Commit Graph

304 Commits

Author SHA1 Message Date
Kawrakow
686b6f63ea Try splitting PP MLA computation 2026-01-26 16:37:12 +00:00
Kawrakow
30381fc1fc Faster hybrid inference when shared experts (#1191) 2026-01-26 07:22:05 +02:00
Kawrakow
478b56871f Faster long context TG on CUDA for GLM-4.5/4.6/4.7/AIR (part 2) (#1190)
* This works

* Make quantized KV cache work

* Remove the glm45 graph building changes

* Add condition
2026-01-26 07:21:47 +02:00
Kawrakow
28f8320f3a Much faster rng sampling (#1187) 2026-01-25 09:11:27 +02:00
Kawrakow
04beeffa4e Faster long context TG on CUDA for GLM-4.5/4.6/4.7/AIR (#1183)
* Similar hack to #1182 for GLM-4.5/6/7

* Refinements

* Disable when the KV cache is not f16
2026-01-24 09:39:29 +02:00
Kawrakow
2a7cc09149 Remove llamafile remnants (#1179) 2026-01-22 13:20:23 +02:00
Kawrakow
851fda3509 Split mode graph: use CUDA graphs (#1177)
* Use GUDA graphs also when theretensor overrides

* Change graph key

* This seems to work
2026-01-22 12:38:36 +02:00
Kawrakow
987651e54c Make comments more precise when experts gating function is missing (#1175) 2026-01-21 09:12:40 +02:00
Kawrakow
9e07839ba3 Correct GLM-4.7-Flash gating function (#1174)
* Correct GLM-4.7-Flash gating function

* This is better
2026-01-21 07:53:18 +02:00
Kawrakow
996e77047a Avoid ggml_get_rows if not necessary (#1160)
* Copy reduce result to other GPUs if necessary

* Avoid ggml_get_rows for TG

* For the output ops use the result of the split that ran on the main GPU

* More models
2026-01-20 15:38:21 +02:00
Kawrakow
132a01d25d GLM-4.7-Flash support (#1168)
* GLM-4.7-Flash support

* Model type

* Make FA work for mla != 0
2026-01-20 12:46:52 +02:00
Kawrakow
ef5f17940c sampling: refactor sorting (#1166)
* sampling: refactor sorting

* Couldn't look at it without fixing it.
2026-01-19 16:48:54 +02:00
Kawrakow
98b30e5e81 Faster adaptive_p sampling (#1165)
* A hopefully more efficient adaptive_p sampling

* Once at it, lets fix the formatting too

* More formatting

* Hopefully better

* This should be better

* Correctly accumulate adaptive_p sampling time

* AVX2
2026-01-19 16:03:09 +02:00
Kawrakow
fa58c20c42 A hopefully more efficient adaptive_p sampling (#1161)
* A hopefully more efficient adaptive_p sampling

* Once at it, lets fix the formatting too

* More formatting

* Correctly accumulate sampling time for adaptive_p
2026-01-19 15:01:55 +02:00
Kawrakow
0c0b6e4b8b Copy reduce result to other GPUs if necessary (#1156) 2026-01-19 08:40:26 +02:00
dungquixote42
6dfbef27ec Adaptive p: bugfix + optimization + refactor (#1155)
* adaptive-p sampler: fix zeroed orig_probs bug and refactor

- Fix bug where original probabilities were captured as zero by calculating
  them from logits in llama_prep_adaptive_p (new).
- Replace vector with unordered_map to track candidate probabilities,
  filtering for relevance via logit delta (16.6f).
- Standardize API naming: llama_<action/verb>_<focus/name/topic>_<extra/info>
- Update function signatures to follow most other samplers.

