Commit Graph

57 Commits

Author SHA1 Message Date
Kawrakow
a26adbcf5d Avoid ggml_get_rows for TG 2026-01-18 11:31:35 +00:00
Kawrakow
fb5c340e17 Copy reduce result to other GPUs if necessary 2026-01-18 07:00:06 +00:00
Kawrakow
7024fdbc72 Additional graph reduce types for split mode graph (#1154)
* WIP: add Q8_0 and BF16 as possible reduce types

Does not work - there is a big somewhere

* This finally works
2026-01-18 08:02:49 +02:00
Kawrakow
978202a754 Merge ffn_up and ffn_gate experts tensors (part 2) (#1139)
* Add ability to merge up+gate exps to more models

* We need to of course pass the merged tensor to build_ffn

* All the others

* Also Qwen3VL-MoE

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2026-01-13 08:07:52 +02:00
firecoperana
1a461525d5 server: stop processing the prompt when client disconnects (#1134)
implement generator-based API for task results

Update httplib.h to 0.27.0

Fix embedding error

Stop prompt processing when disconnected

Co-authored-by: firecoperana <firecoperana>
2026-01-13 07:56:59 +02:00
Kawrakow
c03c2d7cc6 Merge ffn_up and ffn_gate experts tensors (#1137)
* WIP - not working

* WIP - not working

* WIP - GPT-OSS working

However, extremely stupid. The only way I could correctly repack the
up/gate experts is to copy up and gate into host buffers, repack
into another host buffer, copy back into the ffn_up_gate_exps tensor.
This is going to be very slow for giant 500 GB models.

My attempts to do this via a compute graph on the backend holding
the tensors was unsuccessful.

For GPT-OSS-20B I see ~6-7% better PP when using the original
ik_llama.cpp fused_up_gate CUDA implementation, and ~10% when
using the small batch size implementation.

Other models are not working yet on CUDA as I need to fix the
fused mul-unary implementation.

* WIP

* WIP - Qwen3-MoE (and hopefully all others) working

But when I say here and in the previous commit "working",
I mean PP is working. TG is still broken.

* WIP: TG seems to be working

* Minor

* Add command line option to merge experts up/gate

* Add merge up/gate command line parameter to llama-bench

* Turn off merge_up_gate_exps if split mode graph

It is not yet implemented

* When no bias, allow merging up/gate with tensor overrides

* Arghh, we need to increase the context size again

* Cleanup
2026-01-12 18:30:53 +02:00
Kawrakow
eaf2e1c15a Split mode "graph" for Ernie-4.5-MoE (#1121)
* Ernie-4.5-MoE split mode graph

* Cleanup

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2026-01-08 16:46:41 +02:00
Kawrakow
5ef98f8b0f Split mode "graph" for GPT-OSS (#1118)
* Split mode "graph" for GPT-OSS

* Force split_mode_f16 to false

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2026-01-08 09:14:15 +02:00
Kawrakow
99fbd84971 Split mode "graph" for Hunyuan-MoE (#1116)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2026-01-07 13:38:08 +02:00
Kawrakow
3c99284b67 Split mode 'graph' fpr Qwen3-VL (#1107)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2026-01-05 17:32:00 +02:00
Kawrakow
218dcc5727 Split mode graph for Qwen3 (#1106)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2026-01-05 14:31:36 +02:00
Kawrakow
419a397ce0 Graph parallel for Mimo-V2-Flash (#1105)
* WIP

* Cleanup

* Set max_gpu to 2 for Mimo2

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2026-01-05 09:58:54 +02:00
Kawrakow
ab50c6cdcb Mimo-V2-Flash support (#1096)
* Mimo-2 support

* Fix bug for head sizes not being the same

It still does not solve the Mimo-2 quantized cache issue.

