
* Do not use OpenMP if there are tensor overrides
* Set omp max active levels
* Be more careful with having set the device before using a stream
* Command line option to turn on async. Set to false by defualt for now
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* Adding fused_norm - same idea as fused_rms_norm
* Avoid computing the attention reduce op for cohere2
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* WIP: absorb adding input into std_attn and std_ffn
* WIP: NCCL infra
* WIP: add reduce and fake_cpy ops
* WIP
* WIP: graph appears to work, layer is broken
* WIP: Qwen3-MoE works with graph, layer still broken
* WIP: GLM-4.5 graph works
* WIP: fix sm layer (dense)
* WIP: fix sm layer (MoE)
* WIP: fast PP with bespoke 4-GPU NCCL
I guess, I'm not using NCCL the right way as PP is very
low with a single communicator group for 3 or more GPUs.
But if I create 4 communicator groups for pairs of GPUs
(0,1, 2,3, 0,2, 1,3) and use that, PP is fast: I'm hitting
1500 t/s for L3-70B on the 4x3090 system, which is
~20% better than the previous sm graph without NCCL.
But that cannot be the solution (I cannot be creating pairwise
communicators and associated logic for every possible number of GPUs).
* WIP: Cohere2
* Explicitely set device
* Bespoke 3-GPU case
* WIP
* Do not repeat get_rows multiple times
* Fix 3 GPUs
* OK, let's leave it in
* Implement the reduce op without NCCL available
* Be able to build without NCCL
cmake -DGGML_NCCL=OFF disables it
* Make --max-gpu work again
* Slightly better for 4 GPUs without NCCL
* Cleanup
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Use -smgs or --split-mode-graph-scheduling in CLI to bypass the disabling of split mode graph scheduling when tensor overrides is used.
Co-authored-by: Kawrakow <iwankawrakow@gmail.com>
* This should do the trick for PP
* Command line option to set max. extra VRAM that the scheduler can use
* Fix bug and cleanup
* Looks like with this change it is working with tensor overrides
* Nah, it is not working
* OK, this seems to be working
* Disable split scheduling with tensor overrides
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* This works and TG is descent, but PP is low
* Better
* Apply f_logit_scale before mul mat with output tensor
* This is better for PP: 600 t/s -> 700 t/s
* To not lose this again
* WIP
* Equal split
* WIP
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* Rearrange graph nodes
So that we can do graph portions that are the same on 2 or more
GPUs at the same time.
* Separate graph compute implementation for split mode graph
* This is better
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
Required adding the "temperature scaling" to the standard attention
implementation.
But in this way split mode "graph" is automatically supported.
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* Remove most of split mode row
* WIP
* WIP: also allocate the KV cache using tensor split
* WIP: it runs with wrong result
But it also looks like the backend scheduler is not going to help:
* It copies mask and input positions to GPU 0
* => RoPE ops must run on GPU 0
* => To proceed attn evaluation, GPU 1 must wait for GPU 0 to finish its
entire attn calculation
* Same with FFN. The rms_norm gets scheduled on GPU 0. Hence, GPU 1 must
wait for GPU 0 to finish its entore FFN calculation before it can
start (as it needs to copy the result of rms_norm from GPU 0)
* => Seems useless without writing a bespoke TP scheduling
* WIP
* This works, but it is slow
* This is slightly better
the graph is still not being computed in parallel.
Why? Because the scheduler creates graph splits where the
result of the computation on one GPU becomes an input for the
other split. Hence, to trigger the computation on the second GPU
one needs to wait for the computation on the first GPU to finish,
even thiough the two can be done in parallel up to the sunchronization
point. So, all that is left to do is to trick the scheduler to create
to splits that can be done in parallel, and then have a graph split
where the results get combined.
* Playing games with the scheduler
This change tricks it into doing the right thing^TM.
Still quite a bit slower than split mode layer for the 8B LlaMA model.
But for the 70B LlaMA it now beats split mode layer for TG:
28 t/s vs 24.4 t/s. PP is 627 t/s vs 744 t/s.
In comparison, split mode "row" in mainline gets
484 t/s PP and 19.3 t/s TG.
* Fix attn split
Granularity for Wq, Wo is not just head size, but
head size * gqa_ratio.
Else the Wk, Wv tensors end up not being a multiple of the
head size when we divide the split determined by Wo with
the gqa_ratio.
* Show memory used per device
* Make it work with partial offload
but no tensor overrides yet, just ngl < num_layers.
* Allow for f16 source in fused_rms_norm
* This results in faster PP.
Now PP is faster than split mode layer for L3-70B.
* Rename split mode "row" to split mode "graph"
* Leave FFN partial results as f16
* WIP GLM4.5 - runs with wrong results
* WIP GLM4.5 - this works
PP is already better than split mode layer, but TG for zero context
is kind of low - 60 vs 92 t/s. TG becomes better than split mode layer
at around 20k tokens. PP at 26k tokens is 1.55X of sm layer.
* Work around compiler bug
It issues a warning that there is an extra semicolon outside of a function,
but there isn't. If I remove the anonymous namespace and turn the
functions inside into static, the warning disapears, so clearly
a compiler bug.
* Make graph reuse work with split mode graph
* Remove more split mode row remnants
* WIP tensor overrides
Runs with wrong results, don't see where the issue could be.
* This works but is slow
Still does not work for row-interleaved quants
* Slightly better
* Slightly better
* Row-interleaved quants work
* Better
* Minor
* Guarad against using split mode "graph" for unsupported models
* Guards against using merge_qkv with split mode "graph"
* WIP split mode attn
Works for LlaMA models, but not for GLM-4.5.
Doesn't seem to improve performance, so I guess no point in trying to
fix it.
* Split mode graph for qwen3moe
* Try to better distribute the splits
---------
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
* RPC support multiple devices
* rpc : update documentation (#16441)
Update the README file to match the newly added functionality of
exposing multiple devices from a single server.
Co-authored-by: Diego Devesa <slarengh@gmail.com>
# Conflicts:
# examples/rpc/README.md
* Remove memory settings
* rpc : cache and reuse compute graphs (#15405)
Store the last computed graph and reuse it when possible.
Also do not return response from GRAPH_COMPUTE and assume it always
completes successfully. If this this is not the case, the server closes
the connection. This saves us a network round trip to the server.
* Add -cpu to include cpu backend
---------
Co-authored-by: firecoperana <firecoperana>
Co-authored-by: Radoslav Gerganov <rgerganov@gmail.com>