* resolve merge bug

* adaptive-p: revert reordering function definitions
2026-01-18 08:26:06 +02:00
firecoperana
d71a3ec315 Server: refactor and rename functions (#1151)
* Server: rename functions and refactor code

rename functions

refactor update slots

rename params_base

rename timings

* change

* Revert kv cache name changes

* Revert 2

* fix test build error

---------

Co-authored-by: firecoperana <firecoperana>
2026-01-18 08:16:57 +02:00
Kawrakow
7024fdbc72 Additional graph reduce types for split mode graph (#1154)
* WIP: add Q8_0 and BF16 as possible reduce types

Does not work - there is a big somewhere

* This finally works
2026-01-18 08:02:49 +02:00
Kawrakow
709e1a5375 Fixing split mode graph with many GPUs (#1152)
* Attempt to fix the many GPU issue in split mode graph

* WIP: this seems more stable

Still hanging after a while if I try to use all 7 GPUs

* Reenable OpenMP in scheduler async

Seems solid up to 4 GPUs. It did hang with --max-gpu 6.

* printf cleanup
2026-01-17 08:05:24 +02:00
Kawrakow
cb1063f6cd Fix experts/shared experts split (#1147) 2026-01-14 15:35:16 +02:00
Kawrakow
978202a754 Merge ffn_up and ffn_gate experts tensors (part 2) (#1139)
* Add ability to merge up+gate exps to more models

* We need to of course pass the merged tensor to build_ffn

* All the others

* Also Qwen3VL-MoE

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2026-01-13 08:07:52 +02:00
firecoperana
1a461525d5 server: stop processing the prompt when client disconnects (#1134)
implement generator-based API for task results

Update httplib.h to 0.27.0

Fix embedding error

Stop prompt processing when disconnected

Co-authored-by: firecoperana <firecoperana>
2026-01-13 07:56:59 +02:00
Kawrakow
c03c2d7cc6 Merge ffn_up and ffn_gate experts tensors (#1137)
* WIP - not working

* WIP - not working

* WIP - GPT-OSS working

However, extremely stupid. The only way I could correctly repack the
up/gate experts is to copy up and gate into host buffers, repack
into another host buffer, copy back into the ffn_up_gate_exps tensor.
This is going to be very slow for giant 500 GB models.

My attempts to do this via a compute graph on the backend holding
the tensors was unsuccessful.

For GPT-OSS-20B I see ~6-7% better PP when using the original
ik_llama.cpp fused_up_gate CUDA implementation, and ~10% when
using the small batch size implementation.

Other models are not working yet on CUDA as I need to fix the
fused mul-unary implementation.

* WIP

* WIP - Qwen3-MoE (and hopefully all others) working

But when I say here and in the previous commit "working",
I mean PP is working. TG is still broken.

* WIP: TG seems to be working

* Minor

* Add command line option to merge experts up/gate

* Add merge up/gate command line parameter to llama-bench

* Turn off merge_up_gate_exps if split mode graph

It is not yet implemented

* When no bias, allow merging up/gate with tensor overrides

* Arghh, we need to increase the context size again

* Cleanup
2026-01-12 18:30:53 +02:00
Kawrakow
738dc60b78 We don't need these 2026-01-10 15:32:21 +00:00
dungquixote42
52ad1c6421 Implement Adaptive-P Sampler (#1100)
* initial implementation of adaptive-p sampler

* explicitly mark candidates unsorted + cleanup qualifiers

* cosmetic update

* reorg prototypes

* lockstep with mainline

* add _impl for _init + reorg

* add LLAMA_API to prototypes

* update sharpness to 10

* lockstep: rng seed

* delete llama_sampling member in llama_sampler_adaptive_p

* fix LLAMA_API return type

* lockstep: rng seed cont

* actually correct implementation

* lockstep: sorting behavior

* const -> constexpr for known constants

* add missing space

* fix softmax usage in adaptive p sampler

* cosmetic changes

* implement do-not-sort version of softmax

* simpify rng seed, add static to constexpr

* refactor: remove iface + use shared rng + use actually original probabilities

* adaptive-p: add dedicated rng back in

* fix initial max_logit + add float vector to adaptive p sampler context + stochastic sampling