* Fix quantized cache

* Minor

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2026-01-05 08:00:01 +02:00
Kawrakow
519405dc97 Async compute graph evaluation (2 or more GPUs) (#1089)
* WIP: absorb adding input into std_attn and std_ffn

* WIP: NCCL infra

* WIP: add reduce and fake_cpy ops

* WIP

* WIP: graph appears to work, layer is broken

* WIP: Qwen3-MoE works with graph, layer still broken

* WIP: GLM-4.5 graph works

* WIP: fix sm layer (dense)

* WIP: fix sm layer (MoE)

* WIP: fast PP with bespoke 4-GPU NCCL

I guess, I'm not using NCCL the right way as PP is very
low with a single communicator group for 3 or more GPUs.
But if I create 4 communicator groups for pairs of GPUs
(0,1, 2,3, 0,2, 1,3) and use that, PP is fast: I'm hitting
1500 t/s for L3-70B on the 4x3090 system, which is
~20% better than the previous sm graph without NCCL.
But that cannot be the solution (I cannot be creating pairwise
communicators and associated logic for every possible number of GPUs).

* WIP: Cohere2

* Explicitely set device

* Bespoke 3-GPU case

* WIP

* Do not repeat get_rows multiple times

* Fix 3 GPUs

* OK, let's leave it in

* Simple async

* This sync seems enough

* Only do async for 4 or more backends

With 2 GPUs (so, 3 backends) not using async is slightly faster

* Scheduler changes

* Use OpenMP if available

Surprisingly (at least to me), this is quite a bit faster than
std::thread and std::barrier. GLM-4.5-AIR with 4 GPUs is now
at 105 t/s at zero context!

* Do not use OpenMP if there are tensor overrides

* Set omp max active levels

* Be more careful with having set the device before using a stream

* Command line option to turn on async. Set to false by defualt for now

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-12-27 08:18:06 +01:00
Kawrakow
ada5cc1523 Fused norm (#1086)
* Adding fused_norm - same idea as fused_rms_norm

* Avoid computing the attention reduce op for cohere2

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-12-24 15:22:43 +01:00
Kawrakow
5e64235d4c Be able to set reduce op data type for split mode "graph" (#1087)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-12-24 14:01:29 +01:00
Kawrakow
0d7eb34185 Graph parallel: the next generation (#1080)
* WIP: absorb adding input into std_attn and std_ffn

* WIP: NCCL infra

* WIP: add reduce and fake_cpy ops

* WIP

* WIP: graph appears to work, layer is broken

* WIP: Qwen3-MoE works with graph, layer still broken

* WIP: GLM-4.5 graph works

* WIP: fix sm layer (dense)

* WIP: fix sm layer (MoE)

* WIP: fast PP with bespoke 4-GPU NCCL

I guess, I'm not using NCCL the right way as PP is very
low with a single communicator group for 3 or more GPUs.
But if I create 4 communicator groups for pairs of GPUs
(0,1, 2,3, 0,2, 1,3) and use that, PP is fast: I'm hitting
1500 t/s for L3-70B on the 4x3090 system, which is
~20% better than the previous sm graph without NCCL.
But that cannot be the solution (I cannot be creating pairwise
communicators and associated logic for every possible number of GPUs).

* WIP: Cohere2

* Explicitely set device

* Bespoke 3-GPU case

* WIP

* Do not repeat get_rows multiple times

* Fix 3 GPUs

* OK, let's leave it in

* Implement the reduce op without NCCL available

* Be able to build without NCCL

cmake -DGGML_NCCL=OFF disables it

* Make --max-gpu work again

* Slightly better for 4 GPUs without NCCL

* Cleanup

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-12-24 08:31:48 +01:00
Nexes the Elder
d1dd45b4b9 add split-mode-graph-scheduling parameter (#1068)
Use -smgs or --split-mode-graph-scheduling in CLI to bypass the disabling of split mode graph scheduling when tensor overrides is used.

Co-authored-by: Kawrakow <iwankawrakow@gmail.com>
2025-12-17 07:58:19 +01:00
Kawrakow
d97a6de34d Split mode "graph" for Cohere2 (#1061)
* This works and TG is descent, but PP is low

* Better

* Apply f_logit_scale before mul mat with output tensor

* This is better for PP: 600 t/s -> 700 t/s

* To not lose this again

* WIP

* Equal split

* WIP

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-12-13 20:30:08 +01:00
Kawrakow
f65fefa36c Slightly faster TG for split mode "graph" (#1057)
* Rearrange graph nodes

So that we can do graph portions that are the same on 2 or more
GPUs at the same time.