* adaptive-p: fuse first softmax with transformation

* adaptive-p: implement binary search selection

* adaptive-p: update comment
2026-01-10 07:58:53 +02:00
Kawrakow
dd3c3f72f2 Fix split mode graph for GPT-OSS with partial offload (#1128)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2026-01-10 07:57:43 +02:00
Kawrakow
08a0da389c Better VRAM utilization strategy for split mode graph (#1126)
* Better VRAM utilization strategy for split mode graph

* Fix assert when --max-gpu is less than available GPUs

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2026-01-09 13:36:02 +02:00
Kawrakow
eaf2e1c15a Split mode "graph" for Ernie-4.5-MoE (#1121)
* Ernie-4.5-MoE split mode graph

* Cleanup

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2026-01-08 16:46:41 +02:00
Kawrakow
5ef98f8b0f Split mode "graph" for GPT-OSS (#1118)
* Split mode "graph" for GPT-OSS

* Force split_mode_f16 to false

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2026-01-08 09:14:15 +02:00
Kawrakow
99fbd84971 Split mode "graph" for Hunyuan-MoE (#1116)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2026-01-07 13:38:08 +02:00
Kawrakow
ab1616767b Enable up to 4 GPUs for Mimo2-Flash (#1115)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2026-01-07 09:40:29 +02:00
Kawrakow
3c99284b67 Split mode 'graph' fpr Qwen3-VL (#1107)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2026-01-05 17:32:00 +02:00
Kawrakow
218dcc5727 Split mode graph for Qwen3 (#1106)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2026-01-05 14:31:36 +02:00
Kawrakow
419a397ce0 Graph parallel for Mimo-V2-Flash (#1105)
* WIP

* Cleanup

* Set max_gpu to 2 for Mimo2

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2026-01-05 09:58:54 +02:00
Kawrakow
ab50c6cdcb Mimo-V2-Flash support (#1096)
* Mimo-2 support

* Fix bug for head sizes not being the same

It still does not solve the Mimo-2 quantized cache issue.

* Fix quantized cache

* Minor

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2026-01-05 08:00:01 +02:00
firecoperana
56dceefd6b Fix windows build with CUDA (#1101)
Co-authored-by: firecoperana <firecoperana>
2026-01-05 07:59:23 +02:00
Kawrakow
f878adbe90 Turn on graph reuse by default (#1094)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-12-27 08:27:16 +01:00
Kawrakow
519405dc97 Async compute graph evaluation (2 or more GPUs) (#1089)
* WIP: absorb adding input into std_attn and std_ffn

* WIP: NCCL infra

* WIP: add reduce and fake_cpy ops

* WIP

* WIP: graph appears to work, layer is broken

* WIP: Qwen3-MoE works with graph, layer still broken

* WIP: GLM-4.5 graph works

* WIP: fix sm layer (dense)

* WIP: fix sm layer (MoE)

* WIP: fast PP with bespoke 4-GPU NCCL

I guess, I'm not using NCCL the right way as PP is very
low with a single communicator group for 3 or more GPUs.
But if I create 4 communicator groups for pairs of GPUs
(0,1, 2,3, 0,2, 1,3) and use that, PP is fast: I'm hitting
1500 t/s for L3-70B on the 4x3090 system, which is
~20% better than the previous sm graph without NCCL.
But that cannot be the solution (I cannot be creating pairwise
communicators and associated logic for every possible number of GPUs).

* WIP: Cohere2

* Explicitely set device

* Bespoke 3-GPU case

* WIP

* Do not repeat get_rows multiple times

* Fix 3 GPUs

* OK, let's leave it in

* Simple async

* This sync seems enough

* Only do async for 4 or more backends

With 2 GPUs (so, 3 backends) not using async is slightly faster

* Scheduler changes

* Use OpenMP if available

Surprisingly (at least to me), this is quite a bit faster than
std::thread and std::barrier. GLM-4.5-AIR with 4 GPUs is now
at 105 t/s at zero context!