* Separate graph compute implementation for split mode graph

* This is better

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-12-12 07:54:37 +01:00
Kawrakow
18fdd80eaf Hadamard transforms for K-cache - CPU only (#1033)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-12-04 06:51:11 +01:00
Kawrakow
0581f90c0f Allow empty splits (#1029)
* Allow empty splits

* Fix type, add additional asserts

* Fix also output

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-12-03 13:52:41 +01:00
Kawrakow
90f36eb517 Use standard attention for Ministral3 (#1032)
Required adding the "temperature scaling" to the standard attention
implementation.

But in this way split mode "graph" is automatically supported.

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-12-03 13:43:31 +01:00
Kawrakow
cf20d0c756 Adding ministral3: this seems to work (#1030)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-12-03 11:01:21 +01:00
Kawrakow
92410bbd1e Slightly better graph split strategy (#1026)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-12-02 18:50:52 +01:00
Kawrakow
a719349982 POC: CUDA tensor parallel (MoE models) (#1022)
* Remove most of split mode row

* WIP

* WIP: also allocate the KV cache using tensor split

* WIP: it runs with wrong result

But it also looks like the backend scheduler is not going to help:
* It copies mask and input positions to GPU 0
* => RoPE ops must run on GPU 0
* => To proceed attn evaluation, GPU 1 must wait for GPU 0 to finish its
     entire attn calculation
* Same with FFN. The rms_norm gets scheduled on GPU 0. Hence, GPU 1 must
  wait for GPU 0 to finish its entore FFN calculation before it can
  start (as it needs to copy the result of rms_norm from GPU 0)
* => Seems useless without writing a bespoke TP scheduling

* WIP

* This works, but it is slow

* This is slightly better

the graph is still not being computed in parallel.
Why? Because the scheduler creates graph splits where the
result of the computation on one GPU becomes an input for the
other split. Hence, to trigger the computation on the second GPU
one needs to wait for the computation on the first GPU to finish,
even thiough the two can be done in parallel up to the sunchronization
point. So, all that is left to do is to trick the scheduler to create
to splits that can be done in parallel, and then have a graph split
where the results get combined.

* Playing games with the scheduler

This change tricks it into doing the right thing^TM.
Still quite a bit slower than split mode layer for the 8B LlaMA model.
But for the 70B LlaMA it now beats split mode layer for TG:
28 t/s vs 24.4 t/s. PP is 627 t/s vs 744 t/s.
In comparison, split mode "row" in mainline gets
484 t/s PP and 19.3 t/s TG.

* Fix attn split

Granularity for Wq, Wo is not just head size, but
head size * gqa_ratio.
Else the Wk, Wv tensors end up not being a multiple of the
head size when we divide the split determined by Wo with
the gqa_ratio.

* Show memory used per device

* Make it work with partial offload

but no tensor overrides yet, just ngl < num_layers.

* Allow for f16 source in fused_rms_norm

* This results in faster PP.

Now PP is faster than split mode layer for L3-70B.

* Rename split mode "row" to split mode "graph"

* Leave FFN partial results as f16

* WIP GLM4.5 - runs with wrong results

* WIP GLM4.5 - this works

PP is already better than split mode layer, but TG for zero context
is kind of low - 60 vs 92 t/s. TG becomes better than split mode layer
at around 20k tokens. PP at 26k tokens is 1.55X of sm layer.

* Work around compiler bug

It issues a warning that there is an extra semicolon outside of a function,
but there isn't. If I remove the anonymous namespace and turn the
functions inside into static, the warning disapears, so clearly
a compiler bug.

* Make graph reuse work with split mode graph

* Remove more split mode row remnants

* WIP tensor overrides

Runs with wrong results, don't see where the issue could be.

* This works but is slow

Still does not work for row-interleaved quants

* Slightly better

* Slightly better

* Row-interleaved quants work

* Better

* Minor

* Guarad against using split mode "graph" for unsupported models

* Guards against using merge_qkv with split mode "graph"

* WIP split mode attn

Works for LlaMA models, but not for GLM-4.5.
Doesn't seem to improve performance, so I guess no point in trying to
fix it.