* Do not use OpenMP if there are tensor overrides

* Set omp max active levels

* Be more careful with having set the device before using a stream

* Command line option to turn on async. Set to false by defualt for now

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-12-27 08:18:06 +01:00
Kawrakow
ada5cc1523 Fused norm (#1086)
* Adding fused_norm - same idea as fused_rms_norm

* Avoid computing the attention reduce op for cohere2

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-12-24 15:22:43 +01:00
Kawrakow
5e64235d4c Be able to set reduce op data type for split mode "graph" (#1087)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-12-24 14:01:29 +01:00
Kawrakow
0d7eb34185 Graph parallel: the next generation (#1080)
* WIP: absorb adding input into std_attn and std_ffn

* WIP: NCCL infra

* WIP: add reduce and fake_cpy ops

* WIP

* WIP: graph appears to work, layer is broken

* WIP: Qwen3-MoE works with graph, layer still broken

* WIP: GLM-4.5 graph works

* WIP: fix sm layer (dense)

* WIP: fix sm layer (MoE)

* WIP: fast PP with bespoke 4-GPU NCCL

I guess, I'm not using NCCL the right way as PP is very
low with a single communicator group for 3 or more GPUs.
But if I create 4 communicator groups for pairs of GPUs
(0,1, 2,3, 0,2, 1,3) and use that, PP is fast: I'm hitting
1500 t/s for L3-70B on the 4x3090 system, which is
~20% better than the previous sm graph without NCCL.
But that cannot be the solution (I cannot be creating pairwise
communicators and associated logic for every possible number of GPUs).

* WIP: Cohere2

* Explicitely set device

* Bespoke 3-GPU case

* WIP

* Do not repeat get_rows multiple times

* Fix 3 GPUs

* OK, let's leave it in

* Implement the reduce op without NCCL available

* Be able to build without NCCL

cmake -DGGML_NCCL=OFF disables it

* Make --max-gpu work again

* Slightly better for 4 GPUs without NCCL

* Cleanup

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-12-24 08:31:48 +01:00
Nexes the Elder
d1dd45b4b9 add split-mode-graph-scheduling parameter (#1068)
Use -smgs or --split-mode-graph-scheduling in CLI to bypass the disabling of split mode graph scheduling when tensor overrides is used.

Co-authored-by: Kawrakow <iwankawrakow@gmail.com>
2025-12-17 07:58:19 +01:00
Kawrakow
5585ac2aa8 Better PP performance with split mode "graph" and 3+ GPUs (#1069)
* This should do the trick for PP

* Command line option to set max. extra VRAM that the scheduler can use

* Fix bug and cleanup

* Looks like with this change it is working with tensor overrides

* Nah, it is not working

* OK, this seems to be working

* Disable split scheduling with tensor overrides

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-12-17 07:40:25 +01:00
Kawrakow
7b03c9dcef Use actual active number of layers when preparing splits (#1065)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-12-14 07:44:13 +01:00
Kawrakow
d97a6de34d Split mode "graph" for Cohere2 (#1061)
* This works and TG is descent, but PP is low

* Better

* Apply f_logit_scale before mul mat with output tensor

* This is better for PP: 600 t/s -> 700 t/s

* To not lose this again

* WIP

* Equal split

* WIP

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-12-13 20:30:08 +01:00
Kawrakow
093cc7c380 Do not use split mode graph scheduling if there are tensor overrides (#1060)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-12-12 14:48:38 +01:00
Kawrakow
f65fefa36c Slightly faster TG for split mode "graph" (#1057)
* Rearrange graph nodes

So that we can do graph portions that are the same on 2 or more
GPUs at the same time.

* Separate graph compute implementation for split mode graph

* This is better

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-12-12 07:54:37 +01:00
Kawrakow
bf03f63c34 Fix #1055 (#1056)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-12-11 14:44:32 +01:00
Kawrakow
22863cf9c9 Be able to set a max. number of GPUs to be used in split mode graph (#1051)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-12-11 07:22:53 +01:00
Kawrakow
5fe3979951 KV cache read/write for split mode "graph" (#1048)
* Handle split cache (write)

* Handle split cache (read)

* Fix writing the data twice

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-12-09 06:50:53 +01:00