* Split mode graph for qwen3moe

* Try to better distribute the splits

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-12-01 19:25:40 +01:00
Kawrakow
920f424929 Support GigaChat3 (#995)
* Fixing Gigachat support

* Gigachat: CUDA FA (needs 192 x 192 for MLA = 3)

* Gigachat: CPU FA (needs 192 x 192 for MLA = 3)

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-11-24 06:55:14 +01:00
Kawrakow
d764edd652 Fuse sum_rows and div with topk-moe (#984)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-11-19 13:44:09 +01:00
Kawrakow
047a519771 Make sure we can fuse Q and K RoPE for DeepSeek models (#985)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-11-19 13:43:08 +01:00
Kawrakow
d72206dd79 Add mqkv and rcache for Gemma3 (#972)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-11-16 19:10:41 +02:00
Kawrakow
eafa77c412 Add ability to use RoPE cache to DeepSeek models (#970)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-11-16 16:50:02 +02:00
Kawrakow
668c37d4cf DeepSeek: enable option to merge Q and K tensors (#941)
* Merge Q and K for DeepSeek

* Formatting

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-11-14 08:23:04 +02:00
Kawrakow
6b9d1bf4b4 Graph reuse (#947)
* Add mainline compatible FA command line option

* Graph reuse: add command line argument to turn it on

* WIP

* This seems to work

* This is perhaps cleaner

* Change the command line option to -gr

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-11-14 06:58:19 +02:00
Kawrakow
1223bc63b8 Minor: remove unnecesssary calls to build_inp_out_ids (#935)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-11-10 17:38:46 +02:00
Kawrakow
263be6670b Add support for SmolLM3 (#934)
* Convert from HF

* Model loading and compute graph

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-11-10 15:40:12 +02:00
Kawrakow
adba641347 DeepSeek TG optimizations for TG (#928)
* Fuse concat and copy into K cache
* Avoid ggml_cont() when n_token = 1

Combined effect: about +2% in TG performance with full GPU offload

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-11-10 09:52:07 +02:00
firecoperana
e15a215e6b model : Port Minimax M2 from mainline (#907)
Co-authored-by: firecoperana <firecoperana>
2025-11-06 18:09:24 +02:00
Kawrakow
cb30f8e057 Merge Q and K into a single tensor (#892)
* Merge Q and K into a single tensor

* Make V mul mat follow QK mul mat

so they can be fused, which gives a slightly bbetter TG performance.

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-11-05 10:54:36 +02:00
firecoperana
7978f04996 Add vision support in llama-server (#901)
* server: add support for vision model
webui: add support for vision model

* server : remove hack for extra parallel slot#10187

* llama : fix KV shift for qwen2vl #13870

* add no-context-shift parameter

---------

Co-authored-by: firecoperana <firecoperana>
2025-11-05 10:43:46 +02:00
Thireus ☠
86597623a5 Port of Qwen3-VL support from mainline (#883)
* Port of Qwen3-VL for latest ik_llama.cpp

- convert_hf_to_gguf.py - Not touched, use llama.cpp to convert model instead
- sysl and metal support for imrope not added
- Vulkan support for imrope not tested
- Code not tested

* Bugfix n_embd was declared multiple times

https://github.com/ikawrakow/ik_llama.cpp/pull/883#issuecomment-3471179655

* Fix n_embd issue with qwen3vl

* model.output tensor not required

https://github.com/ikawrakow/ik_llama.cpp/pull/883#discussion_r2480388389

* Improved logic for qkv combined tensors

59ceaf8fcb (r2480395800)
59ceaf8fcb (r2480398187)

* Fix n_embd for merge_qkv() + cleaner code

https://github.com/ikawrakow/ik_llama.cpp/pull/883#discussion_r2481227395

* Revert TENSOR_NOT_REQUIRED
2025-11-04 19:20:54 +02:00
Kawrakow
fb0d5a995c RoPE cache (#887)
* Introducing rope cache

When computing RoPE, the rotation angles in each layer
are exactly the same, and only depend on the token positions
(and other constant, model dependent parameters).
So, I wonder, why don't we compute the angles just once
and then reuse for the Q and K RoPE in each layer?

This commit does it as a POC on the CPU, and uses it in
the Qwen3-MoE compute graph.

* cuda: neox works

* WIP

* rope_cache: norm works

* Fused rope+rope

* Fused rope+rope (norm)

* Fused rms+rms+rope+rope (neox) - not working

* WIP

* Also qwen3

* Add command line arg to disable rope cache

* Disable RoPE cache if rope type is not neox or norm

* Add missing break after merge with main

* Fused fused_rms+fused_rms+rope+rope (with -mqkv)

* Fused fused_rms+fused_rms+rope+rope (without -mqkv)

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-11-03 18:42:20 +02:00
Kawrakow
55a704b67a Fused Q and K fused_rms_norm for TG on CUDA (#882)
* Biased mmvq: minor optimization

* Fusing Q and K rms_norm for TG on CUDA

* Remove commented out code

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-10-31 14:41:28 +02:00
Kawrakow
56fc5454ff Merge Q, K, V (#878)
* POC: merge Q, K, V into a single, contiguous tensor

Done just for Qwen3-MoE, where I see a 4% uplift in TG.
PP performance gain is sub-percent, if any.
Still, it seems it makes sense to do it in general given
the TG performance gain.

* WIP

* merge_qkv: it works for gpt-oss

...but we see a smaller TG gain (~1.5%)

* WIP

* Don't ignore the return value of create_tensors()

else, when q, k, v get merged and we are running on the CPU,
we get a crash because the backend is trying to use mmap,
but that no longer works.

* merge_qkv: bias can be required, optional, or mandatory

* merge_qkv: glm4.5moe

* merge_qkv: add command loine argument to enable

* merge_qkv: fix tensor dimensions

* merge_qkv: llama-4

* merge_qkv: qwen3 (dense)

* merge_qkv: simplify build_qwen3moe

* cohere2 - simplify graph building

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-10-30 10:49:48 +02:00
Kawrakow
eb8116b097 Even more fused ops (#868)
* Fuse Q, K, V gemv+add

* More gemv+add fusing

* Faster copy when tensors are contiguous

Relevant for storing data into the KV cache. I see ~1% speedup
for fast models (Ling-mini-2.0, gpt-oss-20b, etc.)

* Cleanup

* Make sure the bias really is 1 row to use fusion

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-10-27 16:09:01 +02:00
Kawrakow
70c0095e11 Faster tensor name formatting (#860)
* Adding fused mul+multi_add + CPU implementation

* fused mul+multi_add: command line argument to disable it

* Faster tensor name formatting

We gain ~1% for Ling-mini-2.0 when running on CUDA.

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-10-24 07:46:18 +03:00
Kawrakow
0549be76e5 Fused mul + multi_add op (#858)
* Adding fused mul+multi_add + CPU implementation

* fused mul+multi_add: CUDA

* fused mul+multi_add: command line argument to disable it

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-10-24 07:40:35 +03:00
Kawrakow
856c6da9c1 Fix experts mul node name (#857)
Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-10-23 09:46:01 +03:00
Kawrakow
ed4e1a6588 Fuse add+add+fused_rms (#853)
* Fuse add+add+fused_rms

* Try this

* Macro to easily enable/disable fusion

* Various:

* Check that all tensors involved are on the same device before applying fusion
* Fuse sigmoid+scale+sum_rows+div
* Fix the fused bailingmoe2 experts selection

The issue there was that the bias was not per row, but per
expert group, so only the first n_per_group biases were used
for al experts.

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-10-22 16:18:11 +03:00
Kawrakow
366d66bc1a Fuse add + fused_rms_norm (CUDA) (#852)
* Combine all calls to llm_build_norm to a single line

so more easily check what kind of arguments are being passed
by simply using grep.

* Combine add + fused_rms_norm

For many models this happens at each layer: the result of the
layer is added to the ayer input, which then becomes the input
to the next layer, which then is typically normalized via
fused_rms_norm.

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-10-21 14:29:50 +03:00
Kawrakow
1f072ab135 Do not allocate KV cache for unused layers (#843)
* Do not allocate KV cache for unused layers

* Do not apply experts weight scale if it is 1

---------

Co-authored-by: Iwan Kawrakow <iwan.kawrakow@gmail.com>
2025-10-20 10:09:39 +03:00